
Internet Engineering Task Force MMUSIC WG
Internet Draft H. Schulzrinne, A. Rao, R. Lanphier
draft-ietf-mmusic-rtsp-08.txt Columbia U./Netscape/RealNetworks
January 15, 1998 Expires: July 15, 1998

Real Time Streaming Protocol (RTSP)

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress''.

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

Abstract:

 The Real Time Streaming Protocol, or RTSP, is an application-level
 protocol for control over the delivery of data with real-time
 properties. RTSP provides an extensible framework to enable
 controlled, on-demand delivery of real-time data, such as audio and
 video. Sources of data can include both live data feeds and stored
 clips. This protocol is intended to control multiple data delivery
 sessions, provide a means for choosing delivery channels such as UDP,
 multicast UDP and TCP, and provide a means for choosing delivery
 mechanisms based upon RTP (RFC 1889).

 This is a snapshot of the current draft which will become the next
 version of the ``official'' Internet Draft.

Copyright Notice:

 Copyright (C) The Internet Society (1997). All Rights Reserved.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-rtsp-08.txt
https://datatracker.ietf.org/doc/html/rfc1889

H. Schulzrinne, A. Rao, R. Lanphier Page 1

INTERNET-DRAFT RTSP January 15, 1998

Table of Contents

 * Contents
 * 1 Introduction
 + 1.1 Purpose
 + 1.2 Requirements
 + 1.3 Terminology
 + 1.4 Protocol Properties
 + 1.5 Extending RTSP
 + 1.6 Overall Operation
 + 1.7 RTSP States
 + 1.8 Relationship with Other Protocols
 * 2 Notational Conventions
 * 3 Protocol Parameters
 + 3.1 RTSP Version
 + 3.2 RTSP URL
 + 3.3 Conference Identifiers
 + 3.4 Session Identifiers
 + 3.5 SMPTE Relative Timestamps
 + 3.6 Normal Play Time
 + 3.7 Absolute Time
 + 3.8 Option Tags
 o 3.8.1 Registering New Option Tags with IANA
 * 4 RTSP Message
 + 4.1 Message Types
 + 4.2 Message Headers
 + 4.3 Message Body
 + 4.4 Message Length
 * 5 General Header Fields
 * 6 Request
 + 6.1 Request Line
 + 6.2 Request Header Fields
 * 7 Response
 + 7.1 Status-Line
 o 7.1.1 Status Code and Reason Phrase
 o 7.1.2 Response Header Fields
 * 8 Entity
 + 8.1 Entity Header Fields
 + 8.2 Entity Body
 * 9 Connections
 + 9.1 Pipelining
 + 9.2 Reliability and Acknowledgements
 * 10 Method Definitions

 + 10.1 OPTIONS
 + 10.2 DESCRIBE
 + 10.3 ANNOUNCE

H. Schulzrinne, A. Rao, R. Lanphier Page 2

INTERNET-DRAFT RTSP January 15, 1998

 + 10.4 SETUP
 + 10.5 PLAY
 + 10.6 PAUSE
 + 10.7 TEARDOWN
 + 10.8 GET_PARAMETER
 + 10.9 SET_PARAMETER
 + 10.10 REDIRECT
 + 10.11 RECORD
 + 10.12 Embedded (Interleaved) Binary Data
 * 11 Status Code Definitions
 + 11.1 Success 2xx
 o 11.1.1 250 Low on Storage Space
 + 11.2 Redirection 3xx
 + 11.3 Client Error 4xx
 o 11.3.1 405 Method Not Allowed
 o 11.3.2 451 Parameter Not Understood
 o 11.3.3 452 Conference Not Found
 o 11.3.4 453 Not Enough Bandwidth
 o 11.3.5 454 Session Not Found
 o 11.3.6 455 Method Not Valid in This State
 o 11.3.7 456 Header Field Not Valid for Resource
 o 11.3.8 457 Invalid Range
 o 11.3.9 458 Parameter Is Read-Only
 o 11.3.10 459 Aggregate Operation Not Allowed
 o 11.3.11 460 Only Aggregate Operation Allowed
 o 11.3.12 461 Unsupported Transport
 o 11.3.13 462 Destination Unreachable
 o 11.3.14 551 Option not supported
 * 12 Header Field Definitions
 + 12.1 Accept
 + 12.2 Accept-Encoding
 + 12.3 Accept-Language
 + 12.4 Allow
 + 12.5 Authorization
 + 12.6 Bandwidth
 + 12.7 Blocksize
 + 12.8 Cache-Control
 + 12.9 Conference
 + 12.10 Connection
 + 12.11 Content-Base

 + 12.12 Content-Encoding
 + 12.13 Content-Language
 + 12.14 Content-Length
 + 12.15 Content-Location
 + 12.16 Content-Type
 + 12.17 CSeq

H. Schulzrinne, A. Rao, R. Lanphier Page 3

INTERNET-DRAFT RTSP January 15, 1998

 + 12.18 Date
 + 12.19 Expires
 + 12.20 From
 + 12.21 Host
 + 12.22 If-Match
 + 12.23 If-Modified-Since
 + 12.24 Last-Modified
 + 12.25 Location
 + 12.26 Proxy-Authenticate
 + 12.27 Proxy-Require
 + 12.28 Public
 + 12.29 Range
 + 12.30 Referer
 + 12.31 Retry-After
 + 12.32 Require
 + 12.33 RTP-Info
 + 12.34 Scale
 + 12.35 Speed
 + 12.36 Server
 + 12.37 Session
 + 12.38 Timestamp
 + 12.39 Transport
 + 12.40 Unsupported
 + 12.41 User-Agent
 + 12.42 Vary
 + 12.43 Via
 + 12.44 WWW-Authenticate
 * 13 Caching
 * 14 Examples
 + 14.1 Media on Demand (Unicast)
 + 14.2 Streaming of a Container file
 + 14.3 Single Stream Container Files
 + 14.4 Live Media Presentation Using Multicast
 + 14.5 Playing media into an existing session
 + 14.6 Recording
 * 15 Syntax
 + 15.1 Base Syntax

 * 16 Security Considerations
 * A RTSP Protocol State Machines
 + A.1 Client State Machine
 + A.2 Server State Machine
 * B Interaction with RTP
 * C Use of SDP for RTSP Session Descriptions
 + C.1 Definitions
 o C.1.1 Control URL
 o C.1.2 Media streams

H. Schulzrinne, A. Rao, R. Lanphier Page 4

INTERNET-DRAFT RTSP January 15, 1998

 o C.1.3 Payload type(s)
 o C.1.4 Format-specific parameters
 o C.1.5 Range of presentation
 o C.1.6 Time of availability
 o C.1.7 Connection Information
 o C.1.8 Entity Tag
 + C.2 Aggregate Control Not Available
 + C.3 Aggregate Control Available
 * D Minimal RTSP implementation
 + D.1 Client
 o D.1.1 Basic Playback
 o D.1.2 Authentication-enabled
 + D.2 Server
 o D.2.1 Basic Playback
 o D.2.2 Authentication-enabled
 * E Author Addresses
 * F Acknowledgements
 * References

1 Introduction

1.1 Purpose

 The Real-Time Streaming Protocol (RTSP) establishes and controls
 either a single or several time-synchronized streams of continuous
 media such as audio and video. It does not typically deliver the
 continuous streams itself, although interleaving of the continuous
 media stream with the control stream is possible (see Section 10.12).
 In other words, RTSP acts as a ``network remote control'' for
 multimedia servers.

 The set of streams to be controlled is defined by a presentation
 description. This memorandum does not define a format for a
 presentation description.

 There is no notion of an RTSP connection; instead, a server maintains
 a session labeled by an identifier. An RTSP session is in no way tied
 to a transport-level connection such as a TCP connection. During an
 RTSP session, an RTSP client may open and close many reliable
 transport connections to the server to issue RTSP requests.
 Alternatively, it may use a connectionless transport protocol such as
 UDP.

 The streams controlled by RTSP may use RTP [1], but the operation of
 RTSP does not depend on the transport mechanism used to carry
 continuous media.

H. Schulzrinne, A. Rao, R. Lanphier Page 5

INTERNET-DRAFT RTSP January 15, 1998

 The protocol is intentionally similar in syntax and operation to
 HTTP/1.1 [2] so that extension mechanisms to HTTP can in most cases
 also be added to RTSP. However, RTSP differs in a number of important
 aspects from HTTP:

 * RTSP introduces a number of new methods and has a different
 protocol identifier.
 * An RTSP server needs to maintain state by default in almost all
 cases, as opposed to the stateless nature of HTTP.
 * Both an RTSP server and client can issue requests.
 * Data is carried out-of-band by a different protocol. (There is an
 exception to this.)
 * RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1,
 consistent with current HTML internationalization efforts [3].
 * The Request-URI always contains the absolute URI. Because of
 backward compatibility with a historical blunder, HTTP/1.1 [2]
 carries only the absolute path in the request and puts the host
 name in a separate header field.

 This makes ``virtual hosting'' easier, where a single host with one
 IP address hosts several document trees.

 The protocol supports the following operations:

 Retrieval of media from media server:
 The client can request a presentation description via HTTP or
 some other method. If the presentation is being multicast, the
 presentation description contains the multicast addresses and
 ports to be used for the continuous media. If the presentation
 is to be sent only to the client via unicast, the client
 provides the destination for security reasons.

 Invitation of a media server to a conference:

 A media server can be ``invited'' to join an existing
 conference, either to play back media into the presentation or
 to record all or a subset of the media in a presentation. This
 mode is useful for distributed teaching applications. Several
 parties in the conference may take turns ``pushing the remote
 control buttons''.

 Addition of media to an existing presentation:
 Particularly for live presentations, it is useful if the server
 can tell the client about additional media becoming available.

 RTSP requests may be handled by proxies, tunnels and caches as in
 HTTP/1.1 [2].

H. Schulzrinne, A. Rao, R. Lanphier Page 6

INTERNET-DRAFT RTSP January 15, 1998

1.2 Requirements

 The key words ``MUST'', ``MUST NOT'', ``REQUIRED'', ``SHALL'', ``SHALL
 NOT'', ``SHOULD'', ``SHOULD NOT'', ``RECOMMENDED'', ``MAY'', and
 ``OPTIONAL'' in this document are to be interpreted as described in

RFC 2119 [4].

1.3 Terminology

 Some of the terminology has been adopted from HTTP/1.1 [2]. Terms not
 listed here are defined as in HTTP/1.1.

 Aggregate control:
 The control of the multiple streams using a single timeline by
 the server. For audio/video feeds, this means that the client
 may issue a single play or pause message to control both the
 audio and video feeds.

 Conference:
 a multiparty, multimedia presentation, where ``multi'' implies
 greater than or equal to one.

 Client:
 The client requests continuous media data from the media
 server.

 Connection:
 A transport layer virtual circuit established between two
 programs for the purpose of communication.

 Container file:

https://datatracker.ietf.org/doc/html/rfc2119

 A file which may contain multiple media streams which often
 comprise a presentation when played together. RTSP servers may
 offer aggregate control on these files, though the concept of a
 container file is not embedded in the protocol.

 Continuous media:
 Data where there is a timing relationship between source and
 sink; that is, the sink must reproduce the timing relationship
 that existed at the source. The most common examples of
 continuous media are audio and motion video. Continuous media
 can be real-time (interactive), where there is a ``tight''
 timing relationship between source and sink, or streaming
 (playback), where the relationship is less strict.

H. Schulzrinne, A. Rao, R. Lanphier Page 7

INTERNET-DRAFT RTSP January 15, 1998

 Entity:
 The information transferred as the payload of a request or
 response. An entity consists of metainformation in the form of
 entity-header fields and content in the form of an entity-body,
 as described in Section 8.

 Media initialization:
 Datatype/codec specific initialization. This includes such
 things as clockrates, color tables, etc. Any
 transport-independent information which is required by a client
 for playback of a media stream occurs in the media
 initialization phase of stream setup.

 Media parameter:
 Parameter specific to a media type that may be changed before
 or during stream playback.

 Media server:
 The server providing playback or recording services for one or
 more media streams. Different media streams within a
 presentation may originate from different media servers. A
 media server may reside on the same or a different host as the
 web server the presentation is invoked from.

 Media server indirection:
 Redirection of a media client to a different media server.

 (Media) stream:
 A single media instance, e.g., an audio stream or a video

 stream as well as a single whiteboard or shared application
 group. When using RTP, a stream consists of all RTP and RTCP
 packets created by a source within an RTP session. This is
 equivalent to the definition of a DSM-CC stream([5]).

 Message:
 The basic unit of RTSP communication, consisting of a
 structured sequence of octets matching the syntax defined in

Section 15 and transmitted via a connection or a connectionless
 protocol.

 Participant:
 Member of a conference. A participant may be a machine, e.g., a
 media record or playback server.

H. Schulzrinne, A. Rao, R. Lanphier Page 8

INTERNET-DRAFT RTSP January 15, 1998

 Presentation:
 A set of one or more streams presented to the client as a
 complete media feed, using a presentation description as
 defined below. In most cases in the RTSP context, this implies
 aggregate control of those streams, but does not have to.

 Presentation description:
 A presentation description contains information about one or
 more media streams within a presentation, such as the set of
 encodings, network addresses and information about the content.
 Other IETF protocols such as SDP (RFC XXXX [6]) use the term
 ``session'' for a live presentation. The presentation
 description may take several different formats, including but
 not limited to the session description format SDP.

 Response:
 An RTSP response. If an HTTP response is meant, that is
 indicated explicitly.

 Request:
 An RTSP request. If an HTTP request is meant, that is indicated
 explicitly.

 RTSP session:
 A complete RTSP ``transaction'', e.g., the viewing of a movie.
 A session typically consists of a client setting up a transport
 mechanism for the continuous media stream (SETUP), starting the

 stream with PLAY or RECORD, and closing the stream with
 TEARDOWN.

 Transport initialization:
 The negotiation of transport information (e.g., port numbers,
 transport protocols) between the client and the server.

1.4 Protocol Properties

 RTSP has the following properties:

 Extendable:
 New methods and parameters can be easily added to RTSP.

 Easy to parse:
 RTSP can be parsed by standard HTTP or MIME parsers.

H. Schulzrinne, A. Rao, R. Lanphier Page 9

INTERNET-DRAFT RTSP January 15, 1998

 Secure:
 RTSP re-uses web security mechanisms, either at the transport
 level (TLS, RFC XXXX [7]) or within the protocol itself. All
 HTTP authentication mechanisms such as basic (RFC 2068 [2,

Section 11.1]) and digest authentication (RFC 2069 [8]) are
 directly applicable.

 Transport-independent:
 RTSP may use either an unreliable datagram protocol (UDP) (RFC

768 [9]), a reliable datagram protocol (RDP, RFC 1151, not
 widely used [10]) or a reliable stream protocol such as TCP
 (RFC 793 [11]) as it implements application-level reliability.

 Multi-server capable:
 Each media stream within a presentation can reside on a
 different server. The client automatically establishes several
 concurrent control sessions with the different media servers.
 Media synchronization is performed at the transport level.

 Control of recording devices:
 The protocol can control both recording and playback devices,
 as well as devices that can alternate between the two modes
 (``VCR'').

 Separation of stream control and conference initiation:

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2069
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1151
https://datatracker.ietf.org/doc/html/rfc793

 Stream control is divorced from inviting a media server to a
 conference. The only requirement is that the conference
 initiation protocol either provides or can be used to create a
 unique conference identifier. In particular, SIP [12] or H.323
 [13] may be used to invite a server to a conference.

 Suitable for professional applications:
 RTSP supports frame-level accuracy through SMPTE time stamps to
 allow remote digital editing.

 Presentation description neutral:
 The protocol does not impose a particular presentation
 description or metafile format and can convey the type of
 format to be used. However, the presentation description must
 contain at least one RTSP URI.

 Proxy and firewall friendly:
 The protocol should be readily handled by both application and
 transport-layer (SOCKS [14]) firewalls. A firewall may need to
 understand the SETUP method to open a ``hole'' for the UDP
 media stream.

H. Schulzrinne, A. Rao, R. Lanphier Page 10

INTERNET-DRAFT RTSP January 15, 1998

 HTTP-friendly:
 Where sensible, RTSP reuses HTTP concepts, so that the existing
 infrastructure can be reused. This infrastructure includes PICS
 (Platform for Internet Content Selection [15,16]) for
 associating labels with content. However, RTSP does not just
 add methods to HTTP since the controlling continuous media
 requires server state in most cases.

 Appropriate server control:
 If a client can start a stream, it must be able to stop a
 stream. Servers should not start streaming to clients in such a
 way that clients cannot stop the stream.

 Transport negotiation:
 The client can negotiate the transport method prior to actually
 needing to process a continuous media stream.

 Capability negotiation:
 If basic features are disabled, there must be some clean
 mechanism for the client to determine which methods are not
 going to be implemented. This allows clients to present the
 appropriate user interface. For example, if seeking is not
 allowed, the user interface must be able to disallow moving a

 sliding position indicator.

 An earlier requirement in RTSP was multi-client capability.
 However, it was determined that a better approach was to make sure
 that the protocol is easily extensible to the multi-client
 scenario. Stream identifiers can be used by several control
 streams, so that ``passing the remote'' would be possible. The
 protocol would not address how several clients negotiate access;
 this is left to either a ``social protocol'' or some other floor
 control mechanism.

1.5 Extending RTSP

 Since not all media servers have the same functionality, media servers
 by necessity will support different sets of requests. For example:
 * A server may only be capable of playback thus has no need to
 support the RECORD request.
 * A server may not be capable of seeking (absolute positioning) if
 it is to support live events only.
 * Some servers may not support setting stream parameters and thus
 not support GET_PARAMETER and SET_PARAMETER.

H. Schulzrinne, A. Rao, R. Lanphier Page 11

INTERNET-DRAFT RTSP January 15, 1998

 A server SHOULD implement all header fields described in Section 12.

 It is up to the creators of presentation descriptions not to ask the
 impossible of a server. This situation is similar in HTTP/1.1 [2],
 where the methods described in [H19.6] are not likely to be supported
 across all servers.

 RTSP can be extended in three ways, listed here in order of the
 magnitude of changes supported:

 * Existing methods can be extended with new parameters, as long as
 these parameters can be safely ignored by the recipient. (This is
 equivalent to adding new parameters to an HTML tag.) If the client
 needs negative acknowledgement when a method extension is not
 supported, a tag corresponding to the extension may be added in
 the Require: field (see Section 12.32).
 * New methods can be added. If the recipient of the message does not
 understand the request, it responds with error code 501 (Not
 implemented) and the sender should not attempt to use this method
 again. A client may also use the OPTIONS method to inquire about
 methods supported by the server. The server SHOULD list the

 methods it supports using the Public response header.
 * A new version of the protocol can be defined, allowing almost all
 aspects (except the position of the protocol version number) to
 change.

1.6 Overall Operation

 Each presentation and media stream may be identified by an RTSP URL.
 The overall presentation and the properties of the media the
 presentation is made up of are defined by a presentation description
 file, the format of which is outside the scope of this specification.
 The presentation description file may be obtained by the client using
 HTTP or other means such as email and may not necessarily be stored on
 the media server.

