
Network Working Group Kutscher
Internet-Draft Ott
Expires: August 30, 2002 Bormann
 TZI, Universitaet Bremen
 March 01, 2002

Session Description and Capability Negotiation
draft-ietf-mmusic-sdpng-04.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 30, 2002.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This document defines a language for describing multimedia sessions
 with respect to configuration parameters and capabilities of end-
 systems.

 This document is a product of the Multiparty Multimedia Session
 Control (MMUSIC) working group of the Internet Engineering Task
 Force. Comments are solicited and should be addressed to the working
 group's mailing list at mmusic@ietf.org and/or the authors.

Document Revision

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Kutscher, et al. Expires August 30, 2002 [Page 1]

Internet-Draft SDPng March 2002

 $Revision: 4.23 $

Table of Contents

1. Introduction . 4
2. Terminology and System Model 6
3. SDPng . 9
3.1 Conceptual Outline . 9
3.1.1 Definitions . 9
3.1.2 Components & Configurations 11
3.1.3 Constraints . 13
3.1.4 Session Attributes . 14
3.1.4.1 Owner . 15
3.1.4.2 Session Identification 15
3.1.4.3 Time Specification (SDP 't=', 'r=', and 'z=' lines) . . . 16
3.1.4.4 Component Semantic Specification 17
3.2 Syntax Definition Mechanisms 18
3.3 Referencing Definitions 20
3.3.1 The sdpng:use Element Type 21
3.3.2 Properties . 22
3.3.3 Definition Groups . 23

 3.3.4 Usage of Child Elements and Attributes of sdpng:use
 Elements . 26

3.4 External Definition Packages 28
3.4.1 Profile Definitions 28
3.4.2 Library Definitions 29
3.5 Mappings . 30
4. Capability Negotiation 32
4.1 Outline of the Negotiation Process 32
4.2 The Collapsing Algorithm 34
4.2.1 Collapsing Two Configurations 35
4.2.1.1 Collapsing of Attributes 35
4.2.1.2 Collapsing two Elements 38
4.2.1.3 Collapsing nested Elements 39
4.2.2 Deriving an actual Configuration 41
5. Formal Specification 42
5.1 XML Schema as a Definition Mechanism 42
5.2 SDPng Schema . 43
5.3 Profiles . 44
5.4 SDPng Documents . 45
5.5 Libraries . 46
5.6 Details on the use of specific XML Mechanisms 47
5.6.1 Default Namespace . 47
5.6.2 Qualified Locals . 47
5.6.3 Fixed Namespace Prefixes 48
5.7 SDPng Schema Definitions 48
5.7.1 SDPng Base Definition 48
5.7.2 Audio Codec Profile 55

Kutscher, et al. Expires August 30, 2002 [Page 2]

Internet-Draft SDPng March 2002

5.7.3 RTP profile . 56
5.8 Issues . 59

 6. Use of SDPng in conjunction with other IETF Signaling
 Protocols . 60

6.1 The Session Announcement Protocol (SAP) 60
6.2 Session Initiation Protocol (SIP) 61
6.3 Real-Time Streaming Protocol (RTSP) 67
6.4 Media Gateway Control Protocol (MEGACOP) 68
7. Open Issues . 69

 References . 70
 Authors' Addresses . 71

A. Base SDPng Specifications for Audio Codec Descriptions . . 72
A.1 DVI4 . 73
A.2 G.722 . 73
A.3 G.726 . 73
A.4 G.728 . 73
A.5 G.729 . 73
A.6 G.729 Annex D and E 74
A.7 GSM . 74
A.7.1 GSM Full Rate . 74
A.7.2 GSM Half Rate . 74
A.7.3 GSM Enhanced Full Rate 74
A.8 L8 . 75
A.9 L16 . 75
A.10 LPC . 75
A.11 MPA . 75
A.12 PCMA and PCMU . 75
A.13 QCELP . 75
A.14 VDVI . 75
B. SDPng Library for Audio Codec Definitions 76
C. SDPng Library for RTP Payload Format Definitions 77
D. Change History . 78

 Full Copyright Statement 79

Kutscher, et al. Expires August 30, 2002 [Page 3]

Internet-Draft SDPng March 2002

1. Introduction

 Multiparty multimedia conferencing is one of the applications that
 require dynamic interchange of end-system capabilities and the
 negotiation of a parameter set that is appropriate for all sending
 and receiving end-systems in a conference. For some applications,
 e.g. for loosely coupled conferences or for broadcast scenarios, it
 may be sufficient to simply have session parameters be fixed by the
 initiator of a conference. In such a scenario no negotiation is
 required because only those participants with media tools that
 support the predefined settings can join a media session and/or a
 conference.

 This approach is applicable for conferences that are announced some
 time ahead of the actual start date of the conference. Potential
 participants can check the availability of media tools in advance and
 tools such as session directories can configure media tools upon
 startup. This procedure however fails to work for conferences
 initiated spontaneously including Internet phone calls or ad-hoc
 multiparty conferences. Fixed settings for parameters such as media
 types, their encoding etc. can easily inhibit the initiation of
 conferences, for example in situations where a caller insists on a
 fixed audio encoding that is not available at the callee's end-
 system.

 To allow for spontaneous conferences, the process of defining a
 conference's parameter set must therefore be performed either at
 conference start (for closed conferences) or maybe (potentially) even
 repeatedly every time a new participant joins an active conference.
 The latter approach may not be appropriate for every type of
 conference without applying certain policies: For conferences with
 TV-broadcast or lecture characteristics (one main active source) it
 is usually not desired to re-negotiate parameters every time a new
 participant with an exotic configuration joins because it may
 inconvenience existing participants or even exclude the main source
 from media sessions. But conferences with equal "rights" for
 participants that are open for new participants on the other hand
 would need a different model of dynamic capability negotiation, for
 example a telephone call that is extended to a 3-parties conference
 at some time during the session.

 SDP [2] allows to specify multimedia sessions (i.e. conferences,
 "session" as used here is not to be confused with "RTP session"!) by
 providing general information about the session as a whole and
 specifications for all the media streams (RTP sessions and others) to
 be used to exchange information within the multimedia session.

 Currently, media descriptions in SDP are used for two purposes:

Kutscher, et al. Expires August 30, 2002 [Page 4]

Internet-Draft SDPng March 2002

 o to describe session parameters for announcements and invitations
 (the original purpose of SDP) and

 o to describe the capabilities of a system and possibly provide a
 choice between a number of alternatives (which SDP was not
 designed for).

 A distinction between these two "sets of semantics" is only made
 implicitly.

 This document is based upon a set of requirements specified in a
 companion document [1]. In the following, we first introduce a model
 for session description and capability negotiation as well as the
 basic terms used throughout this specification (section 2). Next, we
 outline the concept for the concepts underlying SDPng and introduce
 the syntactical components step by step in section 3. In section 4,
 we provide a formal definition of the SDPng session description
 language. Finally, we overview aspects of using SDPng with various
 IETF signaling protocols in section 5. In Appendix A, we provide
 basic audio codec and payload type definitions that are subsumed in
 SDPng libraries in Appendix B and Appendix C.

 The next version of this draft will only contain the formal
 specification of the language itself. Requirements and the
 description of the system model will be moved to a separate document.

Kutscher, et al. Expires August 30, 2002 [Page 5]

Internet-Draft SDPng March 2002

2. Terminology and System Model

 Any (computer) system has, at a time, a number of rather fixed
 hardware as well as software resources. These resources ultimately
 define the limitations on what can be captured, displayed, rendered,
 replayed, etc. with this particular device. We term features enabled
 and restricted by these resources "system capabilities".

 Example: System capabilities may include: a limitation of the
 screen resolution for true color by the graphics board; available
 audio hardware or software may offer only certain media encodings
 (e.g. G.711 and G.723.1 but not GSM); and CPU processing power and
 quality of implementation may constrain the possible video
 encoding algorithms.

 In multiparty multimedia conferences, participants employ different
 "components" in conducting the conference.

 Example: In lecture multicast conferences one component might be
 the voice transmission for the lecturer, another the transmission
 of video pictures showing the lecturer and the third the
 transmission of presentation material.

 Depending on system capabilities, user preferences and other
 technical and political constraints, different configurations can be
 chosen to accomplish the use of these components in a conference.

 Each component can be characterized at least by (a) its intended use
 (i.e. the function it shall provide) and (b) one or more possible
 ways to realize this function. Each way of realizing a particular
 function is referred to as a "configuration".

 Example: A conference component's intended use may be to make
 transparencies of a presentation visible to the audience on the
 Mbone. This can be achieved either by a video camera capturing
 the image and transmitting a video stream via some video tool or
 by loading a copy of the slides into a distributed electronic
 white-board. For each of these cases, additional parameters may
 exist, variations of which lead to additional configurations (see
 below).

 Two configurations are considered different regardless of whether
 they employ entirely different mechanisms and protocols (as in the
 previous example) or they choose the same and differ only in a single
 parameter.

 Example: In case of video transmission, a JPEG-based still image
 protocol may be used, H.261 encoded CIF images could be sent, as

Kutscher, et al. Expires August 30, 2002 [Page 6]

Internet-Draft SDPng March 2002

 could H.261 encoded QCIF images. All three cases constitute
 different configurations. Of course there are many more detailed
 protocol parameters.

 Each component's configurations are limited by the participating
 system's capabilities. In addition, the intended use of a component
 may constrain the possible configurations further to a subset
 suitable for the particular component's purpose.

 Example: In a system for highly interactive audio communication
 the component responsible for audio may decide not to use the
 available G.723.1 audio codec to avoid the additional latency but
 only use G.711. This would be reflected in this component only
 showing configurations based upon G.711. Still, multiple
 configurations are possible, e.g. depending on the use of A-law
 or u-Law, packetization and redundancy parameters, etc.

 In modelling multimedia sessions, we distinguish two types of
 configurations:

 o potential configurations
 (a set of any number of configurations per component) indicating a
 system's functional capabilities as constrained by the intended
 use of the various components;

 o actual configurations
 (exactly one per instance of a component) reflecting the mode of
 operation of this component's particular instantiation.

 Example: The potential configuration of the aforementioned video
 component may indicate support for JPEG, H.261/CIF, and
 H.261/QCIF. A particular instantiation for a video conference may
 use the actual configuration of H.261/CIF for exchanging video
 streams.

 In summary, the key terms of this model are:

 o A multimedia session (streaming or conference) consists of one or
 more conference components for multimedia "interaction".

 o A component describes a particular type of interaction (e.g. audio
 conversation, slide presentation) that can be realized by means of
 different applications (possibly using different protocols).

 o A configuration is a set of parameters that are required to
 implement a certain variation (realization) of a certain
 component. There are actual and potential configurations.

Kutscher, et al. Expires August 30, 2002 [Page 7]

Internet-Draft SDPng March 2002

 * Potential configurations describe possible configurations that
 are supported by an end-system.

 * An actual configuration is an "instantiation" of one of the
 potential configurations, i.e. a decision how to realize a
 certain component.

 In less abstract words, potential configurations describe what a
 system can do ("capabilities") and actual configurations describe
 how a system is configured to operate at a certain point in time
 (media stream spec).

 To decide on a certain actual configuration, a negotiation process
 needs to take place between the involved peers:

 1. to determine which potential configuration(s) they have in
 common, and

 2. to select one of this shared set of common potential
 configurations to be used for information exchange (e.g. based
 upon preferences, external constraints, etc.).

 In SAP-based [9] session announcements on the Mbone, for which SDP
 was originally developed, the negotiation procedure is non-existent.
 Instead, the announcement contains the media stream description sent
 out (i.e. the actual configurations) which implicitly describe what a
 receiver must understand to participate.

 In point-to-point scenarios, the negotiation procedure is typically
 carried out implicitly: each party informs the other about what it
 can receive and the respective sender chooses from this set a
 configuration that it can transmit.

 Capability negotiation must not only work for 2-party conferences but
 is also required for multi-party conferences. Especially for the
 latter case it is required that the process to determine the subset
 of allowable potential configurations is deterministic to reduce the
 number of required round trips before a session can be established.
 For instance, in order to be used with SIP, the capability
 negotiation is required to work with the offer/answer model that is
 for session initiation with SIP -- limiting the negotiation to
 exactly one round trip.

 The requirements for the SDPng specification, subdivided into general
 requirements and requirements for session descriptions, potential and
 actual configurations as well as negotiation rules, are captured in a
 companion document [1].

Kutscher, et al. Expires August 30, 2002 [Page 8]

Internet-Draft SDPng March 2002

3. SDPng

 This section introduces the underlying concepts of the Session
 Description Protocol - next generation (SDPng). The focus of this
 section is on the concepts of the capability description and
 negotiation language with a stepwise introduction of the various
 syntactical elements. Note that this section does only examples
 accompanied by explanations -- a full formal specification is
 provided in section 4.

3.1 Conceptual Outline

 The description language follows the system model introduced in the
 beginning of this document. We use a rather abstract language to
 avoid misinterpretations due to different intuitive understanding of
 terms as far as possible.

 The concept of a capability description language addresses various
 pieces of a full description of system and application capabilities
 in four separate "sections":

 Definitions (elementary and compound); see Section 3.1.1.

 Potential or Actual Configurations; see Section 3.1.2.

 Constraints; see Section 3.1.3.

 Session attributes; see Section 3.1.4.

3.1.1 Definitions

 The "Definitions" section specifies a number of basic abstractions
 that are later referenced to avoid repetitions in more complex
 specifications and allow for a concise representation. Definition
 elements are labelled with an identifier by which they may be
 referenced. They may be elementary or compound (i.e. combinations
 of elementary entities). Examples of definitions that could occur in
 "Definitions" sections include (but are not limited to) codec
 definitions, redundancy schemes, transport mechanisms and payload
 formats.

 Elementary definition elements do not reference other elements. Each
 elementary entity only consists of one of more attributes and their
 values. Default values specified in the definition section may be
 overridden in descriptions for potential (and later actual)
 configurations. A mechanisms for overriding definitions is specified
 below.

Kutscher, et al. Expires August 30, 2002 [Page 9]

Internet-Draft SDPng March 2002

 For the moment, elementary abstractions are defined for media types
 (i.e. codecs) and for media transports mechanisms. For each
 transport and for each codec to be used, the respective attributes
 need to be defined. This definition may either be provided within
 the "Definitions" section itself or in an external document (similar
 to the audio-video profile or an IANA registry that defines payload
 types and media stream identifiers).

