
Internet Engineering Task Force MMUSIC WG
Internet Draft H. Schulzrinne
ietf-mmusic-stream-00.txt Columbia U.
November 26, 1996
Expires: 26/8/97

 A real-time stream control protocol (RTSP')

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress''.

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

 ABSTRACT

 This strawman proposal presents a revised version of the
 RTSP proposal put forward to the MMUSIC group, borrowing
 liberally from the original.

 The Real Time Streaming Protocol, or RTSP, is an
 application-level protocol for control over the delivery
 of data with real-time properties. RTSP provides an
 extensible framework to enable controlled, on-demand
 delivery of real- time data, such as audio and video.
 Sources of data can include both live data feeds and
 stored clips. This protocol is intended to control
 multiple data delivery sessions, provide a means for
 choosing delivery channels such as UDP, multicast UDP and

H. Schulzrinne [Page 1]

Internet Draft stream November 26, 1996

 TCP, and delivery mechanisms based upon RTP (RFC 1889).

1 Introduction

1.1 Terminology

 conference: a multiparty, multimedia session, where "multi" implies
 greater than or equal to one.

 client: The client requests media data from the media server.

 entity: An entity is a participant in a conference. This participant
 may be non-human, e.g., a media record or playback server.

 media server: The network entity providing playback or recording
 services for one or more media streams. Different media streams
 within a session may originate from different media servers. A
 media server may reside on the same or a different host as the
 web server the media session is invoked from.

 (media) stream: A single media instance, e.g., an audio stream or a
 video stream as well as a whiteboard or shared application
 session. When using RTP, a stream consists of all RTP and RTCP
 packets created by a source within an RTP session.

 [TBD: terminology is confusing since there's an RTP session, which is
 used by a single RTSP stream.]

 media session: A collection of media streams to be treated.
 Typically, a client will synchronize all media streams within a
 media session.

 session description: A session description contains information about
 one or more media within a session, such as the set of
 encodings, network addresses and information about the content.
 The session description may take several different formats,
 including SDP and SDF.

 Both client and server can send commands.

 The protocol supports the following operations:

 Retrieval of media from media server: The client can request a
 session decription via HTTP or some other method. If the session
 is being multicast, the session description contains the
 multicast addresses and ports to be used. If the session is to
 be sent only to the client, the client provides the destination

https://datatracker.ietf.org/doc/pdf/rfc1889

 for security reasons.

H. Schulzrinne [Page 2]

Internet Draft stream November 26, 1996

 Invitation of media server to conference: A media server can be
 "invited" to join an existing conference, either to play back
 media into the session or to record all or a subset of the media
 in a session. This mode is useful for distributed teaching
 applications. Several parties in the conference may take turns
 "pushing the remote control buttons".

 Adding media to an existing session: Particularly for live events, it
 is useful if the server can tell the client about additional
 media becoming available.

1.2 Requirements

 The protocol satisfies the following requirements

 extendable: new commands and parameters can be easily added

 easy to parse: standard HTTP or MIME parsers can (but do not have to
 be) used

 secure: re-uses web security mechanisms, either at the transport
 level (SSL) or within the requests (basic and digest
 authentication)

 transport-independent: may use either an unreliable datagram protocol
 (UDP), a reliable datagram protocol (RDP, not widely used) or a
 reliable stream protocol (TCP) by implementing application-level
 reliability

 multi-server capable: Each media stream within a session can reside
 on a different server. The client automatically establishes
 several concurrent control sessions with the different media
 servers. Media synchronization is performed at the transport
 level.

 multi-client capable: Stream identifiers can be used by several
 control streams, so that "passing the remote" is possible. The
 protocol does not address how several clients negotiate access;
 this is left to either a "social protocol" or some other floor
 control mechanism.

 control of recording devices: The protocol can control both recording
 and playback devices, as well as devices that can alternate
 between the two modes ("VCR").

 separation of stream control and conference initiation: Stream
 control is divorced from inviting a media server to a
 conference. The only requirement is that the conference

H. Schulzrinne [Page 3]

Internet Draft stream November 26, 1996

 initiation protocol either provides or can be used to create a
 unique conference identifier. In particular, S*IP or H.323 may
 be used to invite a server to a conference.

 suitable for professional applications: RTSP' supports frame-level
 accuracy through SMPTE time stamps to allow remote digital
 editing.