 For the purposes of this specification, a presentation description is
 assumed to describe one or more presentations, each of which maintains
 a common time axis. For simplicity of exposition and without loss of
 generality, it is assumed that the presentation description contains
 exactly one such presentation. A presentation may contain several
 media streams.

H. Schulzrinne, A. Rao, R. Lanphier Page 12

INTERNET-DRAFT RTSP January 15, 1998

 The presentation description file contains a description of the media
 streams making up the presentation, including their encodings,
 language, and other parameters that enable the client to choose the
 most appropriate combination of media. In this presentation
 description, each media stream that is individually controllable by
 RTSP is identified by an RTSP URL, which points to the media server
 handling that particular media stream and names the stream stored on
 that server. Several media streams can be located on different
 servers; for example, audio and video streams can be split across
 servers for load sharing. The description also enumerates which
 transport methods the server is capable of.

 Besides the media parameters, the network destination address and port
 need to be determined. Several modes of operation can be
 distinguished:

 Unicast:
 The media is transmitted to the source of the RTSP request,
 with the port number chosen by the client. Alternatively, the

 media is transmitted on the same reliable stream as RTSP.

 Multicast, server chooses address:
 The media server picks the multicast address and port. This is
 the typical case for a live or near-media-on-demand
 transmission.

 Multicast, client chooses address:
 If the server is to participate in an existing multicast
 conference, the multicast address, port and encryption key are
 given by the conference description, established by means
 outside the scope of this specification.

1.7 RTSP States

 RTSP controls a stream which may be sent via a separate protocol,
 independent of the control channel. For example, RTSP control may
 occur on a TCP connection while the data flows via UDP. Thus, data
 delivery continues even if no RTSP requests are received by the media
 server. Also, during its lifetime, a single media stream may be
 controlled by RTSP requests issued sequentially on different TCP
 connections. Therefore, the server needs to maintain ``session state''
 to be able to correlate RTSP requests with a stream. The state
 transitions are described in Section A.

H. Schulzrinne, A. Rao, R. Lanphier Page 13

INTERNET-DRAFT RTSP January 15, 1998

 Many methods in RTSP do not contribute to state. However, the
 following play a central role in defining the allocation and usage of
 stream resources on the server: SETUP, PLAY, RECORD, PAUSE, and
 TEARDOWN.

 SETUP:
 Causes the server to allocate resources for a stream and start
 an RTSP session.

 PLAY and RECORD:
 Starts data transmission on a stream allocated via SETUP.

 PAUSE:
 Temporarily halts a stream without freeing server resources.

 TEARDOWN:
 Frees resources associated with the stream. The RTSP session

 ceases to exist on the server.

1.8 Relationship with Other Protocols

 RTSP has some overlap in functionality with HTTP. It also may interact
 with HTTP in that the initial contact with streaming content is often
 to be made through a web page. The current protocol specification aims
 to allow different hand-off points between a web server and the media
 server implementing RTSP. For example, the presentation description
 can be retrieved using HTTP or RTSP, which reduces roundtrips in
 web-browser-based scenarios, yet also allows for standalone RTSP
 servers and clients which do not rely on HTTP at all.

 However, RTSP differs fundamentally from HTTP in that data delivery
 takes place out-of-band in a different protocol. HTTP is an asymmetric
 protocol where the client issues requests and the server responds. In
 RTSP, both the media client and media server can issue requests. RTSP
 requests are also not stateless; they may set parameters and continue
 to control a media stream long after the request has been
 acknowledged.

 Re-using HTTP functionality has advantages in at least two areas,
 namely security and proxies. The requirements are very similar, so
 having the ability to adopt HTTP work on caches, proxies and
 authentication is valuable.

 While most real-time media will use RTP as a transport protocol, RTSP
 is not tied to RTP.

H. Schulzrinne, A. Rao, R. Lanphier Page 14

INTERNET-DRAFT RTSP January 15, 1998

 RTSP assumes the existence of a presentation description format that
 can express both static and temporal properties of a presentation
 containing several media streams.

2 Notational Conventions

 Since many of the definitions and syntax are identical to HTTP/1.1,
 this specification only points to the section where they are defined
 rather than copying it. For brevity, [HX.Y] is to be taken to refer to
 Section X.Y of the current HTTP/1.1 specification (RFC 2068 [2]).

 All the mechanisms specified in this document are described in both
 prose and an augmented Backus-Naur form (BNF) similar to that used in
 [H2.1]. It is described in detail in RFC 2234 [17], with the
 difference that this RTSP specification maintains the ``1#'' notation

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2234

 for comma-separated lists.

 In this draft, we use indented and smaller-type paragraphs to provide
 background and motivation. This is intended to give readers who were
 not involved with the formulation of the specification an
 understanding of why things are the way that they are in RTSP.

3 Protocol Parameters

3.1 RTSP Version

 [H3.1] applies, with HTTP replaced by RTSP.

3.2 RTSP URL

 The ``rtsp'', ``rtspu'' and ``rtsps'' schemes are used to refer to
 network resources via the RTSP protocol. This section defines the
 scheme-specific syntax and semantics for RTSP URLs.

 rtsp_URL = ("rtsp:" | "rtspu:" | "rtsps:")
 "//" host [":" port] [abs_path]
 host = <A legal Internet host domain name of IP address
 (in dotted decimal form), as defined by Section 2.1
 of RFC 1123 \cite{rfc1123}>
 port = *DIGIT

 abs_path is defined in [H3.2.1].

 Note that fragment and query identifiers do not have a well-defined
 meaning at this time, with the interpretation left to the RTSP
 server.

H. Schulzrinne, A. Rao, R. Lanphier Page 15

INTERNET-DRAFT RTSP January 15, 1998

 The scheme rtsp requires that commands are issued via a reliable
 protocol (within the Internet, TCP), while the scheme rtspu identifies
 an unreliable protocol (within the Internet, UDP). The scheme rtsps
 indicates that a TCP connection secured by TLS (RFC XXXX) [7] must be
 used.

 If the port is empty or not given, port 554 is assumed. The semantics
 are that the identified resource can be controlled by RTSP at the
 server listening for TCP (scheme ``rtsp'') connections or UDP (scheme
 ``rtspu'') packets on that port of host, and the Request-URI for the
 resource is rtsp_URL.

 The use of IP addresses in URLs SHOULD be avoided whenever possible

https://datatracker.ietf.org/doc/html/rfc1123#section-2.1
https://datatracker.ietf.org/doc/html/rfc1123#section-2.1
https://datatracker.ietf.org/doc/html/rfc1123

 (see RFC 1924 [19]).

 A presentation or a stream is identified by a textual media
 identifier, using the character set and escape conventions [H3.2] of
 URLs (RFC 1738 [20]). URLs may refer to a stream or an aggregate of
 streams, i.e., a presentation. Accordingly, requests described in

Section 10 can apply to either the whole presentation or an individual
 stream within the presentation. Note that some request methods can
 only be applied to streams, not presentations and vice versa.

 For example, the RTSP URL:
 rtsp://media.example.com:554/twister/audiotrack

 identifies the audio stream within the presentation ``twister'', which
 can be controlled via RTSP requests issued over a TCP connection to
 port 554 of host media.example.com.

 Also, the RTSP URL:
 rtsp://media.example.com:554/twister

 identifies the presentation ``twister'', which may be composed of
 audio and video streams.

 This does not imply a standard way to reference streams in URLs.
 The presentation description defines the hierarchical relationships
 in the presentation and the URLs for the individual streams. A
 presentation description may name a stream ``a.mov'' and the whole
 presentation ``b.mov''.

 The path components of the RTSP URL are opaque to the client and do
 not imply any particular file system structure for the server.

H. Schulzrinne, A. Rao, R. Lanphier Page 16

INTERNET-DRAFT RTSP January 15, 1998

 This decoupling also allows presentation descriptions to be used
 with non-RTSP media control protocols simply by replacing the
 scheme in the URL.

3.3 Conference Identifiers

 Conference identifiers are opaque to RTSP and are encoded using
 standard URI encoding methods (i.e., LWS is escaped with %). They can
 contain any octet value. The conference identifier MUST be globally
 unique. For H.323, the conferenceID value is to be used.

https://datatracker.ietf.org/doc/html/rfc1924
https://datatracker.ietf.org/doc/html/rfc1738

 conference-id = 1*xchar

 Conference identifiers are used to allow RTSP sessions to obtain
 parameters from multimedia conferences the media server is
 participating in. These conferences are created by protocols
 outside the scope of this specification, e.g., H.323 [13] or SIP
 [12]. Instead of the RTSP client explicitly providing transport
 information, for example, it asks the media server to use the
 values in the conference description instead.

3.4 Session Identifiers

 Session identifiers are opaque strings of arbitrary length. Linear
 white space must be URL-escaped. A session identifier MUST be chosen
 randomly and MUST be at least eight octets long to make guessing it
 more difficult. (See Section 16.)

 session-id = 1*(ALPHA | DIGIT | safe)

3.5 SMPTE Relative Timestamps

 A SMPTE relative timestamp expresses time relative to the start of
 the clip. Relative timestamps are expressed as SMPTE time codes for
 frame-level access accuracy. The time code has the format
 hours:minutes:seconds:frames.subframes, with the origin at the start
 of the clip. The default smpte format is``SMPTE 30 drop'' format, with
 frame rate is 29.97 frames per second. Other SMPTE codes MAY be
 supported (such as "SMPTE 25") through the use of alternative use of
 "smpte time". For the ``frames'' field in the time value can assume
 the values 0 through 29. The difference between 30 and 29.97 frames
 per second is handled by dropping the first two frame indices (values
 00 and 01) of every minute, except every tenth minute. If the frame
 value is zero, it may be omitted. Subframes are measured in
 one-hundredth of a frame.

H. Schulzrinne, A. Rao, R. Lanphier Page 17

INTERNET-DRAFT RTSP January 15, 1998

 smpte-range = smpte-type "=" smpte-time "-" [smpte-time]
 smpte-type = "smpte" | "smpte-30-drop" | "smpte-25"
 ; other timecodes may be added
 smpte-time = 1*2DIGIT ":" 1*2DIGIT ":" 1*2DIGIT [":" 1*2DIGIT]
 ["." 1*2DIGIT]

 Examples:
 smpte=10:12:33:20-
 smpte=10:07:33-

 smpte=10:07:00-10:07:33:05.01
 smpte-25=10:07:00-10:07:33:05.01

3.6 Normal Play Time

 Normal play time (NPT) indicates the stream absolute position
 relative to the beginning of the presentation. The timestamp consists
 of a decimal fraction. The part left of the decimal may be expressed
 in either seconds or hours, minutes, and seconds. The part right of
 the decimal point measures fractions of a second.

 The beginning of a presentation corresponds to 0.0 seconds. Negative
 values are not defined. The special constant now is defined as the
 current instant of a live event. It may be used only for live events.

 NPT is defined as in DSM-CC: ``Intuitively, NPT is the clock the
 viewer associates with a program. It is often digitally displayed on a
 VCR. NPT advances normally when in normal play mode (scale = 1),
 advances at a faster rate when in fast scan forward (high positive
 scale ratio), decrements when in scan reverse (high negative scale
 ratio) and is fixed in pause mode. NPT is (logically) equivalent to
 SMPTE time codes.'' [5]

 npt-range = (npt-time "-" [npt-time]) | ("-" npt-time)
 npt-time = "now" | npt-sec | npt-hhmmss
 npt-sec = 1*DIGIT ["." *DIGIT]
 npt-hhmmss = npt-hh ":" npt-mm ":" npt-ss ["." *DIGIT]
 npt-hh = 1*DIGIT ; any positive number
 npt-mm = 1*2DIGIT ; 0-59
 npt-ss = 1*2DIGIT ; 0-59

 Examples:
 npt=123.45-125
 npt=12:05:35.3-
 npt=now-

H. Schulzrinne, A. Rao, R. Lanphier Page 18

INTERNET-DRAFT RTSP January 15, 1998

 The syntax conforms to ISO 8601. The npt-sec notation is optimized
 for automatic generation, the ntp-hhmmss notation for consumption
 by human readers. The ``now'' constant allows clients to request to
 receive the live feed rather than the stored or time-delayed
 version. This is needed since neither absolute time nor zero time
 are appropriate for this case.

3.7 Absolute Time

 Absolute time is expressed as ISO 8601 timestamps, using UTC (GMT).
 Fractions of a second may be indicated.

 utc-range = "clock" "=" utc-time "-" [utc-time]
 utc-time = utc-date "T" utc-time "Z"
 utc-date = 8DIGIT ; < YYYYMMDD >
 utc-time = 6DIGIT ["." fraction] ; < HHMMSS.fraction >

 Example for November 8, 1996 at 14h37 and 20 and a quarter seconds
 UTC:

 19961108T143720.25Z

3.8 Option Tags

 Option tags are unique identifiers used to designate new options in
 RTSP. These tags are used in in Require (Section 12.32) and
 Proxy-Require (Section 12.27) header fields.

 Syntax:

 option-tag = 1*xchar

 The creator of a new RTSP option should either prefix the option with
 a reverse domain name (e.g., ``com.foo.mynewfeature'' is an apt name
 for a feature whose inventor can be reached at ``foo.com''), or
 register the new option with the Internet Assigned Numbers Authority
 (IANA).

 3.8.1 Registering New Option Tags with IANA

 When registering a new RTSP option, the following information should
 be provided:

H. Schulzrinne, A. Rao, R. Lanphier Page 19

INTERNET-DRAFT RTSP January 15, 1998

 * Name and description of option. The name may be of any length, but
 SHOULD be no more than twenty characters long. The name MUST not
 contain any spaces, control characters or periods.
 * Indication of who has change control over the option (for example,
 IETF, ISO, ITU-T, other international standardization bodies, a
 consortium or a particular company or group of companies);

 * A reference to a further description, if available, for example
 (in order of preference) an RFC, a published paper, a patent
 filing, a technical report, documented source code or a computer
 manual;
 * For proprietary options, contact information (postal and email
 address);

4 RTSP Message

 RTSP is a text-based protocol and uses the ISO 10646 character set
 in UTF-8 encoding (RFC XXXX [21]). Lines are terminated by CRLF, but
 receivers should be prepared to also interpret CR and LF by themselves
 as line terminators.

 Text-based protocols make it easier to add optional parameters in a
 self-describing manner. Since the number of parameters and the
 frequency of commands is low, processing efficiency is not a
 concern. Text-based protocols, if done carefully, also allow easy
 implementation of research prototypes in scripting languages such
 as Tcl, Visual Basic and Perl.

 The 10646 character set avoids tricky character set switching, but
 is invisible to the application as long as US-ASCII is being used.
 This is also the encoding used for RTCP. ISO 8859-1 translates
 directly into Unicode with a high-order octet of zero. ISO 8859-1
 characters with the most-significant bit set are represented as
 1100001x 10xxxxxx. (See RFC XXXX [21])

 RTSP messages can be carried over any lower-layer transport protocol
 that is 8-bit clean.

 Requests contain methods, the object the method is operating upon and
 parameters to further describe the method. Methods are idempotent,
 unless otherwise noted. Methods are also designed to require little or
 no state maintenance at the media server.

H. Schulzrinne, A. Rao, R. Lanphier Page 20

INTERNET-DRAFT RTSP January 15, 1998

4.1 Message Types

 See [H4.1]

4.2 Message Headers

 See [H4.2]

4.3 Message Body

 See [H4.3]

4.4 Message Length

 When a message body is included with a message, the length of that
 body is determined by one of the following (in order of precedence):

 1. Any response message which MUST NOT include a message body
 (such as the 1xx, 204, and 304 responses) is always terminated
 by the first empty line after the header fields, regardless of
 the entity-header fields present in the message. (Note: An
 empty line consists of only CRLF.)

 2. If a Content-Length header field (section 12.14) is present,
 its value in bytes represents the length of the message-body.
 If this header field is not present, a value of zero is
 assumed.

 3. By the server closing the connection. (Closing the connection
 cannot be used to indicate the end of a request body, since
 that would leave no possibility for the server to send back a
 response.)

 Note that RTSP does not (at present) support the HTTP/1.1 ``chunked''
 transfer coding(see [H3.6]) and requires the presence of the
 Content-Length header field.

 Given the moderate length of presentation descriptions returned,
 the server should always be able to determine its length, even if
 it is generated dynamically, making the chunked transfer encoding
 unnecessary. Even though Content-Length must be present if there is
 any entity body, the rules ensure reasonable behavior even if the
 length is not given explicitly.

H. Schulzrinne, A. Rao, R. Lanphier Page 21

INTERNET-DRAFT RTSP January 15, 1998

5 General Header Fields

 See [H4.5], except that Pragma, Transfer-Encoding and Upgrade

 headers are not defined:

 general-header = Cache-Control ; Section 12.8
 | Connection ; Section 12.10
 | Date ; Section 12.18
 | Via ; Section 12.43

6 Request

 A request message from a client to a server or vice versa includes,
 within the first line of that message, the method to be applied to the
 resource, the identifier of the resource, and the protocol version in
 use.

 Request = Request-Line ; Section 6.1
 *(general-header ; Section 5
 | request-header ; Section 6.2
 | entity-header) ; Section 8.1
 CRLF
 [message-body] ; Section 4.3

6.1 Request Line

 Request-Line = Method SP Request-URI SP RTSP-Version CRLF

 Method = "DESCRIBE" ; Section 10.2
 | "ANNOUNCE" ; Section 10.3
 | "GET_PARAMETER" ; Section 10.8
 | "OPTIONS" ; Section 10.1
 | "PAUSE" ; Section 10.6
 | "PLAY" ; Section 10.5
 | "RECORD" ; Section 10.11
 | "REDIRECT" ; Section 10.10
 | "SETUP" ; Section 10.4
 | "SET_PARAMETER" ; Section 10.9
 | "TEARDOWN" ; Section 10.7
 | extension-method

H. Schulzrinne, A. Rao, R. Lanphier Page 22

INTERNET-DRAFT RTSP January 15, 1998

 extension-method = token

 Request-URI = "*" | absolute_URI

 RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

6.2 Request Header Fields

 request-header = Accept ; Section 12.1
 | Accept-Encoding ; Section 12.2
 | Accept-Language ; Section 12.3
 | Authorization ; Section 12.5
 | From ; Section 12.20
 | If-Modified-Since ; Section 12.23
 | Range ; Section 12.29
 | Referer ; Section 12.30
 | User-Agent ; Section 12.41

 Note that in contrast to HTTP/1.1 [2], RTSP requests always contain
 the absolute URL (that is, including the scheme, host and port) rather
 than just the absolute path.

 HTTP/1.1 requires servers to understand the absolute URL, but
 clients are supposed to use the Host request header. This is purely
 needed for backward-compatibility with HTTP/1.0 servers, a
 consideration that does not apply to RTSP.

