
Network Working Group Eric C. Rosen
Internet Draft Yakov Rekhter
Expiration Date: August 1998 Daniel Tappan
 Dino Farinacci
 Guy Fedorkow
 Cisco Systems, Inc.

 Tony Li
 Juniper Networks, Inc.

 Alex Conta
 Lucent Technologies

 February 1998

MPLS Label Stack Encoding

draft-ietf-mpls-label-encaps-01.txt

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 "Multi-Protocol Label Switching (MPLS)" [1,2,3] requires a set of
 procedures for augmenting network layer packets with "label stacks",
 thereby turning them into "labeled packets". Routers which support
 MPLS are known as "Label Switching Routers", or "LSRs". In order to
 transmit a labeled packet on a particular data link, an LSR must
 support an encoding technique which, given a label stack and a
 network layer packet, produces a labeled packet. This document

Rosen, et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 specifies the encoding to be used by an LSR in order to transmit
 labeled packets on PPP data links, on LAN data links, and possibly on
 other data links as well. On some data links, the label at the top
 of the stack may be encoded in a different manner, but the techniques
 described here MUST be used to encode the remainder of the label
 stack. This document also specifies rules and procedures for
 processing the various fields of the label stack encoding.

Table of Contents

1 Introduction ... 3
1.1 Specification of Requirements 3
2 The Label Stack .. 4
2.1 Encoding the Label Stack 4
2.2 Determining the Network Layer Protocol 7
2.3 Processing the Time to Live Field 8
2.3.1 Definitions .. 8
2.3.2 Protocol-independent rules 8
2.3.3 IP-dependent rules 8
2.3.4 Translating Between Different Encapsulations 9
3 Fragmentation and Path MTU Discovery 9
3.1 Terminology .. 10
3.2 Maximum Initially Labeled IP Datagram Size 12
3.3 When are Labeled IP Datagrams Too Big? 13
3.4 Processing Labeled IPv4 Datagrams which are Too Big 13
3.5 Processing Labeled IPv6 Datagrams which are Too Big 14
3.6 Implications with respect to Path MTU Discovery 15
3.6.1 Tunneling through a Transit Routing Domain 15
3.6.2 Tunneling Private Addresses through a Public Backbone .. 16
4 Transporting Labeled Packets over PPP 16
4.1 Introduction ... 16
4.2 A PPP Network Control Protocol for MPLS 17
4.3 Sending Labeled Packets 18

 4.4 Label Switching Control Protocol Configuration Options . 18
5 Transporting Labeled Packets over LAN Media 18
6 Security Considerations 19
7 Authors' Addresses 19
8 References ... 20

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 2]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

1. Introduction

 "Multi-Protocol Label Switching (MPLS)" [1,2,3] requires a set of
 procedures for augmenting network layer packets with "label stacks",
 thereby turning them into "labeled packets". Routers which support
 MPLS are known as "Label Switching Routers", or "LSRs". In order to
 transmit a labeled packet on a particular data link, an LSR must
 support an encoding technique which, given a label stack and a
 network layer packet, produces a labeled packet.

 This document specifies the encoding to be used by an LSR in order to
 transmit labeled packets on PPP data links and on LAN data links.
 The specified encoding may also be useful for other data links as
 well.

 This document also specifies rules and procedures for processing the
 various fields of the label stack encoding. Since MPLS is
 independent of any particular network layer protocol, the majority of
 such procedures are also protocol-independent. A few, however, do
 differ for different protocols. In this document, we specify the
 protocol-independent procedures, and we specify the protocol-
 dependent procedures for IPv4 and IPv6.

 LSRs that are implemented on certain switching devices (such as ATM
 switches) may use different encoding techniques for encoding the top
 one or two entries of the label stack. When the label stack has
 additional entries, however, the encoding technique described in this
 document MUST be used for the additional label stack entries.

1.1. Specification of Requirements

 In this document, several words are used to signify the requirements
 of the specification. These words are often capitalized.

 MUST

 This word, or the adjective "required", means that the
 definition is an absolute requirement of the specification.