 S*IP compatible: As much as possible, stream control should be
 aligned with the IETF conference initiation effort. However, for
 simple applications, a media server should not have to implement
 a conference initiation protocol.

 session description neutral: The protocol does not impose a
 particular session description or metafile format and can convey
 the type of format to be used. However, the session description
 must contain an RTSP URI.

 proxy and firewall friendly: The protocol should be readily handled
 by both application and transport-layer (SOCKS) firewalls. For
 proxies, re-use of existing proxies should be possible, but
 remains to be verified. [TBD: what exactly is needed to make a
 protocol firewall-friendly?] A firewall may need to understand
 the SET_PORT directive to open a "hole" for the UDP media
 stream.

 HTTP friendly: Where sensible, RTSP re-uses HTTP concepts, so that
 the existing infrastructure can be re-used.

1.3 Extending the Protocol

 The protocol described below can be extended in three ways, listed in
 order of the magnitude of changes supported:

 o Existing commands can be extended with new parameters, as long
 as these parameters can be safely ignored by the recipient.
 (This is equivalent to adding new parameters to an HTML tag.)

 o New methods can be added. If the recipient of the message does
 not understand the request, it responds with error code 501
 (Not implemented) and the sender can then attempt an earlier,
 less functional version.

 o A new version of the protocol can be defined, allowing almost
 all aspects (except the position of the protocol version
 number) to change.

1.4 Overall Operation

H. Schulzrinne [Page 4]

Internet Draft stream November 26, 1996

 Each media stream and session is identified by an rtsp URL. The
 overall session and the properties of the media the session is made
 up of are defined by a session description file, the format of which
 is outside the scope of this specification. The session description
 file is retrieved using HTTP, either from the web server or the media
 server, typically using an URL with scheme http.

 The session description file contains a description of the media
 streams making up the media session, including their encodings,
 language, and other parameters that enable the client to choose the
 most appropriate combination of media. In this session description,
 each media stream is identified by an rtsp URL, which points to the
 media server handling that particular media stream. Several media
 streams can be located on different servers; for example, audio and
 video tracks can be split across servers for load sharing. The
 description also enumerates which transport methods the server is
 capable of. If desired, the session description can also contain only
 an RTSP URL, with the complete session description retrieved via
 RTSP.

 Besides the media parameters, the network destination address and
 port need to be determined. Several modes of operation can be
 distinguished:

 Unicast: The media is transmitted to the source of the RTSP request,
 with the port number picked by the client. Alternatively, the

 media is transmitted on the same reliable stream as RTSP.

 Multicast, server chooses address: The media server picks the
 multicast address and port. This is the typical case for a live
 or near-media-on-demand transmission.

 Multicast, client chooses address: If the server is to participate in
 an existing multicast conference, the multicast address, port
 and encryption key are given by the conference.

1.5 Relationship with Other Protocols

 RTSP' has some overlap in functionality with HTTP. It also needs to
 interact with the web in that the initial contact with streaming
 content is often to be made through a web page. The current protocol
 specification aims to allow different hand-off points between a web
 server and the media server implementing RTSP'. For example, the
 session description can be retrieved using HTTP or RTSP'. Having the
 session description be returned by the web server makes it possible
 to have the web server take care of authentication and billing, by
 handing out a session description whose media identifier includes an
 encrypted version of the requestor's IP address and a timestamp, with

H. Schulzrinne [Page 5]

Internet Draft stream November 26, 1996

 a shared secret between web and media server.

 However, RTSP' differs fundamentally from HTTP in that data delivery
 takes place out-of-band, in a different protocol. HTTP is an
 asymmetric protocol, where the client issues requests and the server
 responds. In RTSP', both the media client and media server can issue
 requests. RTSP' requests are also not stateless, in that they may set
 parameters and continue to control a media stream long after the
 request has been acknowledged.

 Re-using HTTP functionality has advantages in at least two
 areas, namely security and proxies. The requirements are
 very similar, so having the ability to adopt HTTP work on
 caches, proxies and authentication is valuable. The current
 RTSP already has first hints on caches and proxies, but is
 nowhere near as complete as HTTP in that regard.

 It is possible to very quickly build a simple RTSP' server by adding

 a PLAY and, optionally, a SET_PARAMETER method to an existing
 HTTP/1.1 web server. All of RTSP' can be implemented as part of an
 HTTP server as long as only the client issues requests.

