
Workgroup: MMUSIC

Internet-Draft:

draft-ietf-mmusic-mdns-ice-candidates-02

Updates: 8839 (if approved)

Published: 25 October 2021

Intended Status: Informational

Expires: 28 April 2022

Authors: Y. Fablet

Apple Inc.

J. de Borst

Google

J. Uberti

Clubhouse

Q. Wang

Google

Using Multicast DNS to protect privacy when exposing ICE candidates

Abstract

WebRTC applications collect ICE candidates as part of the process of

creating peer-to-peer connections. To maximize the probability of a

direct peer-to-peer connection, client private IP addresses are

included in this candidate collection. However, disclosure of these

addresses has privacy implications. This document describes a way to

share local IP addresses with other clients while preserving client

privacy. This is achieved by concealing IP addresses with

dynamically generated Multicast DNS (mDNS) names.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8839
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Description

3.1. ICE Candidate Gathering

3.1.1. Procedure

3.1.2. Implementation Guidance

3.2. ICE Candidate Processing

3.2.1. Procedure

3.2.2. Implementation Guidance

3.3. Additional Privacy Considerations

3.3.1. Statistics

3.3.2. Interactions With TURN Servers

3.3.3. Generated Name Reuse

3.3.4. Specific Browsing Contexts

3.3.5. Network Interface Enumeration

3.3.6. Monitoring of Sessions

4. Update to RFC 8839

5. Potential Limitations

5.1. Reduced Connectivity

5.2. Connection Setup Latency

5.3. Backward Compatibility

6. Examples

6.1. Normal Handling

6.2. Peer-reflexive Candidate From Slow Signaling

6.3. Peer-reflexive Candidate From Slow Resolution

6.4. IPv4, IPv6, and STUN handling

7. Security Considerations

7.1. mDNS Message Flooding

7.2. Malicious Responses to Deny Name Registration

7.3. Unsolicited ICE Communications

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

As detailed in [IPHandling], exposing client private IP addresses by

default to web applications maximizes the probability of

successfully creating direct peer-to-peer connections between

clients, but creates a significant surface for user fingerprinting.

¶

[IPHandling] recognizes this issue, but also admits that there is no

current solution to this problem; implementations that choose to use

Mode 3 to address the privacy concerns often suffer from failing or

suboptimal connections in WebRTC applications. This is particularly

an issue on unmanaged networks, typically homes or small offices,

where NAT loopback may not be supported.

This document proposes an overall solution to this problem by

extending [ICESDP] to allow ICE implementations to register

ephemeral mDNS [RFC6762] names for local private IP addresses, and

then provide those names, rather than the IP addresses, in their ICE

candidates. While this technique is intended to benefit WebRTC

implementations in web browsers, by preventing collection of private

IP addresses by arbitrary web pages, it can also be used by any

endpoint that wants to avoid disclosing information about its local

network to remote peers on other networks.

WebRTC and WebRTC-compatible endpoints [Overview] that receive ICE

candidates with mDNS names will resolve these names to IP addresses

and perform ICE processing as usual. In the case where the endpoint

is a web application, the WebRTC implementation will manage this

resolution internally and will not disclose the actual IP addresses

to the application.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Description

This section uses the concept of ICE agent as defined in [RFC8445].

In the remainder of the document, it is assumed that each browsing

context (as defined in Section 7.1 of [HTMLSpec]) has its own ICE

agent.

3.1. ICE Candidate Gathering

This section outlines how mDNS should be used by ICE agents to

conceal local IP addresses.

¶

¶

¶

¶

¶

¶

3.1.1. Procedure

For each host candidate gathered by an ICE agent as part of the

gathering process described in [RFC8445], Section 5.1.1, the

candidate is handled as described below.

Check whether this IP address satisfies the ICE agent's policy

regarding whether an address is safe to expose. If so, expose

the candidate and abort this process.

Check whether the ICE agent has previously generated,

registered, and stored an mDNS hostname for this IP address as

per steps 3 to 5. If it has, skip ahead to step 6.

Generate a unique mDNS hostname. The unique name MUST consist

of a version 4 UUID as defined in [RFC4122], followed by

".local".

Register the candidate's mDNS hostname as defined in [RFC6762].