 MUST NOT

 This phrase means that the definition is an absolute prohibition
 of the specification.

 SHOULD

 This word, or the adjective "recommended", means that there may

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 3]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 exist valid reasons in particular circumstances to ignore this
 item, but the full implications must be understood and carefully
 weighed before choosing a different course.

 MAY

 This word, or the adjective "optional", means that this item is
 one of an allowed set of alternatives. An implementation which
 does not include this option MUST be prepared to interoperate
 with another implementation which does include the option.

2. The Label Stack

2.1. Encoding the Label Stack

 The label stack is represented as a sequence of "label stack
 entries". Each label stack entry is represented by 4 octets. This
 is shown in Figure 1.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+ Label
 | Label | CoS |S| TTL | Stack
 +-+ Entry

 Label: Label Value, 20 bits
 CoS: Class of Service, 3 bits
 S: Bottom of Stack, 1 bit
 TTL: Time to Live, 8 bits

 Figure 1

 The label stack entries appear AFTER the data link layer headers, but
 BEFORE any network layer headers. The top of the label stack appears
 earliest in the packet, and the bottom appears latest. The network
 layer packet immediately follows the label stack entry which has the
 S bit set.

 Each label stack entry is broken down into the following fields:

 1. Bottom of Stack (S)

 This bit is set to one for the last entry in the label stack
 (i.e., for the bottom of the stack), and zero for all other
 label stack entries.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 4]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 2. Time to Live (TTL)

 This eight-bit field is used to encode a time-to-live value.
 The processing of this field is described in section 2.3.

 3. Class of Service (CoS)

 This three-bit field is used to identify a "Class of Service".
 The setting of this field is intended to affect the scheduling
 and/or discard algorithms which are applied to the packet as it
 is transmitted through the network.

 When an unlabeled packet is initially labeled, the value
 assigned to the CoS field in the label stack entry is
 determined by policy. Some possible policies are:

 - the CoS value is a function of the IP ToS value

 - the CoS value is a function of the packet's input interface

 - the CoS value is a function of the "flow type"

 Of course, many other policies are also possible.

 When an additional label is pushed onto the stack of a packet
 that is already labeled:

 - in general, the value of the CoS field in the new top stack
 entry should be equal to the value of the CoS field of the
 old top stack entry;

 - however, in some cases, most likely at boundaries between
 network service providers, the value of the CoS field in
 the new top stack entry may be determined by policy.

 4. Label Value

 This 20-bit field carries the actual value of the Label.

 When a labeled packet is received, the label value at the top
 of the stack is looked up. As a result of a successful lookup
 one learns:

 (a) information needed to forward the packet, such as the
 next hop and the outgoing data link encapsulation;
 however, the precise queue to put the packet on, or
 information as to how to schedule the packet, may be a
 function of both the label value AND the CoS field

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 5]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 value;

 (b) the operation to be performed on the label stack before
 forwarding; this operation may be to replace the top
 label stack entry with another, or to pop an entry off
 the label stack, or to replace the top label stack entry
 and then to push one or more additional entries on the
 label stack.

 There are several reserved label values:

 i. A value of 0 represents the "IPv4 Explicit NULL Label".
 This label value is only legal when it is the sole
 label stack entry. It indicates that the label stack
 must be popped, and the forwarding of the packet must
 then be based on the IPv4 header.

 ii. A value of 1 represents the "Router Alert Label". This
 label value is legal anywhere in the label stack except
 at the bottom. When a received packet contains this
 label value at the top of the label stack, it is
 delivered to a local software module for processing.
 The actual forwarding of the packet is determined by
 the label beneath it in the stack. However, if the
 packet is forwarded further, the Router Alert Label
 should be pushed back onto the label stack before
 forwarding. The use of this label is analogous to the
 use of the "Router Alert Option" in IP packets [7].
 Since this label cannot occur at the bottom of the
 stack, it is not associated with a particular network
 layer protocol.