 The asterisk "*" in the Request-URI means that the request does not
 apply to a particular resource, but to the server itself, and is only
 allowed when the method used does not necessarily apply to a resource.
 One example would be:

 OPTIONS * RTSP/1.0

7 Response

 [H6] applies except that HTTP-Version is replaced by RTSP-Version.
 Also, RTSP defines additional status codes and does not define some
 HTTP codes. The valid response codes and the methods they can be used
 with are defined in Table 1.

 After receiving and interpreting a request message, the recipient
 responds with an RTSP response message.

H. Schulzrinne, A. Rao, R. Lanphier Page 23

INTERNET-DRAFT RTSP January 15, 1998

 Response = Status-Line ; Section 7.1
 *(general-header ; Section 5
 | response-header ; Section 7.1.2
 | entity-header) ; Section 8.1
 CRLF
 [message-body] ; Section 4.3

7.1 Status-Line

 The first line of a Response message is the Status-Line, consisting
 of the protocol version followed by a numeric status code, and the
 textual phrase associated with the status code, with each element
 separated by SP characters. No CR or LF is allowed except in the final
 CRLF sequence.

 Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF

 7.1.1 Status Code and Reason Phrase

 The Status-Code element is a 3-digit integer result code of the
 attempt to understand and satisfy the request. These codes are fully
 defined in Section 11. The Reason-Phrase is intended to give a short
 textual description of the Status-Code. The Status-Code is intended
 for use by automata and the Reason-Phrase is intended for the human
 user. The client is not required to examine or display the
 Reason-Phrase.

 The first digit of the Status-Code defines the class of response. The
 last two digits do not have any categorization role. There are 5
 values for the first digit:

 * 1xx: Informational - Request received, continuing process
 * 2xx: Success - The action was successfully received, understood,
 and accepted
 * 3xx: Redirection - Further action must be taken in order to
 complete the request
 * 4xx: Client Error - The request contains bad syntax or cannot be
 fulfilled
 * 5xx: Server Error - The server failed to fulfill an apparently
 valid request

H. Schulzrinne, A. Rao, R. Lanphier Page 24

INTERNET-DRAFT RTSP January 15, 1998

 The individual values of the numeric status codes defined for
 RTSP/1.0, and an example set of corresponding Reason-Phrase's, are
 presented below. The reason phrases listed here are only recommended -
 they may be replaced by local equivalents without affecting the
 protocol. Note that RTSP adopts most HTTP/1.1 [2] status codes and
 adds RTSP-specific status codes starting at x50 to avoid conflicts
 with newly defined HTTP status codes.

H. Schulzrinne, A. Rao, R. Lanphier Page 25

INTERNET-DRAFT RTSP January 15, 1998

 Status-Code = "100" ; Continue
 | "200" ; OK
 | "201" ; Created
 | "250" ; Low on Storage Space
 | "300" ; Multiple Choices
 | "301" ; Moved Permanently
 | "302" ; Moved Temporarily
 | "303" ; See Other
 | "304" ; Not Modified
 | "305" ; Use Proxy
 | "400" ; Bad Request
 | "401" ; Unauthorized
 | "402" ; Payment Required
 | "403" ; Forbidden
 | "404" ; Not Found
 | "405" ; Method Not Allowed
 | "406" ; Not Acceptable
 | "407" ; Proxy Authentication Required
 | "408" ; Request Time-out
 | "410" ; Gone
 | "411" ; Length Required
 | "412" ; Precondition Failed
 | "413" ; Request Entity Too Large
 | "414" ; Request-URI Too Large
 | "415" ; Unsupported Media Type
 | "451" ; Parameter Not Understood
 | "452" ; Conference Not Found
 | "453" ; Not Enough Bandwidth
 | "454" ; Session Not Found
 | "455" ; Method Not Valid in This State
 | "456" ; Header Field Not Valid for Resource
 | "457" ; Invalid Range
 | "458" ; Parameter Is Read-Only
 | "459" ; Aggregate operation not allowed
 | "460" ; Only aggregate operation allowed
 | "461" ; Unsupported transport
 | "462" ; Destination unreachable
 | "500" ; Internal Server Error
 | "501" ; Not Implemented
 | "502" ; Bad Gateway
 | "503" ; Service Unavailable
 | "504" ; Gateway Time-out
 | "505" ; RTSP Version not supported
 | "551" ; Option not supported
 | extension-code

H. Schulzrinne, A. Rao, R. Lanphier Page 26

INTERNET-DRAFT RTSP January 15, 1998

 extension-code = 3DIGIT

 Reason-Phrase = *<TEXT, excluding CR, LF>

 RTSP status codes are extensible. RTSP applications are not required
 to understand the meaning of all registered status codes, though such
 understanding is obviously desirable. However, applications MUST
 understand the class of any status code, as indicated by the first
 digit, and treat any unrecognized response as being equivalent to the
 x00 status code of that class, with the exception that an unrecognized
 response MUST NOT be cached. For example, if an unrecognized status
 code of 431 is received by the client, it can safely assume that there
 was something wrong with its request and treat the response as if it
 had received a 400 status code. In such cases, user agents SHOULD
 present to the user the entity returned with the response, since that
 entity is likely to include human-readable information which will
 explain the unusual status.

 Code reason

 100 Continue all

 200 OK all
 201 Created RECORD
 250 Low on Storage Space RECORD

 300 Multiple Choices all
 301 Moved Permanently all
 302 Moved Temporarily all
 303 See Other all
 305 Use Proxy all

H. Schulzrinne, A. Rao, R. Lanphier Page 27

INTERNET-DRAFT RTSP January 15, 1998

 400 Bad Request all
 401 Unauthorized all
 402 Payment Required all
 403 Forbidden all
 404 Not Found all
 405 Method Not Allowed all
 406 Not Acceptable all
 407 Proxy Authentication Required all
 408 Request Timeout all
 410 Gone all
 411 Length Required all
 412 Precondition Failed DESCRIBE, SETUP
 413 Request Entity Too Large all
 414 Request-URI Too Long all
 415 Unsupported Media Type all
 451 Invalid parameter SETUP
 452 Illegal Conference Identifier SETUP
 453 Not Enough Bandwidth SETUP
 454 Session Not Found all
 455 Method Not Valid In This State all
 456 Header Field Not Valid all
 457 Invalid Range PLAY
 458 Parameter Is Read-Only SET_PARAMETER
 459 Aggregate Operation Not Allowed all
 460 Only Aggregate Operation Allowed all
 461 Unsupported Transport all
 462 Destination Unreachable all

 500 Internal Server Error all
 501 Not Implemented all
 502 Bad Gateway all
 503 Service Unavailable all
 504 Gateway Timeout all
 505 RTSP Version Not Supported all
 551 Option not support all

 Table 1: Status codes and their usage with RTSP methods

 7.1.2 Response Header Fields

 The response-header fields allow the request recipient to pass
 additional information about the response which cannot be placed in
 the Status-Line. These header fields give information about the server
 and about further access to the resource identified by the

 Request-URI.

H. Schulzrinne, A. Rao, R. Lanphier Page 28

INTERNET-DRAFT RTSP January 15, 1998

 response-header = Location ; Section 12.25
 | Proxy-Authenticate ; Section 12.26
 | Public ; Section 12.28
 | Retry-After ; Section 12.31
 | Server ; Section 12.36
 | Vary ; Section 12.42
 | WWW-Authenticate ; Section 12.44

 Response-header field names can be extended reliably only in
 combination with a change in the protocol version. However, new or
 experimental header fields MAY be given the semantics of
 response-header fields if all parties in the communication recognize
 them to be response-header fields. Unrecognized header fields are
 treated as entity-header fields.

8 Entity

 Request and Response messages MAY transfer an entity if not
 otherwise restricted by the request method or response status code. An
 entity consists of entity-header fields and an entity-body, although
 some responses will only include the entity-headers.

 In this section, both sender and recipient refer to either the client
 or the server, depending on who sends and who receives the entity.

8.1 Entity Header Fields

 Entity-header fields define optional metainformation about the
 entity-body or, if no body is present, about the resource identified
 by the request.

 entity-header = Allow ; Section 12.4
 | Content-Base ; Section 12.11
 | Content-Encoding ; Section 12.12
 | Content-Language ; Section 12.13
 | Content-Length ; Section 12.14
 | Content-Location ; Section 12.15
 | Content-Type ; Section 12.16
 | Expires ; Section 12.19
 | Last-Modified ; Section 12.24
 | extension-header
 extension-header = message-header

H. Schulzrinne, A. Rao, R. Lanphier Page 29

INTERNET-DRAFT RTSP January 15, 1998

 The extension-header mechanism allows additional entity-header fields
 to be defined without changing the protocol, but these fields cannot
 be assumed to be recognizable by the recipient. Unrecognized header
 fields SHOULD be ignored by the recipient and forwarded by proxies.

8.2 Entity Body

 See [H7.2]

9 Connections

 RTSP requests can be transmitted in several different ways:

 * persistent transport connections used for several request-response
 transactions;
 * one connection per request/response transaction;
 * connectionless mode.

 The type of transport connection is defined by the RTSP URI
 (Section 3.2). For the scheme ``rtsp'', a persistent connection is
 assumed, while the scheme ``rtspu'' calls for RTSP requests to be sent
 without setting up a connection.

 Unlike HTTP, RTSP allows the media server to send requests to the
 media client. However, this is only supported for persistent
 connections, as the media server otherwise has no reliable way of
 reaching the client. Also, this is the only way that requests from
 media server to client are likely to traverse firewalls.

9.1 Pipelining

 A client that supports persistent connections or connectionless mode
 MAY ``pipeline'' its requests (i.e., send multiple requests without
 waiting for each response). A server MUST send its responses to those
 requests in the same order that the requests were received.

9.2 Reliability and Acknowledgements

 Requests are acknowledged by the receiver unless they are sent to a
 multicast group. If there is no acknowledgement, the sender may resend
 the same message after a timeout of one round-trip time (RTT). The
 round-trip time is estimated as in TCP (RFC 1123) [18], with an

https://datatracker.ietf.org/doc/html/rfc1123

 initial round-trip value of 500 ms. An implementation MAY cache the
 last RTT measurement as the initial value for future connections.

H. Schulzrinne, A. Rao, R. Lanphier Page 30

INTERNET-DRAFT RTSP January 15, 1998

 If a reliable transport protocol is used to carry RTSP, requests
 SHOULD NOT be retransmitted; the RTSP application SHOULD instead rely
 on the underlying transport to provide reliability.

 If both the underlying reliable transport such as TCP and the RTSP
 application retransmit requests, it is possible that each packet
 loss results in two retransmissions. The receiver cannot typically
 take advantage of the application-layer retransmission since the
 transport stack will not deliver the application-layer
 retransmission before the first attempt has reached the receiver.
 If the packet loss is caused by congestion, multiple
 retransmissions at different layers will exacerbate the congestion.

 If RTSP is used over a small-RTT LAN, standard procedures for
 optimizing inital TCP round trip estimates, such as those used in
 T/TCP (RFC 1644) [22], can be beneficial.

 The Timestamp header (Section 12.38) is used to avoid the
 retransmission ambiguity problem [23, p. 301] and obviates the need
 for Karn's algorithm.

 Each request carries a sequence number in the CSeq header
 (Section 12.17), which is incremented by one for each distinct request
 transmitted. If a request is repeated because of lack of
 acknowledgement, the request MUST carry the original sequence number
 (i.e. sequence number is not incremented).

 Systems implementing RTSP MUST support carrying RTSP over TCP and MAY
 support UDP. The default port for the RTSP server is 554 for both UDP
 and TCP.

 A number of RTSP packets destined for the same control end point may
 be packed into a single lower-layer PDU or encapsulated into a TCP
 stream. RTSP data MAY be interleaved with RTP and RTCP packets. Unlike
 HTTP, an RTSP message MUST contain a Content-Length header whenever
 that message contains a payload. Otherwise, an RTSP packet is
 terminated with an empty line immediately following the last message
 header.

10 Method Definitions

https://datatracker.ietf.org/doc/html/rfc1644

 The method token indicates the method to be performed on the
 resource identified by the Request-URI. The method is case-sensitive.
 New methods may be defined in the future. Method names may not start
 with a $ character (decimal 24) and must be a token. Methods are
 summarized in Table 2.

H. Schulzrinne, A. Rao, R. Lanphier Page 31

INTERNET-DRAFT RTSP January 15, 1998

 method direction object requirement
 DESCRIBE C->S P,S recommended
 ANNOUNCE C->S, S->C P,S optional
 GET_PARAMETER C->S, S->C P,S optional
 OPTIONS C->S, S->C P,S required
 (S->C: optional)
 PAUSE C->S P,S recommended
 PLAY C->S P,S required
 RECORD C->S P,S optional
 REDIRECT S->C P,S optional
 SETUP C->S S required
 SET_PARAMETER C->S, S->C P,S optional
 TEARDOWN C->S P,S required

 Table 2: Overview of RTSP methods, their direction, and what
 objects (P: presentation, S: stream) they operate on

 Notes on Table 2: PAUSE is recommended, but not required in that a
 fully functional server can be built that does not support this
 method, for example, for live feeds. If a server does not support a
 particular method, it MUST return "501 Not Implemented" and a client
 SHOULD not try this method again for this server.

10.1 OPTIONS

 The behavior is equivalent to that described in [H9.2]. An OPTIONS
 request may be issued at any time, e.g., if the client is about to try
 a nonstandard request. It does not influence server state.

 Example:

 C->S: OPTIONS * RTSP/1.0
 CSeq: 1
 Require: implicit-play
 Proxy-Require: gzipped-messages

 S->C: RTSP/1.0 200 OK
 CSeq: 1

 Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE

 Note that these are necessarily fictional features (one would hope
 that we would not purposefully overlook a truly useful feature just so
 that we could have a strong example in this section).

H. Schulzrinne, A. Rao, R. Lanphier Page 32

INTERNET-DRAFT RTSP January 15, 1998

10.2 DESCRIBE

 The DESCRIBE method retrieves the description of a presentation or
 media object identified by the request URL from a server. It may use
 the Accept header to specify the description formats that the client
 understands. The server responds with a description of the requested
 resource. The DESCRIBE reply-response pair constitutes the media
 initialization phase of RTSP.

 Example:

 C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0
 CSeq: 312
 Accept: application/sdp, application/rtsl, application/mheg

 S->C: RTSP/1.0 200 OK
 CSeq: 312
 Date: 23 Jan 1997 15:35:06 GMT
 Content-Type: application/sdp
 Content-Length: 376

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 3456 RTP/AVP 0
 m=video 2232 RTP/AVP 31
 m=whiteboard 32416 UDP WB
 a=orient:portrait

 The DESCRIBE response MUST contain all media initialization

 information for the resource(s) that it describes. If a media client
 obtains a presentation description from a source other than DESCRIBE
 and that description contains a complete set of media initialization
 parameters, the client SHOULD use those parameters and not then
 request a description for the same media via RTSP.

 Additionally, servers SHOULD NOT use the DESCRIBE response as a means
 of media indirection.

H. Schulzrinne, A. Rao, R. Lanphier Page 33

INTERNET-DRAFT RTSP January 15, 1998

 Clear ground rules need to be established so that clients have an
 unambiguous means of knowing when to request media initialization
 information via DESCRIBE, and when not to. By forcing a DESCRIBE
 response to contain all media initialization for the set of streams
 that it describes, and discouraging use of DESCRIBE for media
 indirection, we avoid looping problems that might result from other
 approaches.

 Media initialization is a requirement for any RTSP-based system,
 but the RTSP specification does not dictate that this must be done
 via the DESCRIBE method. There are three ways that an RTSP client
 may receive initialization information:

 * via RTSP's DESCRIBE method;
 * via some other protocol (HTTP, email attachment, etc.);
 * via the command line or standard input (thus working as a browser
 helper application launched with an SDP file or other media
 initialization format).

 In the interest of practical interoperability, it is highly
 recommended that minimal servers support the DESCRIBE method, and
 highly recommended that minimal clients support the ability to act
 as a ``helper application'' that accepts a media initialization
 file from standard input, command line, and/or other means that are
 appropriate to the operating environment of the client.

10.3 ANNOUNCE

 The ANNOUNCE method serves two purposes:

 When sent from client to server, ANNOUNCE posts the description of a
 presentation or media object identified by the request URL to a
 server. When sent from server to client, ANNOUNCE updates the session
 description in real-time.

 If a new media stream is added to a presentation (e.g., during a live
 presentation), the whole presentation description should be sent
 again, rather than just the additional components, so that components
 can be deleted.

H. Schulzrinne, A. Rao, R. Lanphier Page 34

INTERNET-DRAFT RTSP January 15, 1998

 Example:

 C->S: ANNOUNCE rtsp://server.example.com/fizzle/foo RTSP/1.0
 CSeq: 312
 Date: 23 Jan 1997 15:35:06 GMT
 Session: 4711
 Content-Type: application/sdp
 Content-Length: 332

 v=0
 o=mhandley 2890844526 2890845468 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 3456 RTP/AVP 0
 m=video 2232 RTP/AVP 31

 S->C: RTSP/1.0 200 OK
 CSeq: 312

10.4 SETUP

 The SETUP request for a URI specifies the transport mechanism to be
 used for the streamed media. A client can issue a SETUP request for a
 stream that is already playing to change transport parameters, which a
 server MAY allow. If it does not allow this, it MUST respond with
 error ``455 Method Not Valid In This State''. For the benefit of any
 intervening firewalls, a client must indicate the transport parameters

 even if it has no influence over these parameters, for example, where
 the server advertises a fixed multicast address.

 Since SETUP includes all transport initialization information,
 firewalls and other intermediate network devices (which need this
 information) are spared the more arduous task of parsing the
 DESCRIBE response, which has been reserved for media
 initialization.

 The Transport header specifies the transport parameters acceptable to
 the client for data transmission; the response will contain the
 transport parameters selected by the server.

H. Schulzrinne, A. Rao, R. Lanphier Page 35

INTERNET-DRAFT RTSP January 15, 1998

 C->S: SETUP rtsp://example.com/foo/bar/baz.rm RTSP/1.0
 CSeq: 302
 Transport: RTP/AVP;unicast;client_port=4588-4589

 S->C: RTSP/1.0 200 OK
 CSeq: 302
 Date: 23 Jan 1997 15:35:06 GMT
 Session: 4711
 Transport: RTP/AVP;unicast;
 client_port=4588-4589;server_port=6256-6257

10.5 PLAY

 The PLAY method tells the server to start sending data via the
 mechanism specified in SETUP. A client MUST NOT issue a PLAY request
 until any outstanding SETUP requests have been acknowledged as
 successful.

 The PLAY request positions the normal play time to the beginning of
 the range specified and delivers stream data until the end of the
 range is reached. PLAY requests may be pipelined (queued); a server
 MUST queue PLAY requests to be executed in order. That is, a PLAY
 request arriving while a previous PLAY request is still active is
 delayed until the first has been completed.

 This allows precise editing.

 For example, regardless of how closely spaced the two PLAY requests in
 the example below arrive, the server will first play seconds 10
 through 15, then, immediately following, seconds 20 to 25, and finally

 seconds 30 through the end.