 It is not required to define all codecs and transport mechanisms in a
 "Definitions" sections and reference them when specifying potential
 and actual configurations. Instead, a syntactic mechanism is defined
 that allows to give some definitions directly in a configurations
 section.

 Examples for elementary definitions:

 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <audio:codec name="audio-L16-mono" encoding="L16"
 sampling="44100" channels="1"/>

 The element type "audio:codec" is used in these examples to define
 audio codec configurations. The configuration parameters are given
 as attribute values.

 Definitions may have default values specified along with them for
 each attribute (as well as for their contents). Some of these
 default values may be overridden so that a codec definition can
 easily be re-used in a different context (e.g. by specifying a
 different sampling rate) without the need for a large number of base
 specifications. In the following example the definition of audio-
 L16-mono is re-used for the defintion of the corresponding stereo
 codec. Appendix A provides a complete set of corresponding
 audio:codec definitions of the codecs used in RFC 1890 [4].

 <audio:codec name="audio-L16-stereo" ref="audio-L16-mono"
 channels="2"/>

 The example shows how existing definitions can be referenced in new
 definitions. This approach allows to create simple as well as more
 complex definitions in an extensible set of reference documents.

Section 3.4 specifies the mechanisms for external references.

 Besides definitions of audio codecs other definitions such as RTP
 payload formats and specific transport mechanisms are suitable to be
 defined in a definition section for later referencing. The following

https://datatracker.ietf.org/doc/html/rfc1890

Kutscher, et al. Expires August 30, 2002 [Page 10]

Internet-Draft SDPng March 2002

 example shows how RTP payload types are defined using a pre-defined
 codec.

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>
 <rtp:pt name="rtp-avp-11" pt="11" format="audio-L16-mono"/>

 In this example, the payload type "rtp-avp-11" is defined with
 payload type number 11, referencing the codec "audio-L16-mono".
 Instead of referencing an existing definition it is also possible to
 define the format "inline":

 <rtp:pt name="rtp-avp-10" pt="10">
 <audio:codec encoding="L16" sampling="44100" channels="2"/>
 </rtp:pt>

 Note: For negotiation between endpoints, it may be helpful to define
 two modes of operation: explicit and implicit. Implicit
 specifications may refer to externally defined entities to minimize
 traffic volume, explicit specifications would list all external
 definitions used in a description in the "Definitions" section.
 Again, see Section 3.4 for complete discussion of external
 definitions.

 The "Definitions" section may be empty if all transport, codecs, and
 other pieces needed to the specify Potential and Actual
 Configurations (as detailed below) are either included by referencing
 external definitions or are explicitly described within the
 Configurations themselves.

3.1.2 Components & Configurations

 The "Configurations" section contains all the components that
 constitute the multimedia application (IP telephone call, real-time
 streaming application, multi-player gaming session etc.). For each
 of these components, the potential and, later, the actual
 configurations are given. Potential configurations are used during
 capability exchange and/or negotiation, actual configurations to
 configure media streams after negotiation (e.g. with RTSP) or in
 session announcements (e.g. via SAP). A potential and the actual
 configuration of a component may be identical.

 Each component is labelled with an identifier so that it can be
 referenced, e.g. to associate semantics with a particular media
 stream. For such a component, any number of configurations may be
 given with each configuration describing an alternative way to
 realize the functionality of the respective component.

 Each configuration (potential as well as actual) is labelled with an

Kutscher, et al. Expires August 30, 2002 [Page 11]

Internet-Draft SDPng March 2002

 identifier. A configuration combines one or more (elementary and/or
 compound) entities from the "Definitions" section to describe a
 potential or an actual configuration. Within the specification of
 the configuration, default values from the referenced entities may be
 overwritten. In addition, it is also possible to provide definition
 elements inline, inside the definition of a configuration.

 Note: Not all protocol environments and their respective operation
 allow to explicitly distinguish between Potential and Actual
 Configurations. Therefore, SDPng so far does not provide for
 syntactical identification of a Configurations as being a Potential
 or an Actual one. The semantics of configurations are to be
 determined from the requirements of the specific protocol that uses
 SDPng to express capabilities and configurations.

 The following example shows how RTP sessions can be described by
 referencing payload definitions.

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0">
 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801"/>
 </rtp:session>
 </alt>

 <alt name= AVP-audio-11">
 <rtp:session format="rtp-avp-11">
 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801"/>
 </rtp:session>
 </alt>
 </component>
 </cfg>

 For example, an IP telephone call may require just a single component
 "name=interactive-audio" with two possible ways of implementing it.
 The two corresponding configurations are "AVP-audio-0" without
 modification, the other ("AVP-audio-11") uses linear 16-bit encoding.
 Typically, transport address parameters such as the port number would
 also be provided. In this example, this information is given by the
 "rtp:udp" element. Of course, it must be possible to specify other
 transport mechanisms as well. See Section 3.2 for a discussion of
 extension mechanisms that allow applications to use non-standard
 transport (or other) specifications.

 During/after the negotiation phase, an actual configuration is chosen
 out of a number of alternative potential configurations, the actual
 configuration may refer to the potential configuration just by its

Kutscher, et al. Expires August 30, 2002 [Page 12]

Internet-Draft SDPng March 2002

 "id", possibly allowing for some parameter modifications.
 Alternatively, the full actual configuration may be given.

 Instead of referencing existing payload type definitions it is also
 possible to provide the required information "inline". The following
 example illustrates this:

 <cfg>
 <component name="audio1" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session>
 <rtp:pt pt="0">
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>
 </rtp:pt>
 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801"/>
 </rtp:session>
 </alt>
 </component>
 </cfg>

 The UDP/IPv4 multicast transport that is used in the examples is a
 simple variant of a transport specification. More complex ones are
 conceivable. For example, it must also be possible to specify the
 usage of source filters (inclusion and exclusion), Source Specific
 Multicast, the usage of multi-unicast, or other parameters such as
 QoS parameters. Therefore it is possible to extend the definition of
 transport mechanisms by providing the required information in the
 element content. An example:

 <cfg>
 <component name="audio1" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0">
 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801">
 <option name="ssm" sender="sender.example.com"/>
 </rtp:udp>
 </rtp:session>
 </alt>
 </component>
 </cfg>

 Additional transport mechanisms and options will be defined in future
 versions of this document.

3.1.3 Constraints

 Definitions specify media, transport, and other capabilities, whereas

Kutscher, et al. Expires August 30, 2002 [Page 13]

Internet-Draft SDPng March 2002

 configurations indicate which combinations of these could be used to
 provide the desired functionality in a certain setting.

 There may, however, be further constraints within a system (such as
 CPU cycles, DSP resources available, dedicated hardware, etc.) that
 limit which of these configurations can be instantiated in parallel
 (and how many instances of these may exist). We deliberately do not
 couple this aspect of system resource limitations to the various
 application semantics as the constraints may exist across application
 boundaries. Also, in many cases, expressing such constraints is
 simply not necessary (as many uses of the current SDP show), so
 additional overhead can be avoided where this is not needed.

 Therefore, we introduce a "Constraints" section to contain these
 additional limitations. Constraints refer to potential
 configurations and to entity definitions and express and use simple
 logic to express mutual exclusion, limit the number of
 instantiations, and allow only certain combinations. The following
 example shows the definition of a constraints that restricts the
 maximum number of instantiation of two alternatives (that would have
 to be defined in the configuration section before) when they are used
 in parallel:

 <constraints>
 <par>
 <use-alt ref="AVP-audio-11" max="5">
 <use-alt ref="AVP-video-32" max="1">
 </par>
 </constraints>

 As the example shows, constraints are defined by defining limits on
 simultaneous instantiations of alternatives. They are not defined by
 expressing abstract end-system resources, such as CPU speed or memory
 size.

 By default, the "Constraints" section is empty (or missing) which
 means that no further restrictions apply.

3.1.4 Session Attributes

 The fourth and final section of the SDPng syntax addresses session
 layer attributes. These attributes largely include those defined by
 SDP [RFC2327] (which are explicitly indicated in the following
 specification) to describe originator, purpose, and timing of a
 multimedia session among other characteristics. Furthermore, SDPng
 includes attributes indicating the semantics of the various
 Components in a teleconference or other session. This part of the
 specification is open ended with an IANA registry to be set up to

https://datatracker.ietf.org/doc/html/rfc2327

Kutscher, et al. Expires August 30, 2002 [Page 14]

Internet-Draft SDPng March 2002

 register further types of components; only a few of the examples are
 listed here.

 A session-level specification for connection information (SDP "c="
 line), bandwidth information (SDP "b=" line), and encryption keys
 (SDP "k=" lines) is deliberately not provided for in SDPng. The
 relevant information can be specified directly in the Configuration
 section for individual alternatives.

 Session level attributes as defined by SDP still have to be examined
 and adopted for SDPng in a future revision of this specification.

3.1.4.1 Owner

 The owner refers to the creator of a session as defined in RFC2327
 ("o=" line). The syntax is as follows:

 <owner user="username" session-id="session-id" version="version"
 nettype="IN" addrtype="IP4" addr="130.149.25.97"/>

 The owner element must be present if SDPng is used with SAP. For all
 other protocols, the owner element is not necessarily required. The
 attributes listed above match those from the SDP specification; all
 attributes must be present and they are used following the rules of

RFC2327.

 The owner element is an empty element.

3.1.4.2 Session Identification

 The "session" element is used to identify the session and to provide
 a description and possible further references. It provides the
 following attributes:

 name: The session name as it is to appear e.g. in a session
 directory. This is equivalent to the SDP "s=" line.

 The session element can contain arbitrary text of any length (but
 authors are encouraged to keep the inline description brief and
 provide additional information via URLs using the info element
 described below. This text is used to provide a description of the
 session; it is the equivalent of the SDP "i=" lines.

 Additionally, the session element can contain other elements of the
 following types to provide further information about the session and
 its creator:

 info: The info element is intended to provide a pointer to further

https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2327

Kutscher, et al. Expires August 30, 2002 [Page 15]

Internet-Draft SDPng March 2002

 information on the session itself. It is an empty element and
 provides the attribute xlink:href that is used to specify an URI.
 Info elements are optional, they may occur any number of times.

 contact: The contact element provides contact information on the
 creator of the session. It is an empty element and provides an
 attribute xlink:href that is used to specify an URI. Any URI
 scheme suitable to reach a person or a group of persons is
 acceptable (e.g. sip:, mailto:, tel:). Contact elements are
 optional, they may occur any number of times.

 <session name="An SDPng seminar">
 And here comes a long description of the seminar indicating what
 this might be about and so forth. But we also include further
 information -- as additional elements:
 <info xlink:href="http://www.ietf.org/"/>
 <contact xlink:href="mailto:joe@example.com"/>
 <contact xlink:href="mailto:bob@example.com"/>
 <contact xlink:href="tel:+49421218"/>
 <contact xlink:href="sip:joe@example.com"/>
 <contact xlink:href="sip:bob@example.com"/>
 </session>

3.1.4.3 Time Specification (SDP 't=', 'r=', and 'z=' lines)

 The time specification for a session follows the same rules as in
 SDP. Time specifications are usually only meaningful when used in
 conjunction with SAP and are optional. SDPng uses the following
 elements and attributes to specify timing:

 The element "time" is used to indicate a schedule for the session;
 time has two optional attributes:

 start: The starting time of the first occurrence of the session as
 defined in RFC2327.

 end: The ending time of the last occurrence of the session as defined
 in RFC2327.

 The time element can contain the following elements:

 repeat: This element specifies the repetition pattern for the
 schedule. There may be zero or more occurrences of this element
 within the time element. "repeat" has two mandatory and one
 optional attribute and is an empty element; the attributes are as
 defined in SDP:

https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2327

Kutscher, et al. Expires August 30, 2002 [Page 16]

Internet-Draft SDPng March 2002

 interval: The duration between two start times of the session.
 This attribute is always present.

 duration: The duration for which the session will be active
 starting at each repetition interval. This attribute is always
 present.

 offset: The offset relative to "start" attribute at which this
 repetition of the session is start. This attribute is
 optional; if it is absent, a default value of "0" is assumed.

 Formatting of the attribute values follows the rules defined in
RFC2327.

 zone: The zone element specifies one or more time zone adjustments as
 defined in RFC2327. This element has zero or more occurrences in
 the time element. It is an empty element and has two attributes
 as defined in SDP:

 adjtime: The time at which the next adjustment will take place.

 delta: The adjustment offset (typically +/- 1 hours).

 The example from RFC2327, page 16, expressed in SDPng:

 <time start="3034423619" stop="3042462419">
 <repeat interval="7d" duration="1h"/>
 <repeat interval="7d" duration="1h" offset="25h"/>
 </time>

 The time element can occur multiple times.

3.1.4.4 Component Semantic Specification

 Another important session parameter is to specify - ideally in a
 machine-readable way but at least understandable for humans - the
 function of the various components in a session. Typically, the
 semantics of the streams are implicitly assumed (e.g. a video stream
 goes together with the only audio stream in a session). There are,
 however, scenarios in which such intuitive understanding is not
 sufficient and the semantics must be made explicit.

 <info name="audio-interactive" function="speaker">
 Audio stream for the different speakers
 </info>

 The above example shows a simple definition of the semantics for the

https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc2327

Kutscher, et al. Expires August 30, 2002 [Page 17]

Internet-Draft SDPng March 2002

 component "audio-interactive". Further options may be added to
 provide additional information, e.g. language, and other functions
 may be specified (e.g. "panel", "audience", "chair", etc.).

3.2 Syntax Definition Mechanisms

 In order to allow for the possibility to validate session
 descriptions and in order to allow for structured extensibility,
 SDPng relies on a syntax framework that provides concepts as well as
 concrete procedures for document validation and extending the set of
 allowed syntax elements.

 SGML/XML technologies allow for the creation of Document Type
 Definitions (DTDs) that can define the allowed content models for the
 elements of conforming documents. Documents can be formally
 validated against a given DTD to check their conformance and
 correctness. XML DTDs however, cannot easily be extended. It is not
 possible to alter to content models of element types or to add new
 element types after the DTD has been specified.

 For SDPng, a mechanism is needed that allows the specification of a
 base syntax -- for example basic elements for the high level
 structure of description documents -- while allowing extensions, for
 example elements and attributes for new transport mechanisms, new
 media types etc. to be added on demand. Still, it has to be ensured
 that extensions do not result in name collisions. Furthermore, it
 must be possible for applications that process descriptions documents
 to distinguish extensions from base definitions.