 iii. A value of 2 represents the "IPv6 Explicit NULL Label".
 This label value is only legal when it is the sole
 label stack entry. It indicates that the label stack
 must be popped, and the forwarding of the packet must
 then be based on the IPv6 header.

 iv. A value of 3 represents the "Implicit NULL Label".
 This is a label that an LSR may assign and distribute,
 but which never actually appears in the encapsulation.
 When an LSR would otherwise replace the label at the
 top of the stack with a new label, but the new label is
 "Implicit NULL", the LSR will pop the stack instead of
 doing the replacement. Although this value may never
 appear in the encapsulation, it needs to be specified
 in the Label Distribution Protocol, so a value is
 reserved.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 6]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 v. Values 4-16 are reserved.

2.2. Determining the Network Layer Protocol

 When the last label is popped from a packet's label stack (resulting
 in the stack being emptied), further processing of the packet is
 based on the packet's network layer header. The LSR which pops the
 last label off the stack must therefore be able to identify the
 packet's network layer protocol. However, the label stack does not
 contain any field which explicitly identifies the network layer
 protocol. This means that the identity of the network layer protocol
 must be inferable from the value of the label which is popped from
 the bottom of the stack, possibly along with the contents of the
 network layer header itself.

 Therefore, when the first label is pushed onto a network layer
 packet, either the label must be one which is used ONLY for packets
 of a particular network layer, or the label must be one which is used
 ONLY for a specified set of network layer protocols, where packets of
 the specified network layers can be distinguished by inspection of
 the network layer header. Furthermore, whenever that label is
 replaced by another label value during a packet's transit, the new
 value must also be one which meets the same criteria. If these
 conditions are not met, the LSR which pops the last label off a
 packet will not be able to identify the packet's network layer
 protocol.

 Adherence to these conditions does not necessarily enable
 intermediate nodes to identify a packet's network layer protocol.
 Under ordinary conditions, this is not necessary, but there are error
 conditions under which it is desirable. For instance, if an
 intermediate LSR determines that a labeled packet is undeliverable,
 it may be desirable for that LSR to generate error messages which are
 specific to the packet's network layer. The only means the
 intermediate LSR has for identifying the network layer is inspection
 of the top label and the network layer header. So if intermediate
 nodes are to be able to generate protocol-specific error messages for
 labeled packets, all labels in the stack must meet the criteria
 specified above for labels which appear at the bottom of the stack.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 7]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

2.3. Processing the Time to Live Field

2.3.1. Definitions

 The "incoming TTL" of a labeled packet is defined to be the value of
 the TTL field of the top label stack entry when the packet is
 received.

 The "outgoing TTL" of a labeled packet is defined to be the larger
 of:

 (a) one less than the incoming TTL,
 (b) zero.

2.3.2. Protocol-independent rules

 If the outgoing TTL of a labeled packet is 0, then the labeled packet
 MUST NOT be further forwarded; the packet's lifetime in the network
 is considered to have expired.

 Depending on the label value in the label stack entry, the packet MAY
 be silently discarded, or the packet MAY have its label stack
 stripped off, and passed as an unlabeled packet to the ordinary
 processing for network layer packets which have exceeded their
 maximum lifetime in the network. However, even if the label stack is
 stripped, the packet MUST NOT be further forwarded.

 When a labeled packet is forwarded, the TTL field of the label stack
 entry at the top of the label stack must be set to the outgoing TTL
 value.

 Note that the outgoing TTL value is a function solely of the incoming
 TTL value, and is independent of whether any labels are pushed or
 popped before forwarding. There is no significance to the value of
 the TTL field in any label stack entry which is not at the top of the
 stack.

2.3.3. IP-dependent rules

 We define the "IP TTL" field to be the value of the IPv4 TTL field,
 or the value of the IPv6 Hop Limit field, whichever is applicable.

 When an IP packet is first labeled, the TTL field of the label stack
 entry MUST BE set to the value of the IP TTL field. (If the IP TTL
 field needs to be decremented, as part of the IP processing, it is
 assumed that this has already been done.)

