
Network Working Group Loa Andersson
Internet Draft Nortel Networks Inc.
Expiration Date: December 1999
 Paul Doolan
 Ennovate Networks

 Nancy Feldman
 IBM Corp

 Andre Fredette
 Nortel Networks Inc.

 Bob Thomas
 Cisco Systems, Inc.

 June 1999

LDP Specification

draft-ietf-mpls-ldp-05.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 An overview of Multi Protocol Label Switching (MPLS) is provided in
 [FRAMEWORK] and a proposed architecture in [ARCH]. A fundamental
 concept in MPLS is that two Label Switching Routers (LSRs) must agree
 on the meaning of the labels used to forward traffic between and

Andersson, et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 through them. This common understanding is achieved by using a set
 of procedures, called a label distribution protocol, by which one LSR
 informs another of label bindins it has made. This document defines
 a set of such procedures called LDP (for Label Distribution
 Protocol).

Changes from Previous Draft

 - This draft addresses issues raised during the LDP last call held
 February 8, 1999 through February 24, 1999.

Open Issues

 The following LDP issues are left unresolved with this version of the
 spec:

 - Section 2.16 of the MPLS architecture [ARCH] requires that the
 initial label distribution protocol negotiation between peer LSRs
 enable each LSR to determine whether its peer is capable of
 popping the label stack. This version of LDP assumes that LSRs
 support label popping for all link types except ATM and Frame
 Relay. A future version may specify means to make this
 determination part of the session initiation negotiation.

 - LDP support for CoS is not specified in this version. CoS
 support may be addressed in a future version.

 - LDP support for multicast is not specified in this version.
 Multicast support will be addressed in a future version.

 - LDP support for multipath label switching is not specified in
 this version. Multipath support will be addressed in a future
 version.

Andersson, et al. [Page 2]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

Table of Contents

1 LDP Overview 6
1.1 LDP Peers .. 6
1.2 LDP Message Exchange 7
1.3 LDP Message Structure 7
1.4 LDP Error Handling 8
1.5 LDP Extensibility and Future Compatibility 8
2 LDP Operation 8
2.1 FECs ... 8
2.2 Label Spaces, Identifiers, Sessions and Transport .. 10
2.2.1 Label Spaces 10
2.2.2 LDP Identifiers 11
2.2.3 LDP Sessions 11
2.2.4 LDP Transport 11
2.3 LDP Sessions between non-Directly Connected LSRs ... 12
2.4 LDP Discovery 12
2.4.1 Basic Discovery Mechanism 12
2.4.2 Extended Discovery Mechanism 13
2.5 Establishing and Maintaining LDP Sessions 14
2.5.1 LDP Session Establishment 14
2.5.2 Transport Connection Establishment 14
2.5.3 Session Initialization 15
2.5.4 Initialization State Machine 17
2.5.5 Maintaining Hello Adjacencies 20
2.5.6 Maintaining LDP Sessions 20
2.6 Label Distribution and Management 21
2.6.1 Label Distribution Control Mode 21
2.6.1.1 Independent Label Distribution Control 21
2.6.1.2 Ordered Label Distribution Control 21
2.6.2 Label Retention Mode 22
2.6.2.1 Conservative Label Retention Mode 22
2.6.2.2 Liberal Label Retention Mode 22
2.6.3 Label Advertisement Mode 23
2.7 LDP Identifiers and Next Hop Addresses 23
2.8 Loop Detection 24
2.8.1 Label Request Message 25
2.8.2 Label Mapping Message 26
2.8.3 Discussion ... 28
2.9 Label Distribution for Explicitly Routed LSPs 28
3 Protocol Specification 29
3.1 LDP PDUs ... 29
3.2 LDP Procedures 30
3.3 Type-Length-Value Encoding 30
3.4 TLV Encodings for Commonly Used Parameters 32
3.4.1 FEC TLV .. 32

