
Internet Engineering Task Force MMUSIC WG
Internet Draft J.Rosenberg,H.Schulzrinne
draft-ietf-mmusic-sip-100rel-01.txt Bell Laboratories,Columbia U.
May 20, 1999
Expires: November 20, 1999

Reliability of Provisional Responses in SIP

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document specifies an extension to the Session Initiation
 Protocol (SIP) providing reliable provisional response messages.

1 Introduction

 The Session Initiation Protocol (SIP) [1] is a request-response
 protocol for initiating, maintaining, and terminating multimedia
 sessions. Each SIP request is followed by one or more provisional
 responses, followed by a one or more definitive responses. These
 provisional responses, also called informational responses, have
 status codes within the 100-199 range. They are most commonly used
 for responses to an INVITE request. They provide information on call
 progress, such as trying (100), alerting (180), and queueing (182).
 However, when run over UDP, SIP does not guarantee that these

J.Rosenberg,H.Schulzrinne [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sip-100rel-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft 100 Reliability May 20, 1999

 messages are delivered reliably, or in order.

 However, a number of applications require reliability and in-order
 delivery of provisional responses to INVITE. These include gateway
 applications, wireless phones, ACD servers, and call queueing
 systems. Generally, these applications make use of the provisional
 responses to drive state machinery. This is especially true for the
 180 Ringing provisional response, which maps to the Q.931 ALERTING
 message.

 This document provides a simple extension to SIP for ensuring that
 provisional responses to INVITEs are delivered reliably, independent
 of the underlying transport mechanism. The extension applies only to
 the INVITE method. Reliability of provisional responses for other
 methods is not provided. The extension is simple, requiring two new
 header fields, and no new methods. It fits well within the generic
 framework of SIP reliability. It is partly backwards compatible, so
 that a Require header is not needed (it can be included if the UAC
 insists on the feature, of course), although a Proxy-Require header
 is needed.

2 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [2] and
 indicate requirement levels for compliant implementations.

3 Overview

 The reliability mechanism is based on the standard windowed
 acknowledgement technique. When a server generates a provisional
 response which is to be delivered reliably, it places a sequence
 number (via the RSeq header field) in the provisional response. These
 sequence numbers always start at zero, since they are defined only
 within the context of a transaction. This elimiates the need for SYN
 handshakes as in TCP. The provisional response is then retransmitted
 with an exponential backoff.

 The UAC maintains a variable, sn, which is the highest sequence
 number seen in a reliable response. When the client receives a
 provisional response that has been sent reliably, and this response
 has a sequence number one higher than sn, sn is incremented, and the
 request is retransmitted. Otherwise, if the response has a sequence
 number greater than one higher, sn is not incremented. Either way,
 the request is retransmitted, and the value of sn is placed in the
 RAck header in the request.

https://datatracker.ietf.org/doc/html/rfc2119

J.Rosenberg,H.Schulzrinne [Page 2]

Internet Draft 100 Reliability May 20, 1999

 When the server sees a request retransmission with an RAck header
 with a value equalling the sequence number in the last reliably
 transmitted response, it stops retransmitting that response, and is
 free to send the next provisional response, with a higher sequence
 number.

 The mechanism is similar to TCP, but with a constant window of one.
 The use of a fixed size window comes at the penalty of reduced
 response throughput. The througput of responses is fairly low (1 per
 RTT without loss, lower with loss). However, as the provisional
 responses are used to signal changes in phone call states, which
 generally occur on timescales on the order of hundreds of
 milliseconds to seconds, such a limited throughput appears
 acceptable. The mechanism can be extended to support larger window
 sizes, if necessary.

 The server can still generate unreliable provisional responses by
 sending them without an RSeq header. A UAC which receives a
 provisional response without a RSeq does not retransmit the request.
 This allows for backwards compatibility; a UAS which doesn't know how
 to transmit reliable responses will never place an RSeq header in a
 response, and so the SIP transaction will proceed normally.

 Similarly, the initial INVITE from the client contains an RAck
 header. This serves as an indicator to the server than the client
 supports the reliability mechanism. A UAS which doesn't see this
 header in a request knows it cannot provide reliable provisional
 responses.

4 Detailed Protocol Semantics

 A transaction begins when the client sends a request. The client
 sends the INVITE request as per RFC2543 [1]. The RAck header MUST be
 placed in the request, with a value of zero, if the client
 understands and is willing to support this extension for the
 transaction.

