
Internet Engineering Task Force MMUSIC WG
Internet Draft Schulzrinne/Rosenberg
draft-ietf-mmusic-sip-cc-01.txt Columbia U./Bell Laboratories
June 17, 1999
Expires: December, 1999

SIP Call Control Services

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes a set of extensions to SIP which allow for
 various call control services. Example services include blind
 transfer, transfer with consultation, multi-party calls, bridged
 conferences, and ad-hoc conferencing. The services are supported in a
 fully distributed manner, so that they can be provided without a
 central conference server. However, a SIP proxy can act as a
 conference server to provide these services. For the various services
 described here, we overview the requirements for the service, and
 specify the protocol functions needed to support it. We then define a
 basic set of SIP primitives which can be used to construct these
 services, and others.

1 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",

Schulzrinne/Rosenberg [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sip-cc-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft SIP Control June 17, 1999

 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for compliant SIP implementations.

2 Introduction

 The Session Initiation Protocol (SIP) [2] is a signaling protocol
 used for the initiation of multimedia sessions. SIP also defines
 mechanisms for termination of sessions using the BYE method. However,
 SIP has less support for signaling of services that take place during
 the call itself. These kinds of services can be broken into several
 classes:

 Session Control Services These services relate to the media session.
 Examples include floor and chair control (which controls who can
 send/receive data in the session), hold, and mute.

 Call Control Services These services relate to participant
 management. These services are all built on the basic blocks of
 adding and removing users from a call. Examples include transfer
 (the simultaneous removal and addition of a member from a call),
 multi-party calling, call bridging, and ad-hoc bridged
 conferences.

 This document describes extensions to SIP for providing call control
 services. The services are supported in a fully distributed manner,
 so that they can be provided without a central conference server.
 However, a SIP proxy can act as a conference server to provide these
 services. Our aim is to provide a general set of tools which can be
 used to construct, at a minimum, a core set of services, but be
 potentially useful as building blocks for future services. To
 accomplish this goal, we begin by overviewing the requirements for
 each of the core services. This includes its basic functional
 requirements and its security requirements. Then, we overview the
 technical issues in providing these services, and outline the basic
 primitives that we have concluded are needed. The next section
 formally defines these primitives through new headers and UA
 behavior.

3 Services

 We overview the services which we desire to support at a minimum. For
 each, we define the requirements for the service, with a particular
 focus on security. Security is a primary concern for many of these
 services. As such, the following general principles apply:

 o Parties involved in some service should be able to
 cyryptographically verify the identity of the other parties in

https://datatracker.ietf.org/doc/html/rfc2119

Schulzrinne/Rosenberg [Page 2]

Internet Draft SIP Control June 17, 1999

 the service

 o Parties involved in some service should have a choice about
 their participation in the service

 o Parties involved in some service should know what the service
 being invoked is

 These three basic requirements are a natural consequence of an
 architecture where endpoints are assumed to be intelligent. Note,
 however, that just because the protocol provides information and
 gives choices, does not mean all implementations need to take
 advantage of this. Thin and dumb endpoints can choose not to provide
 information to the end users, and can choose not to provide choices
 to them. This has the advantage of enabling one common protocol for
 smart and dumb endpoints alike.

3.1 Blind Transfer

 In the blind transfer service, two parties are in an existing call.
 One party, the transferring party , wishes to terminate the call with
 the other party the transferred pary , and at the same time, transfer
 them to another party, the transferred-to party

 -> | Transferred-to |
 / | party |
 / ----------------
 /
 /
 -------------- ----------------
 | Transferred |<------------------------| Transferring |
 | party | | party |
 -------------- ----------------

 Figure 1: Transfer Service

 Some of the requirements for this service include:

 o The original call terminates regardless of whether the

Schulzrinne/Rosenberg [Page 3]

Internet Draft SIP Control June 17, 1999

 transfer succeeds or not.

 o The transferring party does not know whether the transfer
 succeeds or not.

 o The transferred party should be able to know that they are
 being transferred

 o The transferred party should be able to know to whom they are
 being transferred

 o The transferred party should be able to decide whether to
 accept or reject the transfer

 o If the transferred party rejects the transfer, the call with
 the transferring party still terminates

 o The transferred party should be able to verify that they are
 being transferred by the transferring party

 o The transferred-to party should know that they are being
 transferred-to

 o The transferred-to party should be able to know the identity
 of the transferring party

 o The transferred-to party should be able to accept or reject
 the transferred call just like any other call

3.2 Transfer and Hold

 This service is a variation on blind transfer. The difference is that
 the transferring party does not leave the call with the transferred
 party. If the service is successful, the transferred party is
 involved in two calls - one with the transferring party, and one with
 the transferred to party. Many of the requirements are similar. The
 requirements for the service are:

 o The call between the transferring and transferred parties
 remains active, regardless of the status of the new call
 between the transferred and transferred-to parties.

 o The transferring party does not know whether the transfer
 succeeds or not.

 o The transferred party should be able to know that they are
 being transferred

Schulzrinne/Rosenberg [Page 4]

Internet Draft SIP Control June 17, 1999

 o The transferred party should be able to know to whom they are
 being transferred

 o The transferred party should be able to decide whether to
 accept or reject the transfer

 o If the transferred party rejects the transfer, the call with
 the transferring party remains unchanged

 o The transferred party should be able to verify that they are
 being transferred by the transferring party

 o The transferred-to party should know that they are being
 transferred-to

 o The transferred-to party should be able to know the identity
 of the transferring party

 o The transferred-to party should be able to accept or reject
 the transferred call just like any other call

 o The transferred-to party should not be able to ascertain,
 through signaling messages, that the transferring party is
 still communicating with the transferred party. In other
 words, blind transfer and transfer and hold appear identical
 to the transferred-to party.

3.3 Transfer with Consultation

 This service is similar to blind transfer. However, the transferring
 party first contacts the transferred-to party to approve the transfer
 through multimedia communication. Pending approval, the transferring
 party then simultaneosly disconnects from the transferred-to and
 transferred parties, and connects the transferred and transferred-to
 parties. The transferring and transferred parties stay connected if,
 for some reason, the transfer fails.

 The requirements for this service are more complex. They include:

 o The transferring party should not need to know ahead of time
 that they will transfer the call to the transferred-to party.
 In other words, it should not be neccesary to know ahead of
 time that the consultation call (between the transferring and
 transferred-to parties) is for the purposes of a transfer.

 o The transferred party should be able to know that they are
 being transferred

Schulzrinne/Rosenberg [Page 5]

Internet Draft SIP Control June 17, 1999

 o The transferred party should be able to know to whom they are
 being transferred

 o The transferred party should be able to decide whether to
 accept or reject the transfer

 o The transferred party should be able to verify that they are
 being transferred by the transferring party

 o The transferred-to party should know that they are being
 transferred-to

 o The transferred-to party should be able to know the identity
 of the transferring party

 o The transferred-to party should be able to know that the
 transferred party is being transferred as a result of the
 consultation call in progress with the transferring party.

 o The transferred-to party should be able to accept or reject
 the transferred call just like any other call

 o If the transferred-to party accepts the transfer, the
 transferring party should be able to know this

 o If the transferred-to party rejects the transfer, the
 transferring party should be able to know this

 o The call between the transferring and transferred-to party
 terminates at the same time as the call between the
 transferring and transferred party, should the transfer be
 successful

 This service is harder to implement. To be done in a distributed
 manner requires that information on the success of the call between
 transferred and transferred-to parties is communicated back to the
 transferring party.