 C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
 CSeq: 835
 Range: npt=10-15

 C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
 CSeq: 836
 Range: npt=20-25

 C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
 CSeq: 837
 Range: npt=30-

H. Schulzrinne, A. Rao, R. Lanphier Page 36

INTERNET-DRAFT RTSP January 15, 1998

 See the description of the PAUSE request for further examples.

 A PLAY request without a Range header is legal. It starts playing a
 stream from the beginning unless the stream has been paused. If a
 stream has been paused via PAUSE, stream delivery resumes at the pause
 point. If a stream is playing, such a PLAY request causes no further
 action and can be used by the client to test server liveness.

 The Range header may also contain a time parameter. This parameter
 specifies a time in UTC at which the playback should start. If the
 message is received after the specified time, playback is started
 immediately. The time parameter may be used to aid in synchronization
 of streams obtained from different sources.

 For a on-demand stream, the server replies with the actual range that
 will be played back. This may differ from the requested range if
 alignment of the requested range to valid frame boundaries is required
 for the media source. If no range is specified in the request, the
 current position is returned in the reply. The unit of the range in
 the reply is the same as that in the request.

 After playing the desired range, the presentation is automatically
 paused, as if a PAUSE request had been issued.

 The following example plays the whole presentation starting at SMPTE
 time code 0:10:20 until the end of the clip. The playback is to start
 at 15:36 on 23 Jan 1997.

 C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0
 CSeq: 833
 Range: smpte=0:10:20-;time=19970123T153600Z

 S->C: RTSP/1.0 200 OK
 CSeq: 833
 Date: 23 Jan 1997 15:35:06 GMT
 Range: smpte=0:10:22-;time=19970123T153600Z

 For playing back a recording of a live presentation, it may be
 desirable to use clock units:

 C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/1.0
 CSeq: 835
 Range: clock=19961108T142300Z-19961108T143520Z

H. Schulzrinne, A. Rao, R. Lanphier Page 37

INTERNET-DRAFT RTSP January 15, 1998

 S->C: RTSP/1.0 200 OK
 CSeq: 835
 Date: 23 Jan 1997 15:35:06 GMT

 A media server only supporting playback MUST support the npt format
 and MAY support the clock and smpte formats.

10.6 PAUSE

 The PAUSE request causes the stream delivery to be interrupted
 (halted) temporarily. If the request URL names a stream, only playback
 and recording of that stream is halted. For example, for audio, this
 is equivalent to muting. If the request URL names a presentation or
 group of streams, delivery of all currently active streams within the
 presentation or group is halted. After resuming playback or recording,
 synchronization of the tracks MUST be maintained. Any server resources
 are kept, though servers MAY close the session and free resources
 after being paused for the duration specified with the timeout
 parameter of the Session header in the SETUP message.

 Example:

 C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/1.0
 CSeq: 834
 Session: 1234

 S->C: RTSP/1.0 200 OK
 CSeq: 834
 Date: 23 Jan 1997 15:35:06 GMT

 The PAUSE request may contain a Range header specifying when the
 stream or presentation is to be halted. The header must contain
 exactly one value rather than a time range. The normal play time for
 the stream is set to that value. The pause request becomes effective
 the first time the server is encountering the time point specified in
 any of the currently pending PLAY requests. If the Range header
 specifies a time outside any currently pending PLAY requests, the
 error ``457 Invalid Range'' is returned. If this header is missing,
 stream delivery is interrupted immediately on receipt of the message.

H. Schulzrinne, A. Rao, R. Lanphier Page 38

INTERNET-DRAFT RTSP January 15, 1998

 For example, if the server has play requests for ranges 10 to 15 and
 20 to 29 pending and then receives a pause request for NPT 21, it
 would start playing the second range and stop at NPT 21. If the pause
 request is for NPT 12 and the server is playing at NPT 13 serving the
 first play request, the server stops immediately. If the pause request
 is for NPT 16, the server stops after completing the first play
 request and discards the second play request.

 As another example, if a server has received requests to play ranges
 10 to 15 and then 13 to 20 (that is, overlapping ranges), the PAUSE
 request for NPT=14 would take effect while the server plays the first
 range, with the second PLAY request effectively being ignored,
 assuming the PAUSE request arrives before the server has started
 playing the second, overlapping range. Regardless of when the PAUSE
 request arrives, it sets the NPT to 14.

 If the server has already sent data beyond the time specified in the
 Range header, a PLAY would still resume at that point in time, as it
 is assumed that the client has discarded data after that point. This
 ensures continuous pause/play cycling without gaps.

10.7 TEARDOWN

 The TEARDOWN request stops the stream delivery for the given URI,

 freeing the resources associated with it. If the URI is the
 presentation URI for this presentation, any RTSP session identifier
 associated with the session is no longer valid. Unless all transport
 parameters are defined by the session description, a SETUP request has
 to be issued before the session can be played again.

 Example:
 C->S: TEARDOWN rtsp://example.com/fizzle/foo RTSP/1.0
 CSeq: 892
 Session: 1234
 S->C: RTSP/1.0 200 OK
 CSeq: 892

10.8 GET_PARAMETER

 The GET_PARAMETER request retrieves the value of a parameter of a
 presentation or stream specified in the URI. The content of the reply
 and response is left to the implementation. GET_PARAMETER with no
 entity body may be used to test client or server liveness (``ping'').

H. Schulzrinne, A. Rao, R. Lanphier Page 39

INTERNET-DRAFT RTSP January 15, 1998

 Example:

 S->C: GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
 CSeq: 431
 Content-Type: text/parameters
 Session: 1234
 Content-Length: 15

 packets_received
 jitter

 C->S: RTSP/1.0 200 OK
 CSeq: 431
 Content-Length: 46
 Content-Type: text/parameters

 packets_received: 10
 jitter: 0.3838

 The ``text/parameters'' section is only an example type for
 parameter. This method is intentionally loosely defined with the
 intention that the reply content and response content will be

 defined after further experimentation.

10.9 SET_PARAMETER

 This method requests to set the value of a parameter for a
 presentation or stream specified by the URI.

 A request SHOULD only contain a single parameter to allow the client
 to determine why a particular request failed. If the request contains
 several parameters, the server MUST only act on the request if all of
 the parameters can be set successfully. A server MUST allow a
 parameter to be set repeatedly to the same value, but it MAY disallow
 changing parameter values.

 Note: transport parameters for the media stream MUST only be set with
 the SETUP command.

 Restricting setting transport parameters to SETUP is for the
 benefit of firewalls.

H. Schulzrinne, A. Rao, R. Lanphier Page 40

INTERNET-DRAFT RTSP January 15, 1998

 The parameters are split in a fine-grained fashion so that there
 can be more meaningful error indications. However, it may make
 sense to allow the setting of several parameters if an atomic
 setting is desirable. Imagine device control where the client does
 not want the camera to pan unless it can also tilt to the right
 angle at the same time.

 Example:

 C->S: SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
 CSeq: 421
 Content-length: 20
 Content-type: text/parameters

 barparam: barstuff

 S->C: RTSP/1.0 451 Invalid Parameter
 CSeq: 421
 Content-length: 10
 Content-type: text/parameters

 barparam

 The ``text/parameters'' section is only an example type for
 parameter. This method is intentionally loosely defined with the
 intention that the reply content and response content will be
 defined after further experimentation.

10.10 REDIRECT

 A redirect request informs the client that it must connect to
 another server location. It contains the mandatory header Location,
 which indicates that the client should issue requests for that URL. It
 may contain the parameter Range, which indicates when the redirection
 takes effect. If the client wants to continue to send or receive media
 for this URI, the client MUST issue a TEARDOWN request for the current
 session and a SETUP for the new session at the designated host.

 This example request redirects traffic for this URI to the new server
 at the given play time:

 S->C: REDIRECT rtsp://example.com/fizzle/foo RTSP/1.0
 CSeq: 732
 Location: rtsp://bigserver.com:8001
 Range: clock=19960213T143205Z-

H. Schulzrinne, A. Rao, R. Lanphier Page 41

INTERNET-DRAFT RTSP January 15, 1998

10.11 RECORD

 This method initiates recording a range of media data according to
 the presentation description. The timestamp reflects start and end
 time (UTC). If no time range is given, use the start or end time
 provided in the presentation description. If the session has already
 started, commence recording immediately.

 The server decides whether to store the recorded data under the
 request-URI or another URI. If the server does not use the
 request-URI, the response SHOULD be 201 (Created) and contain an
 entity which describes the status of the request and refers to the new
 resource, and a Location header.

 A media server supporting recording of live presentations MUST support
 the clock range format; the smpte format does not make sense.

 In this example, the media server was previously invited to the
 conference indicated.

 C->S: RECORD rtsp://example.com/meeting/audio.en RTSP/1.0
 CSeq: 954
 Session: 1234
 Conference: 128.16.64.19/32492374

10.12 Embedded (Interleaved) Binary Data

 Certain firewall designs and other circumstances may force a server
 to interleave RTSP methods and stream data. This interleaving should
 generally be avoided unless necessary since it complicates client and
 server operation and imposes additional overhead. Interleaved binary
 data SHOULD only be used if RTSP is carried over TCP.

 Stream data such as RTP packets is encapsulated by an ASCII dollar
 sign (24 decimal), followed by a one-byte channel identifier, followed
 by the length of the encapsulated binary data as a binary, two-byte
 integer in network byte order. The stream data follows immediately
 afterwards, without a CRLF, but including the upper-layer protocol
 headers. Each $ block contains exactly one upper-layer protocol data
 unit, e.g., one RTP packet.

 The channel identifier is defined in the Transport header with the
 interleaved parameter(Section 12.39).

H. Schulzrinne, A. Rao, R. Lanphier Page 42

INTERNET-DRAFT RTSP January 15, 1998

 When the transport choice is RTP, RTCP messages are also interleaved
 by the server over the TCP connection. As a default, RTCP packets are
 sent on the first available channel higher than the RTP channel. The
 client MAY explicitly request RTCP packets on another channel. This is
 done by specifying two channels in the interleaved parameter of the
 Transport header(Section 12.39).

 RTCP is needed for synchronization when two or more streams are
 interleaved in such a fashion. Also, this provides a convenient way
 to tunnel RTP/RTCP packets through the TCP control connection when
 required by the network configuration and transfer them onto UDP
 when possible.

 C->S: SETUP rtsp://foo.com/bar.file RTSP/1.0
 CSeq: 2
 Transport: RTP/AVP/TCP;interleaved=0-1

 S->C: RTSP/1.0 200 OK
 CSeq: 2
 Date: 05 Jun 1997 18:57:18 GMT
 Transport: RTP/AVP/TCP;interleaved=0-1
 Session: 12345

 C->S: PLAY rtsp://foo.com/bar.file RTSP/1.0
 CSeq: 3
 Session: 12345

 S->C: RTSP/1.0 200 OK
 CSeq: 3
 Session: 12345
 Date: 05 Jun 1997 18:59:15 GMT
 RTP-Info: url=rtsp://foo.com/bar.file;
 seq=232433;rtptime=972948234

 S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
 S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
 S->C: $\001{2 byte length}{"length" bytes RTCP packet}

11 Status Code Definitions

 Where applicable, HTTP status [H10] codes are reused. Status codes
 that have the same meaning are not repeated here. See Table 1 for a
 listing of which status codes may be returned by which requests.

H. Schulzrinne, A. Rao, R. Lanphier Page 43

INTERNET-DRAFT RTSP January 15, 1998

11.1 Success 2xx

 11.1.1 250 Low on Storage Space

 The server returns this warning after receiving a RECORD request that
 it may not be able to fulfill completely due to insufficient storage
 space. If possible, the server should use the Range header to indicate
 what time period it may still be able to record. Since other processes
 on the server may be consuming storage space simultaneously, a client
 should take this only as an estimate.

11.2 Redirection 3xx

 See [H10.3].

 Within RTSP, redirection may be used for load balancing or redirecting
 stream requests to a server topologically closer to the client.
 Mechanisms to determine topological proximity are beyond the scope of
 this specification.

11.3 Client Error 4xx

 11.3.1 405 Method Not Allowed

 The method specified in the request is not allowed for the resource
 identified by the request URI. The response MUST include an Allow
 header containing a list of valid methods for the requested resource.
 This status code is also to be used if a request attempts to use a
 method not indicated during SETUP, e.g., if a RECORD request is issued
 even though the mode parameter in the Transport header only specified
 PLAY.

 11.3.2 451 Parameter Not Understood

 The recipient of the request does not support one or more parameters
 contained in the request.

 11.3.3 452 Conference Not Found

 The conference indicated by a Conference header field is unknown to
 the media server.

 11.3.4 453 Not Enough Bandwidth

 The request was refused because there was insufficient bandwidth. This
 may, for example, be the result of a resource reservation failure.

H. Schulzrinne, A. Rao, R. Lanphier Page 44

INTERNET-DRAFT RTSP January 15, 1998

 11.3.5 454 Session Not Found

 The RTSP session identifier in the Session header is missing, invalid,
 or has timed out.

 11.3.6 455 Method Not Valid in This State

 The client or server cannot process this request in its current state.
 The response SHOULD contain an Allow header to make error recovery
 easier.

 11.3.7 456 Header Field Not Valid for Resource

 The server could not act on a required request header. For example, if
 PLAY contains the Range header field but the stream does not allow
 seeking.

 11.3.8 457 Invalid Range

 The Range value given is out of bounds, e.g., beyond the end of the
 presentation.

 11.3.9 458 Parameter Is Read-Only

 The parameter to be set by SET_PARAMETER can be read but not modified.

 11.3.10 459 Aggregate Operation Not Allowed

 The requested method may not be applied on the URL in question since
 it is an aggregate (presentation) URL. The method may be applied on a
 stream URL.

 11.3.11 460 Only Aggregate Operation Allowed

 The requested method may not be applied on the URL in question since
 it is not an aggregate (presentation) URL. The method may be applied
 on the presentation URL.

 11.3.12 461 Unsupported Transport

 The Transport field did not contain a supported transport
 specification.

H. Schulzrinne, A. Rao, R. Lanphier Page 45

INTERNET-DRAFT RTSP January 15, 1998

 11.3.13 462 Destination Unreachable

 The data transmission channel could not be established because the
 client address could not be reached. This error will most likely be
 the result of a client attempt to place an invalid Destination
 parameter in the Transport field.

 11.3.14 551 Option not supported

 An option given in the Require or the Proxy-Require fields was not
 supported. The Unsupported header should be returned stating the
 option for which there is no support.

12 Header Field Definitions

 HTTP/1.1 [2] or other, non-standard header fields not listed here
 currently have no well-defined meaning and SHOULD be ignored by the
 recipient.

 Table 3 summarizes the header fields used by RTSP. Type ``g''
 designates general request headers to be found in both requests and
 responses, type ``R'' designates request headers, type ``r''
 designates response headers, and type ``e'' designates entity header
 fields. Fields marked with ``req.'' in the column labeled ``support''
 MUST be implemented by the recipient for a particular method, while
 fields marked ``opt.'' are optional. Note that not all fields marked
 ``req.'' will be sent in every request of this type. The ``req.''
 means only that client (for response headers) and server (for request
 headers) MUST implement the fields. The last column lists the method
 for which this header field is meaningful; the designation ``entity''
 refers to all methods that return a message body. Within this
 specification, DESCRIBE and GET_PARAMETER fall into this class.

H. Schulzrinne, A. Rao, R. Lanphier Page 46

INTERNET-DRAFT RTSP January 15, 1998

 Header type support methods
 Accept R opt. entity
 Accept-Encoding R opt. entity
 Accept-Language R opt. all
 Allow r opt. all
 Authorization R opt. all
 Bandwidth R opt. all
 Blocksize R opt. all but OPTIONS, TEARDOWN
 Cache-Control g opt. SETUP
 Conference R opt. SETUP
 Connection g req. all

 Content-Base e opt. entity
 Content-Encoding e req. SET_PARAMETER
 Content-Encoding e req. DESCRIBE, ANNOUNCE
 Content-Language e req. DESCRIBE, ANNOUNCE
 Content-Length e req. SET_PARAMETER, ANNOUNCE
 Content-Length e req. entity
 Content-Location e opt. entity
 Content-Type e req. SET_PARAMETER, ANNOUNCE
 Content-Type r req. entity
 CSeq g req. all
 Date g opt. all
 Expires e opt. DESCRIBE, ANNOUNCE
 From R opt. all
 If-Modified-Since R opt. DESCRIBE, SETUP
 Last-Modified e opt. entity
 Proxy-Authenticate
 Proxy-Require R req. all
 Public r opt. all
 Range R opt. PLAY, PAUSE, RECORD
 Range r opt. PLAY, PAUSE, RECORD
 Referer R opt. all
 Require R req. all
 Retry-After r opt. all
 RTP-Info r req. PLAY
 Scale Rr opt. PLAY, RECORD
 Session Rr req. all but SETUP, OPTIONS
 Server r opt. all
 Speed Rr opt. PLAY
 Transport Rr req. SETUP
 Unsupported r req. all
 User-Agent R opt. all
 Via g opt. all
 WWW-Authenticate r opt. all

H. Schulzrinne, A. Rao, R. Lanphier Page 47

INTERNET-DRAFT RTSP January 15, 1998

 Overview of RTSP header fields

12.1 Accept

 The Accept request-header field can be used to specify certain
 presentation description content types which are acceptable for the
 response.

 The ``level'' parameter for presentation descriptions is properly

 defined as part of the MIME type registration, not here.

 See [H14.1] for syntax.

 Example of use:
 Accept: application/rtsl, application/sdp;level=2

12.2 Accept-Encoding

 See [H14.3]

12.3 Accept-Language

 See [H14.4]. Note that the language specified applies to the
 presentation description and any reason phrases, not the media
 content.

12.4 Allow

 The Allow response header field lists the methods supported by the
 resource identified by the request-URI. The purpose of this field is
 to strictly inform the recipient of valid methods associated with the
 resource. An Allow header field must be present in a 405 (Method not
 allowed) response.

 Example of use:
 Allow: SETUP, PLAY, RECORD, SET_PARAMETER

H. Schulzrinne, A. Rao, R. Lanphier Page 48

INTERNET-DRAFT RTSP January 15, 1998

12.5 Authorization

 See [H14.8]

12.6 Bandwidth

 The Bandwidth request header field describes the estimated bandwidth
 available to the client, expressed as a positive integer and measured

 in bits per second. The bandwidth available to the client may change
 during an RTSP session, e.g., due to modem retraining.

 Bandwidth = "Bandwidth" ":" 1*DIGIT

 Example:
 Bandwidth: 4000

12.7 Blocksize

 This request header field is sent from the client to the media
 server asking the server for a particular media packet size. This
 packet size does not include lower-layer headers such as IP, UDP, or
 RTP. The server is free to use a blocksize which is lower than the one
 requested. The server MAY truncate this packet size to the closest
 multiple of the minimum, media-specific block size, or override it
 with the media-specific size if necessary. The block size MUST be a
 positive decimal number, measured in octets. The server only returns
 an error (416) if the value is syntactically invalid.