The ICE agent SHOULD send an mDNS announcement for the

hostname, but as the hostname is expected to be unique, the ICE

agent SHOULD skip probing of the hostname.

Store the mDNS hostname and its related IP address in the ICE

agent for future reuse.

Replace the IP address of the ICE candidate with its mDNS

hostname and provide the candidate to the web application.

ICE agents can implement this procedure in any way as long as it

produces equivalent results. An implementation may for instance pre-

register mDNS hostnames by executing steps 3 to 5 and prepopulate an

ICE agent accordingly. By doing so, only step 6 of the above

procedure will be executed at the time of gathering candidates.

In order to prevent web applications from using this mechanism to

query for mDNS support in the local network, the ICE agent SHOULD

still provide mDNS candidates in step 6 even if the local network

does not support mDNS or mDNS registration fails in step 4.

This procedure ensures that an mDNS name is used to replace only one

IP address. Specifically, an ICE agent using an interface with both

IPv4 and IPv6 addresses MUST expose a different mDNS name for each

address.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

¶

¶

3.1.2. Implementation Guidance

3.1.2.1. Registration

Sending the mDNS announcement to the network can be delayed, for

instance due to rate limits. An ICE agent SHOULD provide the

candidate to the web application as soon as its mDNS name is

generated, regardless of whether the announcement has been sent on

the network.

3.1.2.2. Determining Address Privacy and Server-Reflexive Candidates

Naturally, an address that is already exposed to the Internet does

not need to be protected by mDNS, as it can be trivially observed by

the web server or remote endpoint. However, determining this ahead

of time is not straightforward; while the fact that an IPv4 address

is private can sometimes be inferred by its value, e.g., whether it

is an [RFC1918] address, the reverse is not necessarily true. IPv6

addresses present their own complications, e.g., private IPv6

addresses as a result of NAT64 [RFC6146].

Instead, the determination of whether an address is public can be

reliably made as part of the ICE gathering process. For each mDNS

host candidate generated according the guidance above, the usual

STUN [RFC5389] request is sent to a STUN server. This can be done

for both IPv4 and IPv6 local addresses, provided that the

application has configured both IPv4 and IPv6 STUN servers. If the

STUN response returns the same value as the local IP address, this

indicates the address is in fact public.

Regardless of the result, a server-reflexive candidate will be

generated; the transport address of this candidate is an IP address

and therefore distinct from the hostname transport address of the

associated mDNS candidate, and as such MUST NOT be considered

redundant per the guidance in [RFC8445], Section 5.1.3. To avoid

accidental IP address disclosure, this server-reflexive candidate

MUST have its raddr field set to "0.0.0.0"/"::" and its rport field

set to "9", as discussed in [ICESDP], Section 9.1.

Once an address has been identified as public, the ICE agent MAY

cache this information and omit mDNS protection for that address in

future ICE gathering phases.

3.1.2.3. Special Handling for IPv6 Addresses

As noted in [IPHandling], private IPv4 addresses are especially

problematic because of their unbounded lifetime. However, the

[RFC4941] IPv6 addresses recommended for WebRTC have inherent

privacy protections, namely a short lifetime and the lack of any

stateful information. Accordingly, implementations MAY choose to not

¶

¶

¶

¶

¶

conceal [RFC4941] addresses with mDNS names as a tradeoff for

improved peer-to-peer connectivity.

3.1.2.4. mDNS Candidate Encoding

The mDNS name of an mDNS candidate MUST be used in the connection-

address field of its candidate attribute. However, when an mDNS

candidate would be the default candidate, typically because there

are no other candidates, its mDNS name MUST NOT be used in the

connection-address field of the SDP "c=" line, as experimental

deployment has indicated that many remote endpoints will fail to

handle such a SDP. In this situation, the IP address values

"0.0.0.0"/"::" and port value "9" MUST instead be used in the c= and

m= lines, similar to how the no-candidates case is handled in

[ICESDP], Section 4.3.1.

Any candidates exposed to the application via local descriptions

MUST be identical to those provided during candidate gathering

(i.e., MUST NOT contain private host IP addresses).

3.2. ICE Candidate Processing

This section outlines how received ICE candidates with mDNS names

are processed by ICE agents, and is relevant to all endpoints.