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 8]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 When a label is popped, and the resulting label stack is empty, then
 the value of the IP TTL field MUST BE replaced with the outgoing TTL
 value, as defined above. In IPv4 this also requires modification of
 the IP header checksum.

2.3.4. Translating Between Different Encapsulations

 Sometimes an LSR may receive a labeled packet over, say, a label
 switching controlled ATM (LC-ATM) interface [11], and may need to
 send it out over a PPP or LAN link. Then the incoming packet will
 not be received using the encapsulation specified in this document,
 but the outgoing packet will be sent using the encapsulation
 specified in this document.

 In this case, the value of the "incoming TTL" is determined by the
 procedures used for carrying labeled packets on, e.g., LC-ATM
 interfaces. TTL processing then proceeds as described above.

 Sometimes an LSR may receive a labeled packet over a PPP or a LAN
 link, and may need to send it out, say, an LC-ATM interface. Then
 the incoming packet will be received using the encapsulation
 specified in this document, but the outgoing packet will not be send
 using the encapsulation specified in this document. In this case,
 the procedure for carrying the value of the "outgoing TTL" is
 determined by the procedures used for carrying labeled packets on,
 e.g., LC-ATM interfaces.

3. Fragmentation and Path MTU Discovery

 Just as it is possible to receive an unlabeled IP datagram which is
 too large to be transmitted on its output link, it is possible to
 receive a labeled packet which is too large to be transmitted on its
 output link.

 It is also possible that a received packet (labeled or unlabeled)
 which was originally small enough to be transmitted on that link
 becomes too large by virtue of having one or more additional labels
 pushed onto its label stack. In label switching, a packet may grow
 in size if additional labels get pushed on. Thus if one receives a
 labeled packet with a 1500-byte frame payload, and pushes on an
 additional label, one needs to forward it as frame with a 1504-byte
 payload.

 This section specifies the rules for processing labeled packets which
 are "too large". In particular, it provides rules which ensure that

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 9]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 hosts implementing RFC 1191 Path MTU Discovery, and hosts using IPv6,
 will be able to generate IP datagrams that do not need fragmentation,
 even if they get labeled as the traverse the network.

 In general, hosts which do not implement RFC 1191 Path MTU Discovery
 send IP datagrams which contain no more than 576 bytes. Since the
 MTUs in use on most data links today are 1500 bytes or more, the
 probability that such datagrams will need to get fragmented, even if
 they get labeled, is very small.

 Some hosts that do not implement RFC 1191 Path MTU Discovery will
 generate IP datagrams containing 1500 bytes, as long as the IP Source
 and Destination addresses are on the same subnet. These datagrams
 will not pass through routers, and hence will not get fragmented.

 Unfortunately, some hosts will generate IP datagrams containing 1500
 bytes, as long the IP Source and Destination addresses do not have
 the same classful network number. This is the one case in which
 there is any risk of fragmentation when such datagrams get labeled.
 (Even so, fragmentation is not likely unless the packet must traverse
 an ethernet of some sort between the time it first gets labeled and
 the time it gets unlabeled.)

 This document specifies procedures which allow one to configure the
 network so that large datagrams from hosts which do not implement
 Path MTU Discovery get fragmented just once, when they are first
 labeled. These procedures make it possible (assuming suitable
 configuration) to avoid any need to fragment packets which have
 already been labeled.

3.1. Terminology

 With respect to a particular data link, we can use the following
 terms:

 - Frame Payload:

 The contents of a data link frame, excluding any data link layer
 headers or trailers (e.g., MAC headers, LLC headers, 802.1Q
 headers, PPP header, frame check sequences, etc.).

 When a frame is carrying an an unlabeled IP datagram, the Frame
 Payload is just the IP datagram itself. When a frame is carrying
 a labeled IP datagram, the Frame Payload consists of the label
 stack entries and the IP datagram.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1191

Rosen, et al. [Page 10]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 - Conventional Maximum Frame Payload Size:

 The maximum Frame Payload size allowed by data link standards.
 For example, the Conventional Maximum Frame Payload Size for
 ethernet is 1500 bytes.