12.8 Cache-Control

 The Cache-Control general header field is used to specify directives
 that MUST be obeyed by all caching mechanisms along the
 request/response chain.

 Cache directives must be passed through by a proxy or gateway
 application, regardless of their significance to that application,
 since the directives may be applicable to all recipients along the
 request/response chain. It is not possible to specify a cache-
 directive for a specific cache.

 Cache-Control should only be specified in a SETUP request and its
 response. Note: Cache-Control does not govern the caching of responses
 as for HTTP, but rather of the stream identified by the SETUP request.
 Responses to RTSP requests are not cacheable, except for responses to
 DESCRIBE.

H. Schulzrinne, A. Rao, R. Lanphier Page 49

INTERNET-DRAFT RTSP January 15, 1998

 Cache-Control = "Cache-Control" ":" 1#cache-directive
 cache-directive = cache-request-directive
 | cache-response-directive
 cache-request-directive = "no-cache"
 | "max-stale"
 | "min-fresh"

 | "only-if-cached"
 | cache-extension
 cache-response-directive = "public"
 | "private"
 | "no-cache"
 | "no-transform"
 | "must-revalidate"
 | "proxy-revalidate"
 | "max-age" "=" delta-seconds
 | cache-extension
 cache-extension = token ["=" (token | quoted-string)]

 no-cache:
 Indicates that the media stream MUST NOT be cached anywhere.
 This allows an origin server to prevent caching even by caches
 that have been configured to return stale responses to client
 requests.

 public:
 Indicates that the media stream is cacheable by any cache.

 private:
 Indicates that the media stream is intended for a single user
 and MUST NOT be cached by a shared cache. A private
 (non-shared) cache may cache the media stream.

H. Schulzrinne, A. Rao, R. Lanphier Page 50

INTERNET-DRAFT RTSP January 15, 1998

 no-transform:
 An intermediate cache (proxy) may find it useful to convert the
 media type of a certain stream. A proxy might, for example,
 convert between video formats to save cache space or to reduce
 the amount of traffic on a slow link. Serious operational

 problems may occur, however, when these transformations have
 been applied to streams intended for certain kinds of
 applications. For example, applications for medical imaging,
 scientific data analysis and those using end-to-end
 authentication all depend on receiving a stream that is
 bit-for-bit identical to the original entity-body. Therefore,
 if a response includes the no-transform directive, an
 intermediate cache or proxy MUST NOT change the encoding of the
 stream. Unlike HTTP, RTSP does not provide for partial
 transformation at this point, e.g., allowing translation into a
 different language.

 only-if-cached:
 In some cases, such as times of extremely poor network
 connectivity, a client may want a cache to return only those
 media streams that it currently has stored, and not to receive
 these from the origin server. To do this, the client may
 include the only-if-cached directive in a request. If it
 receives this directive, a cache SHOULD either respond using a
 cached media stream that is consistent with the other
 constraints of the request, or respond with a 504 (Gateway
 Timeout) status. However, if a group of caches is being
 operated as a unified system with good internal connectivity,
 such a request MAY be forwarded within that group of caches.

 max-stale:
 Indicates that the client is willing to accept a media stream
 that has exceeded its expiration time. If max-stale is assigned
 a value, then the client is willing to accept a response that
 has exceeded its expiration time by no more than the specified
 number of seconds. If no value is assigned to max-stale, then
 the client is willing to accept a stale response of any age.

 min-fresh:
 Indicates that the client is willing to accept a media stream
 whose freshness lifetime is no less than its current age plus
 the specified time in seconds. That is, the client wants a
 response that will still be fresh for at least the specified
 number of seconds.

H. Schulzrinne, A. Rao, R. Lanphier Page 51

INTERNET-DRAFT RTSP January 15, 1998

 must-revalidate:
 When the must-revalidate directive is present in a SETUP
 response received by a cache, that cache MUST NOT use the entry

 after it becomes stale to respond to a subsequent request
 without first revalidating it with the origin server. That is,
 the cache must do an end-to-end revalidation every time, if,
 based solely on the origin server's Expires, the cached
 response is stale.)

12.9 Conference

 This request header field establishes a logical connection between a
 pre-established conference and an RTSP stream. The conference-id must
 not be changed for the same RTSP session.

 Conference = "Conference" ":" conference-id

 Example:
 Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

 A response code of 452 (452 Conference Not Found) is returned if the
 conference-id is not valid.

12.10 Connection

 See [H14.10]

12.11 Content-Base

 See [H14.11]

12.12 Content-Encoding

 See [H14.12]

12.13 Content-Language

 See [H14.13]

12.14 Content-Length

 This field contains the length of the content of the method (i.e.
 after the double CRLF following the last header). Unlike HTTP, it MUST
 be included in all messages that carry content beyond the header
 portion of the message. If it is missing, a default value of zero is
 assumed. It is interpreted according to [H14.14].

H. Schulzrinne, A. Rao, R. Lanphier Page 52

INTERNET-DRAFT RTSP January 15, 1998

12.15 Content-Location

 See [H14.15]

12.16 Content-Type

 See [H14.18]. Note that the content types suitable for RTSP are
 likely to be restricted in practice to presentation descriptions and
 parameter-value types.

12.17 CSeq

 The CSeq field specifies the sequence number for an RTSP
 request-response pair. This field MUST be present in all requests and
 responses. For every RTSP request containing the given sequence
 number, there will be a corresponding response having the same number.
 Any retransmitted request must contain the same sequence number as the
 original (i.e. the sequence number is not incremented for
 retransmissions of the same request).

12.18 Date

 See [H14.19].

12.19 Expires

 The Expires entity-header field gives a date and time after which
 the description or media-stream should be considered stale. The
 interpretation depends on the method:

 DESCRIBE response:
 The Expires header indicates a date and time after which the
 description should be considered stale.

 A stale cache entry may not normally be returned by a cache (either a
 proxy cache or an user agent cache) unless it is first validated with
 the origin server (or with an intermediate cache that has a fresh copy
 of the entity). See section 13 for further discussion of the
 expiration model.

 The presence of an Expires field does not imply that the original
 resource will change or cease to exist at, before, or after that time.

 The format is an absolute date and time as defined by HTTP-date in
 [H3.3]; it MUST be in RFC1123-date format:

H. Schulzrinne, A. Rao, R. Lanphier Page 53

INTERNET-DRAFT RTSP January 15, 1998

https://datatracker.ietf.org/doc/html/rfc1123

 Expires = "Expires" ":" HTTP-date

 An example of its use is

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

 RTSP/1.0 clients and caches MUST treat other invalid date formats,
 especially including the value "0", as having occured in the past
 (i.e., ``already expired'').

 To mark a response as ``already expired,'' an origin server should use
 an Expires date that is equal to the Date header value. To mark a
 response as ``never expires,'' an origin server should use an Expires
 date approximately one year from the time the response is sent.
 RTSP/1.0 servers should not send Expires dates more than one year in
 the future.

 The presence of an Expires header field with a date value of some time
 in the future on a media stream that otherwise would by default be
 non-cacheable indicates that the media stream is cacheable, unless
 indicated otherwise by a Cache-Control header field (Section 12.8).

12.20 From

 See [H14.22].

12.21 Host

 This HTTP request header field is not needed for RTSP. It should be
 silently ignored if sent.

12.22 If-Match

 See [H14.25].

 This field is especially useful for ensuring the integrity of the
 presentation description, in both the case where it is fetched via
 means external to RTSP (such as HTTP), or in the case where the server
 implementation is guaranteeing the integrity of the description
 between the time of the DESCRIBE message and the SETUP message.

 The identifier is an opaque identifier, and thus is not specific to
 any particular session description language.

H. Schulzrinne, A. Rao, R. Lanphier Page 54

INTERNET-DRAFT RTSP January 15, 1998

12.23 If-Modified-Since

 The If-Modified-Since request-header field is used with the DESCRIBE
 and SETUP methods to make them conditional. If the requested variant
 has not been modified since the time specified in this field, a
 description will not be returned from the server (DESCRIBE) or a
 stream will not be set up (SETUP). Instead, a 304 (not modified)
 response will be returned without any message-body.

 If-Modified-Since = "If-Modified-Since" ":" HTTP-date

 An example of the field is:

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

12.24 Last-Modified

 The Last-Modified entity-header field indicates the date and time at
 which the origin server believes the presentation description or media
 stream was last modified. See [H14.29]. For the methods DESCRIBE or
 ANNOUNCE, the header field indicates the last modification date and
 time of the description, for SETUP that of the media stream.

12.25 Location

 See [H14.30].

12.26 Proxy-Authenticate

 See [H14.33].

12.27 Proxy-Require

 The Proxy-Require header is used to indicate proxy-sensitive
 features that MUST be supported by the proxy. Any Proxy-Require header
 features that are not supported by the proxy MUST be negatively
 acknowledged by the proxy to the client if not supported. Servers
 should treat this field identically to the Require field.

 See Section 12.32 for more details on the mechanics of this message
 and a usage example.

H. Schulzrinne, A. Rao, R. Lanphier Page 55

INTERNET-DRAFT RTSP January 15, 1998

12.28 Public

 See [H14.35].

12.29 Range

 This request and response header field specifies a range of time.
 The range can be specified in a number of units. This specification
 defines the smpte (Section 3.5), npt (Section 3.6), and clock
 (Section 3.7) range units. Within RTSP, byte ranges [H14.36.1] are not
 meaningful and MUST NOT be used. The header may also contain a time
 parameter in UTC, specifying the time at which the operation is to be
 made effective. Servers supporting the Range header MUST understand
 the NPT range format and SHOULD understand the SMPTE range format. The
 Range response header indicates what range of time is actually being
 played or recorded. If the Range header is given in a time format that
 is not understood, the recipient should return ``501 Not
 Implemented''.

 Range = "Range" ":" 1#ranges-specifier
 [";" "time" "=" utc-time]
 ranges-specifier = npt-range | utc-range | smpte-range

 Example:
 Range: clock=19960213T143205Z-;time=19970123T143720Z

 The notation is similar to that used for the HTTP/1.1 [2]
 byte-range header. It allows clients to select an excerpt from the
 media object, and to play from a given point to the end as well as
 from the current location to a given point. The start of playback
 can be scheduled for any time in the future, although a server may
 refuse to keep server resources for extended idle periods.

12.30 Referer

 See [H14.37]. The URL refers to that of the presentation
 description, typically retrieved via HTTP.

H. Schulzrinne, A. Rao, R. Lanphier Page 56

INTERNET-DRAFT RTSP January 15, 1998

12.31 Retry-After

 See [H14.38].

12.32 Require

 The Require header is used by clients to query the server about
 options that it may or may not support. The server MUST respond to
 this header by using the Unsupported header to negatively acknowledge
 those options which are NOT supported.

 This is to make sure that the client-server interaction will
 proceed without delay when all options are understood by both
 sides, and only slow down if options are not understood (as in the
 case above). For a well-matched client-server pair, the interaction
 proceeds quickly, saving a round-trip often required by negotiation
 mechanisms. In addition, it also removes state ambiguity when the
 client requires features that the server does not understand.

 Require = "Require" ":" 1#option-tag

 Example:
 C->S: SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
 CSeq: 302
 Require: funky-feature
 Funky-Parameter: funkystuff

 S->C: RTSP/1.0 551 Option not supported
 CSeq: 302
 Unsupported: funky-feature

 C->S: SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
 CSeq: 303

 S->C: RTSP/1.0 200 OK
 CSeq: 303

 In this example, ``funky-feature'' is the feature tag which indicates
 to the client that the fictional Funky-Parameter field is required.
 The relationship between ``funky-feature'' and Funky-Parameter is not
 communicated via the RTSP exchange, since that relationship is an
 immutable property of ``funky-feature'' and thus should not be
 transmitted with every exchange.

H. Schulzrinne, A. Rao, R. Lanphier Page 57

INTERNET-DRAFT RTSP January 15, 1998

 Proxies and other intermediary devices SHOULD ignore features that are
 not understood in this field. If a particular extension requires that
 intermediate devices support it, the extension should be tagged in the
 Proxy-Require field instead (see Section 3.4).

12.33 RTP-Info

 This field is used to set RTP-specific parameters in the PLAY
 response.

 url:
 Indicates the stream URL which for which the following RTP
 parameters correspond.

 seq:
 Indicates the sequence number of the first packet of the
 stream. This allows clients to gracefully deal with packets
 when seeking. The client uses this value to differentiate
 packets that originated before the seek from packets that
 originated after the seek.

 rtptime:
 Indicates the RTP timestamp of the first packet of the stream.
 The client uses this value to calculate the mapping of RTP time
 to NPT.

 A mapping from RTP timestamps to NTP timestamps (wall clock) is
 available via RTCP. However, this information is not sufficient to
 generate a mapping from RTP timestamps to NPT. Furthermore, in
 order to ensure that this information is available at the necessary
 time (immediately at startup or after a seek), and that it is
 delivered reliably, this mapping is placed in the RTSP control
 channel.

 In order to compensate for drift for long, uninterrupted
 presentations, RTSP clients should additionally map NPT to NTP,
 using initial RTCP sender reports to do the mapping, and later
 reports to check drift against the mapping.

 Syntax:

 RTP-Info = "RTP-Info" ":" 1#stream-url 1*parameter
 stream-url = "url" "=" url
 parameter = ";" "seq" "=" 1*DIGIT
 | ";" "rtptime" "=" 1*DIGIT

H. Schulzrinne, A. Rao, R. Lanphier Page 58

INTERNET-DRAFT RTSP January 15, 1998

 Example:

 RTP-Info: url=rtsp://foo.com/bar.avi/streamid=0;seq=45102,
 url=rtsp://foo.com/bar.avi/streamid=1;seq=30211

12.34 Scale

 A scale value of 1 indicates normal play or record at the normal
 forward viewing rate. If not 1, the value corresponds to the rate with
 respect to normal viewing rate. For example, a ratio of 2 indicates
 twice the normal viewing rate (``fast forward'') and a ratio of 0.5
 indicates half the normal viewing rate. In other words, a ratio of 2
 has normal play time increase at twice the wallclock rate. For every
 second of elapsed (wallclock) time, 2 seconds of content will be
 delivered. A negative value indicates reverse direction.

 Unless requested otherwise by the Speed parameter, the data rate
 SHOULD not be changed. Implementation of scale changes depends on the
 server and media type. For video, a server may, for example, deliver
 only key frames or selected key frames. For audio, it may time-scale
 the audio while preserving pitch or, less desirably, deliver fragments
 of audio.

 The server should try to approximate the viewing rate, but may
 restrict the range of scale values that it supports. The response MUST
 contain the actual scale value chosen by the server.

 If the request contains a Range parameter, the new scale value will
 take effect at that time.

 Scale = "Scale" ":" ["-"] 1*DIGIT ["." *DIGIT]

 Example of playing in reverse at 3.5 times normal rate:

 Scale: -3.5

12.35 Speed

 This request header fields parameter requests the server to deliver
 data to the client at a particular speed, contingent on the server's
 ability and desire to serve the media stream at the given speed.
 Implementation by the server is OPTIONAL. The default is the bit rate
 of the stream.

H. Schulzrinne, A. Rao, R. Lanphier Page 59

INTERNET-DRAFT RTSP January 15, 1998

 The parameter value is expressed as a decimal ratio, e.g., a value of
 2.0 indicates that data is to be delivered twice as fast as normal. A
 speed of zero is invalid. If the request contains a Range parameter,
 the new speed value will take effect at that time.

 Speed = "Speed" ":" 1*DIGIT ["." *DIGIT]

 Example:
 Speed: 2.5

 Use of this field changes the bandwidth used for data delivery. It is
 meant for use in specific circumstances where preview of the
 presentation at a higher or lower rate is necessary. Implementors
 should keep in mind that bandwidth for the session may be negotiated
 beforehand (by means other than RTSP), and therefore re-negotiation
 may be necessary. When data is delivered over UDP, it is highly
 recommended that means such as RTCP be used to track packet loss
 rates.

12.36 Server

 See [H14.39]

12.37 Session

 This request and response header field identifies an RTSP session
 started by the media server in a SETUP response and concluded by
 TEARDOWN on the presentation URL. The session identifier is chosen by
 the media server (see Section 3.4). Once a client receives a Session
 identifier, it MUST return it for any request related to that session.
 A server does not have to set up a session identifier if it has other
 means of identifying a session, such as dynamically generated URLs.

 Session = "Session" ":" session-id [";" "timeout" "=" delta-seconds]

 The timeout parameter is only allowed in a response header. The server
 uses it to indicate to the client how long the server is prepared to
 wait between RTSP commands before closing the session due to lack of
 activity (see Section A). The timeout is measured in seconds, with a
 default of 60 seconds (1 minute).

H. Schulzrinne, A. Rao, R. Lanphier Page 60

INTERNET-DRAFT RTSP January 15, 1998

 Note that a session identifier identifies a RTSP session across
 transport sessions or connections. Control messages for more than one
 RTSP URL may be sent within a single RTSP session. Hence, it is
 possible that clients use the same session for controlling many
 streams constituting a presentation, as long as all the streams come
 from the same server. (See example in Section 14). However, multiple
 ``user'' sessions for the same URL from the same client MUST use
 different session identifiers.

 The session identifier is needed to distinguish several delivery
 requests for the same URL coming from the same client.

 The response 454 (Session Not Found) is returned if the session
 identifier is invalid.

12.38 Timestamp

 The timestamp general header describes when the client sent the
 request to the server. The value of the timestamp is of significance
 only to the client and may use any timescale. The server MUST echo the
 exact same value and MAY, if it has accurate information about this,
 add a floating point number indicating the number of seconds that has
 elapsed since it has received the request. The timestamp is used by
 the client to compute the round-trip time to the server so that it can
 adjust the timeout value for retransmissions.

 Timestamp = "Timestamp" ":" *(DIGIT) ["." *(DIGIT)] [delay]
 delay = *(DIGIT) ["." *(DIGIT)]

12.39 Transport

 This request header indicates which transport protocol is to be used
 and configures its parameters such as destination address,
 compression, multicast time-to-live and destination port for a single
 stream. It sets those values not already determined by a presentation
 description.

 Transports are comma separated, listed in order of preference.
 Parameters may be added to each transport, separated by a semicolon.

 The Transport header MAY also be used to change certain transport

 parameters. A server MAY refuse to change parameters of an existing
 stream.

 The server MAY return a Transport response header in the response to
 indicate the values actually chosen.

H. Schulzrinne, A. Rao, R. Lanphier Page 61

INTERNET-DRAFT RTSP January 15, 1998

 A Transport request header field may contain a list of transport
 options acceptable to the client. In that case, the server MUST return
 a single option which was actually chosen.

 The syntax for the transport specifier is

 transport/profile/lower-transport.

 The default value for the ``lower-transport'' parameters is specific
 to the profile. For RTP/AVP, the default is UDP.