 When the initial INVITE is received by the server, it MAY send a 100
 response (depending on whether it is a proxy or not). A 100 response
 is normally sent reliably according to the current SIP specification.
 This is because the client retransmits its request until a response
 (i.e., 100) is received, and the server retransmits the 100 response
 upon request retransmission. As a result, no additional means is
 needed to reliably send a 100 response over a single hop.
 Furthermore, the SIP specification mandates that the 100 response is
 not forwarded through a proxy. For these reasons, 100 responses MUST
 NOT contain an RSeq header.

https://datatracker.ietf.org/doc/html/rfc2543

J.Rosenberg,H.Schulzrinne [Page 3]

Internet Draft 100 Reliability May 20, 1999

 The server maintains a window of size 1, which is effectively the
 value of the highest unacknowledged provisional response that has
 been transmitted; call this rn. The client maintains a single
 variable, sn, which represents the highest in order provisional
 response received so far. Both sn and rn MUST be initialized to 0.

 The server MAY send a reliable response if the initial INVITE request
 from the client contained a RAck header with a value of 0. If the
 request contained a Require header, and the server is a UAS, the UAS
 SHOULD send all non-100 provisional responses reliably. If the
 request contained a Proxy-Require header, and the server is a proxy,
 the server SHOULD send all locally generated non-100 provisional
 responses reliably. It also SHOULD reliably send upstream any
 responses received reliably from a downstream server. The server MUST
 NOT send a reliable response if the initial INVITE request did not
 contain an RAck header with a value of zero. When the server decides
 to send a provisional response reliably, it MUST increment rn, and
 MUST place this incremented value in the RSeq header in the response.
 The provisional response SHOULD be retransmitted at intervals with an
 exponential backoff, starting at T1 (default of 500ms), and doubling
 after each retransmission.

 When a client receives a provisional response, it checks for the
 presence of the RSeq header. If it is not present, the response was
 an unreliable provisional response. The client MUST NOT retransmit
 the request. As per [1], the client also ceases exponentially backing
 off request retransmissions when any response (with or without the
 RSeq header) is received.

 If the server does not understand this extension, it will
 behave according to the base SIP specification, and
 retransmit responses upon request retransmissions. A client
 which retransmits requests upon response retransmissions
 would cause a feedback loop of constant request and
 response retransmissions. By checking for the RSeq header,
 the client can determine whether the server is supporting
 this extension for this response.

 If, however, the provisional response contains an RSeq header, the
 value is compared against sn. If it is one higher than the current
 value of sn, sn is incremented, otherwise sn is unchanged. The client
 SHOULD then resend the original request (independently of whether the
 value of sn has changed), and MUST include the sequence number sn in
 the request in the header field RAck.

 When a request is received at a server, it checks for the presence of
 the RAck header. If it is not present, the server retransmits the

J.Rosenberg,H.Schulzrinne [Page 4]

Internet Draft 100 Reliability May 20, 1999

 last response that was sent. If the RAck header is present, and the
 value is lower than the value of rn, the last reliable response is
 retransmitted. If the RAck header was present in the request, and the
 value is equal to the current value of rn, the exponentially backing
 off response retransmissions cease. Additional copies of the request
 with the same or lower value of RAck that are received by the server
 SHOULD NOT cause the server to retransmit any response (as they would
 in the above case if RAck were lower), unless rn is zero. The server
 always retransmits the last response sent (provisional, reliable
 provisional, or otherwise) when a request is received with both RAck
 and rn equal to 0.

 This handles the case where a proxy server doesn't send a
 100 response, but transmits a reliable response as the
 first response. To make sure the initial request is
 transmitted reliably, the server has to retransmit the
 first response upon request retransmissions.

 Once a request has arrived with RAck equal to rn, the server is free
 to increment rn and transmit another provisional response. The server
 MUST NOT ever generate an additional reliable response until it has
 received a request with an RAck header with a value equal to rn.

 When the server is ready to send a final response, it does so
 according to [1]. An ACK request causes retransmissions of the final
 response to cease. The server SHOULD NOT continue to retransmit any
 reliable provisional responses once a final response has been sent.

5 Header Syntax

 Two new header fields are defined, RSeq and RAck. The BNF for these
 are:

 RSeq = "RSeq" ":" 1*DIGIT
 RAck = "RAck" ":" 1*DIGIT

 RSeq is a response header field. RAck is a request header field.

 If a client insists that all provisional responses (those generated
 by proxies and UAS's) be sent reliably, it MUST include both the
 Require and Proxy-Require headers in all requests. A UAC MAY
 alternately send requests only with the Proxy-Require header. This
 will cause all non-100 provisional responses generated by proxies to
 be sent reliably. Responses sent by UAS's may, or may not be sent

J.Rosenberg,H.Schulzrinne [Page 5]

Internet Draft 100 Reliability May 20, 1999

 reliably, at the discretion of the UAS.

 This document specifies the named extension org.ietf.sip.reliable-
 100.