3.2.1. Procedure

For any remote ICE candidate received by the ICE agent, the

following procedure is used:

If the connection-address field value of the ICE candidate does

not end with ".local" or if the value contains more than one

".", then process the candidate as defined in [RFC8445].

If the ICE candidate policy is "relay", as defined in [JSEP],

ignore the candidate.

Otherwise, resolve the candidate using mDNS. The ICE agent

SHOULD set the unicast-response bit of the corresponding mDNS

query message; this minimizes multicast traffic, as the

response is probably only useful to the querying node.

If it resolves to an IP address, replace the mDNS hostname of

the ICE candidate with the resolved IP address and continue

processing of the candidate as defined in [RFC8445].

Otherwise, ignore the candidate.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

3.2.2. Implementation Guidance

An ICE agent may use a hostname resolver that transparently supports

both Multicast and Unicast DNS. In this case the resolution of a

".local" name may happen through Unicast DNS as noted in [RFC6762],

Section 3.

An ICE agent SHOULD ignore candidates where the hostname resolution

returns more than one IP address.

An ICE agent MAY add additional restrictions regarding the ICE

candidates it will resolve using mDNS, as this mechanism allows

attackers to send ICE traffic to devices with well-known mDNS names.

In particular, ICE agents SHOULD NOT resolve mDNS names if they are

not in the format defined by Section 3.1.

3.3. Additional Privacy Considerations

The goal of this mechanism is to keep knowledge of private host IP

addresses within the ICE agent while continuing to allow the

application to transmit ICE candidates. Besides keeping private host

IP addresses out of ICE candidates, implementations must take steps

to prevent these IP addresses from being exposed to web applications

through other means.

3.3.1. Statistics

Statistics related to ICE candidates that are accessible to the web

application MUST NOT contain the IP address of a local or remote

mDNS candidate; the mDNS name SHOULD be used instead.

Statistics SHOULD NOT leak whether the mDNS resolution succeeds or

fails. For that reason, RTCIceCandidateStats objects as defined in

[WebRTCStats] SHOULD be generated for any remote mDNS candidate

submitted to the ICE agent, even if the mDNS candidate is ignored as

part of Section 3.2. An implementation strategy to obfuscate the

address of an mDNS candidate in the statistics, regardless if it is

resolved or not, is to replace the mDNS hostname of the ICE

candidate with IP values "0.0.0.0" or "::".

In addition, a peer-reflexive remote candidate may be constructed

from a remote host IP address as a result of an ICE connectivity

check, as described in Section 7.3.1.3 of [RFC8445]. This check may

arrive before the candidate due to signaling or mDNS resolution

delays, as shown in the examples above.

To prevent disclosure of the host IP address to the application in

this scenario, statistics related to ICE candidates MUST NOT contain

the IP address of any peer-reflexive candidate, unless that IP has

already been learned through signaling of a candidate with the same

¶

¶

¶

¶

¶

¶

¶

address and either the same or a different port; this includes cases

where the signaled candidate is discarded as redundant according to

Section 5.1.3 of [RFC8445].

3.3.2. Interactions With TURN Servers

When sending data to a TURN [RFC5766] server, the sending client

tells the server the destination IP and port for the data. This

means that if the client uses TURN to send to an IP that was

obtained by mDNS resolution, the TURN server will learn the

underlying host IP and port, and this information can then be

relayed to the web application, defeating the value of the mDNS

wrapping.

To prevent disclosure of the host IP address to a TURN server, the

ICE agent MUST NOT form candidate pairs between its own relay

candidates and remote mDNS candidates. This restriction applies to

all remote mDNS candidate types, not just host candidates; mDNS

candidates can be clearly identified from their connection-address

fields. Note also that the converse is not an issue; the ICE agent

MAY form candidate pairs between its own mDNS candidates and remote

relay candidates, as in this situation host IPs will not be sent

directly to the TURN server.

This restriction has no effect on connectivity; in the cases where

host IP addresses are private and need to be wrapped with mDNS

names, they will be unreachable from the TURN server, and as noted

above, the reverse path will continue to work normally.

3.3.3. Generated Name Reuse

It is important that use of registered mDNS hostnames is limited in

time and/or scope. Indefinitely reusing the same mDNS hostname

candidate would provide applications an even more reliable tracking

mechanism than the private IP addresses that this specification is

designed to hide. In the case of a web application, the use of

registered mDNS hostnames SHOULD be scoped by the web application

origin, and SHOULD have the lifetime of the page executing the web

application.