 Below are the configuration parameters associated with transport:

 General parameters:

 unicast | multicast
 : mutually exclusive indication of whether unicast or multicast
 delivery will be attempted. Default value is multicast. Clients
 that are capable of handling both unicast and multicast
 transmission MUST indicate such capability by including two
 full transport-specs with separate parameters for each.

 destination:
 The address to which a stream will be sent. The client may
 specify the multicast address with the destination parameter.
 To avoid becoming the unwitting perpetrator of a
 remote-controlled denial-of-service attack, a server SHOULD
 authenticate the client and SHOULD log such attempts before
 allowing the client to direct a media stream to an address not
 chosen by the server. This is particularly important if RTSP
 commands are issued via UDP, but implementations cannot rely on
 TCP as reliable means of client identification by itself. A
 server SHOULD not allow a client to direct media streams to an
 address that differs from the address commands are coming from.

 source:
 If the source address for the stream is different than can be
 derived from the RTSP endpoint address (the server in playback
 or the client in recording), the source MAY be specified.

 This information may also be available through SDP. However, since
 this is more a feature of transport than media initialization, the
 authoritative source for this information should be in the SETUP
 response.

H. Schulzrinne, A. Rao, R. Lanphier Page 62

INTERNET-DRAFT RTSP January 15, 1998

 layers:
 The number of multicast layers to be used for this media
 stream. The layers are sent to consecutive addresses starting
 at the destination address.

 mode:
 The mode parameter indicates the methods to be supported for
 this session. Valid values are PLAY and RECORD. If not
 provided, the default is PLAY.

 append:
 If the mode parameter includes RECORD, the append parameter
 indicates that the media data should append to the existing
 resource rather than overwrite it. If appending is requested
 and the server does not support this, it MUST refuse the
 request rather than overwrite the resource identified by the
 URI. The append parameter is ignored if the mode parameter does
 not contain RECORD.

 interleaved:
 The interleaved parameter implies mixing the media stream with
 the control stream in whatever protocol is being used by the
 control stream, using the mechanism defined in Section 10.12.
 The argument provides the channel number to be used in the $
 statement. This parameter may be specified as a range, e.g.,
 interleaved=4-5 in cases where the transport choice for the
 media stream requires it.

 This allows RTP/RTCP to be handled similarly to the way that it is
 done with UDP, i.e., one channel for RTP and the other for RTCP.

 Multicast specific:

 ttl:
 multicast time-to-live

 RTP Specific:

 port:
 This parameter provides the RTP/RTCP port pair for a multicast
 session. It is specified as a range, e.g., port=3456-3457.

 client_port:
 This parameter provides the unicast RTP/RTCP port pair on the
 client where media data and control information is to be sent.
 It is specified as a range, e.g., port=3456-3457.

H. Schulzrinne, A. Rao, R. Lanphier Page 63

INTERNET-DRAFT RTSP January 15, 1998

 server_port:
 This parameter provides the unicast RTP/RTCP port pair on the
 server where media data and control information is to be sent.
 It is specified as a range, e.g., port=3456-3457.

 ssrc:
 The ssrc parameter indicates the RTP SSRC [24, Sec. 3] value
 that should be (request) or will be (response) used by the
 media server. This parameter is only valid for unicast
 transmission. It identifies the synchronization source to be
 associated with the media stream.

 Transport = "Transport" ":"
 1\#transport-spec
 transport-spec = transport-protocol/profile[/lower-transport]
 *parameter
 transport-protocol = "RTP"
 profile = "AVP"
 lower-transport = "TCP" | "UDP"
 parameter = ("unicast" | "multicast")
 | ";" "destination" ["=" address]
 | ";" "interleaved" "=" channel ["-" channel]
 | ";" "append"
 | ";" "ttl" "=" ttl
 | ";" "layers" "=" 1*DIGIT
 | ";" "port" "=" port ["-" port]
 | ";" "client_port" "=" port ["-" port]
 | ";" "server_port" "=" port ["-" port]
 | ";" "ssrc" "=" ssrc
 | ";" "mode" = <"> 1\#mode <">
 ttl = 1*3(DIGIT)
 port = 1*5(DIGIT)
 ssrc = 8*8(HEX)
 channel = 1*3(DIGIT)
 address = host

 mode = <"> *Method <"> | Method

 Example:
 Transport: RTP/AVP;multicast;ttl=127;mode="PLAY",
 RTP/AVP;unicast;client_port=3456-3457;mode="PLAY"

 The Transport header is restricted to describing a single RTP
 stream. (RTSP can also control multiple streams as a single
 entity.) Making it part of RTSP rather than relying on a multitude
 of session description formats greatly simplifies designs of
 firewalls.

H. Schulzrinne, A. Rao, R. Lanphier Page 64

INTERNET-DRAFT RTSP January 15, 1998

12.40 Unsupported

 The Unsupported response header lists the features not supported by
 the server. In the case where the feature was specified via the
 Proxy-Require field (Section 12.32), if there is a proxy on the path
 between the client and the server, the proxy MUST insert a message
 reply with an error message ``551 Option Not Supported''.

 See Section 12.32 for a usage example.

12.41 User-Agent

 See [H14.42]

12.42 Vary

 See [H14.43]

12.43 Via

 See [H14.44].

12.44 WWW-Authenticate

 See [H14.46].

13 Caching

 In HTTP, response-request pairs are cached. RTSP differs
 significantly in that respect. Responses are not cacheable, with the
 exception of the presentation description returned by DESCRIBE or
 included with ANNOUNCE. (Since the responses for anything but DESCRIBE
 and GET_PARAMETER do not return any data, caching is not really an
 issue for these requests.) However, it is desirable for the continuous

 media data, typically delivered out-of-band with respect to RTSP, to
 be cached, as well as the session description.

H. Schulzrinne, A. Rao, R. Lanphier Page 65

INTERNET-DRAFT RTSP January 15, 1998

 On receiving a SETUP or PLAY request, a proxy ascertains whether it
 has an up-to-date copy of the continuous media content and its
 description. It can determine whether the copy is up-to-date by
 issuing a SETUP or DESCRIBE request, respectively, and comparing the
 Last-Modified header with that of the cached copy. If the copy is not
 up-to-date, it modifies the SETUP transport parameters as appropriate
 and forwards the request to the origin server. Subsequent control
 commands such as PLAY or PAUSE then pass the proxy unmodified. The
 proxy delivers the continuous media data to the client, while possibly
 making a local copy for later reuse. The exact behavior allowed to the
 cache is given by the cache-response directives described in

Section 12.8. A cache MUST answer any DESCRIBE requests if it is
 currently serving the stream to the requestor, as it is possible that
 low-level details of the stream description may have changed on the
 origin-server.

 Note that an RTSP cache, unlike the HTTP cache, is of the
 ``cut-through'' variety. Rather than retrieving the whole resource
 from the origin server, the cache simply copies the streaming data as
 it passes by on its way to the client. Thus, it does not introduce
 additional latency.

 To the client, an RTSP proxy cache appears like a regular media
 server, to the media origin server like a client. Just as an HTTP
 cache has to store the content type, content language, and so on for
 the objects it caches, a media cache has to store the presentation
 description. Typically, a cache eliminates all transport-references
 (that is, multicast information) from the presentation description,
 since these are independent of the data delivery from the cache to the
 client. Information on the encodings remains the same. If the cache is
 able to translate the cached media data, it would create a new
 presentation description with all the encoding possibilities it can

 offer.

14 Examples

 The following examples refer to stream description formats that are
 not standards, such as RTSL. The following examples are not to be used
 as a reference for those formats.

H. Schulzrinne, A. Rao, R. Lanphier Page 66

INTERNET-DRAFT RTSP January 15, 1998

14.1 Media on Demand (Unicast)

 Client C requests a movie from media servers A (audio.example.com)
 and V (video.example.com). The media description is stored on a web
 server W . The media description contains descriptions of the
 presentation and all its streams, including the codecs that are
 available, dynamic RTP payload types, the protocol stack, and content
 information such as language or copyright restrictions. It may also
 give an indication about the timeline of the movie.

 In this example, the client is only interested in the last part of the
 movie.

 C->W: GET /twister.sdp HTTP/1.1
 Host: www.example.com
 Accept: application/sdp

 W->C: HTTP/1.0 200 OK
 Content-Type: application/sdp

 v=0
 o=- 2890844526 2890842807 IN IP4 192.16.24.202
 s=RTSP Session
 m=audio 0 RTP/AVP 0
 a=control:rtsp://audio.example.com/twister/audio.en
 m=video 0 RTP/AVP 31
 a=control:rtsp://video.example.com/twister/video

 C->A: SETUP rtsp://audio.example.com/twister/audio.en RTSP/1.0
 CSeq: 1
 Transport: RTP/AVP/UDP;unicast;client_port=3056-3057

 A->C: RTSP/1.0 200 OK
 CSeq: 1
 Session: 1234
 Transport: RTP/AVP/UDP;unicast;client_port=3056-3057;
 server_port=5000-5001

 C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0
 CSeq: 1
 Transport: RTP/AVP/UDP;unicast;client_port=3058-3059

H. Schulzrinne, A. Rao, R. Lanphier Page 67

INTERNET-DRAFT RTSP January 15, 1998

 V->C: RTSP/1.0 200 OK
 CSeq: 1
 Session: 1235
 Transport: RTP/AVP/UDP;unicast;client_port=3058-3059;
 server_port=5002-5003

 C->V: PLAY rtsp://video.example.com/twister/video RTSP/1.0
 CSeq: 2
 Session: 1235
 Range: smpte=0:10:00-

 V->C: RTSP/1.0 200 OK
 CSeq: 2
 Session: 1235
 Range: smpte=0:10:00-0:20:00
 RTP-Info: url=rtsp://video.example.com/twister/video;
 seq=12312232;rtptime=78712811

 C->A: PLAY rtsp://audio.example.com/twister/audio.en RTSP/1.0
 CSeq: 2
 Session: 1234
 Range: smpte=0:10:00-

 A->C: RTSP/1.0 200 OK
 CSeq: 2
 Session: 1234
 Range: smpte=0:10:00-0:20:00
 RTP-Info: url=rtsp://audio.example.com/twister/audio.en;
 seq=876655;rtptime=1032181

 C->A: TEARDOWN rtsp://audio.example.com/twister/audio.en RTSP/1.0
 CSeq: 3
 Session: 1234

 A->C: RTSP/1.0 200 OK
 CSeq: 3

 C->V: TEARDOWN rtsp://video.example.com/twister/video RTSP/1.0
 CSeq: 3
 Session: 1235

 V->C: RTSP/1.0 200 OK
 CSeq: 3

H. Schulzrinne, A. Rao, R. Lanphier Page 68

INTERNET-DRAFT RTSP January 15, 1998

 Even though the audio and video track are on two different servers,
 and may start at slightly different times and may drift with respect
 to each other, the client can synchronize the two using standard RTP
 methods, in particular the time scale contained in the RTCP sender
 reports.

14.2 Streaming of a Container file

 For purposes of this example, a container file is a storage entity in
 which multiple continuous media types pertaining to the same end-user
 presentation are present. In effect, the container file represents a
 RTSP presentation, with each of its components being RTSP streams.
 Container files are a widely used means to store such presentations.
 While the components are transported as independent streams, it is
 desirable to maintain a common context for those streams at the server
 end.

 This enables the server to keep a single storage handle open
 easily. It also allows treating all the streams equally in case of
 any prioritization of streams by the server.

 It is also possible that the presentation author may wish to prevent
 selective retrieval of the streams by the client in order to preserve
 the artistic effect of the combined media presentation. Similarly, in
 such a tightly bound presentation, it is desirable to be able to
 control all the streams via a single control message using an
 aggregate URL.

 The following is an example of using a single RTSP session to control
 multiple streams. It also illustrates the use of aggregate URLs.

 Client C requests a presentation from media server M . The movie is
 stored in a container file. The client has obtained a RTSP URL to the
 container file.

 C->M: DESCRIBE rtsp://foo/twister RTSP/1.0
 CSeq: 1

 M->C: RTSP/1.0 200 OK
 CSeq: 1
 Content-Type: application/sdp
 Content-Length: 164

H. Schulzrinne, A. Rao, R. Lanphier Page 69

INTERNET-DRAFT RTSP January 15, 1998

 v=0
 o=- 2890844256 2890842807 IN IP4 172.16.2.93
 s=RTSP Session
 i=An Example of RTSP Session Usage
 a=control:rtsp://foo/twister
 t=0 0
 m=audio 0 RTP/AVP 0
 a=control:rtsp://foo/twister/audio
 m=video 0 RTP/AVP 26
 a=control:rtsp://foo/twister/video

 C->M: SETUP rtsp://foo/twister/audio RTSP/1.0
 CSeq: 2
 Transport: RTP/AVP;unicast;client_port=8000-8001

 M->C: RTSP/1.0 200 OK
 CSeq: 2
 Transport: RTP/AVP;unicast;client_port=8000-8001;
 server_port=9000-9001
 Session: 1234

 C->M: SETUP rtsp://foo/twister/video RTSP/1.0
 CSeq: 3
 Transport: RTP/AVP;unicast;client_port=8002-8003
 Session: 1234

 M->C: RTSP/1.0 200 OK
 CSeq: 3
 Transport: RTP/AVP;unicast;client_port=8002-8003;
 server_port=9004-9005
 Session: 1234

 C->M: PLAY rtsp://foo/twister RTSP/1.0
 CSeq: 4
 Range: npt=0-
 Session: 1234

 M->C: RTSP/1.0 200 OK
 CSeq: 4
 Session: 1234
 RTP-Info: url=rtsp://foo/twister/video;
 seq=9810092;rtptime=3450012

 C->M: PAUSE rtsp://foo/twister/video RTSP/1.0
 CSeq: 5
 Session: 1234

H. Schulzrinne, A. Rao, R. Lanphier Page 70

INTERNET-DRAFT RTSP January 15, 1998

 M->C: RTSP/1.0 460 Only aggregate operation allowed
 CSeq: 5

 C->M: PAUSE rtsp://foo/twister RTSP/1.0
 CSeq: 6
 Session: 1234

 M->C: RTSP/1.0 200 OK
 CSeq: 6
 Session: 1234

 C->M: SETUP rtsp://foo/twister RTSP/1.0
 CSeq: 7
 Transport: RTP/AVP;unicast;client_port=10000

 M->C: RTSP/1.0 459 Aggregate operation not allowed
 CSeq: 7

 In the first instance of failure, the client tries to pause one stream
 (in this case video) of the presentation. This is disallowed for that
 presentation by the server. In the second instance, the aggregate URL
 may not be used for SETUP and one control message is required per
 stream to set up transport parameters.

 This keeps the syntax of the Transport header simple and allows
 easy parsing of transport information by firewalls.

14.3 Single Stream Container Files

 Some RTSP servers may treat all files as though they are ``container
 files'', yet other servers may not support such a concept. Because of
 this, clients SHOULD use the rules set forth in the session
 description for request URLs, rather than assuming that a consistant
 URL may always be used throughout. Here's an example of how a
 multi-stream server might expect a single-stream file to be served:

 C->S DESCRIBE rtsp://foo.com/test.wav RTSP/1.0
 Accept: application/x-rtsp-mh, application/sdp
 CSeq: 1

 S->C RTSP/1.0 200 OK
 CSeq: 1
 Content-base: rtsp://foo.com/test.wav/
 Content-type: application/sdp
 Content-length: 48

H. Schulzrinne, A. Rao, R. Lanphier Page 71

INTERNET-DRAFT RTSP January 15, 1998

 v=0
 o=- 872653257 872653257 IN IP4 172.16.2.187
 s=mu-law wave file
 i=audio test
 t=0 0
 m=audio 0 RTP/AVP 0
 a=control:streamid=0

 C->S SETUP rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
 Transport: RTP/AVP/UDP;unicast;
 client_port=6970-6971;mode=play
 CSeq: 2

 S->C RTSP/1.0 200 OK
 Transport: RTP/AVP/UDP;unicast;client_port=6970-6971;
 server_port=6970-6971;mode=play
 CSeq: 2
 Session: 2034820394

 C->S PLAY rtsp://foo.com/test.wav RTSP/1.0
 CSeq: 3

 Session: 2034820394

 S->C RTSP/1.0 200 OK
 CSeq: 3
 Session: 2034820394
 RTP-Info: url=rtsp://foo.com/test.wav/streamid=0;
 seq=981888;rtptime=3781123

 Note the different URL in the SETUP command, and then the switch back
 to the aggregate URL in the PLAY command. This makes complete sense
 when there are multiple streams with aggregate control, but is less
 than intuitive in the special case where the number of streams is one.

 In this special case, it is recommended that servers be forgiving of
 implementations that send:

 C->S PLAY rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
 CSeq: 3

 In the worst case, servers should send back:

 S->C RTSP/1.0 460 Only aggregate operation allowed
 CSeq: 3

H. Schulzrinne, A. Rao, R. Lanphier Page 72

INTERNET-DRAFT RTSP January 15, 1998

 One would also hope that server implementations are also forgiving of
 the following:

 C->S SETUP rtsp://foo.com/test.wav RTSP/1.0
 Transport: rtp/avp/udp;client_port=6970-6971;mode=play
 CSeq: 2

 Since there is only a single stream in this file, it's not ambiguous
 what this means.

14.4 Live Media Presentation Using Multicast

 The media server M chooses the multicast address and port. Here, we
 assume that the web server only contains a pointer to the full
 description, while the media server M maintains the full description.

 C->W: GET /concert.sdp HTTP/1.1
 Host: www.example.com

 W->C: HTTP/1.1 200 OK
 Content-Type: application/x-rtsl

 <session>
 <track src="rtsp://live.example.com/concert/audio">
 </session>

 C->M: DESCRIBE rtsp://live.example.com/concert/audio RTSP/1.0
 CSeq: 1

 M->C: RTSP/1.0 200 OK
 CSeq: 1
 Content-Type: application/sdp
 Content-Length: 44

 v=0
 o=- 2890844526 2890842807 IN IP4 192.16.24.202
 s=RTSP Session
 m=audio 3456 RTP/AVP 0
 a=control:rtsp://live.example.com/concert/audio
 c=IN IP4 224.2.0.1/16

 C->M: SETUP rtsp://live.example.com/concert/audio RTSP/1.0
 CSeq: 2
 Transport: RTP/AVP;multicast

H. Schulzrinne, A. Rao, R. Lanphier Page 73

INTERNET-DRAFT RTSP January 15, 1998

 M->C: RTSP/1.0 200 OK
 CSeq: 2
 Transport: RTP/AVP;multicast;destination=224.2.0.1;
 port=3456-3457;ttl=16
 Session: 0456804596

 C->M: PLAY rtsp://live.example.com/concert/audio RTSP/1.0
 CSeq: 3
 Session: 0456804596

 M->C: RTSP/1.0 200 OK
 CSeq: 3
 Session: 0456804596

14.5 Playing media into an existing session

 A conference participant C wants to have the media server M play back

 a demo tape into an existing conference. C indicates to the media
 server that the network addresses and encryption keys are already
 given by the conference, so they should not be chosen by the server.
 The example omits the simple ACK responses.