 For XML, mechanisms have been defined that allow for structured
 extensibility of a model of allowed syntax: XML Namespace and XML
 Schema.

 XML Schema mechanisms allows to constrain the allowed document
 content, e.g. for documents that contain structured data and also
 provide the possibility that document instances can conform to
 several XML Schema definitions at the same time, while allowing
 Schema validators to check the conformance of these documents.

 Extensions of the session description language, say for allowing to
 express the parameters of a new media type, would require the
 creation of a corresponding XML schema definition that contains the
 specification of element types that can be used to describe
 configurations of components for the new media type. Session
 description documents have to reference the non-standard Schema
 module, thus enabling parsers and validators to identify the elements
 of the new extension module and to either ignore them (if they are
 not supported) or to consider them for processing the

Kutscher, et al. Expires August 30, 2002 [Page 18]

Internet-Draft SDPng March 2002

 session/capability description.

 It is important to note that the functionality of validating
 capability and session description documents is not necessarily
 required to generate or process them. For example, endpoints would
 be configured to understand only those parts of description documents
 that are conforming to the baseline specification and simply ignore
 extensions they cannot support. The usage of XML and XML Schema is
 thus rather motivated by the need to allow for extensions being
 defined and added to the language in a structured way that does not
 preclude the possibility to have applications to identify and process
 the extensions elements they might support. The baseline
 specification of XML Schema definitions and profiles must be well-
 defined and targeted to the set of parameters that are relevant for
 the protocols and algorithms of the Internet Multimedia Conferencing
 Architecture, i.e. transport over RTP/UDP/IP, the audio video profile
 of RFC1890 etc.

Section 3.4 describes profile definitions and library definition. A
 detailed definition of how the formal SDPng syntax and the
 corresponding extension mechanisms is provided in Section 5.

 The example below shows how the definition of codecs, transport-
 variants and configuration of components as well as a conference
 description are realized in SDPng.

 <def>
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <audio:codec name="audio-L16-mono" encoding="L16"
 sampling="44100" channels="1"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>
 <rtp:pt name="rtp-avp-11" pt="11" format="audio-L16-mono"/>

 </def>

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0">
 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801"/>
 </rtp:session>
 </alt>

 <alt name="AVP-audio-11">
 <rtp:session format="rtp-avp-11">

https://datatracker.ietf.org/doc/html/rfc1890

Kutscher, et al. Expires August 30, 2002 [Page 19]

Internet-Draft SDPng March 2002

 <rtp:udp addr="224.2.0.53" rtp-port="7800" rtcp-port="7801"/>
 </rtp:session>
 </alt>
 </component>
 </cfg>

 <constraints>
 <par>
 <use-alt ref="AVP-audio-11" max="1">
 </par>
 </constraints>

 <conf>
 <owner user="joe@example.com" id="foobar" version="1" nettype="IN"
 addrtype="IP4" addr="130.149.25.97"/>
 <session name="An SDPng seminar">
 This seminar is about SDPng...
 <info xlink:href="http://www.ietf.org/"/>
 <contact xlink:href="mailto:joe@example.com"/>
 <contact xlink:href="sip:joe@example.com"/>
 </session>

 <time start="3034423619" stop="3042462419">
 <repeat interval="7d" duration="1h"/>
 <repeat interval="7d" duration="1h" offset="25h"/>
 </time>

 <info name="interactive-audio" function="speaker">
 Audio stream for the different speakers
 <info>

 </conf>

Section 5 specifies the formal Schema definition that this example is
 conforming to.

 A real-world capability description would likely be shorter than the
 presented example because the codec and transport definitions can be
 factored-out to profile definition documents that would only be
 referenced in capability description documents.

3.3 Referencing Definitions

 This section specifies some generic mechanisms for referencing
 existing definitions. Referencing existing definition allows to
 contruct definitions without having to include all parameters inline.
 By using these mechanisms, complex definitions can be derived by

Kutscher, et al. Expires August 30, 2002 [Page 20]

Internet-Draft SDPng March 2002

 combining multiple basic mechanisms. Common parameters that occur in
 different configurations do not have to be repeated but can be
 defined once and then be referenced as often as they are needed.

3.3.1 The sdpng:use Element Type

 The element type "sdpng:use" is a generic reference mechanisms that
 allows to refer to arbitrary definition within another definition or
 configuration element. "sdpng:use" is an element type with one
 mandatory attribute called "href". The value of that attribute is
 the name of the definition to be referenced. An example:

 <def>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-10">
 <rtp:session format="rtp-avp-10">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 In this example, an element "rtp:udp" is used in the definitions
 section to define some transport parameters that should later be re-
 used by referencing this definition using the specified name
 "endpoint-addr-1". Within the element "rtp:session" in the
 configurations section the definition is referenced using the "use"
 element.

 An implementation that processes this SDPng document and wants to
 evaluate the configuration for the alternative "rtp-avp-10" MUST
 replace the "use" element by the referenced element. If the
 referenced element contains "use" elements itself, those MUST also be
 dereferenced.

 When applying this algorithm to the sample SDPng document, the
 following result SDPng document is generated:

Kutscher, et al. Expires August 30, 2002 [Page 21]

Internet-Draft SDPng March 2002

 <def>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-10">
 <rtp:session format="rtp-avp-10">
 <rtp:udp name="endpoint-addr-1" rtp-port="7800"
addr="224.2.0.53"/>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 For the purpose of comparing configurations, both SDPng documents are
 equal.

3.3.2 Properties

 The element type "sdpng:prop" can be used to add properties to
 definitions. "sdpng:prop" has two attributes:

 name: the name of the property

 value: the value for the named property

 For example:

 <def>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-9-4">
 <rtp:session format="rtp-avp-9">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 <prop name="foo" value="bar"/>
 </alt>
 </c>
 <cfg>

 For comparing and collapsing elements, all sdpng:prop element that
 are contained in a parent element (like alt in the example above)
 MUST be transformed to attributes of the containing element. If the

Kutscher, et al. Expires August 30, 2002 [Page 22]

Internet-Draft SDPng March 2002

 parent element already provides a corresponding attribute its value
 MUST be overwritten.

 The example above would thus be transformed to:

 <def>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-9-4" foo="bar">
 <rtp:session format="rtp-avp-9">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 The main purpose of the sdpng:prop element type is to provide a
 mechanism by which attributes of referenced elements can be modified
 by the referring element. An application for this is described in

Section 3.3.4.

3.3.3 Definition Groups

 Using the sdpng:group element arbitrary definition can be combined
 and defined as a group with a specific name. Using this name, the
 definitions contained in the group can be referenced with the
 sdpng:use element and embedded into other elements.

 An example for the use of the sdpng:group element:

Kutscher, et al. Expires August 30, 2002 [Page 23]

Internet-Draft SDPng March 2002

 <def>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>

 <group name="g1">
 <prop name="foo" value="bar"/>
 <prop name="xyz" value="uvw"/>
 </group>

 </def>
 <cfg>
 <c name="interactive-audio" media="audio">

 <alt name="alt-avp-audio-9-4">
 <rtp:session format="rtp-avp-9">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 <use href="g1"/>
 </alt>
 </c>
 <cfg>

 This example shows how a group that has been defined in the
 definitions section is referenced using the sdpng:use element. The
 group element contains two sdpng:prop elements.

 For comparing and collapsing elements, all references to sdpng:group
 element MUST be replaced by the content of the corresponding
 sdpng:group element. The example above would thus be transformed to:

Kutscher, et al. Expires August 30, 2002 [Page 24]

Internet-Draft SDPng March 2002

 <def>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>

 <group name="g1">
 <prop name="foo" value="bar"/>
 <prop name="xyz" value="uvw"/>
 </group>

 </def>
 <cfg>
 <c name="interactive-audio" media="audio">

 <alt name="alt-avp-audio-9-4">
 <rtp:session format="rtp-avp-9">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 <prop name="foo" value="bar"/>
 <prop name="xyz" value="uvw"/>
 </alt>
 </c>
 <cfg>

 In this example the content of the sdpng:group element named g1 has
 been embedded into the alt element that contained the sdpng:use
 element referencing the group element.

 According to the rules in Section 3.3.2 the sdpng:prop elements are
 transformed in a second step to yield the following final decription:

Kutscher, et al. Expires August 30, 2002 [Page 25]

Internet-Draft SDPng March 2002

 <def>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>

 <group name="g1">
 <prop name="foo" value="bar"/>
 <prop name="xyz" value="uvw"/>
 </group>

 </def>
 <cfg>
 <c name="interactive-audio" media="audio">

 <alt name="alt-avp-audio-9-4" foo="bar" xyz="uvw">
 <rtp:session format="rtp-avp-9">
 <use href="endpoint-addr-1"/>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 As a general rule, all references MUST be resolved before sdpng:prop
 elements are processed and transformed into attribute values.

3.3.4 Usage of Child Elements and Attributes of sdpng:use Elements

 It is also possible to provide arbitrary other elements within a
 sdpng:use element (depending on the specific application). All
 elements that occur in a sdpng:use element MUST be transfomed to
 child elements of the referenced element when resolving a sdpng:use
 reference. If the reference already provides child elements, the
 child elements of the sdpng:use element are added to the list of
 child elements of the referenced element.

 Any existing elements of a referenced element with the same GI as an
 element in the corresponding sdpng:use element MUST be replaced by
 the element of the sdpng:use element. This mechanism allows to
 extend and to change referenced elements in a simple way.

 In the following we give an example of using an sdpng:prop element
 within a sdpng:use element which has the semantics of adding
 properties to the referenced element. The semantics and processing
 requirements for the sdpng:prop element are specified in Section

3.3.2.

 Example for the usage of an sdpng:use element containing an

Kutscher, et al. Expires August 30, 2002 [Page 26]

Internet-Draft SDPng March 2002

 sdpng:prop element:

 <def>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-10">
 <rtp:session format="rtp-avp-10">
 <use href="endpoint-addr-1">
 <prop name="foo" value="bar"/>
 </use>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 This will be transformed to:

 <def>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-10">
 <rtp:session format="rtp-avp-10">
 <rtp:udp name="endpoint-addr-1" rtp-port="7800"
addr="224.2.0.53">
 <prop name="foo" value="bar"/>
 </rtp:udp>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 In a second step, the sdpng:prop element would be transformed to an
 attribute of its parent element (rtp:udp in this case) according to
 the rules specified in Section 3.3.2.

 As an abbreviation, the properties for the referenced element do not
 have to be specified using sdpng:prop elements within the sdpng:use
 element but can also specified directly as attributes of the
 sdpng:use element, as shown in the following example:

Kutscher, et al. Expires August 30, 2002 [Page 27]

Internet-Draft SDPng March 2002

 <def>
 <rtp:udp name="endpoint-addr-1" rtp-port="7800" addr="224.2.0.53"/>
 </def>
 <cfg>
 <c name="interactive-audio" media="audio">
 <alt name="alt-avp-audio-10">
 <rtp:session format="rtp-avp-10">
 <use href="endpoint-addr-1" name="foo" value="bar"/>
 </rtp:session>
 </alt>
 </c>
 <cfg>

 In this example, the sdp:use element has no child element sdpng:prop
 but provides the property "foo" directly as an attribute. All
 attributes of a sdpng:use element other than href MUST be transformed
 to attributes of the referenced elements.

 If the referenced element is a definition group (see Section 3.3.3),
 any child elements of an sdpng:use element MUST be transformed to
 child elements of the parent element of the sdpng:use element. Any
 properties (either explicit sdpng:prop elements or attributes of the
 sdpng:use element) MUST be transformed to properties of the parent
 element of the sdpng:use element.

3.4 External Definition Packages

 There are two types of external definitions:

 Profile Definitions (Section 3.4.1) define rules for specifying
 parameters that are not covered by the base SDPng specification.

 Library Definitions (Section 3.4.2) contain definitions that can be
 referenced in SDPng documents.

3.4.1 Profile Definitions

 In order to allow for extensibility it must be possible to define
 extensions to the basic SDPng configuration options.

 For example, if some application requires the use of a new transport
 protocol, endpoints must be able to describe their configuration with
 respect to the parameters of that transport protocol. The mandatory
 and optional parameters that can be configured and negotiated when
 using the transport protocol will be specified in a definition
 document. Such a definition document is called a "profile".

Kutscher, et al. Expires August 30, 2002 [Page 28]

Internet-Draft SDPng March 2002

 A profile contains rules that specify how SDPng is used to describe
 conferences or end-system capabilities with respect to the parameters
 of the profile. The concrete properties of the profile definitions
 mechanism are still to be defined.

 An example of such a profile would be the RTP profile that defines
 how to specify RTP parameters. Another example would be the audio
 codec profiles that defines how specify audio codec parameters.

 SDPng documents can reference profiles and provide concrete
 definitions, for example the definition for the GSM audio codec.
 (This would be done in the "Definitions" section of an SDPng
 document.) An SDPng document that references a profile and provides
 concrete definitions of configurations can be validated against the
 profile definition.

3.4.2 Library Definitions

 While profile definitions specify the allowed parameters for a given
 profile, SDPng "Definitions" sections refer to profile definitions
 and define concrete configurations based on a specific profile.

 In order for such definitions to be imported into SDPng documents,
 "SDPng libraries" may be defined and referenced in SDPng documents.
 A library is a set of definitions that is conforming to one or more
 profile definitions.

 The purpose of the library concept is to allow certain common
 definitions to be factored-out so that not every SDPng document has
 to include the basic definitions, for example the PCMU codec
 definition. SDP [2] uses a similar concept by relying on the well
 known static payload types (defined in RFC1890 [4]) that are also
 just referenced but never defined in SDP documents.

 An SPDng document that references definitions from an external
 library has to declare the use of the external library. The external
 library, being a set of configuration definitions for a given
 profile, again needs to declare the use of the profile that it is
 conforming to. A library itself can make reference to other external
 libraries.