 - True Maximum Frame Payload Size:

 The maximum size frame payload which can be sent and received
 properly by the interface hardware attached to the data link.

 On ethernet and 802.3 networks, it is believed that the True
 Maximum Frame Payload Size is 4-8 bytes larger than the
 Conventional Maximum Frame Payload Size (as long neither an
 802.1Q header nor an 802.1p header is present, and as long as
 neither can be added by a switch or bridge while a packet is in
 transit to its next hop). For example, it is believed that most
 ethernet equipment could correctly send and receive packets
 carrying a payload of 1504 or perhaps even 1508 bytes, at least,
 as long as the ethernet header does not have an 802.1Q or 802.1p
 field.

 On PPP links, the True Maximum Frame Payload Size may be
 virtually unbounded.

 - Effective Maximum Frame Payload Size for Labeled Packets:

 This is either be the Conventional Maximum Frame Payload Size or
 the True Maximum Frame Payload Size, depending on the
 capabilities of the equipment on the data link and the size of
 the ethernet header being used.

 - Initially Labeled IP Datagram

 Suppose that an unlabeled IP datagram is received at a particular
 LSR, and that the the LSR pushes on a label before forwarding the
 datagram. Such a datagram will be called an Initially Labeled IP
 Datagram at that LSR.

 - Previously Labeled IP Datagram

 An IP datagram which had already been labeled before it was
 received by a particular LSR.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 11]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

3.2. Maximum Initially Labeled IP Datagram Size

 Every LSR which is capable of

 (a) receiving an unlabeled IP datagram,
 (b) adding a label stack to the datagram, and
 (c) forwarding the resulting labeled packet,

 MUST support a configuration parameter known as the "Maximum IP
 Datagram Size for Labeling", which can be set to a non-negative
 value.

 If this configuration parameter is set to zero, it has no effect.

 If it is set to a positive value, it is used in the following way.
 If:
 (a) an unlabeled IP datagram is received, and
 (b) that datagram does not have the DF bit set in its IP header,
 and
 (c) that datagram needs to be labeled before being forwarded, and
 (d) the size of the datagram (before labeling) exceeds the value
 of the parameter,
 then
 (a) the datagram must be broken into fragments, each of whose size
 is no greater than the value of the parameter, and
 (b) each fragment must be labeled and then forwarded.

 If this configuration parameter is set to a value of 1488, for
 example, then any unlabeled IP datagram containing more than 1488
 bytes will be fragmented before being labeled. Each fragment will be
 capable of being carried on a 1500-byte data link, without further
 fragmentation, even if as many as three labels are pushed onto its
 label stack.

 In other words, setting this parameter to a non-zero value allows one
 to eliminate all fragmentation of Previously Labeled IP Datagrams,
 but it may cause some unnecessary fragmentation of Initially Labeled
 IP Datagrams.

 Note that the parameter has no effect on IP Datagrams that have the
 DF bit set, which means that it has no effect on Path MTU Discovery.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 12]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

3.3. When are Labeled IP Datagrams Too Big?

 A labeled IP datagram whose size exceeds the Conventional Maximum
 Frame Payload Size of the data link over which it is to be forwarded
 MAY be considered to be "too big".

 A labeled IP datagram whose size exceeds the True Maximum Frame
 Payload Size of the data link over which it is to be forwarded MUST
 be considered to be "too big".

 A labeled IP datagram which is not "too big" MUST be transmitted
 without fragmentation.

3.4. Processing Labeled IPv4 Datagrams which are Too Big

 If a labeled IPv4 datagram is "too big", and the DF bit is not set in
 its IP header, then the LSR MAY discard the datagram.

 Note that discarding such datagrams is a sensible procedure only if
 the "Maximum Initially Labeled IP Datagram Size" is set to a non-zero
 value in every LSR in the network which is capable of adding a label
 stack to an unlabeled IP datagram.