 While most real-time media will use RTP as a transport protocol,
 RTSP' is not tied to RTP.

 RTSP' assumes the existence of a session description format that can
 express both static and temporal properties of a media session
 containing several media streams.

2 Protocol Parameters

2.1 Message Format and Transmission

 RTSP is a text-based protocol [TBD] and uses the ISO 10646 character
 set in UTF-8 encoding (RFC 2044) [TBD; this conflicts with]. Lines
 are terminated by CRLF, but receivers should be prepared to also
 interpret CR and LF by themselves as line terminators.

 Text-based protocols make it easier to add optional
 parameters in a self-describing manner. Since the number of
 parameters and the frequency of commands is low, processing
 efficiency is not a concern. Text-based protocols, if done
 carefully, also allow easy implementation in scripting
 languages such as Tcl, VisualBasic and Perl.

 The 10646 character set avoids tricky character set switching, but is
 invisible to the application as long as US-ASCII is being used. This

H. Schulzrinne [Page 6]

Internet Draft stream November 26, 1996

 is also the encoding used for RTCP. ISO 8859-1 translates directly
 into Unicode, with a high-order octet of zero. ISO 8859-1 characters
 with the most-significant bit set are represented as 1100001x
 10xxxxxx.

 RTSP messages can be carried over any lower-layer transport protocol
 that is 8-bit clean.

 Commands are acknowledged by the receiver unless they are sent to a
 multicast group. If there is no acknowledgement, the sender may
 resend the same message after a timeout of one round-trip time (RTT).
 The round-trip time is estimated as in TCP (RFC TBD), with an initial

https://datatracker.ietf.org/doc/pdf/rfc2044

 round-trip value of 500 ms. An implementation MAY cache the last RTT
 measurement as the initial value for future connections. If a
 reliable transport protocol is used to carry RTSP, the timeout value
 MAY be set to an arbitrarily large value.

 This can greatly increase responsiveness for proxies
 operating in local-area networks with small RTTs. The
 mechanism is defined such that the client implementation
 does not have be aware of whether a reliable or unreliable
 transport protocol is being used. It is probably a bad idea
 to have two reliability mechanisms on top of each other,
 although the RTSP RTT estimate is likely to be larger than
 the TCP estimate.

 Each request carries a sequence number, which is incremented by one
 for each request transmitted. If a request is repeated because of
 lack of acknowledgement, the sequence number is incremented.

 This avoids ambiguities when computing round-trip time
 estimates. [TBD: An initial sequence number negotiation
 needs to be added for UDP; otherwise, a new stream
 connection may see a request be acknowledged by a delayed
 response from an earlier "connection". This handshake can
 be avoided with a sequence number containing a timestamp of
 sufficiently high resolution.]

 The reliability mechanism described here does not protect against
 reordering. This may cause problems in some instances. For example, a
 STOP followed by a PLAY has quite a different effect than the
 reverse. Similarly, if a PLAY request arrives before all parameters
 are set due to reordering, the media server would have to issue an
 error indication. Since sequence numbers for retransmissions are
 incremented (to allow easy RTT estimation), the receiver cannot just
 ignore out-of-order packets. [TBD: This problem could be fixed by
 including both a sequence number that stays the same for
 retransmissions and a timestamp for RTT estimation.]

H. Schulzrinne [Page 7]

Internet Draft stream November 26, 1996

 Systems implementing RTSP MUST support carrying RTSP over TCP and MAY
 support UDP. The default port for the RTSP server is [PORT] for both
 UDP and TCP.

 A number of RTSP packets destined for the same control end point may

 be packed into a single lower-layer PDU or encapsulated into a TCP
 stream. RTSP data MAY be interleaved with RTP and RTCP packets. An
 RTSP packet is terminated with an empty line. (TBD: doesn't work well
 for including session descriptions. Maybe use Content-length for
 payloads - these are usually imported anyway? or new page? Wrapping a
 packet in some kind of braces or parenthesis is another possibility,
 but again puts restrictions on the SDF.)

 Unless all but the RTP data is textual, there is not much
 point in keeping the payload as textual data, since visual
 debugging is more difficult and "telnet protocol emulation"
 is no longer possible. Length fields don't make much sense
 for textual data, particularly because of the line
 termination ambiguities, i.e., CR, LF and CRLF. There does
 not seem to be a need for an explicit, connection-oriented
 framing layer as in the original RTSP proposal. However, if
 we allow interleaving with RTP, a textual format gets very
 awkward.