 There are different possibilities of how profiles definitions and
 libraries can be used in SDPng documents:

 o In an SPDng document, a profile definition can be referenced and
 all the configuration definitions are provided within the document
 itself. The SDPng document is self-contained with respect to the
 definitions it uses.

https://datatracker.ietf.org/doc/html/rfc1890

Kutscher, et al. Expires August 30, 2002 [Page 29]

Internet-Draft SDPng March 2002

 o In an SPDng document, the use of an external library can be
 declared. The library references a profile definition and the
 SDPng document references the library. There are two alternatives
 how external libraries can be referenced:

 by name: Referencing libraries by names implies the use of a
 registration authority where definitions and reference names
 can be registered with. It is conceivable that the most common
 SDPng definitions be registered that way and that there will be
 a baseline set of definitions that minimal implementations must
 understand. Secondly, a registration procedure will be
 defined, that allows vendors to register frequently used
 definitions with a registration authority (e.g., IANA) and to
 declare the use of registered definition packages in conforming
 SDPng documents. Of course, care should be taken not to make
 the external references too complex and thus require too much a
 priori knowledge in a protocol engine implementing SDPng.
 Relying on this mechanism in general is also problematic
 because it impedes the extensibility, as it requires
 implementors to provide support for new extensions in their
 products before they can inter-operate. Registration is not
 useful for spontaneous or experimental extensions that are
 defined in an SDPng library.

 by address: An alternative to referencing libraries by name is to
 declare the use of an external library by providing an address,
 i.e., an URL, that specifies where the library can be obtained.
 While this allows the use of arbitrary third-party libraries
 that can extend the basic SDPng set of configuration options in
 many ways, in introduces additional complexity that could
 result in in higher latency for the processing of a description
 document with references to external libraries. In addition,
 there are problems if the referenced libraries cannot be
 accessed by all communication partners.

 o Because of these problematic properties of external libraries, the
 final SDPng specification will have to provide a set of
 recommendations under which circumstances the different mechanisms
 of referring to external definitions should be used.

3.5 Mappings

 A mapping needs to be defined in particular to SDP that allows to
 translate final session descriptions (i.e. the result of capability
 negotiation processes) to SDP documents. In principle, this can be
 done in a rather schematic fashion for the basic definitions.

Kutscher, et al. Expires August 30, 2002 [Page 30]

Internet-Draft SDPng March 2002

 In addition, mappings to H.245 will be defined in order to support
 applications like SIP-H.323 gateways.

Kutscher, et al. Expires August 30, 2002 [Page 31]

Internet-Draft SDPng March 2002

4. Capability Negotiation

 SDPng is a description language for both potential configurations
 (i.e. capabilities) of participants in multimedia conferencers and
 for actual configurations (i.e. final specifications of parameters).
 Capability negotiation is the process of generating a usable set of
 potential configurations and finally an actual configuration from a
 set of potential configurations provided by each potential
 participant in a multimedia conference.

 SDPng supports the specification of endpoint capabilities and defines
 a negotiation process: In a negotiation process, capability
 descriptions are exchanged between participants. These descriptions
 are processed in a "collapsing" step which results in a set of
 commonly supported potential configurations. In a second step, the
 final actual configuration is determined that is used for a
 conference. This section specifies the usage of SDPng for capability
 negotiation. It defines the collapsing algorithm and the procedures
 for exchanging SDPng documents in a negotiation phase.

 The description language and the rules for the negotiation phase that
 are defined here are (in general) independent of the means by which
 descriptions are conveyed during a negotiation phase (a reliable
 transport service with causal ordering is assumed). There are
 however properties and requirements of call signalling protocols that
 have been considered to allow for a seamless integration of the
 negotiation into the call setup process. For example, in order to be
 usable with SIP, it must be possible to negotiate the conference
 configuration within the three-way-handshake of the call setup phase.
 In order to use SDPng instead of SDP according to the offer/answer
 model defined in [15] it must be able to determine an actual
 configuration in a single request/response cycle.

4.1 Outline of the Negotiation Process

 Conceptually, the negotiation process comprises the following
 individual steps (considering two parties, A and B, where A tries to
 invite B to a conference). Please note that is describes the steps
 of the negotiation process conceptually -- it does not specify
 requirements for implementations. Specific procedures that MUST be
 followed by implementations are given below.

 1. A determines its potential configurations for the components that
 should be used in the conference (e.g. "interactive audio" and
 "shared whiteboard") and sends a corresponding SDPng instance to
 B. This SDPng instances is denoted "CAP(A)".

 2. B receives A's SDPng instance and analyzes the set of components

Kutscher, et al. Expires August 30, 2002 [Page 32]

Internet-Draft SDPng March 2002

 (sdpng:c elements) in the description. For each component that B
 wishes to support it generates a list of potential configurations
 corresponding to B's capabilities, denoted "CAP(B)".

 3. B applies the collapsing function and obtains a list of potential
 configurations that both A and B can support, denoted
 "CAP(A)xCAP(B) = CAP(AB)".

 4. B sends CAP(B) to A.

 5. A also applies the collapsing function and obtains "CAP(AB)". At
 this step, both A and B know each other capabilities and the
 potential configurations that both can support.

 6. In order to obtain an actual configuration from the potential
 configuration that have been obtained, both particpants have to
 pick a subset of the potential configurations should actually be
 used in the conference and generate the actual configuration. It
 should be noted that it depends on the specific application
 whether each component must be assigned exactly one actual
 configuration (one sdpng:alt element) or whether it is allowed to
 list multiple actual configurations. In this model we assume
 that A selects the actual configuration, denoted CFG(AB).

 7. A augments CFG(AB) with the transport parameters it intends to
 use, e.g., on which endpoint addresses A wishes to receive data,
 obtaining CFG_T(A). A sends CFG_T(A) to A.

 8. B receives CFG_T(A) and adds its own transport parameters,
 resulting in CFG_T(AB). CFG_T(AB) contains the selected actual
 configurations and the transport parameters of both A and B (plus
 any other SDPng data, e.g., meta-information on the conference).
 CFG_T(AB) is the complete conference description. Both A and B
 now have the following information:

 CAP(A) A's supported potential configurations

 CAP(B) B's supported potential configurations

 CAP(AB) The set of potential configurations supported by both A
 and B.

 CFG(AB) The set of actual configurations to be used.

 CFG_T(AB) The set of actual configurations to be used augmented
 with all required parameters.

 In this model, the capability negotiation and configuration exchange

Kutscher, et al. Expires August 30, 2002 [Page 33]

Internet-Draft SDPng March 2002

 process leads to a description that represents a global view of the
 configuration that should be used. This means, it contains the
 complete configuration for all participants including per-participant
 information like transport parameters.

 Note that the model presented here results in four SDPng exchanges.
 As an optimization, this procedure can be abbreviated to two
 exchanges by including the transport (and other) parameters into the
 potential configurations. A embeds its desired transport parameters
 into the list of potential configurations and B also sends all
 required parameters in the response together with B's potential
 configurations. Both A and B can then derive CFG_T(AB). Transport
 parameters are usually not negotiable, therefor they have to be
 distingiushed them from other configuration information.

 Specific procedures for re-negotiation and multi-party negotiation
 will be defined in a future version of this document.

4.2 The Collapsing Algorithm

 The following procedure MUST be used for the collapsing of two SDPng
 document instances into one:

 CAP(A) and CAP(B) are the two SDPng description document instances.
 For each component (sdpng:c element) in CAP(A) there is a
 corresponding component in CAP(B). Components MAY be empty
 (containing no sdpng:alt elements) which means that there is no
 potential configuration and the component should not be used in the
 conference.

 Let cfg_AB be the result configuration element, initialized to an
 empty sdpng:cfg element.

 1. For each component (sdpng:c element) in CAP(A) named c_A

 * Let c_AB be the current result component, initialized to an
 empty sdpng:c element.

 * For each alternative (sdpng:alt element) in c_A named a_A

 + For each session element (name depends on the profile being
 used) in a_A named s_A

 - Resolve any reference to definition elements recursively
 and obtain s1_A, the standalone media session
 description. (Refer to Section 4.2.1 for a description
 of how to resolve references.)

Kutscher, et al. Expires August 30, 2002 [Page 34]

Internet-Draft SDPng March 2002

 - Locate the component element that matches c_A in CAP(B)
 named (c_B).

 - Let a_AB be the current result alternative, initialized
 to an empty sdpng:alt element.

 - For each alternative (sdpng:alt element) in c_B named
 a_B

 o For each session element (name depends on the profile
 being used) in a_B named s_B

 * Let s1_AB be the computed result media session
 configuration.

 * Resolve any reference to definition elements
 recursively and obtain s1_B, the standalone media
 session description.

 * Apply collapse(s1_A,s2_B) to compute s1_AB, the
 collapsed media session configuration.

 * If s1_AB is not empty, add s1_AB to a_AB, the set
 of sessions for the current result alternative.

 - If a_AB is not empty, add a_AB to c_AB.

 * If c_AB is not empty, add c_AB to cfg_AB.

 The collapsing function for collapsing two elements is specified in
Section 4.2.1.

4.2.1 Collapsing Two Configurations

 Before two media session configuration element can be collapsed as
 described in Section 4.2 all references to definitions MUST be
 resolved. This MUST be performed recursively, i.e. references in
 definitions MUST also be resolved. For resolving references, the
 algorithm specified in Section 3.3 MUST be used.

 By resolving all references two intermediate session configuration
 elements are obtained that can then be collapsed according to the
 algorithm specified in the following sections.

4.2.1.1 Collapsing of Attributes

 In SDPng, capabilities are specified in attributs of XML elements.
 Three different types of capabilities with different collapsing rules

Kutscher, et al. Expires August 30, 2002 [Page 35]

Internet-Draft SDPng March 2002

 are defined. The type of a capability is encoded in the attribute
 value.

 Set of symbols:
 An attribute can specify a set of symbols. When two attributes
 are collapsed the result is the intersection of the two sets.

 The following examples shows how two elements (with one attribute
 representing a set of symbols) originated from two capability
 descriptions from participants A and B are collapsed:

 Element x in A's capability description:
 <x a="[FOO, BAR, 3, 5, 8]"/>

 Element x in B's capability description:
 <x a="[3, 6, 8]"/>

 Result:
 <x a="[3, 8]"/>

 If the intersection result in an empty set the collapsing process
 has failed and there is no common set of values. If the
 collapsing of one of an element's attributes with the type "set of
 symbols" has failed, the collapsing process of the element itself
 MUST be considered to have failed as well.

 Numerical ranges:
 An attribute can also specify a numercial range. When two
 attributes are collapsed the result is the range of values that
 represents the intersection of the set of values that is included
 in both ranges.

 The following examples shows how two elements (with one attribute
 representing a numerical range) originated from two capability
 descriptions from participants A and B are collapsed:

 Element x in A's capability description:
 <x a="(2,8)"/>

 Element x in B's capability description:
 <x a="(5,10)"/>

 Result:
 <x a="(5,8)"/>

 A numerical range is represented by a tuple of comma-separated

Kutscher, et al. Expires August 30, 2002 [Page 36]

Internet-Draft SDPng March 2002

 numbers in brackets. The first number represents the lower bound
 of the range and the second number represents the upper bound.
 Let MIN(a,b) be a function that returns the minimum of a and b and
 MAX(a,b) be a function that returns the maximum of a and b. Given
 two ranges (minA, maxA) and (minB, maxB), the collapsed new range
 MUST be calculated using this algorithm:

 (MAX(minA, minB), MIN(maxA, maxB))

 If this process results in a range with a smaller first value,
 the range is invalid and the collapsing has failed since there is
 no common range. If the collapsing of one of an element's
 attributes with the type "numerical range" has failed, the
 collapsing process of the element itself MUST be considered to
 have failed as well.

 Optional parameters:
 A failure of collapsing attributes of the types "set of symbols"
 and "numerical range" results in a failure of collapsing the
 corresponding element. There is a third type named "optional
 parameter" defined, that provides different collapsing rules. An
 optional parameter is an attribute with an arbitrary value. When
 collapsing two attributes of this type, their values MUST be
 tested for equality. If they are equal, the collapsing has been
 successful and the attribute MUST appear as is in the result
 description. If the attributes' values are different, the
 collapsing is considered to have failed and the attribute MUST not
 appear in the result description. However, a failure in
 collapsing an attribute of type "optional parameter" does not
 affect the collapsing of the containing element.

 An example for a successful collapsing:

 Element x in A's capability description:
 <x a="foo"/>

 Element x in B's capability description:
 <x a="foo"/>

 Result:
 <x a="foo"/>

 An example for an unsuccessful collapsing:

Kutscher, et al. Expires August 30, 2002 [Page 37]

Internet-Draft SDPng March 2002

 Element x in A's capability description:
 <x a="foo"/>

 Element x in B's capability description:
 <x a="bar"/>

 Result:
 <x/>

4.2.1.2 Collapsing two Elements

 In order to collapse two elements with multiple attributes, the
 following algorithm specified below MUST be applied. In general, the
 collapsing of two elements (if successful) yields a result element
 that contains the collapsed attributes. If the collapsing of two
 elements has failed, no result element is generated.

 1. For each attribute, determine the type and collapse the attribute
 by applying the algorithm for the corresponding attribute type.

 2. If an attribute with a different type than "optional parameter"
 does not occur in both elements, the collapsing for this element
 MUST be considered to have failed.

 3. If the collapsing of any attribute with a different type than
 "optional parameter" has failed, the collapsing of the element
 itself MUST be considered to have failed.

 4. If the collapsing has been successful, obtain the result element
 by using the same element name (GI) and the attributes with their
 collapsed values. Exclude any attribute of type "optional
 parameter" that has failed to collapse.

 An example:

 Element x in A's capability description:
 <x a="[FOO, BAR, 3, 5, 8]" b="(2,8)" c="foo"/>

 Element x in B's capability description:
 <x a="[3, 6, 8]" b="(5,10)" c="bar"/>

 Result:
 <x a="[3, 8]" b="(5,8)"/>

Kutscher, et al. Expires August 30, 2002 [Page 38]

Internet-Draft SDPng March 2002

4.2.1.3 Collapsing nested Elements

 In order to collapse nested elements the following algorithm MUST be
 applied:

 In analogy to attributes representing optional parameters there is
 also the possibility to mark elements as optional for the negotiation
 process. Elements MAY provide an attribute names "status" that
 contains a symbol or a comma-separated list of symbols as its value.
 If the value "opt" occurs in the list of a "status" attribute of both
 elements to be collapsed, the elements to be collapsed are treated as
 optional. This means, if the collapsing of the attributes has failed
 (according to the rules specified in Section 4.2.1.2), the collapsing
 process does not yield a result element but is still treated as
 "successful", i.e., further collapsing operation on other elements
 can continue. The semantics of optional elements are that they
 describe optional features that may be supported and selected during
 a negotiation phase but do not neccessarily have to be supported by
 all participants in order to achieve interoperability. The example
 below shows how to generate a result element in the presence of
 optional child elements that have failed to collapse.