3.4 Multi-party Conferencing

 Multiparty conferencing allows multiple participants to
 simultaneously exchange media so that each party hears media from
 every other one. There are many flavors of this service.

3.4.1 Loosely Coupled Multicast Conference

 In this flavor, there is a very large conference, for which multicast
 is being used to distribute the media. The conference is large enough

Schulzrinne/Rosenberg [Page 6]

Internet Draft SIP Control June 17, 1999

 so that there is not a direct signaling relationship between all
 parties. Session participants simply join the multicast group, and
 learn about each other through RTCP [3]. This kind of conference
 model is often referred to as a loosely coupled conference

 The main requirement is to be able to invite another participant to
 join in this conference. In fact, this kind of conference is readily
 supported by baseline SIP, as it was the initial application for it.
 The only new requirement is that the called party needs some way to
 know that there will not be an actual SIP session - no BYE will ever
 arrive (nor should one be sent). The INVITE delivers the session
 invitation, and thats it. Relying on session parameters for this is
 undesirable, since it leads to a dependency between SIP behavior and
 the specific session type. Furthermore, it may not be possible to
 ascertain from the media session whether an actual SIP session is
 needed.

3.4.2 Distributed Full Mesh

 In this conference model, each participant has a SIP signaling
 session open with each other participant. The media session may be
 multi-unicast or multicast. To support these conferences, the
 signaling must provide support for:

 o Transitioning gracefully from a normal two-party call to a
 conference without knowing apriori this will happen

 o Adding parties to the conference

 o Leaving the conference

 The requirements for the service are:

 o Any member of an existing conference can add another party to
 the conference.

 o The new party should know they are being asked to join an
 existing conference.

 o The new party should be able to accept or reject the
 invitation to join the existing call.

 o If the new party rejects the invitation to the conference, no
 other participant should have received any messages which
 indicates they were ever asked to join the conference

 o The new party should be able to know, within the limits of
 synchronization of state across participants, the current set

Schulzrinne/Rosenberg [Page 7]

Internet Draft SIP Control June 17, 1999

 of participants in the call before they decide whether to
 reject or accept the invitation.

 o Each participant in the call should learn that a new party is
 being added.

 o Each participant in the call should be able to
 cryptographically verify that the new party has been invited
 by a specific participant.

 o Each participant in the call should be able to decide whether
 to accept or reject the new participant.

 o If any existing participant in the call rejects the new
 participant, the new participant is not added to the call at
 all.

 o The inviting party can learn the success or failure of the
 addition of the new party.

 o Each participant should be able to know whether the new party
 was successfully added or not.

 o Any participant should be able to leave the conference at any
 time.

 o Each participant should know within a short period of time
 when some other participant has left

 o A participant who leaves the conference should have its SIP
 signaling relationship terminated with all other participants.

 o It must be possible for two participants to simultaneously add
 a new party to the conference.

 o It must be possible for a participant to add another to the
 conference while some other participant leaves the conference.

 o The existence of the conference does not depend on the
 presence of any single user in the conference.

 o The conference terminates when the last two parties terminate
 their signaling relationships.

 It is important to note that this kind of conference does not require
 the use of a centralized conference controller.

3.4.3 Dial-in Bridge

Schulzrinne/Rosenberg [Page 8]

Internet Draft SIP Control June 17, 1999

 Another conferencing application is the "dial-up bridge". In this
 scenario, a media bridge is used, and this device also acts as a
 centralized signaling server. Users join the conference by "dialing-
 in", which means they try and initiate a SIP session with the
 conference bridge directly. Participants do not maintain a signaling
 session with each other. Rather, each participant maintains a single
 SIP session with the conference bridge.

 The requirements for this kind of conference are:

 o It should not be neccesary for a participant to know apriori
 that they are contacting a dial-up bridge - it should take
 place as a regular SIP call.

 o Participants should be able to join the conference at any time
 by dialing in.

 o Participants should be able to invite another participant to
 join the conference call.

 o Participants should still be able to learn, through some
 means, the identity of the other participants in the call.

 o Participants should be able to leave the conference at any
 time.

 o When a participant leaves or joins, this information should be
 propagated to all other conference participants through some
 means besides tones or announcements in the media stream.

 o It must be possible for the conference bridge to authenticate
 the identity of participants.

3.4.4 Ad-hoc Bridge

 This service is not so much another conferencing model, as a
 transition mechanism between conferencing models. A conference starts
 out as a fully distributed mesh. These conferences become unwieldy as
 this number of participants approaches tens to hundreds. Someone in
 the conference then decides to transition the call to a conference
 bridge. The bring a conference bridge into the call, and then
 instruct each participant to drop their signaling relationships with
 the other participants in favor of a single signaling relationship
 with the bridge. After the transition is complete, the conference
 runs similar to the dial-in bridge case. However, there are some
 distinctions. In the dialup conference, any participant can join in
 without being invited if they know a conference code of some sort. In
 the ad-hoc bridge case, participants must still be actively invited.

Schulzrinne/Rosenberg [Page 9]

Internet Draft SIP Control June 17, 1999

 The requirements for this service are:

 o The transition must be at the behest of one of the
 participants.

 o Any participant can cause the transition to take place.

 o It is not necessary for the protocol to detect and resolve
 simultaneous transitions. It is assumed that the persons in
 the conference would coordinate this themselves.

 o The conference should continue to be operable during the
 transition

 o Participants should be informed of the transition, but it must
 be possible for the perception to be that there has been no
 change.

 o It should be possible for some participants to accept the
 transition, and appear through the bridge, and for others to
 remain in full mesh.

 o Participants should be able to leave the conference at any
 time, including the transition period.

 o Participants should be able to invite others to the
 conference, even during the transition period. The mechanism
 for inviting them should not depend on the fact that a
 transition is taking place.

3.4.5 Conference out of Consultation

 In this service, a user A has a call in progress with B, and a
 separate call in progress with C. These calls are unrelated, with
 different Call-ID's. From this double call scenario, the conference
 out of consultation service allows the calls to be merged, resulting
 in a single, full-mesh conference, as described above.

 The requirements for this service are:

 o Only participant A can invoke the service

 o It must not be neccesary for A to know that he will merge the
 two calls before any or either of them is made

 o It must not be neccesary for A to have been the initiator of
 the calls that are being merged

Schulzrinne/Rosenberg [Page 10]

Internet Draft SIP Control June 17, 1999

 o It must be possible to merge an arbitrary number of calls

 o The participants being merged must be informed that the
 merging is taking place

 o A participant must be able to reject the merge, in which case
 they are disconnected with all parties

 o A participant must be able to verify that A was the party that
 initiated the merge.