 C->M: DESCRIBE rtsp://server.example.com/demo/548/sound RTSP/1.0
 CSeq: 1
 Accept: application/sdp

 M->C: RTSP/1.0 200 1 OK
 Content-type: application/sdp
 Content-Length: 44

 v=0
 o=- 2890844526 2890842807 IN IP4 192.16.24.202
 s=RTSP Session
 i=See above
 t=0 0
 m=audio 0 RTP/AVP 0

 C->M: SETUP rtsp://server.example.com/demo/548/sound RTSP/1.0
 CSeq: 2
 Transport: RTP/AVP;multicast;destination=225.219.201.15;
 port=7000-7001;ttl=127
 Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

H. Schulzrinne, A. Rao, R. Lanphier Page 74

INTERNET-DRAFT RTSP January 15, 1998

 M->C: RTSP/1.0 200 OK
 CSeq: 2
 Transport: RTP/AVP;multicast;destination=225.219.201.15;
 port=7000-7001;ttl=127
 Session: 91389234234
 Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

 C->M: PLAY rtsp://server.example.com/demo/548/sound RTSP/1.0
 CSeq: 3
 Session: 91389234234

 M->C: RTSP/1.0 200 OK
 CSeq: 3

14.6 Recording

 The conference participant client C asks the media server M to record
 the audio and video portions of a meeting. The client uses the
 ANNOUNCE method to provide meta-information about the recorded session
 to the server.

 C->M: ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0
 CSeq: 90
 Content-Type: application/sdp
 Content-Length: 121

 v=0
 o=camera1 3080117314 3080118787 IN IP4 195.27.192.36
 s=IETF Meeting, Munich - 1
 i=The thirty-ninth IETF meeting will be held in Munich, Germany
 u=http://www.ietf.org/meetings/Munich.html
 e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>
 p=IETF Channel 1 +49-172-2312 451
 c=IN IP4 224.0.1.11/127
 t=3080271600 3080703600
 a=tool:sdr v2.4a6
 a=type:test
 m=audio 21010 RTP/AVP 5
 c=IN IP4 224.0.1.11/127
 a=ptime:40
 m=video 61010 RTP/AVP 31
 c=IN IP4 224.0.1.12/127

 M->C: RTSP/1.0 200 OK
 CSeq: 90

H. Schulzrinne, A. Rao, R. Lanphier Page 75

INTERNET-DRAFT RTSP January 15, 1998

 C->M: SETUP rtsp://server.example.com/meeting/audiotrack RTSP/1.0
 CSeq: 91
 Transport: RTP/AVP;multicast;destination=224.0.1.11;
 port=21010-21011;mode=record;ttl=127

 M->C: RTSP/1.0 200 OK
 CSeq: 91
 Session: 508876
 Transport: RTP/AVP;multicast;destination=224.0.1.11;
 port=21010-21011;mode=record;ttl=127

 C->M: SETUP rtsp://server.example.com/meeting/videotrack RTSP/1.0
 CSeq: 92

 Session: 508876
 Transport: RTP/AVP;multicast;destination=224.0.1.12;
 port=61010-61011;mode=record;ttl=127

 M->C: RTSP/1.0 200 OK
 CSeq: 92
 Transport: RTP/AVP;multicast;destination=224.0.1.12;
 port=61010-61011;mode=record;ttl=127

 C->M: RECORD rtsp://server.example.com/meeting RTSP/1.0
 CSeq: 93
 Session: 508876
 Range: clock=19961110T1925-19961110T2015

 M->C: RTSP/1.0 200 OK
 CSeq: 93

15 Syntax

 The RTSP syntax is described in an augmented Backus-Naur form (BNF)
 as used in RFC 2068 [2].

15.1 Base Syntax

 OCTET = <any 8-bit sequence of data>
 CHAR = <any US-ASCII character (octets 0 - 127)>
 UPALPHA = <any US-ASCII uppercase letter "A".."Z">
 LOALPHA = <any US-ASCII lowercase letter "a".."z">
 ALPHA = UPALPHA | LOALPHA

H. Schulzrinne, A. Rao, R. Lanphier Page 76

INTERNET-DRAFT RTSP January 15, 1998

 DIGIT = <any US-ASCII digit "0".."9">
 CTL = <any US-ASCII control character
 (octets 0 - 31) and DEL (127)>
 CR = <US-ASCII CR, carriage return (13)>
 LF = <US-ASCII LF, linefeed (10)>

 SP = <US-ASCII SP, space (32)>
 HT = <US-ASCII HT, horizontal-tab (9)>
 <"> = <US-ASCII double-quote mark (34)>
 CRLF = CR LF
 LWS = [CRLF] 1*(SP | HT)

https://datatracker.ietf.org/doc/html/rfc2068

 TEXT = <any OCTET except CTLs>
 tspecials = "(" | ")" | "<" | ">" | "@"
 | "," | ";" | ":" | "\" | <">
 | "/" | "[" | "]" | "?" | "="
 | "{" | "}" | SP | HT

 token = 1*<any CHAR except CTLs or tspecials>
 quoted-string = (<"> *(qdtext) <">)
 qdtext = <any TEXT except <">>
 quoted-pair = "\" CHAR

 message-header = field-name ":" [field-value] CRLF
 field-name = token
 field-value = *(field-content | LWS)
 field-content = <the OCTETs making up the field-value and
 consisting of either *TEXT or
 combinations of token, tspecials, and
 quoted-string>

 safe = "\$" | "-" | "_" | "." | "+"
 extra = "!" | "*" | "$'$" | "(" | ")" | ","

 hex = DIGIT | "A" | "B" | "C" | "D" | "E" | "F" |
 "a" | "b" | "c" | "d" | "e" | "f"
 escape = "\%" hex hex
 reserved = ";" | "/" | "?" | ":" | "@" | "&" | "="

 unreserved = alpha | digit | safe | extra
 xchar = unreserved | reserved | escape

H. Schulzrinne, A. Rao, R. Lanphier Page 77

INTERNET-DRAFT RTSP January 15, 1998

16 Security Considerations

 Because of the similarity in syntax and usage between RTSP servers
 and HTTP servers, the security considerations outlined in [H15] apply.
 Specifically, please note the following:

 Authentication Mechanisms:
 RTSP and HTTP share common authentication schemes, and thus
 should follow the same prescriptions with regards to

 authentication. See [H15.1] for client authentication issues,
 and [H15.2] for issues regarding support for multiple
 authentication mechanisms.

 Abuse of Server Log Information:
 RTSP and HTTP servers will presumably have similar logging
 mechanisms, and thus should be equally guarded in protecting
 the contents of those logs, thus protecting the privacy of the
 users of the servers. See [H15.3] for HTTP server
 recommendations regarding server logs.

 Transfer of Sensitive Information:
 There is no reason to believe that information transferred via
 RTSP may be any less sensitive than that normally transmitted
 via HTTP. Therefore, all of the precautions regarding the
 protection of data privacy and user privacy apply to
 implementors of RTSP clients, servers, and proxies. See [H15.4]
 for further details.

 Attacks Based On File and Path Names:
 Though RTSP URLs are opaque handles that do not necessarily
 have file system semantics, it is anticipated that many
 implementations will translate portions of the request URLs
 directly to file system calls. In such cases, file systems
 SHOULD follow the precautions outlined in [H15.5], such as
 checking for ``..'' in path components.

 Personal Information:
 RTSP clients are often privy to the same information that HTTP
 clients are (user name, location, etc.) and thus should be
 equally. See [H15.6] for further recommendations.

 Privacy Issues Connected to Accept Headers:
 Since may of the same ``Accept'' headers exist in RTSP as in
 HTTP, the same caveats outlined in [H15.7] with regards to
 their use should be followed.

H. Schulzrinne, A. Rao, R. Lanphier Page 78

INTERNET-DRAFT RTSP January 15, 1998

 DNS Spoofing:
 Presumably, given the longer connection times typically
 associated to RTSP sessions relative to HTTP sessions, RTSP
 client DNS optimizations should be less prevalent. Nonetheless,
 the recommendations provided in [H15.8] are still relevant to
 any implementation which attempts to rely on a DNS-to-IP
 mapping to hold beyond a single use of the mapping.

 Location Headers and Spoofing:
 If a single server supports multiple organizations that do not
 trust one another, then it must check the values of Location
 and Content-Location headers in responses that are generated
 under control of said organizations to make sure that they do
 not attempt to invalidate resources over which they have no
 authority. ([H15.9])

 In addition to the recommendations in the current HTTP specification
 (RFC 2068 [2], as of this writing), future HTTP specifications may
 provide additional guidance on security issues.

 The following are added considerations for RTSP implementations.

 Concentrated denial-of-service attack:
 The protocol offers the opportunity for a remote-controlled
 denial-of-service attack. The attacker may initiate traffic
 flows to one or more IP addresses by specifying them as the
 destination in SETUP requests. While the attacker's IP address
 may be known in this case, this is not always useful in
 prevention of more attacks or ascertaining the attackers
 identity. Thus, an RTSP server SHOULD only allow
 client-specified destinations for RTSP-initiated traffic flows
 if the server has verified the client's identity, either
 against a database of known users using RTSP authentication
 mechanisms (preferrably digest authentication or stronger), or
 other secure means.

 Session hijacking:
 Since there is no relation between a transport layer connection
 and an RTSP session, it is possible for a malicious client to
 issue requests with random session identifiers which would
 affect unsuspecting clients. The server SHOULD use a large,
 random and non-sequential session identifier to minimize the
 possibility of this kind of attack.

H. Schulzrinne, A. Rao, R. Lanphier Page 79

INTERNET-DRAFT RTSP January 15, 1998

 Authentication:
 Servers SHOULD implement both basic and digest [8]
 authentication. In environments requiring tighter security for
 the control messages, transport layer mechanisms such as TLS
 (RFC XXXX [7]) SHOULD be used.

https://datatracker.ietf.org/doc/html/rfc2068

 Stream issues:
 RTSP only provides for stream control. Stream delivery issues
 are not covered in this section, nor in the rest of this draft.
 RTSP implementations will most likely rely on other protocols
 such as RTP, IP multicast, RSVP and IGMP, and should address
 security considerations brought up in those and other
 applicable specifications.

 Persistently suspicious behavior:
 RTSP servers SHOULD return error code 403 (Forbidden) upon
 receiving a single instance of behavior which is deemed a
 security risk. RTSP servers SHOULD also be aware of attempts to
 probe the server for weaknesses and entry points and MAY
 arbitrarily disconnect and ignore further requests clients
 which are deemed to be in violation of local security policy.

H. Schulzrinne, A. Rao, R. Lanphier Page 80

INTERNET-DRAFT RTSP January 15, 1998

Appendix A: RTSP Protocol State Machines

 The RTSP client and server state machines describe the behavior of
 the protocol from RTSP session initialization through RTSP session
 termination.

 State is defined on a per object basis. An object is uniquely
 identified by the stream URL and the RTSP session identifier. Any
 request/reply using aggregate URLs denoting RTSP presentations
 composed of multiple streams will have an effect on the individual
 states of all the streams. For example, if the presentation /movie
 contains two streams, /movie/audio and /movie/video, then the
 following command:

 PLAY rtsp://foo.com/movie RTSP/1.0
 CSeq: 559
 Session: 12345

 will have an effect on the states of movie/audio and movie/video.

 This example does not imply a standard way to represent streams in
 URLs or a relation to the filesystem. See Section 3.2.

 The requests OPTIONS, ANNOUNCE, DESCRIBE, GET_PARAMETER, SET_PARAMETER
 do not have any effect on client or server state and are therefore not
 listed in the state tables.

A.1 Client State Machine

 The client can assume the following states:

 Init:
 SETUP has been sent, waiting for reply.

 Ready:
 SETUP reply received or PAUSE reply received while in Playing
 state.

 Playing:
 PLAY reply received

 Recording:
 RECORD reply received

H. Schulzrinne, A. Rao, R. Lanphier Page 81

INTERNET-DRAFT RTSP January 15, 1998

 In general, the client changes state on receipt of replies to
 requests. Note that some requests are effective at a future time or
 position (such as a PAUSE), and state also changes accordingly. If no

 explicit SETUP is required for the object (for example, it is
 available via a multicast group), state begins at Ready. In this case,
 there are only two states, Ready and Playing. The client also changes
 state from Playing/Recording to Ready when the end of the requested
 range is reached.

 The ``next state'' column indicates the state assumed after receiving
 a success response (2xx). If a request yields a status code of 3xx,
 the state becomes Init, and a status code of 4xx yields no change in
 state. Messages not listed for each state MUST NOT be issued by the
 client in that state, with the exception of messages not affecting
 state, as listed above. Receiving a REDIRECT from the server is
 equivalent to receiving a 3xx redirect status from the server.

 state message sent next state after response
 Init SETUP Ready
 TEARDOWN Init
 Ready PLAY Playing
 RECORD Recording
 TEARDOWN Init
 SETUP Ready
 Playing PAUSE Ready
 TEARDOWN Init
 PLAY Playing
 SETUP Playing (changed transport)
 Recording PAUSE Ready
 TEARDOWN Init
 RECORD Recording
 SETUP Recording (changed transport)

A.2 Server State Machine

 The server can assume the following states:

 Init:
 The initial state, no valid SETUP has been received yet.

 Ready:
 Last SETUP received was successful, reply sent or after
 playing, last PAUSE received was successful, reply sent.

H. Schulzrinne, A. Rao, R. Lanphier Page 82

INTERNET-DRAFT RTSP January 15, 1998

 Playing:

 Last PLAY received was successful, reply sent. Data is being
 sent.

 Recording:
 The server is recording media data.

 In general, the server changes state on receiving requests. If the
 server is in state Playing or Recording and in unicast mode, it MAY
 revert to Init and tear down the RTSP session if it has not received
 ``wellness'' information, such as RTCP reports or RTSP commands, from
 the client for a defined interval, with a default of one minute. The
 server can declare another timeout value in the Session response
 header (Section 12.37). If the server is in state Ready, it MAY revert
 to Init if it does not receive an RTSP request for an interval of more
 than one minute. Note that some requests (such as PAUSE) may be
 effective at a future time or position, and server state changes at
 the appropriate time. The server reverts from state Playing or
 Recording to state Ready at the end of the range requested by the
 client.

 The REDIRECT message, when sent, is effective immediately unless it
 has a Range header specifying when the redirect is effective. In such
 a case, server state will also change at the appropriate time.

 If no explicit SETUP is required for the object, the state starts at
 Ready and there are only two states, Ready and Playing.

 The ``next state'' column indicates the state assumed after sending a
 success response (2xx). If a request results in a status code of 3xx,
 the state becomes Init. A status code of 4xx results in no change.

H. Schulzrinne, A. Rao, R. Lanphier Page 83

INTERNET-DRAFT RTSP January 15, 1998

 state message received next state
 Init SETUP Ready
 TEARDOWN Init
 Ready PLAY Playing
 SETUP Ready
 TEARDOWN Init
 RECORD Recording
 Playing PLAY Playing
 PAUSE Ready
 TEARDOWN Init
 SETUP Playing
 Recording RECORD Recording
 PAUSE Ready
 TEARDOWN Init
 SETUP Recording

Appendix B: Interaction with RTP

 RTSP allows media clients to control selected, non-contiguous
 sections of media presentations, rendering those streams with an RTP
 media layer[24]. The media layer rendering the RTP stream should not
 be affected by jumps in NPT. Thus, both RTP sequence numbers and RTP
 timestamps MUST be continuous and monotonic across jumps of NPT.

 As an example, assume a clock frequency of 8000 Hz, a packetization
 interval of 100 ms and an initial sequence number and timestamp of
 zero. First we play NPT 10 through 15, then skip ahead and play NPT 18
 through 20. The first segment is presented as RTP packets with
 sequence numbers 0 through 49 and timestamp 0 through 39,200. The
 second segment consists of RTP packets with sequence number 50 through
 69, with timestamps 40,000 through 55,200.

 We cannot assume that the RTSP client can communicate with the RTP
 media agent, as the two may be independent processes. If the RTP
 timestamp shows the same gap as the NPT, the media agent will
 assume that there is a pause in the presentation. If the jump in
 NPT is large enough, the RTP timestamp may roll over and the media
 agent may believe later packets to be duplicates of packets just
 played out.

 For certain datatypes, tight integration between the RTSP layer and
 the RTP layer will be necessary. This by no means precludes the
 above restriction. Combined RTSP/RTP media clients should use the
 RTP-Info field to determine whether incoming RTP packets were sent
 before or after a seek.

H. Schulzrinne, A. Rao, R. Lanphier Page 84

INTERNET-DRAFT RTSP January 15, 1998

 For continuous audio, the server SHOULD set the RTP marker bit at the
 beginning of serving a new PLAY request. This allows the client to
 perform playout delay adaptation.

 For scaling (see Section 12.34), RTP timestamps should correspond to
 the playback timing. For example, when playing video recorded at 30
 frames/second at a scale of two and speed (Section 12.35) of one, the
 server would drop every second frame to maintain and deliver video
 packets with the normal timestamp spacing of 3,000 per frame, but NPT
 would increase by 1/15 second for each video frame.

 The client can maintain a correct display of NPT by noting the RTP
 timestamp value of the first packet arriving after repositioning. The
 sequence parameter of the RTP-Info (Section 12.33) header provides the
 first sequence number of the next segment.

Appendix C: Use of SDP for RTSP Session Descriptions

 The Session Description Protocol (SDP, RFC XXXX [6]) may be used to
 describe streams or presentations in RTSP. Such usage is limited to
 specifying means of access and encoding(s) for:

 aggregate control:
 A presentation composed of streams from one or more servers
 that are not available for aggregate control. Such a
 description is typically retrieved by HTTP or other non-RTSP
 means. However, they may be received with ANNOUNCE methods.

 non-aggregate control:
 A presentation composed of multiple streams from a single
 server that are available for aggregate control. Such a
 description is typically returned in reply to a DESCRIBE
 request on a URL, or received in an ANNOUNCE method.

 This appendix describes how an SDP file, retrieved, for example,
 through HTTP, determines the operation of an RTSP session. It also
 describes how a client should interpret SDP content returned in reply
 to a DESCRIBE request. SDP provides no mechanism by which a client can
 distinguish, without human guidance, between several media streams to
 be rendered simultaneously and a set of alternatives (e.g., two audio
 streams spoken in different languages).

H. Schulzrinne, A. Rao, R. Lanphier Page 85

INTERNET-DRAFT RTSP January 15, 1998

C.1 Definitions

 The terms ``session-level'', ``media-level'' and other key/attribute
 names and values used in this appendix are to be used as defined in
 SDP (RFC XXXX [6]):

 C.1.1 Control URL

 The ``a=control:'' attribute is used to convey the control URL. This
 attribute is used both for the session and media descriptions. If used
 for individual media, it indicates the URL to be used for controlling
 that particular media stream. If found at the session level, the
 attribute indicates the URL for aggregate control.