 If the LSR chooses not to discard a labeled IPv4 datagram which is
 too big, or if the DF bit is set in that datagram, then it MUST
 execute the following algorithm:

 1. Strip off the label stack entries to obtain the IP datagram.

 2. Let N be the number of bytes in the label stack (i.e, 4 times
 the number of label stack entries).

 3. If the IP datagram does NOT have the "Don't Fragment" bit set
 in its IP header:

 a. convert it into fragments, each of which MUST be at least
 N bytes less than the Effective Maximum Frame Payload
 Size.

 b. Prepend each fragment with the same label header that
 would have been on the original datagram had
 fragmentation not been necessary.

 c. Forward the fragments

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 13]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 4. If the IP datagram has the "Don't Fragment" bit set in its IP
 header:

 a. the datagram MUST NOT be forwarded

 b. Create an ICMP Destination Unreachable Message:

 i. set its Code field (RFC 792) to "Fragmentation
 Required and DF Set",

 ii. set its Next-Hop MTU field (RFC 1191) to the
 difference between the Effective Maximum Frame
 Payload Size and the value of N

 c. If possible, transmit the ICMP Destination Unreachable
 Message to the source of the of the discarded datagram.

3.5. Processing Labeled IPv6 Datagrams which are Too Big

 To process a labeled IPv6 datagram which is too big, an LSR MUST
 execute the following algorithm:

 1. Strip off the label stack entries to obtain the IP datagram.

 2. Let N be the number of bytes in the label stack (i.e, 4 times
 the number of label stack entries).

 3. If the IP datagram contains more than 576 bytes (not counting
 the label stack entries), then:

 a. Create an ICMP Packet Too Big Message, and set its Next-
 Hop MTU field to the difference between the Effective
 Maximum Frame Payload Size and the value of N

 b. If possible, transmit the ICMP Packet Too Big Message to
 the source of the datagram.

 c. discard the labeled IPv6 datagram.

 4. If the IP datagram is not larger than 576 octets, then

 a. Convert it into fragments, each of which MUST be at least
 N bytes less than the Effective Maximum Frame Payload
 Size.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1191

Rosen, et al. [Page 14]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 b. Prepend each fragment with the same label header that
 would have been on the original datagram had
 fragmentation not been necessary.

 c. Forward the fragments.

 Reassembly of the fragments will be done at the destination
 host.

3.6. Implications with respect to Path MTU Discovery

 The procedures described above for handling datagrams which have the
 DF bit set, but which are "too large", have an impact on the Path MTU
 Discovery procedures of RFC 1191. Hosts which implement these
 procedures will discover an MTU which is small enough to allow n
 labels to be pushed on the datagrams, without need for fragmentation,
 where n is the number of labels that actually get pushed on along the
 path currently in use.

 In other words, datagrams from hosts that use Path MTU Discovery will
 never need to be fragmented due to the need to put on a label header,
 or to add new labels to an existing label header. (Also, datagrams
 from hosts that use Path MTU Discovery generally have the DF bit set,
 and so will never get fragmented anyway.)

 However, note that Path MTU Discovery will only work properly if, at
 the point where a labeled IP Datagram's fragmentation needs to occur,
 it is possible to route to the packet's source address. If this is
 not possible, then the ICMP Destination Unreachable message cannot be
 sent to the source.

3.6.1. Tunneling through a Transit Routing Domain

 Suppose one is using MPLS to "tunnel" through a transit routing
 domain, where the external routes are not leaked into the domain's
 interior routers. If a packet needs fragmentation at some router
 within the domain, and the packet's DF bit is set, it is necessary to
 be able to originate an ICMP message at that router and have it
 routed correctly to the source of the fragmented packet. If the
 packet's source address is an external address, this poses a problem.