4 Discussion of Implementation Options

 This section discusses some of the technical issues in designing a
 protocol mechanism to support the above requirements.

4.1 Transfer

 For the discussion which follows, we assume the transferring party is
 A, the transferred party is B, and the transferred-to party is C.

 The nature of the transfer service is that the transferred party (B)
 must be informed about the transfer and accept it before C (the
 transferred-to party) is contacted. This implies that the messaging
 flow for the service must consist of a message from A to B, and then
 B to C.

 The message from A to B must simultaneously disconnect A and B, and
 alert B about the transfer. This is most readily accomplished by
 including some kind of header in the BYE message which indicates that
 B should initiate a call to C. This header is the Also header, which
 is described in greater detail in section 5.1. It contains the
 address of a participant, along with a signed token. This token is
 the signature over the sender of the message (the From field), the
 address in the Also header, and the Call-ID. Since C needs to know
 that he is being contacted as a result of a transfer, the INVITE from
 B to C must contain some kind of header indicating that it was A who
 asked for the transfer. This header needs to contain A's name along
 with the authorization token from the Also header. This token allows
 C to verify that A requested the transfer to C for this particular
 call. This header is the Requested-By header, described in greater
 detail in section 5.3.

 Therefore, the basic transfer messaging flow is simple. A sends a BYE
 to B, containing an Also header listing C. The BYE causes A and B to
 be disconnected. User B is alerted about the transfer. If accepted, B
 sends an INVITE to C, including a Requested-By header in the INVITE.

Schulzrinne/Rosenberg [Page 11]

Internet Draft SIP Control June 17, 1999

4.2 Full mesh conferences

 We assume the conference starts as a standard two party call in SIP.
 One of the parties wishes to add a third to the conference. Based on
 the requirements, the new party needs to first be asked if they wish
 to join the conference. This implies that messaging begins with the
 inviting party (party A) sending a message to the new participant
 (party B). This message must contain a list of the other
 participants. If the invitation is acceptable to B, B can begin to
 join the conference. To join the conference, a signaling relationship
 must be established between B and all other participants. This can be
 done by having existing participants contact B, or B contacting
 existing participants. Since B has the list of participants in the
 initial INVITE from A, the most efficient approach is to have B
 contact each participant directly.

 Thus, in the simplest scenario, A (who is in a call with C), sends an
 INVITE to B. This INVITE contains an Also header, indicating C. B
 sends an INVITE to C, containing a Requested-By header naming A. C
 accepts, and then B sends a 200 OK to A. Now, there is a signaling
 relationship between all parties. Adding additional parties is done
 in a similar fashion.

 On the surface, this simple mechanism appears sufficient. However, it
 is not. Consider the following problematic cases (assume A,B, and C
 are already in a conference):

 o While A is adding D, B adds E. Since A did not tell D about E
 (as it didn't know about E), D may not know of E's existence.
 This results in a partially connected conference.

 o While A is adding D, B sends a BYE to the group. If this BYE
 is sent by B before the INVITE from D arrives at B, B should
 respond to the INVITE with an error. As far as B is concerned,
 the INVITE has failed, and it responds with an error to A.
 What should A do now? It cannot tell whether the add party
 failed because someone left the group, or because someone
 refused to add that party. In one case, the add should be
 tried again, and in the other, it should not. Even worse,
 should B accept the call from D, a partially disconnected
 conference will occur.

 o What happens if a transfer takes place at the same time as an
 add party?

 o A participant leaves the conference, but fails to send a BYE
 to all the other participants (either on purpose or by
 accident). The result is a partially disconnected conference.

Schulzrinne/Rosenberg [Page 12]

Internet Draft SIP Control June 17, 1999

 The problems can all be categorized as difficulties in synchronizing
 a distributed database. The database, in this case, is the set of
 participants. This database is replicated at each participant. The
 database is dynamic, with each participant owning the entry in the
 database corresponding to itself. As changes occur, everyone must be
 quickly synchronized to achieve a consistent view of the conference
 participants.

4.2.1 Approach I: Caretaker

 In this approach, the party (A) that invites another (D) to the
 conference is its caretaker. When A adds D, it informs D of the other
 participants it knows about. D then sends an INVITE to each of these
 in turn, establishing a signaling relationship. Should the
 participant list (at A) change during the time D is being addded
 (until a 200 OK arrives from D), A makes note of these changes, and
 then propagates them to D.

 The difficulty with this approach is there is no easy way for A to
 know when it can cease being caretaker for D. Lets say A invited D,
 and told it to contact B and C, which it did. After receiving the 200
 OK from D, A receives an INVITE from E, a new party added by B. Now,
 does A need to inform D about E? If B had invited E after knowing
 about D, A does not have to inform E, but if B invited E before
 knowing about D, A does have to inform D.

 Furthermore, should the caretaker itself leave the conference, the
 mechanism ceases to work. As a result, we don not believe this
 approach is viable.

4.2.2 Approach II: Flooding

 We make the following important observation:

 synchronization of the set of participants in a fully
 meshed multiparty conference is similar to the problem of
 database synchronization in link state routing protocols,
 like OSPF.

 Based on this, we can develop mechanisms for SIP based on the same
 synchronization, flooding, and adjacency notions in OSPF. We further
 observe that this approach has already been used as the basis for
 existing conferencing mechanisms [4].

 To solve the first problem above, we introduce additional semantics
 and behavior into the Also header. When A invites D into the
 conference, the INVITE includes an Also header listing B and C. This

Schulzrinne/Rosenberg [Page 13]

Internet Draft SIP Control June 17, 1999

 prompts D to send an INVITE to both B and C. In OSPF terminology,
 this effectively establishes an adjacency between D and B, and D and
 C. These INVITEs contain Also headers as well, listing the set of
 participants the D believes is in the call.

 When B and C receive this INVITE, they compare the set of
 participants in the Also header with the set of participants they
 believe are in the call. Note that this is effectively the same
 operation as database synchronization in OSPF. The result is three
 sets for each pair (assume B below):

 S1: S1 is BD - the intersection of the set of participants B and D
 both believe to be in the conference.

 S2: S2 is B - BD - the set of participants B believes to be in the
 conference, but D is not aware of

 S3: S3 is D - BD - the set of participants D has been asked to
 contact, which are not known to B

 First consider S2. There are only two ways this inconsistency can
 happen. The first way is that B has learned of a new participant
 before A issued the add party to D. The second is that A has learned
 the party has left the call before the INVITE from D arrives at B.
 Unfortunately, the desired behavior is different in each case. If B
 is correct, and a new party has joined, B should return the address
 of the party in the 200 OK to the INVITE from D. This would prompt D,
 in turn, to add those parties. On the other hand, if B is wrong, and
 the party has left the conference, B should say nothing in the 200 OK
 about this participant.