Andersson, et al. [Page 3]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.4.1.1 FEC Procedures 35
3.4.2 Label TLVs ... 35
3.4.2.1 Generic Label TLV 35
3.4.2.2 ATM Label TLV 35
3.4.2.3 Frame Relay Label TLV 36
3.4.3 Address List TLV 37
3.4.4 Hop Count TLV 38
3.4.4.1 Hop Count Procedures 38
3.4.5 Path Vector TLV 39
3.4.5.1 Path Vector Procedures 40
3.4.5.1.1 Label Request Path Vector 40
3.4.5.1.2 Label Mapping Path Vector 41
3.4.6 Status TLV ... 42
3.5 LDP Messages 43
3.5.1 Notification Message 45
3.5.1.1 Notification Message Procedures 47
3.5.1.2 Events Signaled by Notification Messages 47
3.5.1.2.1 Malformed PDU or Message 47
3.5.1.2.2 Unknown or Malformed TLV 48
3.5.1.2.3 Session KeepAlive Timer Expiration 49
3.5.1.2.4 Unilateral Session Shutdown 49
3.5.1.2.5 Initialization Message Events 49
3.5.1.2.6 Events Resulting From Other Messages 49
3.5.1.2.7 Miscellaneous Events 49
3.5.2 Hello Message 50
3.5.2.1 Hello Message Procedures 52
3.5.3 Initialization Message 53
3.5.3.1 Initialization Message Procedures 61
3.5.4 KeepAlive Message 61
3.5.4.1 KeepAlive Message Procedures 62
3.5.5 Address Message 62
3.5.5.1 Address Message Procedures 63
3.5.6 Address Withdraw Message 63
3.5.6.1 Address Withdraw Message Procedures 64
3.5.7 Label Mapping Message 64
3.5.7.1 Label Mapping Message Procedures 65
3.5.7.1.1 Independent Control Mapping 66
3.5.7.1.2 Ordered Control Mapping 66
3.5.7.1.3 Downstream on Demand Label Advertisement 67
3.5.7.1.4 Downstream Unsolicited Label Advertisement 67
3.5.8 Label Request Message 68
3.5.8.1 Label Request Message Procedures 69
3.5.9 Label Abort Request Message 70
3.5.9.1 Label Abort Request Message Procedures 71
3.5.10 Label Withdraw Message 73
3.5.10.1 Label Withdraw Message Procedures 73
3.5.11 Label Release Message 74
3.5.11.1 Label Release Message Procedures 75

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Andersson, et al. [Page 4]

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.6 Messages and TLVs for Extensibility 76
3.6.1 LDP Vendor-private Extensions 76
3.6.1.1 LDP Vendor-private TLVs 76
3.6.1.2 LDP Vendor-private Messages 78
3.6.2 LDP Experimental Extensions 79
3.7 Message Summary 79
3.8 TLV Summary .. 80
3.9 Status Code Summary 81
3.10 Well-known Numbers 82
3.10.1 UDP and TCP Ports 82
3.10.2 Implicit NULL Label 82
4 Security Considerations 82
4.1 The TCP MD5 Signature Option 82
4.2 LDP Use of the TCP MD5 Signature Option 84
5 Intellectual Property Considerations 84
6 Acknowledgments 85
7 References ... 85
8 Author Information 86

 Appendix.A LDP Label Distribution Procedures 87
A.1 Handling Label Distribution Events 89
A.1.1 Receive Label Request 90
A.1.2 Receive Label Mapping 93
A.1.3 Receive Label Abort Request 98
A.1.4 Receive Label Release 99
A.1.5 Receive Label Withdraw 101
A.1.6 Recognize New FEC 103
A.1.7 Detect Change in FEC Next Hop 106
A.1.8 Receive Notification / Label Request Aborted 108
A.1.9 Receive Notification / No Label Resources 109
A.1.10 Receive Notification / No Route 110
A.1.11 Receive Notification / Loop Detected 110
A.1.12 Receive Notification / Label Resources Available ... 111

 A.1.13 Detect local label resources have become available . 112
A.1.14 LSR decides to no longer label switch a FEC 113
A.1.15 Timeout of deferred label request 113
A.2 Common Label Distribution Procedures 114
A.2.1 Send_Label ... 114
A.2.2 Send_Label_Request 116
A.2.3 Send_Label_Withdraw 117
A.2.4 Send_Notification 117
A.2.5 Send_Message 118
A.2.6 Check_Received_Attributes 118
A.2.7 Prepare_Label_Request_Attributes 120
A.2.8 Prepare_Label_Mapping_Attributes 121

Andersson, et al. [Page 5]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

1. LDP Overview

Section 2.6 of the MPLS architecture [ARCH] defines a label
 distribution protocol as a set of procedures by which one Label
 Switched Router (LSR) informs another of the meaning of labels used
 to forward traffic between and through them.