 Therefore, in order for Path MTU Discovery to work, any routing
 domain in which external routes are not leaked into the interior
 routers MUST have a default route which causes all packets carrying
 external destination addresses to be sent to a border router. For
 example, one of the border routers may inject "default" into the IGP.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt
https://datatracker.ietf.org/doc/html/rfc1191

Rosen, et al. [Page 15]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

3.6.2. Tunneling Private Addresses through a Public Backbone

 In other cases where MPLS is used to tunnel through a routing domain,
 it may not be possible to route to the source address of a fragmented
 packet at all. This would be the case, for example, if the IP
 addresses carried in the packet were private addresses, and MPLS were
 being used to tunnel those packets through a public backbone.

 In such cases, the LSR at the transmitting end of the tunnel MUST be
 able to determine the MTU of the tunnel as a whole. It SHOULD do
 this by sending packets through the tunnel to the tunnel's receiving
 endpoint, and performing Path MTU Discovery with those packets. Then
 any time the transmitting endpoint of the tunnel needs to send a
 packet into the tunnel, and that packet has the DF bit set, and it
 exceeds the tunnel MTU, the transmitting endpoint of the tunnel MUST
 send the ICMP Destination Unreachable message to the source, with
 code "Fragmentation Required and DF Set", and the Next-Hop MTU Field
 set as described above.

4. Transporting Labeled Packets over PPP

 The Point-to-Point Protocol (PPP) [8] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links. PPP
 defines an extensible Link Control Protocol, and proposes a family of
 Network Control Protocols for establishing and configuring different
 network-layer protocols.

 This section defines the Network Control Protocol for establishing
 and configuring label Switching over PPP.

4.1. Introduction

 PPP has three main components:

 1. A method for encapsulating multi-protocol datagrams.

 2. A Link Control Protocol (LCP) for establishing, configuring,
 and testing the data-link connection.

 3. A family of Network Control Protocols for establishing and
 configuring different network-layer protocols.

 In order to establish communications over a point-to-point link, each
 end of the PPP link must first send LCP packets to configure and test
 the data link. After the link has been established and optional
 facilities have been negotiated as needed by the LCP, PPP must send

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 16]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 "MPLS Control Protocol" packets to enable the transmission of labeled
 packets. Once the "MPLS Control Protocol" has reached the Opened
 state, labeled packets can be sent over the link.

 The link will remain configured for communications until explicit LCP
 or MPLS Control Protocol packets close the link down, or until some
 external event occurs (an inactivity timer expires or network
 administrator intervention).

4.2. A PPP Network Control Protocol for MPLS

 The MPLS Control Protocol (MPLSCP) is responsible for enabling and
 disabling the use of label switching on a PPP link. It uses the same
 packet exchange mechanism as the Link Control Protocol (LCP). MPLSCP
 packets may not be exchanged until PPP has reached the Network-Layer
 Protocol phase. MPLSCP packets received before this phase is reached
 should be silently discarded.

 The MPLS Control Protocol is exactly the same as the Link Control
 Protocol [8] with the following exceptions:

 1. Frame Modifications

 The packet may utilize any modifications to the basic frame
 format which have been negotiated during the Link Establishment
 phase.

 2. Data Link Layer Protocol Field

 Exactly one MPLSCP packet is encapsulated in the PPP
 Information field, where the PPP Protocol field indicates type
 hex 8281 (MPLS).

 3. Code field

 Only Codes 1 through 7 (Configure-Request, Configure-Ack,
 Configure-Nak, Configure-Reject, Terminate-Request, Terminate-
 Ack and Code-Reject) are used. Other Codes should be treated
 as unrecognized and should result in Code-Rejects.

 4. Timeouts

 MPLSCP packets may not be exchanged until PPP has reached the
 Network-Layer Protocol phase. An implementation should be
 prepared to wait for Authentication and Link Quality
 Determination to finish before timing out waiting for a
 Configure-Ack or other response. It is suggested that an

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 17]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 implementation give up only after user intervention or a
 configurable amount of time.

 5. Configuration Option Types

 None.

4.3. Sending Labeled Packets

 Before any labeled packets may be communicated, PPP must reach the
 Network-Layer Protocol phase, and the MPLS Control Protocol must
 reach the Opened state.