 To enable these differing cases, we can add two additional pieces of
 information to the addresses in the Also header. These are the
 participant state (either active or inactive), and the version
 number. When a participant receives a BYE from another, they mark
 that participant as inactive, and hold onto the state for a short
 duration (time TBD). This member is included in Also headers as other
 participants, but they are marked as inactive. Based on this, in the
 case above, B can ascertain the right behavior.

 The version number satisfies a different need. What happens if the
 participant that left, comes back because they are re-INVITEd? In
 this case, some of the participants will think this participant is
 inactive, and others will consider them active. To determine which
 piece of state is correct, the version number increments each time
 the state changes. The version with the highest value is always the
 most recent. (TBD: who sets this? Can't always be the originator).
 This is identical to the use of sequence numbers in LSA's in OSPF.

Schulzrinne/Rosenberg [Page 14]

Internet Draft SIP Control June 17, 1999

 Consider now the set S3. When B receives the INVITE, this represents
 the set of users D claims is in the conference, but B does not know
 about. Since B keeps a cache of users who have left the conference, B
 can be sure these are new participants that it has not learned of
 yet. B should then send an INVITE to these users to establish
 signaling relationships with them. As with other INVITEs' the Also
 field contains B's perspective on the set of conference participants.
 This is effectively the same process as flooding of new LSA's in
 OSPF.

 TBD: How is requested-by handled in these various cases?

 We believe the flooding approach to be robust and well-proven from
 many other protocols.

4.3 Dial-up Bridges

 Dial up bridges are easily supported. We model them as virtual users.
 When a user wants to join a dial-up conference, they send an INVITE
 to the conference bridge. The bridge answers the call, and
 establishes a point to point signaling relationship with the new
 participant. The bridge performs the mixing locally, and sends the
 mixed stream to each participant separately. As far as each
 participant is concerned, they have a single signaling relationship
 with one other entity - the conference server.

 Fortunately, this does not prohibit each party from learning the
 identity of the others in the call. The bridge is effectively an RTP
 mixer. As such, it can use contributing sources (CSRC) in the RTP and
 RTCP packets to identify the other participants in the call.

 A user leaves the conference by hanging up with the bridge, as they
 would hang up with any other user in a normal two party call.

 An important issue is how conferences are identified. In the
 telephone network, there is usual a dial-in number and a passcode
 that the participant must know. In SIP, there are many more
 possibilities:

 o The conference is identified by a single URL -
 sip:conference332@conferences.com, for example. A user sends
 an INVITE to this address. The bridge identifies the
 conference by looking at the URI in the Request-URI.

 o There is a single URI for each bridge -
 sip:bridge3@conferences.com. The specific conference is
 identified by a passcode sent as the password in the URI:
 sip:bridge3:9987097@conferences.com.

Schulzrinne/Rosenberg [Page 15]

Internet Draft SIP Control June 17, 1999

 o The conference is identified by a single URL, as in the first
 case. However, participants must also have a passcode. When
 the server receives an INVITE for this URI, it responds with a
 401 demanding digest authorization. The shared secret used for
 authenticating the caller is the passcode.

 o The conference is identified by a single URL, as in the first
 case. The server is programmed with the public keys of those
 participants allowed to join. When a participant tries to join
 the conference by sending an INVITE to its address, the server
 uses PGP authentication to verify the user is one of those
 permitted. This allows for tight, per user controls on
 conference participation.

 Some have suggested identifying the conference by Call-ID. We do not
 believe this is the right approach. The Call-ID represents a SIP
 signaling relationship shared among two or more users. Since, in the
 conference bridge case, each user has a separate signaling
 relationship with the bridge, using a common Call-ID is not
 appropriate.

 Note that, based on this description, dial-in conferences are readily
 supported in baseline SIP without any extensions. However, the
 situation is more complex when a participant wishes to add another to
 the conference.

 We believe it is essential that the act of adding a party to a
 bridged conference is no different than the act of adding a party to
 a fully meshed one. Consider a bridged conference with participants
 A, B, and C. Each has a signaling relationship with the bridge, X. A
 wishes to bring D into the conference. Using the same mechanisms as
 for fully meshed conferences, A sends an INVITE to D, with the Also
 header indicating X. D then sends an INVITE to X, which accepts. The
 result is that D has a signaling relationship with the bridge, but is
 still maintaining its signaling relationship with A.

 To resolve this, the bridge needs to step up and instruct D to
 effectively abandon its signaling relationship with A (and vice a
 versa). This does not mean the bridge wants A to send an BYE to D.
 Rather, the bridge wants another one call leg to subsume another. For
 D, this means that the D-X call leg should subsume the D-A call leg.
 To accomplish this, the bridge sends an INVITE to D with a header
 called Replaces. Replaces indicates that the call leg the INVITE
 arrived on is subsuming the one identified in the header. The
 Replaces contains the address of A. The request must also be
 authenticated, since the Replaces header presents a powerful DOS
 attack. Users should accept an INVITE with a Replaces header only
 after either requesting confirmation from the user, or if the request

Schulzrinne/Rosenberg [Page 16]

Internet Draft SIP Control June 17, 1999

 is signed by an authorized bridging service.

4.4 Conference out of Consultation

 In this service, A is in a call with B, and separately, A is in a
 call with C. These are two separate calls, and thus have identical
 Call-IDs. Transitioning to a full mesh multiparty conference is
 relatively straightforward. A can simply send an INVITE to B, with an
 Also listing C. As far as B is concerned, the process is a normal add
 party.

 The only difference is that the Call-ID is different in both calls.
 Thus, the INVITE to C from B would not appear to be for the same
 call. To resolve this, A must effectively change the Call-ID with B,
 and then perform an add party. The change in Call-ID is accomplished
 by having A send an INVITE to B (using the Call-ID from the A-C
 call), with a Replaces header containing the A-B Call-ID and A's
 address. The Replaces header has the same semantic here as in the
 bridged conference case above. The call leg identified in the
 Replaces header is subsumed by the call-leg of the INVITE.

 Once this transition has taken place, A can send an INVITE to B,
 containing Also:C, as discussed above.

 If the calls being connected are multi-party calls, the situation is
 more complex. (TBD: does this mechanism work for bridging two full
 mesh calls?)

4.5 Ad-hoc conference bridging

 To support an ad-hoc conference bridge, the following operations must
 take place:

 o One of the parties in the call must contact a bridge,
 informing it of the set of participants

 o The bridge must contact those participants, and cause them to
 replace their signaling relationship with the other parties
 with the relationship with the bridge

 To support the first, the initiator sends a message to the bridge,
 containing the list of participants. We use an INVITE method for
 this, and the participants are listed in the Also headers. It is not
 clear if this is the right approach. The semantics of INVITE with
 Also are not the same here. The bridge is not being asked to join the
 call, rather, its being asked to take over the the signaling and
 media connectivity for the call. For this reason, it might be
 appropriate to define a new method to indicate this, or perhaps a new

Schulzrinne/Rosenberg [Page 17]

Internet Draft SIP Control June 17, 1999

 header or parameter to Also.