3.3.4. Specific Browsing Contexts

As noted in [IPHandling], privacy may be breached if a web

application running in two browsing contexts can determine whether

it is running on the same device. While the approach in this

document prevents the application from directly comparing local

private IP addresses, a successful local WebRTC connection can also

present a threat to user privacy. Specifically, when the latency of

a WebRTC connection latency is close to zero, the probability is

high that the two peers are running on the same device.

¶

¶

¶

¶

¶

¶

To avoid this issue, browsers SHOULD NOT register mDNS names for

WebRTC applications running in a third-party browsing context (i.e.,

a context that has a different origin than the top-level browsing

context), or a private browsing context.

3.3.5. Network Interface Enumeration

Even when local IP addresses are not exposed, the number of mDNS

hostname candidates can still provide a fingerprinting dimension.

This is in particular the case for network interfaces with limited

connectivity that will not generate server-reflexive or relay

candidates.

The more mDNS names an endpoint exposes through mDNS hostname

candidates, the higher the fingerprinting risk. One countermeasure

is to limit this number to a small value.

Note that no additional fingerprinting risk is introduced when

restricting mDNS hostname candidates to default route only.

3.3.6. Monitoring of Sessions

A malicious endpoint in the local network may also record other

endpoints who are registering, unregistering, and resolving mDNS

names. By doing so, they can create a session log that shows which

endpoints are communicating, and for how long. If both endpoints in

the session are on the same network, the fact they are communicating

can be discovered.

Mitigation of this threat is beyond the scope of this proposal.

4. Update to RFC 8839

Section 5.1 of [ICESDP] states:

An agent generating local candidates MUST NOT use FQDN addresses.

An agent processing remote candidates MUST ignore candidate lines

that include candidates with FQDN or IP address versions that are

not supported or recognized.

This document extends [ICESDP] to specifically allow the generation

and processing of ICE candidates with the ".local" FQDNs defined in

{gathering}. The restrictions on other FQDNs are unaffected.

5. Potential Limitations

5.1. Reduced Connectivity

With typical ICE, endpoints on the same network will usually be able

to establish a direct connection between their local IP addresses.

¶

¶

¶

¶

¶

¶

¶

¶

¶

When using the mDNS technique, a direct connection is still

possible, but only if at least one side can properly resolve the

provided mDNS candidates. This may not be possible in all scenarios.

First, some networks may entirely disable mDNS. Second, mDNS queries

have limited scope. On large networks, this may mean that an mDNS

name cannot be resolved if the remote endpoint is too many segments

away.

When mDNS fails, ICE will attempt to fall back to either NAT

hairpin, if supported, or TURN relay if not. This may result in

reduced connectivity, reduced throughput and increased latency, as

well as increased cost in case of TURN relay.

During experimental testing of the mDNS technique across a set of

known mDNS-aware endpoints that had configured a STUN server but not

a TURN server, the observed impact to ICE connection rate was 2%

(relative) when mDNS was enabled on both sides, compared to when

mDNS was only enabled on one side. In this testing, the percentage

of connections that required STUN (i.e., went through a NAT)

increased from 94% to 97%, indicating that mDNS succeeded about half

the time, and fell back to NAT hairpin for the remainder. The most

likely explanation for the overall connection rate drop is that

hairpinning failed in some cases.

5.2. Connection Setup Latency

As noted in Section 3, ICE agents using the mDNS technique are

responsible for registering and resolving mDNS names as part of the

ICE process. These steps may delay establishment of a direct peer-

to-peer connection, compared to when raw local IP addresses are

used.

Given that these mDNS registrations and queries are typically

occurring on a local network, any associated delays should be small.

Also, as noted in Section 3.1, pre-registration can be employed to

eliminate gathering delays entirely.

5.3. Backward Compatibility

For the most part, backward compatibility does not present a

significant issue for the mDNS technique. When an endpoint that

supports mDNS communicates with an endpoint that does not, the

legacy endpoint will still provide its local IP addresses, and

accordingly a direct connection can still be attempted, even though

the legacy endpoint cannot resolve the mDNS names provided by the

new endpoint. In the event the legacy endpoint attempts to resolve

mDNS names using Unicast DNS, this may cause ICE to take somewhat

longer to fully complete, but should not have any effect on

connectivity or connection setup time.