 Exactly one labeled packet is encapsulated in the PPP Information
 field, where the PPP Protocol field indicates either type hex 8281
 (MPLS Unicast) or type hex 8283 (MPLS Multicast). The maximum length
 of a labeled packet transmitted over a PPP link is the same as the
 maximum length of the Information field of a PPP encapsulated packet.

 The format of the Information field itself is as defined in section
2.

 Note that two codepoints are defined for labeled packets; one for
 multicast and one for unicast. Once the MPLSCP has reached the
 Opened state, both label Switched multicasts and label Switched
 unicasts can be sent over the PPP link.

4.4. Label Switching Control Protocol Configuration Options

 There are no configuration options.

5. Transporting Labeled Packets over LAN Media

 Exactly one labeled packet is carried in each frame.

 The label stack entries immediately precede the network layer header,
 and follow any data link layer headers, including, e.g., any 802.1Q
 headers that may exist.

 The ethertype value 8847 hex is used to indicate that a frame is
 carrying an MPLS unicast packet.

 The ethertype value 8848 hex is used to indicate that a frame is
 carrying an MPLS multicast packet.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 18]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 These ethertype values can be used with either the ethernet
 encapsulation or the 802.3 SNAP/SAP encapsulation to carry labeled
 packets.

6. Security Considerations

 Security considerations are not discussed in this document.

7. Authors' Addresses

 Eric C. Rosen
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824
 E-mail: erosen@cisco.com

 Dan Tappan
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824
 E-mail: tappan@cisco.com

 Dino Farinacci
 Cisco Systems, Inc.
 170 Tasman Drive
 San Jose, CA, 95134
 E-mail: dino@cisco.com

 Yakov Rekhter
 Cisco Systems, Inc.
 170 Tasman Drive
 San Jose, CA, 95134
 E-mail: yakov@cisco.com

 Guy Fedorkow
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824
 E-mail: fedorkow@cisco.com

 Tony Li
 Juniper Networks
 385 Ravendale Dr.
 Mountain View, CA, 94043
 E-mail: tli@juniper.net

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt

Rosen, et al. [Page 19]

Internet Draft draft-ietf-mpls-label-encaps-01.txt February 1998

 Alex Conta
 Lucent Technologies
 300 Baker Avenue
 Concord, MA, 01742
 E-mail: aconta@lucent.com

8. References

 [1], "A Proposed Architecture for MPLS", 7/97, draft-ietf-mpls-arch-
00.txt, Rosen, Viswanathan, Callon

 [2] "A Framework for Multiprotocol Label Switching", 11/97, draft-
ietf-mpls-framework-02.txt, Callon, Doolan, Feldman, Fredette,

 Swallow, Viswanathan

 [3] "Tag Switching Architecture - Overview", 7/97, draft-rekhter-
tagswitch-arch-01.txt, Rekhter, Davie, Katz, Rosen, Swallow

 [4] "Internet Protocol", RFC 791, 9/81, Postel

 [5] "Internet Control Message Protocol", RFC 792, 9/81, Postel

 [6] "Path MTU Discovery", RFC 1191, 11/90, Mogul & Deering

 [7] "IP Router Alert Option", RFC 2113, 2/97, Katz

 [8] "The Point-to-Point Protocol (PPP)", RFC 1661, 7/94, Simpson

 [9] "Internet Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 1885, 12/95, Conta,
 Deering

 [10] "Path MTU Discovery for IP version 6", [RFC-1981] McCann, J., S.
 Deering, J. Mogul

 [11] "Use of Label Switching with ATM", draft-davie-mpls-atm-00.txt,
 Davie, Lawrence, McCloghrie, Rekhter, Rosen, Swallow, Doolan

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-arch-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-arch-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-framework-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-framework-02.txt
https://datatracker.ietf.org/doc/html/draft-rekhter-tagswitch-arch-01.txt
https://datatracker.ietf.org/doc/html/draft-rekhter-tagswitch-arch-01.txt
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2113
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1885
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/draft-davie-mpls-atm-00.txt

Rosen, et al. [Page 20]