 Requests contain methods, the object the method is operating upon and
 parameters to further describe the method. Methods are idempotent,
 unless otherwise noted. Methods are also designed to require little
 or no state maintenance at the media server.

 A message has the following format:

 Method Object Version Sequence-Number
 *(Parameter-Value)
 CRLF

 A message with a message body has the following format:

 Method Object Version Sequence-Number
 Content-length:
 *(Parameter-Value)
 CRLF
 message-body

H. Schulzrinne [Page 8]

Internet Draft stream November 26, 1996

 After receiving and interpreting an RTSP' request, the server
 responds with an RTSP' response message.

 [TBD: proper BNF]

 A typical response to a request with sequence number 17 might be:

 RTSP/1.0 200 17 OK

 This format is HTTP-friendly; the sequence number is simply
 ignored by HTTP servers. The likelihood that a textual
 protocol will share the same port and not have that format
 seems fairly remote. RTP packets have the most-significant
 bit set and can thus be easily distinguished.

 If a connectionless transport protocol is used, the media server
 considers all packets originating from a single port number and
 network address to be part of the same session. [TBD: is this
 necessary?]

2.2 Session and Media URI

 The RTSP URL scheme is used to locate and control stream resources
 via the RTSP protocol.

 A media stream is identified by an textual session and media
 identifier, using the character set and escape conventions of URLs.
 The media identifier is separated from the session by a slash.
 Commands below can refer to either the whole session or an individual
 stream. Stream identifiers can be passed between clients ("passing
 the remote control"). A specific instance of a session, e.g., one of
 several concurrent transmissions of the same content, is appended
 where needed. The instance identifies the whole session, so that all
 media streams within that session have the same instance identifier.

 For example,

 rtsp://media.content.com:5000/twister/audio.en/1234

 identifies instance 1234 of the stream audio.en within the session
 "twister", which is located at port 5000 of host media.content.com.

H. Schulzrinne [Page 9]

Internet Draft stream November 26, 1996

 The ordering and significance of the path components of the rtsp URL
 is only of significance to the media server.

 This decoupling also allows session descriptions to be used
 with non-RTSP media control protocols, simply by replacing
 the scheme in the URL.

2.3 Encoding Identifiers

 RTP profile and/or MIME types. [TBD: should probably register all the
 RTP data types as MIME types.]

2.4 Conference Identifiers

 Conference identifiers are opaque to RTSP' and are encoded using
 standard URI encoding methods (i.e., escaping with %). They can
 contain any octet value. The conference identifier MUST be globally
 unique. For H.323, the conferenceID value is to be used.

 If the conference participant inviting the media server
 would only supply a conference identifier which is unique
 for that inviting party, the media server could add an
 internal identifier for that party, e.g., its Internet
 address. However, this would prevent that the conference
 participant and the initiator of the RTSP commands are two
 different entities.

2.5 Relative Timestamps

 A relative time-stamp expresses time relative to the start of the
 clip. Relative timestamps are expressed as SMPTE time codes for
 frame-level access accuracy. The time code has the format
 hours:minutes:seconds.frames, with the origin at the start of the
 clip. For NTSC, the frame rate is 29.97 frames per second. This is
 handled by dropping the first frame index of every minute, except
 every tenth minute. If the frame value is zero, it may be omitted.

 Examples:

 10:12:33.40
 10:7:33

2.6 Absolute Time

H. Schulzrinne [Page 10]

Internet Draft stream November 26, 1996

 Absolute time is expressed as ISO 8601 timestamps. It is always
 expressed as UTC (GMT).

 Example for November 8, 1996 at 14h37 and 20 seconds GMT:

 19961108T143720Z

3 Header Field Definitions

3.1 Accept

 The Accept request-header field can be used to specify certain
 session description types which are acceptable for the response. The
 only parameter allowed is that of level , which indicates the highest
 level or version accepted by the requestor.

 Example of use:

 Accept: application/sdf, application/sdp;level=2

3.2 Address

3.3 Allow

 The Allow response header field lists the methods supported by the
 resource identified by the Request-URI. The purpose of this field is
 to strictly inform the recipient of valid methods associated with the
 resource. An Allow header field must be present in a 405 (Method not
 allowed) response.