 Once the bridge has been contacted with the list of participants, it
 must send an INVITE to each (using the same Call-ID as the current
 call) to establish a relationship with them. This call leg must
 eventually replace the call legs the user has with all the other
 users. However, the user should not subsume a call leg with some
 other user until the bridge has succesfully contacted that other
 user.

 For this to work, the initial INVITE with each user is treated as a
 normal add-party. The Also list contains those users the bridge knows
 about (initially, those the initiator told the bridge about). As far
 as the contacted user is concerned, a normal add party is taking
 place. The response is (under normal cases) a 200 OK containing those
 additional parties the contacted user knows about. This way, if a
 user was in the process of an add party while someone else
 transitioned to a bridge, the bridge can learn about the new party.
 Should the user add parties after being contacted by the bridge, the
 user will tell the new party about the bridge. This allows the bridge
 to learn about all users that come (and go) during the transition
 period.

 Once the bridge has completed contacting all participants in the
 party, it attempts to subsume the various call legs into its own call
 leg. To do this, it sends another INVITE to each participant, listing
 those call legs which must be subsumed. In the case where a
 participant has added another user after the response to the bridges
 initial INVITE was sent, but before the the "subsuming INVITE"
 arrives, things still work. The new party will be informed about the
 bridge, contact the bridge, and the bridge accepts. The bridge can
 then send another INVITE to each user subsuming this particular new
 call leg.

4.6 Transfers to Multiparty Conferences

 This situation is more complex than normal transfers. We first
 consider the case of a full mesh signaling relatioship. Assume A, B,
 and C are already in a call. A wishes to transfer both B and C to Z.

 Extending the mechanism for a single party call is the ideal choice.
 In this case, A would ask B to contact Z, and A would ask C to
 contact Z. Everything works fine so long as (1) both B and C perform
 the transfer (i.e., both contact Z), and (2) Z accepts both B and C's
 invitations. However, if these assumptions fail to hold, the
 resulting transfer will only partially complete. For example, it is
 possible that only A gets transferred to Z.

Schulzrinne/Rosenberg [Page 18]

Internet Draft SIP Control June 17, 1999

 Whether this behavior is acceptable or not is a good question. We
 believe that since the blind transfer mechanism has no guarantees on
 success (the transferring party disconnects in either case), this
 behavior is acceptable.

 Another issue that arises for multiparty conference transfers is a
 flooding effect at the transferred-to party. If a large number of
 participants where transferred, Z would receive, in rapid succession,
 an INVITE from each. To facilitate a usable application, Z should not
 really prompt the user about accepting each of these parties. Rather,
 it should accept them all if it accepts the first. So, we therefore
 have the rule: if a user accepts a transfer, it must accept all other
 parties which have been transferred.

 The specific mechanism is the same for multiparty conferences. A
 sends a BYE to B and C containing an Also header listing Z. B and C
 send a 200 OK to the BYE, and then send an INVITE to Z. This INVITE
 contains a Requested-By header listing A. When Z gets the first of
 these, it alerts the user and accepts the call. (TBD: should these
 triggered INVITEs contain Also's? Probably. But, in this case, Z is
 going to get the first INVITE with lots of Also's. Many of these (but
 perhaps not all) will eventually contact Z directly. So, should Z
 send an INVITE to those in the Also headers it doesn't know about
 already? Perhaps it should wait a while to see who contacts it first.
 As an alternative, the BYE from A can contain Z's address, PLUS those
 it send the BYE to. As a result, the INVITE from B or C to Z would
 only contain those users in the Also which Z did not list in the BYE.
 What is the right approach here?)

5 Header Syntax

 This section defines the syntax for the three new headers defined
 here - Also, Replaces, and Requested-By.

5.1 Also

 The Also header is used to list other participants in a call. It is a
 request and response header, and contains a list of SIP URI's, along
 with some special parameters.

 Also = ``Also'' ``:'' 1#Also-Values
 Also-Values = name-addr [parameters]
 parameters = 1*parameter
 parameter = ``;'' (status-param | version-param | crypto-param)
 status-param = ``status'' ``='' (``active'' | ``inactive'')
 version-param = ``version'' ``='' 1*3digit

Schulzrinne/Rosenberg [Page 19]

Internet Draft SIP Control June 17, 1999

 crypto-param = ``token'' ``='' token

 The crypto-param is a token which is copied into the Requested-By
 header for requests that are "triggered" as a result of an Also
 header. The token is a signature over the URI of the entity
 generating the Also header, the address in the Also header itself,
 and the Call-ID. See section 6.1 for details on its computation.

5.2 Replaces

 The Replaces header is used to indicate that the call leg identified
 in the header is to be subsumed by the one initiated by this INVITE.
 It is a request header only, valid only in INVITE messages. The
 syntax is:

 Replaces = ``Replaces'' ``:'' 1#Replaces-Values
 Replaces-Values= SIP-URI [call-id-param]
 call-id-param = ``;'' ``call-id'' ``='' token

 When the call-id parameter is not present, it is presumed to be the
 same as the Call-ID of the INVITE itself.

5.3 Requested-By

 The Requested-By header is a request header only. It identifies the
 participant who asked the UAC to send the request. The syntax is:

 Requested-By = ``Requested-By'' ``:'' name-addr [req-params]
 req-params = ``;'' token-param
 token-param = ``token'' ``='' token

6 Also and Requested-By Header Semantics

 This section overviews the detailed semantics associated with the
 Also and Requested-By headers.

6.1 Sending an Untriggered INVITE

 When a UAC sends an INVITE containing an Also header, without having
 been asked by some other UAC to do so, it is called an untriggered

Schulzrinne/Rosenberg [Page 20]

Internet Draft SIP Control June 17, 1999

 INVITE. Untriggered INVITEs are sent when a user wishes to add
 another user to a call, or to perform a transfer and hold service.
 Other uses may exist.

 An untriggered INVITE MUST NOT contain a Requested-By header. This
 header is used to determine whether an INVITE is triggered or not.

 When a UAC sends an untriggered INVITE containing an Also header, it
 implies that the UAC wishes the recipient to send an INVITE to those
 parties listed in the Also headers. If sent to a party not already in
 the call, the INVITE effects an add party operation. If sent to a
 party already in a call, it affects a transfer and hold operation. To
 ensure fully connected conferences, it is RECOMMENDED that a UAC
 include a URI for each participant it is aware of.

 Each element in the Also list should additionally contain a status
 and a version parameter. If the UAC believes the participant is no
 longer in the call, the status parameter is set to inactive,
 otherwise its active. The version parameter contains the version of
 the status for each participant that the UAC is currently aware of.