¶

¶

¶

¶

¶

¶

¶

However, some legacy endpoints are not fully spec-compliant and can

behave unpredictably in the presence of ICE candidates that contain

a hostname, potentially leading to ICE failure. Some endpoints may

also fail to handle a connectivity check from an address that they

have not received in signaling. During the aforementioned

experimental testing, the connection rate when interacting with

endpoints that provided raw IP addresses (and therefore should be

unaffected) decreased by 3% (relative), presumably for these

reasons.

6. Examples

The examples below show how the mDNS technique is used during ICE

processing. The first example shows a simple case, the next two

examples demonstrate how peer-reflexive candidates for local IP

addresses can be created due to timing differences, and the final

example shows a real-world case with IPv4, IPv6, and STUN.

6.1. Normal Handling

In this example, mDNS candidates are exchanged between peers and

resolved normally to obtain the corresponding IP addresses.

The exchange of ICE candidates relies on out-of-band signaling, for

example, the SDP Offer/Answer procedure defined in [ICESDP]. In the

above example, the candidate attributes in the SDP messages to

exchange the mDNS candidates between ICE Agent 1 and 2 are as

follows:

ICE Agent 1:

ICE Agent 2:

¶

¶

¶

 ICE Agent 1 (192.0.2.1) ICE Agent 2 (192.0.2.2)

 <Register mDNS | |

 name N1, | |

 192.0.2.1> | |

 |------- mDNS Candidate N1 ------>|

 | | <Register mDNS

 | | name N2,

 | | 192.0.2.2>

 |<------ mDNS Candidate N2 -------|

 <Resolve | | <Resolve

 mDNS name N2> | | mDNS name N1>

 |<=== STUN check to 192.0.2.1 ====|

 |==== STUN check to 192.0.2.2 ===>|

 | |

¶

¶

¶

a=candidate:1 1 udp 2122262783 1f4712db-ea17-4bcf-a596-105139dfd8bf.local

 54596 typ host

¶

¶

6.2. Peer-reflexive Candidate From Slow Signaling

In this example, a peer-reflexive candidate is generated because the

mDNS candidate is signaled after the STUN checks begin.

6.3. Peer-reflexive Candidate From Slow Resolution

In this example, a peer-reflexive candidate is generated because the

mDNS resolution for name N2 does not complete until after the STUN

checks are received.

6.4. IPv4, IPv6, and STUN handling

This last example demonstrates the overall ICE gathering process for

two endpoints, each with a private IPv4 address and a public IPv6

address. They preregister their mDNS names to speed up ICE

gathering.

a=candidate:1 1 udp 2122262783 2579ef4b-50ae-4bfe-95af-70b3376ecb9c.local

 61606 typ host

¶

¶

 ICE Agent 1 (192.0.2.1) ICE Agent 2 (192.0.2.2)

 <Register mDNS | |

 name N1, | |

 192.0.2.1> | |

 |------- mDNS Candidate N1 ------>|

 | | <Resolve

 | | mDNS name N1>

 |<=== STUN check to 192.0.2.1 ====|

 prflx candidate | | <Register mDNS

 192.0.2.2 created | | name N2,

 | | 192.0.2.2>

 |<------ mDNS Candidate N2 -------|

 | |

¶

¶

 ICE Agent 1 (192.0.2.1) ICE Agent 2 (192.0.2.2)