 The collapsing algorithm for nested elements:

 1. Let x be an element that occurs in the capability description of
 two participants A and B and that should be collapsed.

 2. Collapse the attributes of the element x using the algorithm
 specified in Section 4.2.1.2. If the collapsing has failed
 according to the rules of Section 4.2.1.2 and if the elements to
 be collapsed are not marked as optional, the collapsing of the
 element and all of its children MUST be considered to have
 failed. The collapsing MUST be stopped. If the collapsing has
 failed and both elements have been marked as optional, the child
 elements MUST NOT be processed. In this case, the collapsing
 process does not yield a result element but the collapsing of
 other elements (sibling or parent elements) MUST be continued.

 3. If the collapsing has been successful according to the rules of
Section 4.2.1.2, the child elements of A's and B's x element MUST

 be processed. If there are no child elements in both A's and B's
 content the collapsing has been successful and can be terminated.
 If either A's or B's x element provides child elements, apply the
 following algorithm to each child element named c of participant
 A's element x:

 1. Find a corresponding element (same GI) in the set of
 participant B's child elements. If no matching element has

Kutscher, et al. Expires August 30, 2002 [Page 39]

Internet-Draft SDPng March 2002

 been found, the collapsing of element x MUST be considered to
 have failed.

 2. If a matching element has been found, apply the collapsing
 algorithm recursively. As long as the collapsing is
 successful, the result of collapsing each element is
 transferred to the result element, such that the resulting
 element tree is isomorphic to both A's and B's element tree.

 If there are elements in B's x element that have not been
 processed (because there is no corresponding element in A's x
 element), the collapsing MUST be considered to have failed and
 MUST be stopped.

 An example:

 Element x in A's capability description:
 <x a="[FOO, BAR, 3, 5, 8]" b="(2,8)" c="foo">
 <y b="[UVW, XYZ]"/>

 Element x in B's capability description:
 <x a="[3, 6, 8]" b="(5,10)" c="bar">
 <y b="[RST, XYZ]"/>

 Result:
 <x a="[3, 8]" b="(5,8)">
 <y b="[XYZ]"/>

 An example for collapsing optional elements:

 Element x in A's capability description:
 <x a="[FOO, BAR, 3, 5, 8]" b="(2,8)" c="foo">
 <y status="opt" b="[UVW, XYZ]"/>

 Element x in B's capability description:
 <x a="[3, 6, 8]" b="(5,10)" c="bar">
 <y status="opt" b="[RST]"/>

 Result:
 <x a="[3, 8]" b="(5,8)"/>

Kutscher, et al. Expires August 30, 2002 [Page 40]

Internet-Draft SDPng March 2002

4.2.2 Deriving an actual Configuration

 The result of a capability negotiation process is a potential
 configuration, i.e., a description potentially containing multiple
 alternatives per component. The alternative themselves may provide
 elements that represent collapsed capabilities. In order to derive
 an actual configuration, the following problems must be addressed:

 1. For each component (sdpng:c element) an appropriate alternative
 (sdpng:alt element) has to be selected. It is conceivable that
 the order of the alternatives in the description is used as a
 preference indicator. More details have to be specified in a
 future version of this document.

 2. If the description of the selected alternatives contains
 attributes with numerical ranges or sets of symbols with more
 than one entry, those attributes either have to be transformed
 that they represent a single value or participants have to agree
 that an actual configuration may contain ranges and sets of
 symbols. The semantics of these variable actual configurations
 will have to specified in later versions of this document. For
 example, for certain applications it may be desireable to agree
 on ranges of values for certain attributes during a capability
 negotiating meaning that any of the values of the range are
 supported (and have to be supported).

 The specific procedures to determine an actual configuration have to
 be defined in a later version on this document.

Kutscher, et al. Expires August 30, 2002 [Page 41]

Internet-Draft SDPng March 2002

5. Formal Specification

 This section defines the SDPng syntax and the use of XML mechanisms,
 such as XML Namespace and XML Schema. Section 5.1 defines the
 relation between SDPng and XML Schema, Section 5.2 specifies general
 requirements for documents and profile definitions that are
 conforming to the SDPng schema, Section 5.3 list requirements for
 profile definitions, Section 5.4 specifies specific requirements for
 conforming documents and Section 5.5 lists requirements for the
 definition of SDPng libraries.

Section 5.7 defines the SDPng base schema, Section 5.7.2 defines the
 profile for audio codec definitions and Section 5.7.3 defines the
 profile for RTP payload type definitions.

5.1 XML Schema as a Definition Mechanism

 SDPng documents reference profile schema definitions and libraries.
 Profile schema definitions contain schema definitions of SDPng
 document elements. For example, the general structure is specified
 by a schema definition and extensions to SDPng for specific
 applications are specified as schema definitions as well.

 The baseline SDPng specification consists of a profile (a schema
 definition) and a library of commonly used definitions.

 SDPng uses XML-Schema [13][14] for defining the possible logical
 structures of SDPng documents for the following reasons:

 Extensibility: XML-Schema provides mechanisms that allow to extend
 existing definitions allowing to uniquely identify element types
 (by relying on XML namespaces [11]).

 Modularity: XML-Schema provide mechanisms that allow to organize
 schema definitions in multiple components.

 Expressiveness: XML-Schema provides many data types, that can be
 refined by user-supplied definitions.

 SDPng documents MUST be schema instances of the SDPng schema as
 defined in Section 5.7. The following example shows how a Schema
 definition can be referenced in a document instance.

 Beginning of an SDPng-document:

Kutscher, et al. Expires August 30, 2002 [Page 42]

Internet-Draft SDPng March 2002

 <?xml version="1.0" ?>
 <sdpng:desc xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xsi:schemaLocation="http://www.iana.org/sdpng sdpng.xsd">

 XML-Schema specifies that documents can assign a namespace when
 referencing a schema definition. A SDPng namespace is defined for
 this purpose. The name of this namespace is
 "http://www.iana.org/sdpng". A well-known namespace prefix is used
 for the SDPng schema definition, in order to allow for very simple
 implementations. The well-known SDPng namespace prefix is "sdpng".
 Conforming Documents, profile definition and libraries MUST use this
 namespace name and this namespace prefix.

 For SDPng documents, this initial declaration can be added implicitly
 by applications, so that declarations like the one above do not have
 to be included in every description document. Details are to be
 defined in a later version of this document.

5.2 SDPng Schema

 The basic SDPng schema definitions specifies the general document
 structures, e.g., one "Definitions" section followed by one
 "Configurations" sections, followed by one "Constraints" sections
 followed by a "Conference" section (for meta-information). Each
 document MUST provide the elements for definitions, configurations,
 constraints and conference information in exactly this order, whereby
 only the configurations section is MANDATORY. Refer to Section 5.7
 for a formal definition of the SDPng base schema and the specific
 element types for definitions, configurations, constraints and
 conference information.

 The SDPng base schema also specifies "abstract" base data types (by
 means of XML-Schema type definitions) for elements that MUST be used
 by documents in the corresponding sections. The base data types
 provide common required attributes, e.g. a "name" attribute for
 naming definition elements.

 Example:
 The following example shows the definition of the base type for
 definition elements:

 <xsd:complexType name="Definition" abstract="true" mixed="false">
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>

 Profiles can then define specific types that augment the base type
 definitions. Common attributes or content models, that have been

Kutscher, et al. Expires August 30, 2002 [Page 43]

Internet-Draft SDPng March 2002

 defined by this base definition, do not have to be provided by those
 concrete type definitions. The type definitions can be identified as
 allowed element types for the content models that are specified in
 the base SDPng schema definition. This allows for automatic
 validation of profile definitions and facilitates the extension of
 SDPng.

5.3 Profiles

 The baseline SDPng specification consists of a profile (a schema
 definition) and a library of commonly used definitions.

 The library of commonly used definitions provides data types for IP
 (and other) addresses.

 A profile definition MUST import (using the XML-Schema import
 mechanism) the base SDPng schema definition and MUST provide an
 extension definition, e.g., specializations of base element types. A
 profile definition MUST also provide a target namespace name for its
 definitions. For well-known (registered) profiles, the namespace
 name will be registered by IANA. Proprietary profiles will use other
 namespace names, for example, based on domain names, that are
 registered by vendors providing a profile.

 Example:
 The following example shows such a declaration at the beginning of a
 profile definition:

 <xsd:schema targetNamespace="http://www.iana.org/sdpng/audio"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:audio="http://www.iana.org/sdpng/audio">

 <xsd:import namespace="http://www.iana.org/sdpng"
 schemaLocation="sdpng.xsd"/>

 In this example, the namespace prefix "audio" is defined and later
 used in schema definitions. (The example profile provides definition
 mechanisms for audio codecs.)

 The following example shows, how a derived type for "definition"
 elements can be specified with XML-Schema mechanisms. In this case,
 the abstract type "Definition" (fully qualified as
 "sdpng:Definition") is augmented by three attributes that are useful
 for defining audio codecs.

 Example:

Kutscher, et al. Expires August 30, 2002 [Page 44]

Internet-Draft SDPng March 2002

 <xsd:complexType name="AudioCodec" mixed="false">
 <xsd:complexContent>
 <xsd:extension base="sdpng:Definition">
 <xsd:attribute name="encoding" type="xsd:string"/>
 <xsd:attribute name="sampling" type="xsd:positiveInteger"/>
 <xsd:attribute name="channels" type="xsd:positiveInteger"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 This type definition is then used to define an XML element type
 called "codec".

 Example:

 <xsd:element name="codec" type="AudioCodec"/>

 When used by SDPng documents, the general identifier is qualified
 with a namespace prefix, for example as in: "audio:codec".

5.4 SDPng Documents

 SDPng documents MUST reference the employed profiles and provide
 namespace prefixes for the namespace names of the profiles as shown
 in the following example.

 Example:

 <sdpng:desc xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xsi:schemaLocation="http://www.iana.org/sdpng sdpng.xsd"
 xmlns:audio="http://www.iana.org/sdpng/audio"
 xmlns:rtp="http://www.iana.org/sdpng/rtp">

 For well-known registered profiles, the namespace name AND the used
 namespace prefix SHOULD be registered to allow for simple basic
 implementations that can match identifiers by using fixed fully
 qualified names without having to interpret namespace declarations
 (see Section 5.6.3). There is one issue with declaring used XML-
 Schema definitions in documents (see Section 7 below).

 The general structure of an SDPng documents MUST conform to the basic
 SDPng schema definition and MAY provide a "def" element for
 definitions; it MUST provide a "cfg" element for the configuration
 section; it MAY provide a "constraints" and a "conf" element.

 Example:
 The following example shows a sample definition section where the

Kutscher, et al. Expires August 30, 2002 [Page 45]

Internet-Draft SDPng March 2002

 element "codec" of the "audio codec profile" is used (plus the
 element type "pt" of an "RTP profile"):

 <def>
 <audio:codec name="dvi4" encoding="DVI4" channels="1"
 sampling="8000"/>
 <audio:codec name="g722" encoding="G722" channels="1"
 sampling="16000"/>
 <audio:codec name="g729" encoding="G729" channels="1"
 sampling="8000"/>

 <rtp:pt name="rtp-avp-18" pt="18" format="g729"/>
 </def>

 It can be seen how the attribute name (provided by the base type for
 definition elements) and the profile specific attributes "encoding",
 "channels" and "sampling" are used together.

 The element "rtp:pt" is used to defined a payload type. "rtp:pt"
 would have been defined in another profile, again using a type
 derived from the base definition type. "rtp:pt" provides attribute
 for referencing other definitions, e.g., the definition of audio-
 codes as seen before.

5.5 Libraries

 SDPng libraries are collections of definitions that are referenced by
 documents. Libraries are thus independent, valid SDPng documents.

 For example, the definition of the different audio codecs as shown in
 the previous example could be provided by a library that can be
 referenced by documents without having to define such common codecs
 in every document.

 The XML mechanism XInclude [12] is used for referencing libraries in
 SDPng documents. XInlcude works at the XML Information Set
 ("infoset") level, i.e. the mechanisms allows to have an integrating
 document reference fragment documents, while these fragments are
 well-formed (and, if applicable, valid) documents themselves. By
 resolving XInclude directives in integrating documents the documents'
 infosets are "merged" together, enabling applications to operate on
 the resulting infosets as if it had been generated by parsing a
 single, monolithic document.

 Inclusion at the XML infoset level has the advantage that documents
 are standalone -- they can be validated independently. Another
 advantage is that is relatively easy to generate a "merged" infoset
 for applications that are not able to resolve references to libraries

Kutscher, et al. Expires August 30, 2002 [Page 46]

Internet-Draft SDPng March 2002

 themselves.

 An alternative for XInclude would be to use references that are
 resolved by applications. For XML, this would probably mean to use
 an XLink-based approach. This solution would require the definition
 of an SDPng link element type and require applications to support
 XLink (or at least the SDPng-relevant subset thereof). The inclusion
 at the application level is however problematic, because it does not
 result in a common integrated XML document infoset but would require
 applications to handle multiple infosets, i.e. multiple documents.

5.6 Details on the use of specific XML Mechanisms

 This section specifies the use of specific XML mechanisms for SDPng.
 In order to allow for efficient parsing and processing, not all
 features of XML Schema are allowed. Some variable information is set
 to fixed values to allow the development of simplistic servers.

5.6.1 Default Namespace

 SDPng document instances MUST use the SDPng namespace
 "http://www.iana.org/sdpng". That means, the general SDPng
 identifiers can be used without namespace prefixes.

5.6.2 Qualified Locals

 XML Schema allows to specify qualification of elements and
 attributes. It is possible to use non-qualified element and
 attribute names in Schema definitions and document instances for so-
 called "local definitions" (this is the default setting). "Local
 Definitions" are contained within "global definitions" in an XML
 schema definition. In order to simplify parsing and processing of
 SDPng document instances, all elements MUST be fully qualified.
 Attribute names MUST NOT be fully qualified, they are considered to
 have the same namespace as their corresponding elements.

 This means, the SDPng Schema definition contains the following
 attributes for the "schema" element, that MUST also be used by SDPng
 profiles:

 o elementFormDefault="qualified"
 This means that "locally defined" elements that are used within
 the scope of fully-qualified elements MUST always be fully
 qualified as well.

 o attributeFormDefault="unqualified"
 This means that attribute names do not have to be fully qualified.
 Implementations MUST infer the namespace for attributes from the

Kutscher, et al. Expires August 30, 2002 [Page 47]

Internet-Draft SDPng March 2002

 namespace of the element that the attribute belongs to. Note that
 the specification of XML Namespaces [11] defines that default
 namespaces do not apply to attributes. In profile definitions,
 all attributes MUST be defined locally. The same holds for the
 base SDPng schema.