6 Operation with Proxies

 A SIP request may pass through any number of proxies, some of which
 may fork the request. The reliability mechanism defined here requires
 proxies to be aware of the extension. Consider what would happen if a
 proxy receives a request with a RSeq header, but no Proxy-Require
 header, and the proxy does not know the extension. As per normal SIP
 rules, the proxy would forward the request, with the RSeq header in
 tact, to the downstream proxy. If that proxy did understand the
 extension, it might try and send a reliable response to the first
 proxy. The first proxy would see the provisional response
 retransmissions, but never resend the request. This would cause an
 excess of network traffic, and block transmission of other
 provisional responses at the downstream proxy.

 The situation would be even more catastrophic for a forking proxy.
 Consider the case where the first proxy forks the request to
 downstream proxies A and B. Both A and B understand the extension,
 and each try to send a reliable response. The first proxy forwards
 both responses upstream. But, since it does not understand the
 extension, it does not remove or change the value of the RSeq header
 in either response. Thus, the client receiving these requests will
 think they are retransmissions, rather than being two separate
 responses.

 Implementation of this extension in a stateless proxy is not done
 according to the rules in section 4. A stateless proxy implementing
 this extension MUST forward all requests it receives downstream, and
 MUST forward all responses it receives upstream, including
 provisional responses. Actual reliability is achieved between the
 first pair of stateful proxies.

 A stateful proxy implementing this extension MUST act as a virtual
 UAS-UAC in the algorithm described in the previous section. When any
 non-100 provisional response is received reliably at a proxy, the
 proxy MUST reliably transmit it upstream towards the next stateful
 proxy. When any non-100 provisional response is received unreliably
 at the proxy, the proxy MUST send the response unreliably upstream.
 Any provisional responses generated by the proxy itself (excepting
 100) MUST be sent reliably upstream.

 Since a proxy may be receiving reliable provisional responses from
 several branches of a forked request, it will need to merge the

J.Rosenberg,H.Schulzrinne [Page 6]

Internet Draft 100 Reliability May 20, 1999

 provisional response streams together. There are no requirements
 about the ordering of provisional responses across branches. However,
 all provisional responses from a given branch MUST be transmitted
 reliably upstream in the same order they were received along a
 branch. For example, consider a forking proxy A which sends a request
 to UAS's B and C. B sends provisional response 0 towards A, and once
 it has been received, sends response 1. Similarly, B sends
 provisional response 2, and once received and acknowledged by A,
 sends provisional response 3. Proxy A may forward the provisional
 responses towards the UAS in any one of the following orders:

 0,1,2,3
 0,2,1,3
 2,3,0,1
 2,0,3,1
 0,2,3,1
 2,0,1,3

 Since responses from several branches may be merged at a forking
 proxy, a proxy MUST renumber the provisional responses (always
 starting at zero, however) when forwarding them upstream. As this
 requires changing the RSeq value, the RSeq header field cannot be
 protected by either end-to-end encryption or authentication.
 Similarly, a stateful proxy will need to remove the RAck header from
 all requests it receives, and insert its own value into proxied
 requests.

7 Examples

7.1 Message Formatting

 In this example, a UAC wishes to send an INVITE message and receive
 reliable 100-class responses. Such an INVITE might look like:

 C->S: INVITE sip:watson@bell-tel.com SIP/2.0
 Via: SIP/2.0/UDP saturn.bell-tel.com
 RAck: 0
 From: sip:alexander@bell-tel.com
 To: sip:watson@bell-tel.com
 Call-ID: 70710@saturn.bell-tel.com
 CSeq: 1 INVITE
 Subject: Come here Watson

J.Rosenberg,H.Schulzrinne [Page 7]

Internet Draft 100 Reliability May 20, 1999

 Require: org.ietf.sip.reliable-100
 Proxy-Require: org.ietf.sip.reliable-100

 The server wishes to send a 180 Ringing provisional response
 reliably. The response will look like:

 S->C: SIP/2.0 180 Ringing
 Via: SIP/2.0/UDP saturn.bell-tel.com
 RSeq: 1
 From: sip:alexander@bell-tel.com
 To: sip:watson@bell-tel.com
 Call-ID: 70710@saturn.bell-tel.com
 CSeq: 1 INVITE

 This response is retransmitted with an exponential backoff. When the
 UAC receives the response, it retransmits the request, but adds the
 RAck header field:

 C->S: INVITE sip:watson@bell-tel.com SIP/2.0
 RAck: 1
 Via: SIP/2.0/UDP saturn.bell-tel.com
 From: sip:alexander@bell-tel.com
 To: sip:watson@bell-tel.com
 Call-ID: 70710@saturn.bell-tel.com
 CSeq: 1 INVITE
 Subject: Come here Watson
 Require: org.ietf.sip.reliable-100
 Proxy-Require: org.ietf.sip.reliable-100

7.2 Message Flows

 This section illustrates a number of message flows using this
 extension. We abbreviate an INVITE request with a RAck header value
 of N as "INV N", and a provisional response with a RSeq header value
 of M as "1xx M". Packets which are lost are shown with an "X" in
 front of them.