 Example of use:

 Allow: PLAY, RECORD, SET_PARAMETER

3.4 Authorization

3.5 Blocksize

3.6 Conference

H. Schulzrinne [Page 11]

Internet Draft stream November 26, 1996

 This field establishes a logical connection between a conference,
 established using non-RTSP' means, and an RTSP stream.

 [TBD: This parameter is for further study. May not be needed with the
 Given parameter.]

3.7 Content-Length

3.8 Content-Type

3.9 Given

3.10 Location

3.11 Port

3.12 Range

3.13 Speed

3.14 Transport

3.15 TTL

4 Methods

 The Method token indicates the method to be performed on the resource
 identified by the Request-URI case-sensitive. New methods may be

 defined in the future. Method names may not start with a $ character
 (decimal 24) and must be a token

4.1 GET

 The GET method retrieves a session description from a server. It may
 use the Accept header to specify the session description formats that
 the client understands.

 GET twister RTSP/1.0 937
 Accept: application/sdp, application/sdf, application/mheg

 If the media server has previously been invited to a conference, the
 GET method also contains a conference identifier or a Given
 parameter.

H. Schulzrinne [Page 12]

Internet Draft stream November 26, 1996

 GET twister RTSP/1.0 834
 Conference: 128.16.64.19/32492374
 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FTZQ==

 If the GET request contains a conference identifier, the media server
 MUST locate the conference description and use the multicast
 addresses and port numbers supplied in that description. The media
 server SHOULD only offer media types corresponding to the media types
 currently active within the conference. If the media server has no
 local reference to this conference, it returns status code 452.

 The conference invitation should also contain an indication whether
 the media server is expected to receive or generate media, or both.
 (A VCR-like device would support both directions.) If the invitation
 does not contain an indication of the operations to be performed, the
 media server should accept and then reject inappropriate operations.

 A typical response might be:

 200 18 OK
 Content-Type: application/sdf
 session description

4.2 SESSION

 This method is used by a media server to send media information to
 the client. If a new media type is added to a session (e.g., during a
 live event), the whole session description should be sent again,
 rather than just the additional components.

 This allows the deletion of session components.

 Example:

 SESSION twister/*/1234 Content-Type: application/sdp

 Session Description

 Response: 200, 302, 303, 500, can't do this operation, busy,

4.3 PLAY

 The PLAY method tells the server to start sending data via the
 previously set transport mechanism. The Range header specifies the
 range. The range can be specified in a number of units. This
 specification defines the smpte (see Section 2.5) and clock (see

H. Schulzrinne [Page 13]

Internet Draft stream November 26, 1996

 Section 2.6) range units.

 PLAY media-name
 Range: smpte= range-value

 The following example plays the whole session starting at SMPTE time
 code 0:10:20 until the end of the clip.

 PLAY twister/*/1234
 Range: smpte=0:10:20-

 For playing back a recording of a live event, it may be desirable to
 use clock units:

 PLAY meeting/*/1234
 Range: clock=19961108T142300Z-19961108T143520Z

 A media server only supporting playback MUST support the smpte format
 and MAY support the clock format.

 [TBD: It may be desirable to allow several ranges, so that remote
 digital editing can be done easily.]

 Response: 200, 500, 501, clock format not supported.

4.4 RECORD

 This method initiates eecording a range of media data according to
 the session description. The timestamp reflects start and end time
 (UTC). If no time range is given, use the start or end time provided
 in the session description. If the session has already started,
 commence recording immediately. The Conference header is mandatory.

 A media server supporting recording of live events MUST support the
 clock range format; the smpte format does not make sense.

 RECORD meeting/audio.en/1234
 Conference: 128.16.64.19/32492374

H. Schulzrinne [Page 14]

Internet Draft stream November 26, 1996

4.5 REDIRECT

 A redirect request informs the client that it must connect to another
 server location. It contains the mandatory header Location , which
 indicates that the client should issue a GET for that URL. It may
 contain the parameter Range , which indicates when the redirection
 takes effect.

4.6 SET_PARAMETER

 Both client and media server can issue this request.

 The following parameters are defined:

 Blocksize: This advisory parameter is sent from the client to the
 media server setting the transport packet size. The server
 truncates this packet size to the closest multiple of the
 minimum media-specific block size or overrides it with the media
 specific size if necessary. The block size is a strictly
 positive decimal number and measured in bytes. The server only
 returns an error (416) if the value is syntactically invalid,
 but not if the server adjusts it according to the mechanism
 described above or decides to simply ignore the advice.