 These rules make SDPng document instances process-able by non-Schema-
 aware XML parsers by requiring all element names to be fully
 qualified (no "local elements").

5.6.3 Fixed Namespace Prefixes

 In order to facilitate the development of basic implementations, a
 few commonly used namespaces names are associated with fixed
 prefixes, i.e. document instances and libraries MUST always use these
 prefixes. These prefixes MUST NOT be used for namespaces names than
 the ones that are assigned to them. In order to ensure the
 uniqueness of namespace prefixes, namespace prefixes will be have to
 registered together with the corresponding namespace names.

 The namespace prefix for the SDPng namespace is "sdpng".

5.7 SDPng Schema Definitions

 This section provides the definition of the base SDPng XML Schema.

 1. Section 5.7.1 contains the base definition that provides the
 general element types for SDPng.

 2. Section 5.7.2 contains a profile for audio codecs.

 3. Section 5.7.3 contains a profile for RTP payload type
 definitions.

5.7.1 SDPng Base Definition

 This schema definition defines the general structure of SDPng
 document instances. It defines the top-level element type "desc"
 that can have a sequence of "def", "cfg", "constraints" and "conf"
 elements as element content.

 In addition, "extensions hooks" are provided that can be used by
 extension profiles providing definitions for specific applications.
 In general, these extension are implemented by deriving profile
 definitions from SDPng base definitions. The deployed XML Schema
 mechanisms are "deriving by extension" and "substitution groups".
 The SDPng base definition provides different base types (as

Kutscher, et al. Expires August 30, 2002 [Page 48]

Internet-Draft SDPng March 2002

 complexType definitions) for elements that are to be used in "def",
 "cfg" and "conf" sections. In addition, it also defines specific
 element types as "head elements" with assigned types that are used
 for defining the content model of, e.g., the "def" element type.

 Profiles that provide new element types for specific applications
 will define types that are derived from the base types and provide
 the additional attributes and element content definitions that are
 required for the application. The XML element types that are defined
 in a profile are declared as valid substitutes for the base elements
 ("head elements") by setting the "substitutionGroup" attribute to the
 name of the "head element" type.

 For an extension-profile that provides new definition element types,
 e.g. for codec definitions, a new complexType would be defined that
 extends sdpng:Definition (see below). An element type definition
 that assigns that new type must then be declared to be in the
 substitutionGroup "sdpng:d".

 This mechanism allows common rules for attributes and content models
 to be defined in base element definition and re-used by extension
 profiles and it also allows validating parsers to identify the
 correct type of elements that have been defined by profile
 definitions.

 The SDPng Base Definition:

 <xsd:schema targetNamespace="http://www.iana.org/sdpng"
 xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:annotation>
 <xsd:documentation>
 This schema definition defines the general structure of SDPng
 document instances. It provides base type and base element
 definition for elements to occur in the different sections (def,
 cfg, constraints, conf) to be derived from in extension-profile
 definitions.

 For an extension-profile that provides new definition element
 types, e.g. for codec definitions, a new complexType would be
 defined that extends sdpng:Definition (see below). An element
 type definition that assigns that new type must then be declared
 to be in the substitutionGroup "sdpng:d".
 </xsd:documentation>
 </xsd:annotation>

Kutscher, et al. Expires August 30, 2002 [Page 49]

Internet-Draft SDPng March 2002

 <xsd:element name="desc">
 <xsd:annotation>
 <xsd:documentation>
 The top-level element of an SDPng document. It defines the
 overall structure of an SPDng document.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:def" minOccurs="0"/>
 <xsd:element ref="sdpng:cfg"/>
 <xsd:element ref="sdpng:constraints" minOccurs="0"/>
 <xsd:element ref="sdpng:conf" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="def">
 <xsd:annotation>
 <xsd:documentation>The definitions section</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:d" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="cfg">
 <xsd:annotation>
 <xsd:documentation>The configurations section</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:c" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="constraints">
 <xsd:annotation>
 <xsd:documentation>The constraints section</xsd:documentation>

Kutscher, et al. Expires August 30, 2002 [Page 50]

Internet-Draft SDPng March 2002

 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:cn" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="conf" type="sdpng:Conference">
 <xsd:annotation>
 <xsd:documentation>The conference section</xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="d" type="sdpng:Definition">
 <xsd:annotation>
 <xsd:documentation>
 Placeholder base element for a definition element in the
 definitions section. To be derived from by specific definition
 element type definitions.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="c" type="sdpng:Component">
 <xsd:annotation>
 <xsd:documentation>
 Placeholder base element for a configuration element in the
 configurations section. To be derived from by specific
 configuration element type definitions.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <!-- +++ -->

 <xsd:element name="cn" type="sdpng:Constraint">
 <xsd:annotation>
 <xsd:documentation>
 Placeholder base element for a contraint element in the
 contraints section. To be derived from by specific constraint
 element type definitions.

Kutscher, et al. Expires August 30, 2002 [Page 51]

Internet-Draft SDPng March 2002

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <!-- +++ -->

 <xsd:complexType name="Definition" abstract="true" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 The base type for definition. Defines a attribute "name" for
 naming definitions.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>

 <!-- +++ -->

 <xsd:complexType name="Component" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 The specification of a component consists of a sequence of
 alternatives.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="sdpng:alt" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="media" type="xsd:string"/>
 </xsd:complexType>

 <xsd:element name="alt">
 <xsd:annotation>
 <xsd:documentation>
 Each alternative consists of a "sc" (session configuration)
 element. The "sc" element is a base element of base type
 "sdpng:Session" that is used to derive specific session types
 in extension profiles.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:sc" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>

Kutscher, et al. Expires August 30, 2002 [Page 52]

Internet-Draft SDPng March 2002

 <xsd:element name="sc" type="sdpng:SessionConfig"/>

 <xsd:complexType name="SessionConfig" abstract="true" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 The (abstract) base type for session elements. To be derived
 from in extension profiles.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:complexType>

 <!-- +++ -->

 <xsd:complexType name="Constraint" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 The current content model for constraints is a sequence of
 "sdpng:par" elements. In each "par" element a sequence of
 "use-alt" elements may be used to specific the definitions
 that may used in parallel. Each "use-alt" element can define
 the number of minimum and maximum instantiations.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element ref="sdpng:par"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:element name="par">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element ref="sdpng:use-alt">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="use-alt">
 <xsd:complexType mixed="false">
 <xsd:attribute name="ref" type="xsd:string"/>
 <xsd:attribute name="min" type="xsd:positiveInteger"
 use="optional"/>
 <xsd:attribute name="max" type="xsd:positiveInteger"
 use="optional"/>
 </xsd:complexType>
 </xsd:element>

Kutscher, et al. Expires August 30, 2002 [Page 53]

Internet-Draft SDPng March 2002

 <!-- +++ -->

 <xsd:complexType name="Conference" mixed="false">
 <xsd:sequence>
 <xsd:element name="meta" type="sdpng:ConfItem"/>
 </xsd:sequence>
 <!-- TBD -->
 </xsd:complexType>

 <xsd:complexType name="ConfItem" abstract="true" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 The base type for conference meta inforformation
 element. Currently, there is no common content model defined.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:complexType>

 <!-- +++ -->

 <xsd:element name="owner">
 <xsd:complexType mixed="false">
 <xsd:complexContent mixed="false">
 <xsd:extension base="sdpng:ConfItem">
 <xsd:attribute name="user" type="xsd:string"/>
 <xsd:attribute name="session-id" type="xsd:string"/>
 <xsd:attribute name="version" type="xsd:string"/>
 <xsd:attribute name="nettype" type="xsd:string"/>
 <xsd:attribute name="addrtype" type="xsd:string"/>
 <xsd:attribute name="addr" type="xsd:string">
 <!-- FIXME: re-use common address type! -->
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>

 <!-- +++ -->

 <xsd:complexType name="SimpleLink" mixed="false">
 <xsd:attribute name="xlink:type" type="xsd:string" fixed="simple"/>
 <xsd:attribute name="xlink:role" type="xsd:string"/>
 <xsd:attribute name="xlink:arcrole" type="xsd:string"/>
 <xsd:attribute name="xlink:title" type="xsd:string"/>
 <xsd:attribute name="xlink:show" type="xsd:string" fixed="none"/>
 <xsd:attribute name="xlink:actuate" type="xsd:string" fixed="none"/>
 <xsd:attribute name="xlink:href" type="xsd:string"/>
 </xsd:complexType>

Kutscher, et al. Expires August 30, 2002 [Page 54]

Internet-Draft SDPng March 2002

 <xsd:element name="session">
 <xsd:complexType mixed="false">
 <xsd:complexContent mixed="false">
 <xsd:extension base="sdpng:ConfItem">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="info" type="sdpng:SimpleLink"/>
 <xsd:sequence minOccurs="0">
 <xsd:element name="contact" type="sdpng:SimpleLink"/>
 </xsd:sequence>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

5.7.2 Audio Codec Profile

 The following profile defines an element type that can be used for
 specifying audio codec characteristics. The element "audio:codec" is
 of type "audio:AudioCodec" which is derived from the SDPng base type
 "sdpng:Definition". The element "audio:codec" is declared to have
 the substitution group "sdpng:d" (the "head element" of the SDPng
 base definition).

 This means, "audio:codec" element can be used as child elements in
 "sdpng:def" elements. In addition to the attributes specified here
 "audio:codec" elements will also have to provide a "name" attribute
 as defined by "sdpng:Definition".

Kutscher, et al. Expires August 30, 2002 [Page 55]

Internet-Draft SDPng March 2002

 <xsd:schema targetNamespace="http://www.iana.org/sdpng/audio"
 xmlns:audio="http://www.iana.org/sdpng/audio"
 xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.iana.org/sdpng"
 schemaLocation="sdpng.xsd"/>

 <!-- AudioCodecs extends the abstract type "Definition" -->
 <!-- The data types for the attributes could be more restrictive... -->
 <xsd:complexType name="AudioCodec" mixed="false">
 <xsd:complexContent mixed="false">
 <xsd:extension base="sdpng:Definition">
 <xsd:attribute name="encoding" type="xsd:string"/>
 <xsd:attribute name="sampling" type="xsd:positiveInteger"/>
 <xsd:attribute name="channels" type="xsd:positiveInteger"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="codec" substitutionGroup="sdpng:d">
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:extension base="audio:AudioCodec"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

5.7.3 RTP profile

 The following profile defines element types that can be used for
 specifying RTP payload types and RTP session configurations. The
 element "rtp:pt" is of type "rtp:PayloadType" which is derived from
 the SDPng base type "sdpng:Definition". The element "rtp:pt" is
 declared to have the substitution group "sdpng:d" (the "head element"
 of the SDPng base definition).

 The element "rtp:session" is of type "rtp:Session" which is derived
 from the SDPng base type "sdpng:SessionConfig". The element
 "rtp:session" is declared to have the substitution group "sdpng:sc"
 (the "head element" of the SDPng base definition).

Kutscher, et al. Expires August 30, 2002 [Page 56]

Internet-Draft SDPng March 2002

 The RTP profile in turn defines base types for the specification of
 transport parameters that are to be derived from by profiles that
 define rules for elements that can be used to specify parameters for
 specific transport mechanisms.

 <xsd:schema targetNamespace="http://www.iana.org/sdpng/rtp"
 xmlns:rtp="http://www.iana.org/sdpng/rtp"
 xmlns:sdpng="http://www.iana.org/sdpng"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:import namespace="http://www.iana.org/sdpng"
 schemaLocation="sdpng.xsd"/>

 <xsd:complexType name="PayloadType" mixed="false">
 <xsd:annotation>
 <xsd:documentation>
 PayloadType, the element for payload type definitions is
 derived from "sdpng:Definition". Inside an element of this
 type, more definitions may be given (derived from
 sdpng:Definition themselves). If no definition is given in the
 content, a definition may be referenced using the "format
 attribute".
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent mixed="false">
 <xsd:extension base="sdpng:Definition">
 <xsd:sequence>
 <xsd:element ref="sdpng:d" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="pt" type="xsd:unsignedByte"/>
 <xsd:attribute name="format" type="xsd:string">
 <!-- IDREF? Issue: unique names for definitions!-->
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="pt" type="rtp:PayloadType" substitutionGroup="sdpng:d"/
>

 <!-- ++ -->

 <xsd:element name="session" type="rtp:Session"
substitutionGroup="sdpng:sc"/>

 <xsd:complexType name="Session" mixed="false">

 <xsd:complexContent mixed="false">
 <xsd:extension base="sdpng:SessionConfig">

Kutscher, et al. Expires August 30, 2002 [Page 57]

Internet-Draft SDPng March 2002

 <xsd:sequence>
 <xsd:element name="transport" type="rtp:Transport"/>
 </xsd:sequence>
 <xsd:attribute name="format" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Transport" abstract="true" mixed="false">
 <xsd:complexContent>
 <xsd:extension base="sdpng:Definition">
 <xsd:attribute name="role" type="xsd:string"/>
 <xsd:attribute name="endpoint" type="xsd:string"/>
 <xsd:attribute name="rtp-port" type="xsd:unsignedShort" use="optional"/
>
 <xsd:attribute name="rtcp-port" type="xsd:unsignedShort"
use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:simpleType name="IPAddr">
 <xsd:restriction base="xsd:string"/>
 </xsd:simpleType>

 <xsd:simpleType name="IP4Addr">
 <xsd:restriction base="rtp:IPAddr"/>
 </xsd:simpleType>

 <xsd:simpleType name="IP6Addr">
 <xsd:restriction base="rtp:IPAddr"/>
 </xsd:simpleType>

 <xsd:complexType name="UDP" mixed="false">
 <xsd:complexContent mixed="false">
 <xsd:extension base="rtp:Transport">
 <xsd:choice>
 <xsd:element name="option">
 <!-- define options -->
 </xsd:element>
 </xsd:choice>
 <xsd:attribute name="addr" type="rtp:IP4Addr"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="udp" type="rtp:UDP"/>

 </xsd:schema>

Kutscher, et al. Expires August 30, 2002 [Page 58]

Internet-Draft SDPng March 2002

5.8 Issues

 o Libraries provide partially specified definitions, i.e. without
 transport parameters. How can SDPng documents reference the
 definitions and augment them with specific transport parameters?

 o Referencing extension profiles: XML-Schema does not support the
 declaration of multiple schemas via the schemaLocation attribute.
 Conceivable solution: When extension profiles are used, the SDPng
 description is a "multi-part" object, that consists of an
 integrating schema definition (that references all necessary
 profiles and the base definition) and the actual description
 document that is a schema instance of the integrating schema.

 o Uniqueness of attribute values: When libraries are used they will
 contain definition elements with "name" attributes for later
 referencing. How to avoid name clashes for those identifiers?
 When an SDPng document uses libraries from different sources they
 could be incompatible because of name collisions. Possible
 solution: Prefix such IDs with a namespace name (either explicitly
 or implicitly by interpreting applications). The explicit
 prefixes have the advantage that no special knowledge would be
 required to resolve links at the cost of very long ID values.