 Example:
 a=control:rtsp://example.com/foo

 This attribute may contain either relative and absolute URLs,
 following the rules and conventions set out in RFC 1808 [25].
 Implementations should look for a base URL in the following order:

 1. The RTSP Content-Base field
 2. The RTSP Content-Location field
 3. The RTSP request URL

 If this attribute contains only an asterisk (*), then the URL is
 treated as if it were an empty embedded URL, and thus inherits the
 entire base URL.

 C.1.2 Media streams

 The ``m='' field is used to enumerate the streams. It is expected that
 all the specified streams will be rendered with appropriate
 synchronization. If the session is unicast, the port number serves as
 a recommendation from the server to the client; the client still has
 to include it in its SETUP request and may ignore this recommendation.
 If the server has no preference, it SHOULD set the port number value
 to zero.

 Example:
 m=audio 0 RTP/AVP 31

https://datatracker.ietf.org/doc/html/rfc1808

H. Schulzrinne, A. Rao, R. Lanphier Page 86

INTERNET-DRAFT RTSP January 15, 1998

 C.1.3 Payload type(s)

 The payload type(s) are specified in the ``m='' field. In case the
 payload type is a static payload type from RFC 1890 [1], no other
 information is required. In case it is a dynamic payload type, the
 media attribute ``rtpmap'' is used to specify what the media is. The
 ``encoding name'' within the ``rtpmap'' attribute may be one of those
 specified in RFC 1890 (Sections 5 and 6), or an experimental encoding
 with a ``X-'' prefix as specified in SDP (RFC XXXX [6]).
 Codec-specific parameters are not specified in this field, but rather
 in the ``fmtp'' attribute described below. Implementors seeking to
 register new encodings should follow the procedure in RFC 1890 [1]. If
 the media type is not suited to the RTP AV profile, then it is
 recommended that a new profile be created and the appropriate profile
 name be used in lieu of ``RTP/AVP'' in the ``m='' field.

 C.1.4 Format-specific parameters

 Format-specific parameters are conveyed using the ``fmtp'' media
 attribute. The syntax of the ``fmtp'' attribute is specific to the
 encoding(s) that the attribute refers to. Note that the packetization
 interval is conveyed using the ``ptime'' attribute.

 C.1.5 Range of presentation

 The ``a=range'' attribute defines the total time range of the stored
 session. (The length of live sessions can be deduced from the ``t''
 and ``r'' parameters.) Unless the presentation contains media streams
 of different durations, the length attribute is a session-level
 attribute. The unit is specified first, followed by the value range.
 The units and their values are as defined in Section 3.5, 3.6 and 3.7.

 Examples:
 a=range:npt=0-34.4368
 a=range:clock=19971113T2115-19971113T2203

https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/rfc1890

H. Schulzrinne, A. Rao, R. Lanphier Page 87

INTERNET-DRAFT RTSP January 15, 1998

 C.1.6 Time of availability

 The ``t='' field MUST contain suitable values for the start and stop
 times for both aggregate and non-aggregate stream control. With
 aggregate control, the server SHOULD indicate a stop time value for
 which it guarantees the description to be valid, and a start time that
 is equal to or before the time at which the DESCRIBE request was
 received. It MAY also indicate start and stop times of 0, meaning that
 the session is always available. With non-aggregate control, the
 values should reflect the actual period for which the session is
 available in keeping with SDP semantics, and not depend on other means
 (such as the life of the web page containing the description) for this
 purpose.

 C.1.7 Connection Information

 In SDP, the ``c='' field contains the destination address for the
 media stream. However, for on-demand unicast streams and some
 multicast streams, the destination address is specified by the client
 via the SETUP request. Unless the media content has a fixed
 destination address, the ``c='' field is to be set to a suitable null
 value. For addresses of type ``IP4'', this value is ``0.0.0.0''.

 C.1.8 Entity Tag

 The optional ``a=etag'' attribute identifies a version of the session
 description. It is opaque to the client. SETUP requests may include
 this identifier in the If-Match field (see section 12.22) to only
 allow session establishment if this attribute value still corresponds
 to that of the current description. The attribute value is opaque and
 may contain any character allowed within SDP attribute values.

 Example:
 a=etag:158bb3e7c7fd62ce67f12b533f06b83a

 One could argue that the ``o='' field provides identical
 functionality. However, it does so in a manner that would put
 constraints on servers that need to support multiple session
 description types other than SDP for the same piece of media
 content.

C.2 Aggregate Control Not Available

 If a presentation does not support aggregate control and multiple
 media sections are specified, each section MUST have the control URL
 specified via the ``a=control:'' attribute.

H. Schulzrinne, A. Rao, R. Lanphier Page 88

INTERNET-DRAFT RTSP January 15, 1998

 Example:
 v=0
 o=- 2890844256 2890842807 IN IP4 204.34.34.32
 s=I came from a web page
 t=0 0
 c=IN IP4 0.0.0.0
 m=video 8002 RTP/AVP 31
 a=control:rtsp://audio.com/movie.aud
 m=audio 8004 RTP/AVP 3
 a=control:rtsp://video.com/movie.vid

 Note that the position of the control URL in the description implies
 that the client establishes separate RTSP control sessions to the
 servers audio.com and video.com.

 It is recommended that an SDP file contains the complete media
 initialization information even if it is delivered to the media client
 through non-RTSP means. This is necessary as there is no mechanism to
 indicate that the client should request more detailed media stream
 information via DESCRIBE.

C.3 Aggregate Control Available

 In this scenario, the server has multiple streams that can be
 controlled as a whole. In this case, there are both a media-level
 ``a=control:'' attributes, which are used to specify the stream URLs,
 and a session-level ``a=control:'' attribute which is used as the
 request URL for aggregate control. If the media-level URL is relative,
 it is resolved to absolute URLs according to Section C.1.1 above.

 If the presentation comprises only a single stream, the media-level
 ``a=control:'' attribute may be omitted altogether. However, if the
 presentation contains more than one stream, each media stream section
 MUST contain its own ``a=control'' attribute.

H. Schulzrinne, A. Rao, R. Lanphier Page 89

INTERNET-DRAFT RTSP January 15, 1998

 Example:
 v=0
 o=- 2890844256 2890842807 IN IP4 204.34.34.32
 s=I contain
 i=<more info>
 t=0 0
 c=IN IP4 0.0.0.0
 a=control:rtsp://example.com/movie/
 m=video 8002 RTP/AVP 31
 a=control:trackID=1
 m=audio 8004 RTP/AVP 3
 a=control:trackID=2

 In this example, the client is required to establish a single RTSP
 session to the server, and uses the URLs
 rtsp://example.com/movie/trackID=1 and
 rtsp://example.com/movie/trackID=2 to set up the video and audio
 streams, respectively. The URL rtsp://example.com/movie/ controls the
 whole movie.

H. Schulzrinne, A. Rao, R. Lanphier Page 90

INTERNET-DRAFT RTSP January 15, 1998

Appendix D: Minimal RTSP implementation

D.1 Client

 A client implementation MUST be able to do the following :

 * Generate the following requests :
 SETUP, TEARDOWN, and one of PLAY (i.e., a minimal playback client)
 or RECORD (i.e., a minimal recording client). If RECORD is
 implemented, ANNOUNCE must be implemented as well.
 * Include the following headers in requests:
 CSeq, Connection, Session, Transport. If ANNOUNCE is implemented,
 the capability to include headers Content-Language,
 Content-Encoding, Content-Length, and Content-Type should be as
 well.
 * Parse and understand the following headers in responses: CSeq,
 Connection, Session, Transport, Content-Language,
 Content-Encoding, Content-Length, Content-Type. If RECORD is
 implemented, the Location header must be understood as well.
 RTP-compliant implementations should also implement RTP-Info.
 * Understand the class of each error code received and notify the
 end-user, if one is present, of error codes in classes 4xx and
 5xx. The notification requirement may be relaxed if the end-user
 explicitly does not want it for one or all status codes.
 * Expect and respond to asynchronous requests from the server, such
 as ANNOUNCE. This does not necessarily mean that it should
 implement the ANNOUNCE method, merely that it MUST respond
 positively or negatively to any request received from the server.

 Though not required, the following are highly recommended at the time
 of publication for practical interoperability with initial
 implementations and/or to be a ``good citizen''.

 * Implement RTP/AVP/UDP as a valid transport.
 * Inclusion of the User-Agent header.
 * Understand SDP session descriptions as defined in Appendix C
 * Accept media initialization formats (such as SDP) from standard
 input, command line, or other means appropriate to the operating
 environment to act as a ``helper application'' for other
 applications (such as web browsers).

 There may be RTSP applications different from those initially
 envisioned by the contributors to the RTSP specification for which

 the requirements above do not make sense. Therefore, the
 recommendations above serve only as guidelines instead of strict
 requirements.

H. Schulzrinne, A. Rao, R. Lanphier Page 91

INTERNET-DRAFT RTSP January 15, 1998

 D.1.1 Basic Playback

 To support on-demand playback of media streams, the client MUST
 additionally be able to do the following:
 * generate the PAUSE request;
 * implement the REDIRECT method, and the Location header.

 D.1.2 Authentication-enabled

 In order to access media presentations from RTSP servers that require
 authentication, the client MUST additionally be able to do the
 following:
 * recognize the 401 status code;
 * parse and include the WWW-Authenticate header;
 * implement Basic Authentication and Digest Authentication.

D.2 Server

 A minimal server implementation MUST be able to do the following:

 * Implement the following methods: SETUP, TEARDOWN, OPTIONS and
 either PLAY (for a minimal playback server) or RECORD (for a
 minimal recording server).
 If RECORD is implemented, ANNOUNCE should be implemented as well.
 * Include the following headers in responses: Connection,
 Content-Length, Content-Type, Content-Language, Content-Encoding,
 Transport, Public. The capability to include the Location header
 should be implemented if the RECORD method is. RTP-compliant
 implementations should also implement the RTP-Info field.
 * Parse and respond appropriately to the following headers in
 requests: Connection, Session, Transport, Require.

 Though not required, the following are highly recommended at the time
 of publication for practical interoperability with initial
 implementations and/or to be a ``good citizen''.

 * Implement RTP/AVP/UDP as a valid transport.
 * Inclusion of the Server header.
 * Implement the DESCRIBE method.
 * Generate SDP session descriptions as defined in Appendix C

 There may be RTSP applications different from those initially
 envisioned by the contributors to the RTSP specification for which
 the requirements above do not make sense. Therefore, the
 recommendations above serve only as guidelines instead of strict
 requirements.

H. Schulzrinne, A. Rao, R. Lanphier Page 92

INTERNET-DRAFT RTSP January 15, 1998

 D.2.1 Basic Playback

 To support on-demand playback of media streams, the server MUST
 additionally be able to do the following:

 * Recognize the Range header, and return an error if seeking is not
 supported.
 * Implement the PAUSE method.

 In addition, in order to support commonly-accepted user interface
 features, the following are highly recommended for on-demand media
 servers:

 * Include and parse the Range header, with NPT units. Implementation
 of SMPTE units is recommended.
 * Include the length of the media presentation in the media
 initialization information.
 * Include mappings from data-specific timestamps to NPT. When RTP is
 used, the rtptime portion of the RTP-Info field may be used to map
 RTP timestamps to NPT.

 Client implementations may use the presence of length information
 to determine if the clip is seekable, and visably disable seeking
 features for clips for which the length information is unavailable.
 A common use of the presentation length is to implement a ``slider
 bar'' which serves as both a progress indicator and a timeline
 positioning tool.

 Mappings from RTP timestamps to NPT are necessary to ensure correct
 positioning of the slider bar.

 D.2.2 Authentication-enabled

 In order to correctly handle client authentication, the server MUST
 additionally be able to do the following:

 * Generate the 401 status code when authentication is required for
 the resource.
 * Parse and include the WWW-Authenticate header

 * Implement Basic Authentication and Digest Authentication

H. Schulzrinne, A. Rao, R. Lanphier Page 93

INTERNET-DRAFT RTSP January 15, 1998

Appendix E: Author Addresses

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027
 USA
 electronic mail: schulzrinne@cs.columbia.edu

 Anup Rao
 Netscape Communications Corp.
 501 E. Middlefield Road
 Mountain View, CA 94043
 USA
 electronic mail: anup@netscape.com

 Robert Lanphier
 RealNetworks
 1111 Third Avenue Suite 2900
 Seattle, WA 98101
 USA
 electronic mail: robla@prognet.com

Appendix F: Acknowledgements

 This draft is based on the functionality of the original RTSP draft
 submitted in October 96. It also borrows format and descriptions from
 HTTP/1.1.

 This document has benefited greatly from the comments of all those
 participating in the MMUSIC-WG. In addition to those already
 mentioned, the following individuals have contributed to this
 specification:

 Rahul Agarwal, Torsten Braun, Brent Browning, Bruce Butterfield, Ema
 Patki, Steve Casner, Francisco Cortes, Kelly Djahandari, Martin

 Dunsmuir, Eric Fleischman, Jay Geagan, Andy Grignon, V. Guruprasad,
 Peter Haight, Mark Handley, Brad Hefta-Gaub, John K. Ho, Philipp
 Hoschka, Anne Jones, Anders Klemets, Ruth Lang, Stephanie Leif,
 Jonathan Lennox, Eduardo F. Llach, Rob McCool, David Oran, Maria
 Papadopouli, Sujal Patel, Alagu Periyannan, Igor Plotnikov, Pinaki
 Shah, David Singer, Jeff Smith, Alexander Sokolsky, Dale Stammen, and
 John Francis Stracke.

H. Schulzrinne, A. Rao, R. Lanphier Page 94

INTERNET-DRAFT RTSP January 15, 1998

References

 1 H. Schulzrinne, ``RTP profile for audio and video conferences
 with minimal control,'' RFC 1890, Internet Engineering Task
 Force, Jan. 1996.

 2 R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T.
 Berners-Lee, ``Hypertext transfer protocol - HTTP/1.1,'' RFC

2068, Internet Engineering Task Force, Jan. 1997.

 3 F. Yergeau, G. Nicol, G. Adams, and M. Duerst,
 ``Internationalization of the hypertext markup language,'' RFC

2070, Internet Engineering Task Force, Jan. 1997.

 4 S. Bradner, ``Key words for use in RFCs to indicate requirement
 levels,'' RFC 2119, Internet Engineering Task Force, Mar. 1997.

 5 ISO/IEC, ``Information technology - generic coding of moving
 pictures and associated audio informaiton - part 6: extension
 for digital storage media and control,'' Draft International
 Standard ISO 13818-6, International Organization for
 Standardization ISO/IEC JTC1/SC29/WG11, Geneva, Switzerland,
 Nov. 1995.

 6 M. Handley and V. Jacobson, ``SDP: Session description
 protocol,'' Request for Comments XXXX, Internet Engineering
 Task Force, Feb. 1998.

 7 A. Freier, P. Karlton, and P. Kocher, ``The TLS protocol,''
 Request for Comments XXXX, Internet Engineering Task Force,
 Feb. 1998.

 8 J. Franks, P. Hallam-Baker, and J. Hostetler, ``An extension to
 HTTP: digest access authentication,'' RFC 2069, Internet
 Engineering Task Force, Jan. 1997.

https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2070
https://datatracker.ietf.org/doc/html/rfc2070
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2069

 9 J. Postel, ``User datagram protocol,'' RFC STD 6, 768, Internet
 Engineering Task Force, Aug. 1980.

 10 B. Hinden and C. Partridge, ``Version 2 of the reliable data
 protocol (RDP),'' RFC 1151, Internet Engineering Task Force,
 Apr. 1990.

 11 J. Postel, ``Transmission control protocol,'' RFC STD 7, 793,
 Internet Engineering Task Force, Sept. 1981.

H. Schulzrinne, A. Rao, R. Lanphier Page 95

INTERNET-DRAFT RTSP January 15, 1998

 12 H. Schulzrinne, ``A comprehensive multimedia control
 architecture for the Internet,'' in Proc. International
 Workshop on Network and Operating System Support for Digital
 Audio and Video (NOSSDAV), (St. Louis, Missouri), May 1997.

 13 International Telecommunication Union, ``Visual telephone
 systems and equipment for local area networks which provide a
 non-guaranteed quality of service,'' Recommendation H.323,
 Telecommunication Standardization Sector of ITU, Geneva,
 Switzerland, May 1996.

 14 P. McMahon, ``GSS-API authentication method for SOCKS version
 5,'' RFC 1961, Internet Engineering Task Force, June 1996.

 15 J. Miller, P. Resnick, and D. Singer, ``Rating services and
 rating systems (and their machine readable descriptions),''
 Recommendation REC-PICS-services-961031, W3C (World Wide Web
 Consortium), Boston, Massachusetts, Oct. 1996.

 16 J. Miller, T. Krauskopf, P. Resnick, and W. Treese, ``PICS
 label distribution label syntax and communication protocols,''
 Recommendation REC-PICS-labels-961031, W3C (World Wide Web
 Consortium), Boston, Massachusetts, Oct. 1996.

 17 D. Crocker and P. Overell, ``Augmented BNF for syntax
 specifications: ABNF,'' RFC 2234, Internet Engineering Task
 Force, Nov. 1997.

 18 B. Braden, ``Requirements for internet hosts - application and
 support,'' RFC STD 3, 1123, Internet Engineering Task Force,
 Oct. 1989.

 19 R. Elz, ``A compact representation of IPv6 addresses,'' RFC

https://datatracker.ietf.org/doc/html/rfc1151
https://datatracker.ietf.org/doc/html/rfc1961
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc1924

1924, Internet Engineering Task Force, Apr. 1996.

 20 T. Berners-Lee, L. Masinter, and M. McCahill, ``Uniform
 resource locators (URL),'' RFC 1738, Internet Engineering Task
 Force, Dec. 1994.

 21 F. Yergeau, ``Utf-8, a transformation format of iso 10646,''
 Request for Comments XXXX, Internet Engineering Task Force,
 Jan. 1998.

 22 B. Braden, ``T/TCP - TCP extensions for transactions functional
 specification,'' RFC 1644, Internet Engineering Task Force,
 July 1994.

H. Schulzrinne, A. Rao, R. Lanphier Page 96

INTERNET-DRAFT RTSP January 15, 1998

 23 W. R. Stevens, TCP/IP illustrated: the implementation, vol. 2.
 Reading, Massachusetts: Addison-Wesley, 1994.

 24 H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
 ``RTP: a transport protocol for real-time applications,'' RFC

1889, Internet Engineering Task Force, Jan. 1996.

 25 R. Fielding, ``Relative uniform resource locators,'' RFC 1808,
 Internet Engineering Task Force, June 1995.

Full Copyright Statement

 Copyright (C) The Internet Society (1997). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implmentation may be prepared, copied, published and
 distributed, in whole or in part, without restriction of any kind,
 provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of developing
 Internet standards in which case the procedures for copyrights defined
 in the Internet Standards process must be followed, or as required to
 translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an

https://datatracker.ietf.org/doc/html/rfc1924
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1644
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1808

 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
 NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
 WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

H. Schulzrinne, A. Rao, R. Lanphier Page 97