 Port: UDP or TCP port to be used for this media.

 SSRC: RTP SSRC value to be used by the media server. This parameter
 is only valid for unicast transmission. It identifies the
 synchronization source to be associated with the media stream.
 This can be used for demultiplexing by the client of data
 received on the same port.

 Address: Destination network address, consisting of the address class
 identifier and the address. Currently, the address classes IP4
 and IP6 are defined.

 Transport: Transport protocol stack to be used: UDP or TCP or
 interleaved, followed by the next-layer transport protocol. in
 whatever protocol is being used by the control stream.
 Currently, the next-layer protocols RTP is defined. Parameters
 may be added to each protocol, separated by a semicolon. For
 RTP, the boolean parameter compressed is defined, indicating
 compressed RTP according to RFC XXXX. Example: UDP
 RTP;compressed

 TTL: Multicast time-to-live value. In some cases, it may make sense
 for a client to ask a media server sending on a given multicast
 address to expand its range.

H. Schulzrinne [Page 15]

Internet Draft stream November 26, 1996

 Speed: This advisory parameter sets the speed at which the server
 delivers data to the client, contingent on the server's ability
 and desire to serve the media stream at the given speed.
 Implementation by the server is optional. The default is the bit
 rate of the stream.

 The parameter value is expressed as a decimal ratio, e.g., 2.0
 indicates that data is to be delivered twice as fast as normal. A
 speed of zero is invalid. A negative value indicates that the stream
 is to be played back in reverse direction.

 A request SHOULD only contain a single parameter to allow the client
 to determine why a particular request failed. A server MUST allow a
 parameter to be set repeatedly to the same value, but it MAY disallow
 changing parameter values.

 The parameters are split in a fine-grained fashion so that,
 for example, the client can set just the unicast port,
 without having to modify the destination address. There is
 no substantial difference between the privileged parameters
 and the parameters identified by family and parameter id in
 the current RTSP spec. If desired, parameter names could
 easily take the form family/parameter , e.g.,
 Audio/Annotations

 A SET_PARAMETER request without parameters can be used as a way to
 detect whether the other side is still responding.

 Example:

 SET_PARAMETER twister/1234/audio.en RTSP/1.0 68
 Speed: 2.3

 [TBD: Or should this be like SET_PARAMETER? Bit longer, but forces
 single parameter per request.]

4.7 GET_PARAMETER

 Both client and media server can issue a GET_PARAMETER request to
 retrieve a specific parameter. All parameters described for the
 SET_PARAMETER request are valid. In the request, the message body
 contains the parameter value. Only one parameter can be requested in
 each GET_PARAMETER request.

H. Schulzrinne [Page 16]

Internet Draft stream November 26, 1996

 Example:

 C->S: GET_PARAMETER twister/1234/audio.en RTSP/1.0 6
 Content-length: 17

 Audio/Annotations

 S->C: RTSP/1.0 200 6 OK
 Content-type: text/ascii
 Content-length: 2

 64

4.8 STOP

 Stops delivery of stream immediately. Returns indication of current
 position to allow play instead of resume.

 Thus, RESUME is not needed.

 C->M: STOP movie RTSP/1.0 76

 M->C: RTSP/1.0 200 76 OK

4.9 BYE

 Sent by either client or server to terminate a connection and release
 resources.

4.10 Embedded Data Stream

 The command DATA is used to indicate an embedded media data object,
 together with the content types. DATA requests are not acknowledged
 by RTSP'. The embedded object can have any type. For space-efficient
 encapsulation of binary data, the method in Section 4.11 should be
 used instead.

 DATA twisters/audio.en/1234 RTSP/1.1
 Content-Length: 500

H. Schulzrinne [Page 17]

Internet Draft stream November 26, 1996

 Content-Type: message/rtp

 (RTP data)

 This is workable, but not very space-efficient. However,
 the interesting case is that of a single TCP stream
 carrying both commands and media data. There is no
 particular reason to have small chunks in that case.

4.11 Embedded Binary Data

 Binary packets such as RTP data are encapsulated by an ASCII dollar
 sign (24 decimal), followed by a one-byte session identifier,
 followed by the length of the encapsulated binary data as a binary,
 two-byte integer in network byte order. The binary data follows
 immediately afterwards, without a CRLF.