Kutscher, et al. Expires August 30, 2002 [Page 59]

Internet-Draft SDPng March 2002

6. Use of SDPng in conjunction with other IETF Signaling Protocols

 The SDPng model provides the notion of Components to indicate the
 intended types of collaboration between the users in e.g. a
 teleconferencing scenario.

 Three different abstractions are defined that are used for describing
 the properties of a specific Component:

 o a Capability refers to the fact that one of the involved parties
 supports one particular way of exchanging media -- defined in
 terms of transport, codec, and other parameters -- as part of the
 media session.

 o a Potential Configuration denotes a set of matching Capabilities
 from all those involved parties required to successfully realize
 one particular Component.

 o an Actual Configuration indicates the Potential Configuration
 which was chosen by the involved parties to realize a certain
 Component at one particular point in time.

 As mentioned before, this abstract notion of the interactions between
 a number of communicating systems needs to be mapped to the
 application scenarios of SDPng in conjunction with the various IETF
 signaling protocols: SAP, SIP, RTSP, and MEGACO.

 In general, this section provides recommendations and possible
 scenarios for the use of SDPng within specific protocols and
 applications. Is does not specify normative requirements.

6.1 The Session Announcement Protocol (SAP)

 SAP is used to disseminate a previously created (and typically fixed)
 session description to a potentially large audience. An interested
 member of the audience will use the SDPng description contained in
 SAP to join the announced media sessions.

 This means that a SAP announcement contains the Actual Configurations
 of all Components that are part of the overall teleconference or
 broadcast.

 A SAP announcement may contain multiple Actual Configurations for the
 same Component. In this case, the "same" (i.e. semantically
 equivalent) media data from one configuration must be available from
 each of the Actual Configurations. In practice, this limits the use
 of multiple Actual Configurations to single-source multicast or
 broadcast scenarios.

Kutscher, et al. Expires August 30, 2002 [Page 60]

Internet-Draft SDPng March 2002

 Each receiver of a SAP announcement with SDPng compares its locally
 stored Capabilities to realize a certain Component against the Actual
 Configurations contained in the announcement. If the intersection
 yields one or more Potential Configurations for the receiver, it
 chooses the one it sees fit best. If the intersection is empty, the
 receiver cannot participate in the announced session.

 SAP may be substituted by HTTP (in the general case, at least), SMTP,
 NNTP, or other IETF protocols suitable for conveying a media
 description from one entity to one or more other without the intend
 for further negotiation of the session parameters.

 Example from the SAP spec. to be provided.

6.2 Session Initiation Protocol (SIP)

 SIP is used to establish and modify multimedia sessions, and SDPng
 may be carried at least in SIP INVITE and ACK messages as well as in
 a number of responses. From dealing with legacy SDP (and its
 essential non-suitability for capability negotiation), a particular
 use and interpretation of SDP has been defined for SIP.

 One of the important flexibilities introduced by SIP's usage of SDP
 is that a sender can change dynamically between all codecs that a
 receiver has indicated support (and has provided an address) for.
 Codec changes are not signaled out-of-band but only indicated by the
 payload type within the media stream. From this arises one important
 consequence to the conceptual view of a Component within SDPng.

 There is no clear distinction between Potential and Actual
 Configurations. There need not be a single Actual Configuration be
 chosen at setup time within the SIP signaling. Instead, a number of
 Potential Configurations is signaled in SIP (with all transport
 parameters required for carrying media streams) and the Actual
 Configuration is only identified by the payload type which is
 actually being transmitted at any point in time.

 Note that since SDPng does not explicitly distinguish between
 Potential and Actual Configurations, this has no implications on the
 SDPng signaling itself.

 SIP relies on an "offer/answer" model for the exchange of capability
 and configuration information. Either the caller or the callee sends
 an initial session description that is processed by the other side
 and returned. For capability negotiation, this means that the
 negotiation follows a two-stage-process: The "offerer" sends its
 capability description to the receiver. The receiver processes the
 offerers capabilities and his own capabilities and generates a result

Kutscher, et al. Expires August 30, 2002 [Page 61]

Internet-Draft SDPng March 2002

 capability description that is sent back to the offerer. Both sides
 now know the commonly supported configurations and can initiate the
 media sessions.

 Because of this strict "offer/answer" model, the offerer must already
 send complete configurations (i.e. include transport addresses) along
 with the capability descriptions. The answer must also contain
 complete configuration parameters. The following figure shows, how
 SDPng content can be used in an INVITE request with a correspong 200
 OK message.

 Simple description document with only one alternative:

 F1 INVITE A -> B

 INVITE sip:B@example.com SIP/2.0
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Contact: <sip:UserA@192.168.1.1>
 Content-Type: application/sdpng
 Content-Length: 685

 <def>
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>
 </def>

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0">
 <rtp:udp role="receive" endpoint="A" addr="192.168.1.1"
 rtp-port="7800"/>
 </rtp:session>
 </alt>
 </component>
 </cfg>

 <conf>
 <owner user="A@example.com" id="98765432" version="1" nettype="IN"
 addrtype="IP4" addr="192.168.1.1"/>
 <session name="SDPng questions">
 </session>

Kutscher, et al. Expires August 30, 2002 [Page 62]

Internet-Draft SDPng March 2002

 <info name="interactive-audio" function="voice">
 Telephony media stream
 <info>
 </conf>

 ==

 F2 (100 Trying) B -> A

 SIP/2.0 100 Trying
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Content-Length: 0

 ==

 F3 180 Ringing B -> A

 SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>;tag=987654
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Content-Length: 0

 ==

 F4 200 OK B -> A

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>;tag=987654
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Contact: <sip:B@192.168.1.2>
 Content-Type: application/sdpng
 Content-Length: 479

 <def>
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>

Kutscher, et al. Expires August 30, 2002 [Page 63]

Internet-Draft SDPng March 2002

 </def>

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0">
 <rtp:udp role="receive" endpoint="A" addr="192.168.1.1"
 rtp-port="7800"/>
 <rtp:udp role="receive" endpoint="B" addr="192.168.1.2"
 rtp-port="9410"/>
 </rtp:session>
 </alt>
 </component>
 </cfg>
 ==

 ACK from A to B omitted

 In the INVITE message, A sends B a description document, that
 specifies exactly one component with one alternative (the PCMU audio
 stream). All required transport parameters all already contained in
 the description. The rtp:udp element provides an attribute "role"
 with a value of "receive", indicating that the specified endpoint
 address is used by the endpoint to receive media data. The element
 also provides the attribute "endpoint" with a value of "A",
 denominating the endpoint that can receive data on the specified
 address. This means, the semantics of specified transport addresses
 in configuration descriptions are the same as for SDP (when used with
 SIP): An endpoint specifies where it wants to receive data.

 In the 200 OK message, B sends an updated description document to A.
 For the sake of conciseness, the conf element (containing meta
 information about the conference) has been omitted. B supports the
 payload format that A has offered and adds his own transport
 parameters to the configuration information, specifying the endpoint
 address where B wants to receive media data. In order to
 disambiguate its transport configurations from A's, B sets the
 attribute "endpoint" to the value "B". The specific value of the
 "endpoint" attribute is not important, the only requirements are that
 a party that contributes to the session description, must use a
 unique name for the endpoint attribute and that a contributing party
 must use the same value for the endpoint attributes of all elements

Kutscher, et al. Expires August 30, 2002 [Page 64]

Internet-Draft SDPng March 2002

 it adds to the session description.

 The following example shows a capability description that provides
 two alternatives for the audio component.

 Description document with two alternatives:

 F1 INVITE A -> B

 INVITE sip:B@example.com SIP/2.0
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Contact: <sip:UserA@192.168.1.1>
 Content-Type: application/sdpng
 Content-Length: 935

 <def>
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <audio:codec name="g729" encoding="G729" channels="1" sampling="8000"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>
 <rtp:pt name="rtp-avp-18" pt="18" format="g729"/>

 <rtp:udp name="A-rcv" role="receive" endpoint="A" addr="192.168.1.1"
 rtp-port="7800"/>
 </def>

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0" transport="A-rcv""/>
 </alt>
 <alt name="AVP-audio-18">
 <rtp:session format="rtp-avp-18" transport="A-rcv"/>
 </alt>
 </component>
 </cfg>

 <conf>
 <owner user="A@example.com" id="98765432" version="1" nettype="IN"
 addrtype="IP4" addr="192.168.1.1"/>
 <session name="SDPng questions">
 </session>

Kutscher, et al. Expires August 30, 2002 [Page 65]

Internet-Draft SDPng March 2002

 <info name="interactive-audio" function="voice">
 Telephony media stream
 <info>
 </conf>

 ==

 F2 (100 Trying) B -> A

 SIP/2.0 100 Trying
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Content-Length: 0

 ==

 F3 180 Ringing B -> A

 SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>;tag=987654
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Content-Length: 0

 ==

 F4 200 OK B -> A

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP hostA.example.com:5060
 From: A <sip:A@example.com>
 To: B <sip:B@example.com>;tag=987654
 Call-ID: 1234@hostA.example.com
 CSeq: 1 INVITE
 Contact: <sip:B@192.168.1.2>
 Content-Type: application/sdpng
 Content-Length: 479

 <def>
 <audio:codec name="audio-basic" encoding="PCMU"
 sampling="8000" channels="1"/>

 <audio:codec name="g729" encoding="G729" channels="1" sampling="8000"/>

Kutscher, et al. Expires August 30, 2002 [Page 66]

Internet-Draft SDPng March 2002

 <rtp:pt name="rtp-avp-0" pt="0" format="audio-basic"/>
 <rtp:pt name="rtp-avp-18" pt="18" format="g729"/>

 <rtp:udp name="A-rcv" role="receive" endpoint="A" addr="192.168.1.1"
 rtp-port="7800"/>

 <rtp:udp name="B-rcv" role="receive" endpoint="B" addr="192.168.1.2"
 rtp-port="9410"/>
 </def>

 <cfg>
 <component name="interactive-audio" media="audio">
 <alt name="AVP-audio-0">
 <rtp:session format="rtp-avp-0" transport="A-rcv B-rcv"/>
 </alt>
 </component>
 </cfg>
 ==

 ACK from A to B omitted

 In the INVITE message, A sends B a description document, that
 specifies one component with two alternatives for the audio stream
 (PCMU and G.729). Since A wants to use the same transport address
 for receiving media data regardless of the payload format, A provides
 the transport specification in the def element and references this
 definition in the rtp:session elements for both alternatives by using
 the attribute "transport".

 In the 200 OK message, B sends an updated description document to A.
 B does only support PCMU, so it removes the alternative for G.729
 from the description. B also defines its transport address in the
 def element and references this definition by adding "B-rcv" to the
 attribute "transport" of the rtp:session element. (B could also have
 used the rtp:udp element inside the rtp:session element, but this
 example intends to demonstrate how to reference multiple transport
 definitions by using the attribute "transport").

6.3 Real-Time Streaming Protocol (RTSP)

 In contrast to SIP, RTSP has, from its intended usage, a clear
 distinction between offering Potential Configurations (typically by

Kutscher, et al. Expires August 30, 2002 [Page 67]

Internet-Draft SDPng March 2002

 the server) and choosing one out of these (by the client), and, in
 some cases; some parameters (such as multicast addresses) may be
 dictated by the server. Hence with RTSP, there is a clear
 distinguish between Potential Configurations during the negotiation
 phase and a finally chosen Actual Configuration according to which
 streaming will take place.

 Example from the RTSP spec to be provided.

6.4 Media Gateway Control Protocol (MEGACOP)

 The MEGACO architecture also follows the SDPng model of a clear
 separation between Potential and Actual Configurations. Upon
 startup, a Media Gateway (MG) will "register" with its Media Gateway
 Controller (MGC) and the latter will audit the MG for its
 Capabilities. Those will be provided as Potential Configurations,
 possibly with extensive Constraints specifications. Whenever a media
 path needs to be set up by the MGC between two MGs or an MG needs to
 be reconfigured internally, the MGC will use (updated) Actual
 Configurations.

 Details and examples to be defined.

Kutscher, et al. Expires August 30, 2002 [Page 68]

Internet-Draft SDPng March 2002

7. Open Issues

 Definition of baseline libraries

 A registry (reuse of SDP mechanisms and names etc.) needs to be
 set up.

 Negotiation mechanisms for multiparty conferencing need to be
 formalized.

 Mapping to other media description formats (SDP, H.245, ...)
 should be provided. For H.245, this is probably a different
 document (belonging to the SIP-H.323 inter-working group).

 Implicit declaration of SDPng schema and default profiles

Kutscher, et al. Expires August 30, 2002 [Page 69]

Internet-Draft SDPng March 2002

References

 [1] Kutscher, D., Ott, J., Bormann, C. and I. Curcio, "Requirements
 for Session Description and Capability Negotiation", Internet
 Draft draft-ietf-mmusic-sdpng-req-01.txt, April 2001.

 [2] Handley, M. and V. Jacobsen, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [3] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobsen,
 "RTP: A Transport Protocol for Real-Time Applications", RFC

1889, January 1996.

 [4] Schulzrinne, H., "RTP Profile for Audio and Video Conferences
 with Minimal Control", RFC 1890, January 1996.

 [5] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video
 Conferences with Minimal Control", draft-ietf-avt-profile-new-

10.txt (work in progress), March 2001.

 [6] Perkins, C., Kouvelas, I., Hodson, O., Hardman, V., Handley,
 M., Bolot, J., Vega-Garcia, A. and S. Fosse-Parisis, "RTP
 Payload for Redundant Audio Data", RFC 2198, September 1997.