 <Register mDNS | | <Register mDNS

 name N1, | | name N2,

 192.0.2.1> | | 192.0.2.2>

 |------- mDNS Candidate N1 ------>|

 |<------ mDNS Candidate N2 -------|

<Resolve | | <Resolve

 mDNS | | mDNS name N1>

 . |<=== STUN check to 192.0.2.1 ====|

 . prflx candidate | |

 . 192.0.2.2 created | |

 name | |

 N2> | |

¶

¶

 ICE Agent 1 ICE Agent 2

 192.168.1.1 STUN 192.168.1.2

 2001:db8::1 Server 2001:db8::2

 --

 Pre-registration of mDNS names

 | | |

 <Register mDNS | | | <Register mDNS

 name N1.1, | | | name N2.1,

 192.168.1.1> | | | 192.168.1.2>

 <Register mDNS | | | <Register mDNS

 name N1.2, | | | name N2.2,

 2001:db8::1> | | | 2001:db8::2>

 | | |

 -

 ICE Agent 1 sends mDNS candidates

 | | |

 <N1.1> |------- mDNS Candidate C1.1 ----->|

 <N1.2> |------- mDNS Candidate C1.2 ----->|

 | | | <Resolve mDNS

 | | | name N1.1 to

 | | | 192.168.1.1>

 | | | <Resolve mDNS

 | | | name N1.2 to

 | | | 2001:db8::1>

 | | |

 -

 ICE Agent 1 sends server-reflexive candidates

 | | |

 <192.168.1.1 |--Binding Req-->| |

 is 192.0.2.1> |<-Binding Resp--| |

 <192.0.2.1> |------ srflx Candidate C1.3 ----->|

 <2001:db8::1 |--Binding Req-->| |

 is 2001:db8::1> |<-Binding Resp--| |

 <2001:db8::1> |------ srflx Candidate C1.4 ----->| <Discard C1.4

 | | | as redundant>

 | | |

 -

 ICE Agent 2 sends mDNS candidates, resolution is slow

 | | |

 |<------ mDNS Candidate C2.1 ------| <N2.1>

 |<------ mDNS Candidate C2.2 ------| <N2.2>

 <Resolve mDNS | | |

 name N2.1 ...> | | |

 <Resolve mDNS | | |

 name N2.2 ...> | | |

 | | |

 -

 ICE Agent 2 sends server-reflexive candidates, resolution completes

 | | |

 | |<--Binding Req---| <192.168.1.2

 | |---Binding Resp->| is 192.0.2.2>

 |<----- srflx Candidate C2.3 ------| <192.0.2.2>

 | |<--Binding Req---| <2001:db8::2

 | |---Binding Resp->| is 2001:db8::2>

 |<----- srflx Candidate C2.4 ------| <2001:db8::2>

 | | |

 <... N2.1 is | | |

 192.168.1.2> | | |

 <... N2.2 is | | |

 2001:db8::2, | | |

 discard C2.4> | | |

 | | |

 -

 ICE connectivity checks

 | | |

 2001:db8::1 |<============= STUN ==============| 2001:db8::2

 2001:db8::1 |============== STUN =============>| 2001:db8::2

 192.168.1.1 |<============= STUN ==============| 192.168.1.2

 192.168.1.1 |============== STUN =============>| 192.168.1.2

 192.0.2.1 | Failed <-- STUN --------------| 192.168.1.2

 192.168.1.1 |---------------STUN --> Failed | 192.0.2.2

 2001:db8::1 |====== STUN(USE-CANDIDATE) ======>| 2001:db8::2

¶

Ice Agent 1 candidates:

Ice Agent 2 candidates:

7. Security Considerations

7.1. mDNS Message Flooding

The implementation of this proposal requires the mDNS querying

capability of the browser for registering mDNS names or adding

remote ICE host candidates with such names. It also requires the

mDNS responding capability of either the browser or the operating

platform of the browser for registering, removing or resolving mDNS

names. In particular,

the registration of name requires optional probing queries and

mandatory announcing responses ([RFC6762], Section 8), and this

is performed at the beginning of ICE gathering;

the addition of remote ICE host candidates with mDNS names

generates mDNS queries for names of each candidate;

the removal of names could happen when the browsing context of

the ICE agent is destroyed in an implementation, and goodbye

responses should be sent to invalidate records generated by the

ICE agent in the local network ([RFC6762], Section 10.1).

A malicious Web application could flood the local network with mDNS

messages by:

creating browsing contexts that create ICE agents and start

gathering of local ICE host candidates;