 The Also header SHOULD contain a token parameter for each URI listed.
 This parameter is computed in the following fashion:

 1. Initialize a string to the value of the Call-ID.

 2. Append the URI from the Also, not including any
 displaynames, but otherwise including all URI parameters.
 Also append the Also parameters status and version.

 3. Append the URI that will be included in the From field of
 the INVITE.

 4. Append the URI that will be included in the To field of the
 INVITE.

 5. Compute a signature over this field, using a XXX hash and
 encryption using XXX.

 6. The signature is then base64 encoded. The result is the
 token.

 The response to the INVITE is a non-200 value if the UAS failed to
 establish a call leg with all the participants listed in the Also
 fields, or if the UAS was unwilling or unable to execute the request.

 A 200 OK response means that the UAS successfully established the
 call with those participants which have not already left the call. In

Schulzrinne/Rosenberg [Page 21]

Internet Draft SIP Control June 17, 1999

 other words, if A sends an untriggered INVITE to B, containing C in
 the Also header, B will send an INVITE to C. If C has left the call
 (a fact which A did not know yet), C will respond with a specific
 error code indicating this. In this fashion, B will know that it may
 still respond with a 200 OK to A should all other call legs become
 established. Furthermore, if other participants have joined the call
 since A sent the INVITE to B, B may have established call legs to
 them as well. The triggered INVITE will fail if B fails to establish
 a call leg with those participants, even if they are not listed in
 the Also header.

 Thus, a UAC SHOULD NOT treat a 200 OK to an untriggered INVITE as an
 indication that a call leg was established with all (and only) the
 participants listed in the Also header.

6.2 Receiving an Untriggered INVITE

 A UAS can determine whether or not an INVITE was triggered or
 untriggered based on the presence of the Requested-By header.
 Presence of this header means that the INVITE was triggered, and its
 absence implies untriggered.

 If the UAS receiving the INVITE is not currently in the call
 identified by the Call-ID, the UAS is being invited to join an
 existing call as a new member. The UAS SHOULD alert the user and ask
 for confirmation.

 If the UAS receiving the INVITE is currently in a call identified by
 the Call-ID, the UAS is being transferred and held. The UAS SHOULD
 alert the user and ask for confirmation.

6.2.1 New Call

 The UAS SHOULD send a 100 Trying response. If the transfer or add
 party request is not acceptable to the user, a 6XX response SHOULD be
 sent to the UAC. If the transfer/add-party is acceptable, the UAS
 MUST NOT respond definitively at this point.

 Instead, the UA formulates an INVITE for each participant listed in
 the Also header. Each INVITE MUST also contain a Requested-By header.
 This header is formed by attaching the URI in the From field in the
 INVITE to the Requested-By header. The token from the element in the
 Also field is copied to the token parameter in the Requested-By
 header. The URI for the Also field is copied into the To field of the
 INVITE. The remaining fields are initialized as they would be for any
 other INVITE sent by this UA. The INVITE's generated by the UA are
 called triggered INVITEs.

Schulzrinne/Rosenberg [Page 22]

Internet Draft SIP Control June 17, 1999

 The UA also formulates an internal participant list. This list
 contains a set of URIs for each user, and for each, a version and
 status parameter. This list is initialized to the set contained in
 the Also header in the INVITE. This list is also placed into the Also
 headers of each triggered INVITE. The token in the Also field is
 generated as described in section 6.1. Note that this is NOT the same
 token received for this Also element in the untriggered INVITE. It is
 regenerated with the UA as the originator.

 Each triggered INVITE is then sent. The INVITEs MAY be sent in
 parallel, or MAY be sent sequentially, or MAY be sent in any
 groupings deemed appropriate. However, for sake of low latencies,
 sending the triggered INVITEs all at once is RECOMMENDED.

 If the UA receives a response to any of these INVITEs that is not 200
 or 6XX (Not in Call), the UA determines that it was not successfully
 added to the call. It MUST send a BYE to those participants which:

 o responded to a triggered INVITE with a 200

 o have not yet responded

 o sent it a triggered INVITE for the same call

 The latter case occurs when another party in the call (who has
 received an INVITE from the UA) adds a new party as well. This new
 party is informed of the UA, and sends it a triggered INVITE.

 The UA MUST then respond to the original untriggered INVITE with an
 error code (TBD: what code?).

 If a response to a triggered INVITE is a 200, this response may
 contain additional Also headers. These headers contain additional
 participants that the recipient of the triggered INVITE knew about,
 but the UA did not. The 200 may also contain updated status on
 participants the UA knew about.

 The UA uses this list to update its own list of participants. New
 users learned about from the 200 OK are added to the list. Users
 listed in the 200 OK, which are known to the UA, but whose version
 number in the 200 OK is higher, are updated.

 If the resulting update generates new active members, the UA MUST
 generate additional triggered INVITEs for them. The generation of
 these triggered INVITEs is identical to the above process, with an
 important difference. The URI in the Requested-By field is copied
 from the To field in the 200 OK. 200 responses to these triggered
 INVITEs may cause further triggered invites.

Schulzrinne/Rosenberg [Page 23]

Internet Draft SIP Control June 17, 1999

 If the resulting update causes members to move from active to
 inactive, the UA should not send them a triggered INVITE if it has
 not already done so.

 If the response to a triggered INVITE is a 6xx (not in call), the UA
 changes the status of that member to inactive, and increments the
 version number (TBD: should this be an increment? Perhaps the 6xx
 should contain the new version number).

 Once responses have been received to all triggered INVITEs, all of
 which were either 200 or 6xx, the UA responds to the original INVITE
 (TBD: should this contain an Also list?). The UA is now in the call.

6.2.2 Existing Call

 When a UA receives an INVITE containing an Also field, but no
 Requested-By field, the INVITE is to transfer/hold the UA.

 If the originator of the INVITE is not already in the call, the
 INVITE is ignored. A 200 OK response is sent, however. (Transfers can
 only take place from parties already in the call). Those users in the
 Also header, who are already in the call, are ignored. If there are
 no remaining users from the Also list, the INVITE is ignored.

 The UA then generates triggered INVITEs to the remaining UA's in the
 Also list. The behavior from this point forward is identical to
 processing triggered INVITE responses in the previous section.

6.3 Receiving a Triggered INVITE

 When a UA receives an INVITE containing a Requested-By header, it has
 received a triggered INVITE. If the INVITE is for a new call, the UA
 has just been transferred-to. If the INVITE is for an existing call,
 the UA is being informed of a new party in this call.

6.3.1 New Call

 The UA has just been transferred-to. The Requested-By header contains
 the address of the transferring party. The UA SHOULD verify that the
 token in the Requested-By header is valid. This will verify that the
 transferring party is, in fact the one listed, and that this party
 did, in fact, transfer the user listed in the From field. If the
 token is not verified, the UAS SHOULD respond with a 4xx code, and
 SHOULD NOT alert the user.

 If the token is verified, the UA SHOULD alert the user, and ask for
 confirmation. If the user rejects the transfer-to, the UAS SHOULD
 send a 6xx response.