7.2.1 UAC to UAS, with Require

 In this case, the UAC sends a request directly to a UAS, and includes

J.Rosenberg,H.Schulzrinne [Page 8]

Internet Draft 100 Reliability May 20, 1999

 the Require header, naming this extension. The extension is supported
 by the UAS. The UAS sends a 100 response first, and then a 180
 reliably.

 UAC UAS

 -------INV 0-------------->
 X<.......100.........
 -------INV 0--->X
 -------INV 0-------------->
 (request <..........100.............
 retransmissions
 cease)
 X<...180 1............ (180 retransmits start, sn=1)

 (rn inc to 1) <.........180 1............
 -------INV 1---->

 <.........180 1............
 -------INV 1--------------> (180 retransmits cease)

 X<....300............... (300 class retransmits start)
 <........300...............
 -----------ACK------------>

7.2.2 UAC to UAS, without Require, UAS doesn't understand

 In this case, a UAC sends a request directly to the UAS, and doesn't
 include the Require header in the request. The UAS doesn't support
 the extension. The UAS sends a single 180 before sending a final
 response.

 UAC UAS

 -------INV 0-------------->
 X<.......100.........
 -------INV 0--->X
 -------INV 0-------------->
 (request <..........100.............
 retransmissions
 cease)

J.Rosenberg,H.Schulzrinne [Page 9]

Internet Draft 100 Reliability May 20, 1999

 <..........180

 X<....300............... (300 class retransmits start)
 <........300...............
 -----------ACK------------>

 Note that after reception of the 180, the request is not
 retransmitted, since the response did not contain an RSeq header.

7.2.3 UAC to proxy to UAS

 In this case, a UAC sends a request to a proxy, which forwards it to
 the final UAS. Both the Require and Proxy-Require headers are present
 in the request. The local proxy generates its own provisional
 response (188), and the UAS generates a 180:

 UAC PROXY UAS

 -----INV 0-------------> ----INV 0-->X
 -----INV 0-------------> ----INV 0------------->
 X<....100........
 X<....100........ <....100...............
 <........100............

 X<......188 1.......
 <...........188 1.......
 ---------INV 1-->X
 <...........188 1.......
 --------INV 1---------->
 X<....180 1.....
 <......180 1.............
 -------INV 1--->X
 X<....180 2..... <......180 1.............
 -------INV 1------------>
 <...........180 2.....
 -----INV 2------------>

 Note that the proxy renumbers the two provisional responses before
 sending them upstream.

8 Open Issues

J.Rosenberg,H.Schulzrinne [Page 10]

Internet Draft 100 Reliability May 20, 1999

 There are a number of open issues:

 1. Currently, SIP requests with the same values of the To,
 From, Call-ID and CSeq fields are isomorphic. It is
 possible that certain implementations may discard non-
 isomorphic requests with identical values for these header
 fields. By adding the RAck header into a request
 retransmission, we break the isomorphism of retransmitted
 requests. Is this a problem?

 2. The mechanism currently requires proxies to understand it
 to work. It is possible to hack a solution without this
 constraint, by placing the RAck value as a parameter in the
 Via header, rather than its own header. The result would be
 those pairs of proxies which both understand provisional
 reliability would provide it, those that don't, would not.
 Is this useful?

9 Security Considerations

 Since the RSeq value cannot be encrypted or authenticated end-to-end,
 nor can the RAck, man in the middle attacks are possible which can
 cause the provisional responses to be reordered at the UAC. This can
 be alleviated by the use of hop-by-hop encryption and authentication
 mechanisms, such as IPSEC [3,3].

10 Acknowledgements

 The authors would like to thank Jonathan Lennox and Adam Roach for
 the comments on this document.

11 Author's Addresses

 Jonathan Rosenberg
 Lucent Technologies, Bell Laboratories
 101 Crawfords Corner Rd.
 Holmdel, NJ 07733
 Rm. 4C-526
 email: jdrosen@bell-labs.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

J.Rosenberg,H.Schulzrinne [Page 11]

Internet Draft 100 Reliability May 20, 1999

12 Bibliography

 [1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments (Proposed
 Standard) 2543, Internet Engineering Task Force, Mar. 1999.

 [2] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," Request for Comments (Best Current Practice) 2119, Internet
 Engineering Task Force, Mar. 1997.

 [3] R. Atkinson, "IP encapsulating security payload (ESP)," Request
 for Comments (Proposed Standard) 1827, Internet Engineering Task
 Force, Aug. 1995.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1827

J.Rosenberg,H.Schulzrinne [Page 12]