¶

 C1.1: candidate:1 1 udp 2122262783 9b36eaac-bb2e-49bb-bb78-

 21c41c499900.local 10004 typ host

 C1.2: candidate:2 1 udp 2122262527 76c82649-02d6-4030-8aef-

 a2ba3a9019d5.local 10006 typ host

 C1.3: candidate:1 1 udp 1686055167 192.0.2.1

 30004 typ srflx raddr 0.0.0.0 rport 0

 C1.4: candidate:2 1 udp 1686054911 2001:db8::1

 10006 typ srflx raddr 0.0.0.0 rport 0

¶

¶

 C2.1: candidate:1 1 udp 2122262783 b977f597-260c-4f70-9ac4-

 26e69b55f966.local 20004 typ host

 C2.2: candidate:2 1 udp 2122262527 ac4595a7-7e42-4e85-85e6-

 c292abe0e681.local 20006 typ host

 C2.3: candidate:1 1 udp 1686055167 192.0.2.2

 40004 typ srflx raddr 0.0.0.0 rport 0

 C2.4: candidate:2 1 udp 1686054911 2001:db8::2

 20006 typ srflx raddr 0.0.0.0 rport 0

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

destroying these local candidates soon after the name

registration is done;

adding fictitious remote ICE host candidates with mDNS names.

[RFC6762] defines a general per-question and per-record multicast

rate limiting rule, in which a given question or record on a given

interface cannot be sent less than one second since its last

transmission. This rate limiting rule however does not mitigate the

above attacks, in which new names, hence new questions or records,

are constantly created and sent. Therefore, a browser-wide mDNS

message rate limit MUST be provided for all mDNS queries and

responses that are dispatched during the ICE candidate gathering and

processing described in Section 3. A browser MAY implement more

specific rate limits, e.g., to ensure a single origin does not

prevent other origins from registering, unregistering, or resolving

mDNS names.

7.2. Malicious Responses to Deny Name Registration

If the optional probing queries are implemented for the name

registration, a malicious endpoint in the local network, which is

capable of responding mDNS queries, could send responses to block

the use of the generated names. This would lead to the discarding of

this ICE host candidate as in Step 5 in Section 3.1.

The above attack can be mitigated by skipping the probing when

registering a name, which also conforms to Section 8 in [RFC6762],

given that the name is randomly generated for the probabilistic

uniqueness (e.g. a version 4 UUID) in Step 3 in Section 3.1.

However, a similar attack can be performed by exploiting the

negative responses (defined in [RFC6762], Section 8.1), in which

NSEC resource records are sent to claim the nonexistence of records

related to the gathered ICE host candidates.

The existence of malicious endpoints in the local network poses a

generic threat, and requires dedicated protocol suites to mitigate,

which is beyond the scope of this proposal.

7.3. Unsolicited ICE Communications

As noted in Section 4.2 of [RTCWebSecurity], an attacker may use ICE

as a way to send unsolicited network traffic to specific endpoints.

While this is not specific to mDNS hostname candidates, this

technique makes it easier to target devices with well-known mDNS

names.

Also, the same technique can be used as an oracle to determine

whether some local services are reachable in the local network. This

*

¶

* ¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC4122]

[RFC4941]

[RFC5389]

[RFC5766]

[RFC6762]

[RFC8445]

knowledge can be used for fingerprinting purposes or as a basis for

attacking local networks.

As noted in Section 3.2, ICE agents are discouraged to resolve mDNS

names that are not in the format defined by Section 3.1 and may

further constrain the mDNS names they will actually try to resolve.

8. IANA Considerations

This document requires no actions from IANA.

9. References

9.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Narten, T., Draves, R., and S. Krishnan, "Privacy

Extensions for Stateless Address Autoconfiguration in

IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,

<https://www.rfc-editor.org/info/rfc4941>.

Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,

"Session Traversal Utilities for NAT (STUN)", RFC 5389,

DOI 10.17487/RFC5389, October 2008, <https://www.rfc-

editor.org/info/rfc5389>.

Mahy, R., Matthews, P., and J. Rosenberg, "Traversal

Using Relays around NAT (TURN): Relay Extensions to

Session Traversal Utilities for NAT (STUN)", RFC 5766,

DOI 10.17487/RFC5766, April 2010, <https://www.rfc-

editor.org/info/rfc5766>.

Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,

DOI 10.17487/RFC6762, February 2013, <https://www.rfc-

editor.org/info/rfc6762>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc6762
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445

[HTMLSpec]

[ICESDP]

[IPHandling]

[JSEP]

[Overview]

[RFC1918]

[RFC6146]

[RTCWebSecurity]

[WebRTCSpec]

[WebRTCStats]

9.2. Informative References

"HTML Living Standard", n.d., <https://

html.spec.whatwg.org>.