Schulzrinne/Rosenberg [Page 24]

Internet Draft SIP Control June 17, 1999

 In either case, the UA MUST remember that it rejected the transfer
 for this Call-ID. Subsequent triggered INVITEs for the same call MUST
 be responded to with the same error response code. The UA MUST cache
 its rejection of this transfer (identified by the Call-ID and URI of
 the transferring party) for at least XX minutes. (TBD - what happens
 if a very old INVITE arrives after the cache expires, and the user
 accepts this time - we get a partial disconnect). The UA SHOULD alert
 the user if it receives a triggered INVITE with a different user
 listed in the Requested-By header, and MAY respond differently to
 this transfer.

 If the INVITE is acceptable, the UA sends a 200 OK. Processing of
 subsequent triggered INVITEs (one will likely come from each
 participant in the call) follows the rules below for an existing
 call.

6.3.2 Existing Call

 When a UA receives a triggered INVITE for an existing call, the
 INVITE is an attempt to inform the participant of new members for
 that call.

 The UA SHOULD first verify the token. It does so by computing the
 hash of the Call-ID, To address, Requested-By address, and From
 address. This is compared to the decrypted value of the token using
 the public key of the user listed in the Requested-By. If the two
 match, the token is verified.

 If the token is not verified, the INVITE is rejected with a 4xx
 response. If the token is verified, the UA checks to see if the user
 listed in the Requested-By is an active call participant. If they are
 not, the INVITE is rejected with a 4xx response (TBD: is there a case
 where the UA might not know about this participant yet?). If the user
 is a participant, the INVITE is accepted. The user SHOULD NOT be
 alerted.

 The list of users in the Also header is then examined. If this list
 contains users already known to the UA, the local list of
 participants is updated if the version number is higher. If the list
 contains users not known to the UA, they are added to the local list
 of participants.

 The UA then computes a difference set between its updated list and
 the list in the Also header. This set includes any users in its local
 list and not in the Also list. The set also includes users in both
 lists, but whose version is higher in the local list. This set is
 included in the Also header in the 200 OK to the INVITE. The token in
 the 200 OK is generated as described in 6.1.

Schulzrinne/Rosenberg [Page 25]

Internet Draft SIP Control June 17, 1999

 The UA then computes a second difference set between its updated list
 and the list in the Also header. This set includes any users in the
 Also list not in its local list. The set also includes users in both
 lists, but whose version is higher than in the local list. The active
 users from this set are then sent triggered INVITEs. The Requested-By
 and Also fields in these triggered INVITEs are computed as described
 above. The inactive users in this set are then sent triggered BYE's.
 The Requested-By and Also fields in the triggered BYEs are computed
 in the same fashion as triggered INVITEs, except a triggered BYE
 contains no Also fields.

6.4 Sending an untriggered BYE

 A UA MAY send a BYE, containing Also headers, at any time. This BYE
 simulataneously terminates a call leg with the recipient, and causes
 the recipient to attempt to set up a call leg to the parties listed
 in the Also header. Unlike the INVITE, the BYE response is sent
 immediately, without first adding the various parties. Sending an
 untriggered BYE is equivalent to a blind transfer.

 The Also headers in the untriggered BYE MUST contain tokens. These
 tokens are generated in the same way described in section 6.1.

6.5 Receiving an untriggered BYE

 If the BYE corresponds to an existing call leg, the UA sends a 200 OK
 to the BYE. If it does not, it sends a 481.

 The UA then generates triggered INVITEs to all participants listed in
 the Also field. Generation of the triggered INVITEs, and processing
 of their responses, is done in the same fashion as described in

section 6.1. The difference is, of course, that no additional
 response is sent to the BYE.

6.6 Receiving a triggered BYE

 If the BYE doesn't correspond to an existing call leg, the UA sends a
 481. The UA then validates the token in the Requested-By header. If
 it is validated, a 200 OK is sent to the BYE, and the call-leg is
 torn down.

7 Replaces header semantics

 The Replaces header is used to allow one call leg to subsume another.
 The new call leg is identified by the combination of To, From, and
 Call-ID in the INVITE carrying the Replaces header. Replaces is a
 request header only, and MUST appear only in INVITEs. A UAS receiving
 a Replaces header in a non-INVITE request MUST respond with a 4xx

Schulzrinne/Rosenberg [Page 26]

Internet Draft SIP Control June 17, 1999

 status code.

 The request containing a Replaces header SHOULD be authenticated.

 The Replaces header contains a list of call-legs, identified by the
 URI of the remote party and a Call-ID. If any of these are not valid
 call-legs as known to the UAS, the INVITE MUST be responded to with a
 4xx status code. Otherwise, the UAS "abandons" each call leg listed -
 acting as if it had never been established. No BYE is sent. A 200 OK
 is then sent to the client.

 If a BYE additionally contains Also headers, the UAS MUST first
 generate the triggered INVITEs implied by the Also headers. Only if
 all triggered INVITEs succeed should the UAS act on the Replaces
 header.

8 Example Call Flows

 This section illustrates some example call flows. Messages are of the
 form:

 INV B Also:C,D
 BYE A Also:Y

 Where INV implies an INVITE request, and BYE a BYE request. The
 letter after the method is the Request URI. Also:C,D implies that
 URI's C and D were in the Also header.

8.1 Basic Transfer

 Figure 2 exemplifies the basic transfer in a two party call. A first
 sets up a call to B, and then transfers B to C.

8.2 Basic Add Party

 Figure 3 exemplifies the basic add party. A and B are already in a
 call. A adds C to the call.

8.3 Add Party during Add Party

 In this example (Figure 4), A and B are in a call. A adds another
 party, C, while B adds a different party, D. In the example, B adds D
 before learning about C.

Schulzrinne/Rosenberg [Page 27]

Internet Draft SIP Control June 17, 1999

A B C
 INV
----------------->

 200 OK
<----------------

 ACK
----------------->

 BYE B Also:C
------------------>

 200 OK
<------------------ INV C ReqBy:A
 --------------------->

 200 OK
 <---------------------

 ACK
 --------------------->

 Figure 2: Transfer Message Flow

 In the example, C acts on the untriggered INVITE, and sends a
 triggered INVITE to B. B responds with a 200 OK, also alerting it to
 D's new presence in the call. D, acting on its untriggered INVITE,
 sends a triggered INVITE to A, and learns about C. Now, both C and D
 know about each other. In the example, C sends the INVITE to D first.
 It is possible in other cases for D to send the INVITE to C first, or
 for both INVITEs cross each other on the wire (in this case, both
 sides back off with a 500 and a Retry-After, so that eventually one
 invitation reaches the other side without an invite in transit in the
 other direction).

 Having received an INVITE from C, D doesn't bother to INVITE C. Both
 D and C then OK their respective INVITEs.