 This makes the encapsulation overhead 4 bytes, less than
 the 8 bytes imposed by SCP.

5 Status Codes Definitions

 Where applicable, HTTP status codes are re-used. [TBD: add those
 relevant here]

5.1 Successful 2xx

5.1.1 200 OK

 The request has succeeded. The information returned with the response
 depends on the method used in the request, for example:

 GET: the session description;

 GET_PARAMETER: the value of the parameter.

5.2 Redirection 3xx

5.2.1 301 Moved Permanently

5.2.2 303 Moved Temporarily

5.3 Client Error 4xx

H. Schulzrinne [Page 18]

Internet Draft stream November 26, 1996

5.3.1 400 Bad Request

 The request could not be understood by the recipient due to malformed
 syntax. The request SHOULD NOT be repeated without modification.

5.3.2 401 Unauthorized

 The request requires user authentication.

5.3.3 402 Payment Required

 This code is reserved for future use.

5.3.4 405 Method Not Allowed

5.3.5 406 Not Acceptable

5.3.6 408 Request Timeout

5.3.7 411 Length Required

5.3.8 414 Request URI Too Long

5.3.9 415 Unsupported Mediatype

 The recipient of the request is refusing to service the request
 because the entity of the request is in a format not supported by the
 requested resource for the requested method.

5.3.10 450 Invalid Parameter

 The parameter in the request is not valid, i.e., out of range or
 malformed.

5.3.11 451 Parameter Not Understood

 The recipient of the request does not support one or more parameters
 contained in the request.

5.3.12 452 Conference Not Found

 The conference indicated by a Conference: identifier is unknown to
 the media server.

5.3.13 453 Not Enough Bandwidth

 The request was refused since there was insufficient bandwidth. This
 may, for example, be the result of a resource reservation failure.

H. Schulzrinne [Page 19]

Internet Draft stream November 26, 1996

5.4 Server Error 5xx

5.4.1 500 Internal Server Error

5.4.2 501 Not Implemented

5.4.3 502 Bad Gateway

5.4.4 503 Service Unavailable

 The server is currently unable to handle the request due to a
 temporary overloading or maintenance of the server. The implication
 is that this is a temporary condition which will be alleviated.

5.4.5 504 Gateway Timeout

5.4.6 505 RTSP Version Not Supported

6 Examples

6.1 Media on demand (unicast)

 Client C requests a movie media servers A (audio.content.com) and V
 (video.content.com). The media description is stored on a web server
 W. This, however, is transparent to the client. The client is only
 interested in the last part of the movie. The server requires
 authentication for this movie. The audio track can be dynamically
 switched between between two sets of encodings. The URL with scheme
 rtpsu indicates the media servers want to use UDP for exchanging RTSP
 messages.

 C->W: GET twister HTTP/1.0
 Accept: application/sdf; application/sdp

 W->C: 200 OK
 Content-type: application/sdf

 (session
 (all
 (media (t audio) (oneof
 ((e PCMU/8000/1 89 DVI4/8000/1 90) (id lofi))
 ((e DVI4/16000/2 90 DVI4/16000/2 91) (id hifi))
)
 (language en)
 (id rtspu://audio.content.com/twister/audio.en/1234)
)

H. Schulzrinne [Page 20]

Internet Draft stream November 26, 1996

 (media (t video) (e JPEG)
 (id rtspu://video.content.com/twister/video/1234)
)
)
)

 C->A: SET_PARAMETER twister/audio.en/1234/lofi RTSP/1.0 1
 Port: 3056
 Transport: RTP;compression

 A->C: RTSP/1.0 200 1 OK

 C->V: SET_PARAMETER twister/video/1234/hifi RTSP/1.0 2
 Port: 3058
 Transport: RTP;compression

 V->C: RTSP/1.0 200 2 OK

 C->V: PLAY twister/video/1234 RTSP/1.0 3
 Range: smpte 0:10:00-

 V->C: RTSP/1.0 200 3 OK

 C->A: PLAY twister/audio.en/1234/lofi RTSP/1.0 4
 Range: smpte 0:10:00-

 S->C: 200 4 OK

 Even though the audio and video track are on two different servers,
 may start at slightly different times and may drift with respect to
 each other, the client can synchronize the two using standard RTP
 methods.