Keranen, A., "Session Description Protocol (SDP) Offer/

Answer procedures for Interactive Connectivity

Establishment (ICE)", 1 April 2018, <https://

tools.ietf.org/html/draft-ietf-mmusic-ice-sip-sdp>.

Shieh, G., "WebRTC IP Address Handling Requirements",

18 April 2018, <https://tools.ietf.org/html/draft-ietf-

rtcweb-ip-handling>.

Rescorla, Ed, E., "JavaScript Session Establishment

Protocol", 27 February 2019, <https://tools.ietf.org/

html/draft-ietf-rtcweb-jsep>.

Alvestrand, H., "Overview: Real Time Protocols for

Browser-based Applications", 12 November 2017, <https://

tools.ietf.org/html/draft-ietf-rtcweb-overview>.

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.

J., and E. Lear, "Address Allocation for Private

Internets", BCP 5, RFC 1918, DOI 10.17487/RFC1918,

February 1996, <https://www.rfc-editor.org/info/rfc1918>.

Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

NAT64: Network Address and Protocol Translation from IPv6

Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

April 2011, <https://www.rfc-editor.org/info/rfc6146>.

Rescorla, E., "Security Considerations for WebRTC",

22 January 2018, <https://tools.ietf.org/html/draft-ietf-

rtcweb-security>.

Bruaroey, J.I., "The WebRTC specification", n.d.,

<https://w3c.github.io/webrtc-pc/>.

Boström, H., "Identifiers for WebRTC's Statistics

API", n.d., <https://w3c.github.io/webrtc-stats/>.

Authors' Addresses

Youenn Fablet

Apple Inc.

Email: youenn@apple.com

Jeroen de Borst

https://html.spec.whatwg.org
https://html.spec.whatwg.org
https://tools.ietf.org/html/draft-ietf-mmusic-ice-sip-sdp
https://tools.ietf.org/html/draft-ietf-mmusic-ice-sip-sdp
https://tools.ietf.org/html/draft-ietf-rtcweb-ip-handling
https://tools.ietf.org/html/draft-ietf-rtcweb-ip-handling
https://tools.ietf.org/html/draft-ietf-rtcweb-jsep
https://tools.ietf.org/html/draft-ietf-rtcweb-jsep
https://tools.ietf.org/html/draft-ietf-rtcweb-overview
https://tools.ietf.org/html/draft-ietf-rtcweb-overview
https://www.rfc-editor.org/info/rfc1918
https://www.rfc-editor.org/info/rfc6146
https://tools.ietf.org/html/draft-ietf-rtcweb-security
https://tools.ietf.org/html/draft-ietf-rtcweb-security
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
mailto:youenn@apple.com

Google

Email: jeroendb@google.com

Justin Uberti

Clubhouse

Email: justin@uberti.name

Qingsi Wang

Google

Email: qingsi@google.com

mailto:jeroendb@google.com
mailto:justin@uberti.name
mailto:qingsi@google.com

	Using Multicast DNS to protect privacy when exposing ICE candidates
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Description
	3.1. ICE Candidate Gathering
	3.1.1. Procedure
	3.1.2. Implementation Guidance
	3.1.2.1. Registration
	3.1.2.2. Determining Address Privacy and Server-Reflexive Candidates
	3.1.2.3. Special Handling for IPv6 Addresses
	3.1.2.4. mDNS Candidate Encoding

	3.2. ICE Candidate Processing
	3.2.1. Procedure
	3.2.2. Implementation Guidance

	3.3. Additional Privacy Considerations
	3.3.1. Statistics
	3.3.2. Interactions With TURN Servers
	3.3.3. Generated Name Reuse
	3.3.4. Specific Browsing Contexts
	3.3.5. Network Interface Enumeration
	3.3.6. Monitoring of Sessions

	4. Update to RFC 8839
	5. Potential Limitations
	5.1. Reduced Connectivity
	5.2. Connection Setup Latency
	5.3. Backward Compatibility

	6. Examples
	6.1. Normal Handling
	6.2. Peer-reflexive Candidate From Slow Signaling
	6.3. Peer-reflexive Candidate From Slow Resolution
	6.4. IPv4, IPv6, and STUN handling

	7. Security Considerations
	7.1. mDNS Message Flooding
	7.2. Malicious Responses to Deny Name Registration
	7.3. Unsolicited ICE Communications

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