 [7] Rosenberg, J. and H. Schulzrinne, "An RTP Payload Format for
 Generic Forward Error Correction", RFC 2733, December 1999.

 [8] Perkins, C. and O. Hodson, "Options for Repair of Streaming
 Media", RFC 2354, June 1998.

 [9] Handley, M., Perkins, C. and E. Whelan, "Session Announcement
 Protocol", RFC 2974, October 2000.

 [10] World Wide Web Consortium (W3C), "Extensible Markup Language
 (XML) 1.0 (Second Edition)", Status W3C Recommendation, Version

http://www.w3.org/TR/2000/REC-xml-20001006, October 2000.

 [11] World Wide Web Consortium (W3C), "Namespaces in XML", Status
 W3C Recommendation, Version http://www.w3.org/TR/1999/REC-xml-

names-19990114, January 1999.

 [12] World Wide Web Consortium (W3C), "XML Inclusions (XInclude)
 Version 1.0", Status W3C Working Draft, Version

http://www.w3.org/TR/2001/WD-xinclude-20010516, May 2001.

 [13] World Wide Web Consortium (W3C), "XML Schema Part 1:
 Structures", Version http://www.w3.org/TR/2001/REC-xmlschema-1-

20010502/, Status W3C Recommendation, May 2001.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-req-01.txt
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc1890
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-avt-profile-new-10.txt
https://datatracker.ietf.org/doc/html/rfc2198
https://datatracker.ietf.org/doc/html/rfc2733
https://datatracker.ietf.org/doc/html/rfc2354
https://datatracker.ietf.org/doc/html/rfc2974
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/WD-xinclude-20010516
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

Kutscher, et al. Expires August 30, 2002 [Page 70]

Internet-Draft SDPng March 2002

 [14] World Wide Web Consortium (W3C), "XML Schema Part 2:
 Datatypes", Version http://www.w3.org/TR/2001/REC-xmlschema-2-

20010502/, Status W3C Recommendation, May 2001.

 [15] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 SDP", draft-ietf-mmusic-sdp-offer-answer-01.txt (work in
 progress), February 2002.

Authors' Addresses

 Dirk Kutscher
 TZI, Universitaet Bremen
 Bibliothekstr. 1
 Bremen 28359
 Germany

 Phone: +49.421.218-7595, sip:dku@tzi.org
 Fax: +49.421.218-7000
 EMail: dku@tzi.uni-bremen.de

 Joerg Ott
 TZI, Universitaet Bremen
 Bibliothekstr. 1
 Bremen 28359
 Germany

 Phone: +49.421.201-7028, sip:jo@tzi.org
 Fax: +49.421.218-7000
 EMail: jo@tzi.uni-bremen.de

 Carsten Bormann
 TZI, Universitaet Bremen
 Bibliothekstr. 1
 Bremen 28359
 Germany

 Phone: +49.421.218-7024, sip:cabo@tzi.org
 Fax: +49.421.218-7000
 EMail: cabo@tzi.org

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-offer-answer-01.txt

Kutscher, et al. Expires August 30, 2002 [Page 71]

Internet-Draft SDPng March 2002

Appendix A. Base SDPng Specifications for Audio Codec Descriptions

 [5] specifies a number of audio codecs including short name to be
 used as reference by session description protocols such as SDP and
 SDPng. Those codec names, as listed in the first column of the above
 table, are used to identify codecs in SDPng.

 The following sections indicate the default values that are assumed
 if nothing else than the codec reference is specified.

 The following audio:codec attributes are defined for audio codecs:

 name: the identifier to be later used for referencing the codec spec

 encoding: the RTP/AVP profile identifier as registered with IANA

 mime: the MIME type; may alternatively be specified instead of
 "encoding"

 channels: the number of independent media channels

 pattern: the media channel pattern for mapping channels to payload

 sampling: the sample rate for the codec (which in most cases equals
 the RTP clock)

 Furthermore, options may be defined of the following format:

 <option id="name">value</option>

 if a value is associated with the option (note that arbitrary complex
 values are allowed), or alternatively:

 <option id="name"/>

 if the option is just a boolean indicator.

 Attributes for the "option" tag are the following:

 id: the identifier for the option (variable name)

 collaps: the collapsing rules for this optional element, defined as
 follows:

 min: for numeric values only

 max: for numeric values only

Kutscher, et al. Expires August 30, 2002 [Page 72]

Internet-Draft SDPng March 2002

 x: intersection of enumerated values, value lists

A.1 DVI4

 <audio:codec name="dvi4" encoding="DVI4" channels="1" sampling="8000">

 <rtp:pt name="rtp-avp-5" pt="5" format="dvi4"/>
 <rtp:pt name="rtp-avp-6" pt="6">
 <audio:codec encoding="DVI4" channels="1" sampling="16000">
 </rtp:pt>

 Note that there is no default sampling rate specified for DVI4 and
 hence a sampling rate MUST be specified.

A.2 G.722

 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>

 Note as per [5] that the RTP clock rate is 8000Hz rather than 16000
 Hz.

A.3 G.726

 <audio:codec name="g726-40" encoding="G726-40" channels="1" sampling="8000"/
>
 <audio:codec name="g726-32" encoding="G726-32" channels="1" sampling="8000"/
>
 <audio:codec name="g726-24" encoding="G726-24" channels="1" sampling="8000"/
>
 <audio:codec name="g726-16" encoding="G726-16" channels="1" sampling="8000"/
>

 <rtp:pt name="rtp-avp-5" pt="5" format="g726-32"/>

A.4 G.728

 <audio:codec name="g728" encoding="G728" channels="1" sampling="8000"/>
 <rtp:pt name="rtp-avp-15" pt="15" format="g728"/>

A.5 G.729

 G.729 Annex A: reduced complexity of G.729
 G.729 Annex B: comfort noise

 <audio:codec name="g729" encoding="G729" channels="1" sampling="8000"/>
 <rtp:pt name="rtp-avp-18" pt="18" format="g729"/>

 For further codec description, the following options (which carry no

Kutscher, et al. Expires August 30, 2002 [Page 73]

Internet-Draft SDPng March 2002

 values associated with them) MAY be included:

 <option id="annexA"/>
 <!-- to indicate the use of Annex A reduced complexity -->

 <option id="annexB"/>
 <!-- to indicate the use of Annex B comfort noise -->

 As stated in [5], the use of these options can be detected within the
 media stream.

A.6 G.729 Annex D and E

 <audio:codec name="g729d" encoding="G729D" channels="1" sampling="8000"/>
 <audio:codec name="g729e" encoding="G729E" channels="1" sampling="8000"/>

 The following option MAY be used with both Annexes D and E:

 <option id="annexB"/>
 <!-- to indicate the use of Annex B comfort noise -->

A.7 GSM

A.7.1 GSM Full Rate

 The GSM Full Rate codec is indicated as follows:

 <audio:codec name="gsm" encoding="GSM" channels="1" sampling="8000"/>
 <rtp:pt name="rtp-avp-3" pt="3" format="gsm"/>

A.7.2 GSM Half Rate

 The GSM Half Rate codec is indicated as follows:

 <audio:codec name="gsm-hr" encoding="GSM-HR" channels="1" sampling="8000"/>

A.7.3 GSM Enhanced Full Rate

 The GSM Enhanced Full Rate codec is indicated as follows:

 <audio:codec name="gsm-efr" encoding="GSM-EFR" channels="1" sampling="8000"/
>

Kutscher, et al. Expires August 30, 2002 [Page 74]

Internet-Draft SDPng March 2002

A.8 L8

 <audio:codec name="l8" encoding="L8" channels="1" sampling="8000"/>

A.9 L16

 <audio:codec name="l16" encoding="L16" channels="1" sampling="8000"/>

 <rtp:pt name="rtp-avp-11" pt="11" format="gsm"/>
 <rtp:pt name="rtp-avp-10" pt="11" format="gsm">
 <audio:codec encoding="L16" channels="2" sampling="8000"/>
 </rtp:pt>

A.10 LPC

 <audio:codec name="lpc" encoding="LPC" channels="1" sampling="8000"/>

A.11 MPA

 <audio:codec name="mpa" encoding="MPA" channels="1" sampling="8000"/>
 <rtp:pt name="rtp-avp-14" pt="14" format="mpa"/>

A.12 PCMA and PCMU

 <audio:codec name="pcmu" encoding="PCMU" channels="1" sampling="8000"/>
 <audio:codec name="pcma" encoding="PCMA" channels="1" sampling="8000"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="pcmu"/>
 <rtp:pt name="rtp-avp-8" pt="8" format="pcma"/>

A.13 QCELP

 <audio:codec name="qcelp" encoding="QCELP" channels="1" sampling="8000"/>
 <rtp:pt name="rtp-avp-12" pt="12" format="qcelp"/>

A.14 VDVI

 <audio:codec name="vdvi" encoding="VDVI" channels="1" sampling="8000"/>

Kutscher, et al. Expires August 30, 2002 [Page 75]

Internet-Draft SDPng March 2002

Appendix B. SDPng Library for Audio Codec Definitions

 This section contains an SDPng library with the audio codec
 definitions from Appendix A.

 <def xmlns="http://www.iana.org/sdpng"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.iana.org/sdpng/int integrated.xsd"
 xmlns:audio="http://www.iana.org/sdpng/audio"
 xmlns:rtp="http://www.iana.org/sdpng/rtp">

 <audio:codec name="dvi4" encoding="DVI4" channels="1" sampling="8000"/>
 <audio:codec name="g722" encoding="G722" channels="1" sampling="16000"/>
 <audio:codec name="g726-40" encoding="G726-40" channels="1"
sampling="8000"/>
 <audio:codec name="g726-32" encoding="G726-32" channels="1"
sampling="8000"/>
 <audio:codec name="g726-24" encoding="G726-24" channels="1"
sampling="8000"/>
 <audio:codec name="g726-16" encoding="G726-16" channels="1"
sampling="8000"/>
 <audio:codec name="g728" encoding="G728" channels="1" sampling="8000"/>
 <audio:codec name="g729" encoding="G729" channels="1" sampling="8000"/>
 <audio:codec name="g729d" encoding="G729D" channels="1" sampling="8000"/
>
 <audio:codec name="g729e" encoding="G729E" channels="1" sampling="8000"/
>
 <audio:codec name="gsm" encoding="GSM" channels="1" sampling="8000"/>
 <audio:codec name="gsm-hr" encoding="GSM-HR" channels="1"
sampling="8000"/>
 <audio:codec name="gsm-efr" encoding="GSM-EFR" channels="1"
sampling="8000"/>
 <audio:codec name="l8" encoding="L8" channels="1" sampling="8000"/>
 <audio:codec name="l16" encoding="L16" channels="1" sampling="8000"/>
 <audio:codec name="lpc" encoding="LPC" channels="1" sampling="8000"/>
 <audio:codec name="mpa" encoding="MPA" channels="1" sampling="8000"/>
 <audio:codec name="pcmu" encoding="PCMU" channels="1" sampling="8000"/>
 <audio:codec name="pcma" encoding="PCMA" channels="1" sampling="8000"/>
 <audio:codec name="qcelp" encoding="QCELP" channels="1" sampling="8000"/
>
 <audio:codec name="vdvi" encoding="VDVI" channels="1" sampling="8000"/>

 </def>

Kutscher, et al. Expires August 30, 2002 [Page 76]

Internet-Draft SDPng March 2002

Appendix C. SDPng Library for RTP Payload Format Definitions

 This section contains an SDPng library with the RTP payload format
 definitions from Appendix A.

 <def xmlns="http://www.iana.org/sdpng"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.iana.org/sdpng/int integrated.xsd"
 xmlns:audio="http://www.iana.org/sdpng/audio"
 xmlns:rtp="http://www.iana.org/sdpng/rtp"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <!-- import audio codec definitions here: -->

 <xi:xinclude href="http://www.iana.org/sdpng/audio/audio.sdpng"
parse="xml"/>

 <rtp:pt name="rtp-avp-5" pt="5" format="dvi4"/>

 <rtp:pt name="rtp-avp-6" pt="6">
 <audio:codec encoding="DVI4" channels="1" sampling="16000">
 </rtp:pt>

 <rtp:pt name="rtp-avp-9" pt="9" format="g722"/>

 <rtp:pt name="rtp-avp-5" pt="5" format="g726-32"/>

 <rtp:pt name="rtp-avp-15" pt="15" format="g728"/>

 <rtp:pt name="rtp-avp-18" pt="18" format="g729"/>

 <rtp:pt name="rtp-avp-3" pt="3" format="gsm"/>

 <rtp:pt name="rtp-avp-11" pt="11" format="gsm"/>

 <rtp:pt name="rtp-avp-10" pt="11" format="gsm">
 <audio:codec encoding="L16" channels="2" sampling="8000"/>
 </rtp:pt>

 <rtp:pt name="rtp-avp-14" pt="14" format="mpa"/>

 <rtp:pt name="rtp-avp-0" pt="0" format="pcmu"/>

 <rtp:pt name="rtp-avp-8" pt="8" format="pcma"/>

 <rtp:pt name="rtp-avp-12" pt="12" format="qcelp"/>

 </def>

Kutscher, et al. Expires August 30, 2002 [Page 77]

Internet-Draft SDPng March 2002

Appendix D. Change History

draft-ietf-mmusic-sdpng-04.txt

 * New section on capability negotiation (Section 4).

 * New section on referencing definitions (Section 3.3).

 * New section on properties (Section 3.3.2).

 * New section on definition groups (Section 3.3.3).

draft-ietf-mmusic-sdpng-03.txt

 * Extension of the SDPng schema (use of Xlinks etc.)

 * Clarification in the text

 * Fixed examples

 * Added example libraries as appendices

 * More details on usage with SIP, including examples.

draft-ietf-mmusic-sdpng-02.txt

 * Added a section on formal specification mechanisms (Section 5).

draft-ietf-mmusic-sdpng-01.txt

 * renamed section "Syntax Proposal" to "Syntax Definition
 Mechanisms". More text on DTD vs. schema. Edited the example
 description.

 * updated example definitions in section "Definitions" and
 "Components & Configurations"

 * section "Session Attributes" replaces section "Session"

 * new appendix on audio codec definitions

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdpng-01.txt

Kutscher, et al. Expires August 30, 2002 [Page 78]

Internet-Draft SDPng March 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Kutscher, et al. Expires August 30, 2002 [Page 79]