8.4 Party leaves during add party

 In this example (Figure 5), a three party call is in place between A,

Schulzrinne/Rosenberg [Page 28]

Internet Draft SIP Control June 17, 1999

A B C

 INV C Also:B
---------------------------------->
 INV B Also:C ReqBy:A
 <-------------------
 200 OK
 -------------------->
 ACK
 <--------------------
 200 OK
<-----------------------------------
 ACK
----------------------------------->

 Figure 3: Add Party Message Flow

 B and C. A adds another user, D, and shortly thereafer, C leaves the
 call.

 Since D learns from B that C has left the call, D does not bother to
 contact C, and responds right away to the add party. The result is
 now a three party call with A,B, and D.

9 A note on multicast media

 Another useful service, which we have not discussed so far, is to
 transition a conference from distributing media through multi-unicast
 to distribution through multicast. In fact, this is not a SIP issue
 at all. However, we discuss it here for completeness.

 Assume a call between A, B, and C. Media is being distributed through
 multi-unicast. At some point, A decides its appropriate to transition
 to multicast. It should send a re-INVITE to B and C, containing an
 updated SDP with a multicast group (allocated by A by some means,
 perhaps MADCAP [5]. If the transition to multicast is acceptable,
 both B and C respond with a 200 OK. No SDP is needed in the response,
 as per [2].

 If B and C decide to switch to multicast, it is in their interest
 (but not required) to send a re-INVITE to the other participants they

Schulzrinne/Rosenberg [Page 29]

Internet Draft SIP Control June 17, 1999

A B C D

 INV C Also:B
---------------------------------->
 INV D Also:A
 --------------------------------->
 INV B Also:A ReqBy:A
 <----------------
 200 OK Also:D
 ----------------->
 INV A Also:A,B
<--
 200 OK Also:C
--->
 INV D Also:A,B ReqBy:B
 ------------------>
 200 OK
 <------------------
 ACK
 ------------------->
 200 OK
 <-----------------------------------
 ACK
 ----------------------------------->
 200 OK
 <-----------------
 ACK
 ------------------>

 Figure 4: Add Party During Add Party Message Flow

 know about, containing the SDP describing the multicast session. The
 result is that some or all of the sessions on the call-legs
 transition to multicast. If not all have transitioned, the user may
 still need to send some packets unicast.

 There is no capability for determining the codec parameters for the
 multicast session based on the intersection of the capabilities of
 each participant. The model for multicast media distribution in a
 tightly coupled conference is identical to that for loosely coupled
 sessions. The initiator of the multicast session chooses a codec, and
 that is what is used. Note, however, that in the case where the

Schulzrinne/Rosenberg [Page 30]

Internet Draft SIP Control June 17, 1999

A B C D

 INV D Also:B,C
-->
 BYE B
 <-----------------
 BYE A
<--------------------------------
 200 OK
 ----------------->
 200 OK
-------------------------------->
 INV B Also:A,B,C ReqBy:A
 <-----------------------------------
 200 OK Also:C;status=inactive
 ----------------------------------->
 ACK
 <-----------------------------------
 200 OK
<--
 ACK
-->

 Figure 5: Party Leaves During Add Message Flow

 sessions start as multi-unicast, the originator will know the
 capabilities of all the other parties, and thus can intelligently
 choose the codecs for the session.

10 Security Considerations

 Security issues are addressed throughout this document.

 The call control mechanisms have serious security issues. An INVITE
 with an Also cause the recipient to add or drop other parties,
 possibly without user interaction. This implies that authorization of
 the requests is critical.

11 Open Issues

 There are many, many open issues:

Schulzrinne/Rosenberg [Page 31]

Internet Draft SIP Control June 17, 1999

 1. How to do this with shared secrets rather than public keys?

 2. If the transferred-to party in a transfer accepts some, but
 not all (or rejects some, but not all) of the INVITEs for
 it, we end up with a partially disconnected conference.

 3. Should we use a session timer to refresh things and
 periodically re-flood the participant list, in an attempt
 to keep things synchronized?

 4. The version/status concept is still very vague. Does it
 work? Is it needed?

 5. Conference out of consultation for multi-party calls - not
 clear the Replaces mechanism works here.

12 Acknowledgements

 The authors would like to especially thank Jonathan Lennox for his
 many insightful comments and contributions to this work.

13 Bibliography

 [1] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," Request for Comments (Best Current Practice) 2119, Internet
 Engineering Task Force, Mar. 1997.

 [2] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments (Proposed
 Standard) 2543, Internet Engineering Task Force, Mar. 1999.

 [3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: a
 transport protocol for real-time applications," Request for Comments
 (Proposed Standard) 1889, Internet Engineering Task Force, Jan. 1996.

 [4] C. Elliott, "A 'sticky' conference control protocol," vol. 5, pp.
 97--119, 1994.

 [5] S. Hanna, B. Patel, and M. Shah, "Multicast address dynamic
 client allocation protocol (MADCAP)," Internet Draft, Internet
 Engineering Task Force, May 1999. Work in progress.

 Full Copyright Statement

 Copyright (c) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc1889

Schulzrinne/Rosenberg [Page 32]

Internet Draft SIP Control June 17, 1999

 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Table of Contents

1 Terminology ... 1
2 Introduction .. 2
3 Services .. 2
3.1 Blind Transfer 3
3.2 Transfer and Hold 4
3.3 Transfer with Consultation 5
3.4 Multi-party Conferencing 6
3.4.1 Loosely Coupled Multicast Conference 6
3.4.2 Distributed Full Mesh 7
3.4.3 Dial-in Bridge 8
3.4.4 Ad-hoc Bridge 9
3.4.5 Conference out of Consultation 10
4 Discussion of Implementation Options 11
4.1 Transfer .. 11
4.2 Full mesh conferences 12
4.2.1 Approach I: Caretaker 13
4.2.2 Approach II: Flooding 13
4.3 Dial-up Bridges 15

Schulzrinne/Rosenberg [Page 33]

Internet Draft SIP Control June 17, 1999

4.4 Conference out of Consultation 17
4.5 Ad-hoc conference bridging 17
4.6 Transfers to Multiparty Conferences 18
5 Header Syntax 19
5.1 Also .. 19
5.2 Replaces .. 20
5.3 Requested-By .. 20
6 Also and Requested-By Header Semantics 20
6.1 Sending an Untriggered INVITE 20
6.2 Receiving an Untriggered INVITE 22
6.2.1 New Call .. 22
6.2.2 Existing Call 24
6.3 Receiving a Triggered INVITE 24
6.3.1 New Call .. 24
6.3.2 Existing Call 25
6.4 Sending an untriggered BYE 26
6.5 Receiving an untriggered BYE 26
6.6 Receiving a triggered BYE 26
7 Replaces header semantics 26
8 Example Call Flows 27
8.1 Basic Transfer 27
8.2 Basic Add Party 27
8.3 Add Party during Add Party 27
8.4 Party leaves during add party 28
9 A note on multicast media 29
10 Security Considerations 31
11 Open Issues ... 31
12 Acknowledgements 32
13 Bibliography .. 32

Schulzrinne/Rosenberg [Page 34]