6.2 Live Media Event Using Multicast

 The media server chooses the multicast address and port. Here, we
 assume that the web server only contains a pointer to the full
 description, while the media server M maintains the full description.
 During the session, a new subtitling stream is added.

 C->W: GET concert HTTP/1.0

 W->C: HTTP/1.0 200 OK
 Content-Type: application/sdf

H. Schulzrinne [Page 21]

Internet Draft stream November 26, 1996

 (session
 (id rtsp://live.content.com/concert)
)

 C->M: GET concert RTSP/1.0 1

 M->C: RTSP/1.0 200 OK
 Content-Type: application/sdf

 (session (all
 (media (t audio) (id music) (a IP4 224.2.0.1) (p 3456))
))

 C->M: PLAY concert/music RTSP/1.0
 Range: smpte 1:12:0

 M->C: RTSP/1.0 405 No positioning possible

 M->C: SESSION concert RTSP/1.0
 Content-Type: application/sdf

 (session (all
 (media (t audio) (id music))
 (media (t text) (id lyrics))
))

 C->M: PLAY concert/lyrics RTSP/1.0

 Since the session description already contains the necessary address
 information, the client does not set the transport address. The
 attempt to position the stream fails since this is a live event.

6.3 Playing media into an existing session

 A conference participant C wants to have the media server M play back
 a demo tape into an existing conference. When retrieving the session
 description, C indicates to the media server that the network
 addresses and encryption keys are already given by the conference, so
 they should not be chosen by the server. The example omits the simple
 ACK responses.

 C->M: GET demo RTSP/1.0 1
 Accept: application/sdf, application/sdp
 Given: address, privacy

H. Schulzrinne [Page 22]

Internet Draft stream November 26, 1996

 M->C: RTSP/1.0 200 1 OK

 Content-type: application/sdf

 (session
 (id 548)
 (media (t audio) (id sound)
)

 C->M: SET_PARAMETER demo/548/sound RTSP/1.0 2
 Address: IP4 224.2.0.1
 Port: 3456
 TTL: 127

6.4 Recording

 Conference participant C asks the media server M to record a session.
 If the session description contains any alternatives, the server
 records them all.

 C->M: SESSION meeting RTSP/1.0 89
 Content-type: application/sdp

 v=0
 s=Mbone Audio
 i=Discussion of Mbone Engineering Issues

 M->C: 415 89 Unsupported Media Type
 Accept: application/sdf

 C->M: SESSION meeting RTSP/1.0 90
 Content-type: application/sdf

 M->C: 200 90 OK

 C->M: RECORD meeting
 Range: clock 19961110T1925-19961110T2015

7 Access Authentication

 Besides limiting access, access authentication is also needed to
 avoid denial-of-service attacks.

H. Schulzrinne [Page 23]

Internet Draft stream November 26, 1996

8 Security Considerations

 The protocol offers the opportunity for a remote-control denial-of-
 service attack. The attacker, using a forged source IP address, can
 ask for a stream to be played back to that forged IP address. This
 can be prevented by a challenge-response authentication. If the goal
 is simply to prevent this denial-of-service attack, a default, widely
 known key can be used.

 If the client retrieves a session description, the server hand out an
 encrypted version of the client's IP address to the client during the
 initial retrieval of the session description.

A Session Description

 A session description must be able to identify sessions and
 individual media streams. The per-media identifier is created by the
 entity creating the session description and is opaque to anyone else.
 It may contain any 8-bit value except CR and LF.

B Notes on RTSP

 o The STREAM_HEADER functionality has been subsumed by the
 session description.

 o SEND_REPORT is not really needed. Should define an RTCP
 request with a random response interval.

 o Error reports are sent automatically. If server wants to
 terminate connection, it sends a BYE.

 o Resending (UDP_RESEND) should be handled by RTCP since it is
 always media-specific and RTCP can be readily flow-controlled
 to avoid congestion collapse.

 o Is STOP really needed? What's the difference between STOP and
 PAUSE? Resources (which?) cannot be released since there may be
 a PLAY command immediately. Bearing on resource reservation?

C Author Addresses

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027

 USA
 electronic mail: schulzrinne@cs.columbia.edu

H. Schulzrinne [Page 24]

Internet Draft stream November 26, 1996

D Acknowledgements

 This draft is based on the functionality of the RTSP draft. It also
 borrows format and descriptions from HTTP/1.1.

H. Schulzrinne [Page 25]