 The MPLS architecture does not assume a single label distribution
 protocol. In fact, a number of different label distribution
 protocols are being standardized. Existing protocols have been
 extended so that label distribution can be piggybacked on them. New
 protocols have also been defined for the explicit purpose of
 distributing labels. Section 2.29 of the architecture [ARCH]
 discusses some of the considerations when chosing a label
 distribution protocol for use in particular MPLS applications such as
 Traffic Engineering [TE].

 The Label Distribution Protocol (LDP) defined in this document is a
 new protocol defined for distributing labels. It is the set of
 procedures and messages by which Label Switched Routers (LSRs)
 establish Label Switched Paths (LSPs) through a network by mapping
 network-layer routing information directly to data-link layer
 switched paths. These LSPs may have an endpoint at a directly
 attached neighbor (comparable to IP hop-by-hop forwarding), or may
 have an endpoint at a network egress node, enabling switching via all
 intermediary nodes.

 LDP associates a Forwarding Equivalence Class (FEC) [ARCH] with each
 LSP it creates. The FEC associated with an LSP specifies which
 packets are "mapped" to that LSP. LSPs are extended through a
 network as each LSR "splices" incoming labels for a FEC to the
 outgoing label assigned to the next hop for the given FEC.

 This document assumes familiarity with the MPLS architecture [ARCH].
 Note that [ARCH] includes a glossary of MPLS terminology, such as
 ingress, label switched path, etc.

1.1. LDP Peers

 Two LSRs which use LDP to exchange label/stream mapping information
 are known as "LDP Peers" with respect to that information and we
 speak of there being an "LDP Session" between them. A single LDP
 session allows each peer to learn the other's label mappings; i.e.,
 the protocol is bi-directional.

Andersson, et al. [Page 6]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

1.2. LDP Message Exchange

 There are four categories of LDP messages:

 1. Discovery messages, used to announce and maintain the presence
 of an LSR in a network.

 2. Session messages, used to establish, maintain, and terminate
 sessions between LDP peers.

 3. Advertisement messages, used to create, change, and delete
 label mappings for FECs.

 4. Notification messages, used to provide advisory information and
 to signal error information.

 Discovery messages provide a mechanism whereby LSRs indicate their
 presence in a network by sending the Hello message periodically.
 This is transmitted as a UDP packet to the LDP port at the `all
 routers on this subnet' group multicast address. When an LSR chooses
 to establish a session with another LSR learned via the Hello
 message, it uses the LDP initialization procedure over TCP transport.
 Upon successful completion of the initialization procedure, the two
 LSRs are LDP peers, and may exchange advertisement messages.

 When to request a label or advertise a label mapping to a peer is
 largely a local decision made by an LSR. In general, the LSR
 requests a label mapping from a neighboring LSR when it needs one,
 and advertises a label mapping to a neighboring LSR when it wishes
 the neighbor to use a label.

 Correct operation of LDP requires reliable and in order delivery of
 messages. To satisfy these requirements LDP uses the TCP transport
 for session, advertisement and notification messages; i.e., for
 everything but the UDP-based discovery mechanism.

1.3. LDP Message Structure

 All LDP messages have a common structure that uses a Type-Length-
 Value (TLV) encoding scheme; see Section "Type-Length-Value"
 encoding. The Value part of a TLV-encoded object, or TLV for short,
 may itself contain one or more TLVs.

Andersson, et al. [Page 7]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

1.4. LDP Error Handling

 LDP errors and other events of interest are signaled to an LDP peer
 by notification messages.

 There are two kinds of LDP notification messages:

 1. Error notifications, used to signal fatal errors. If an LSR
 receives an error notification from a peer for an LDP session,
 it terminates the LDP session by closing the TCP transport
 connection for the session and discarding all label mappings
 learned via the session.

 2. Advisory notifications, used to pass an LSR information about
 the LDP session or the status of some previous message received
 from the peer.

1.5. LDP Extensibility and Future Compatibility

 Functionality may be added to LDP in the future. It is likely that
 future functionality will utilize new messages and object types
 (TLVs). It may be desirable to employ such new messages and TLVs
 within a network using older implementations that do not recognize
 them. While it is not possible to make every future enhancement
 backwards compatible, some prior planning can ease the introduction
 of new capabilities. This specification defines rules for handling
 unknown message types and unknown TLVs for this purpose.

2. LDP Operation

2.1. FECs

 It is necessary to precisely specify which packets may be mapped to
 each LSP. This is done by providing a FEC specification for each
 LSP. The FEC identifies the set of IP packets which may be mapped to
 that LSP.

 Each FEC is specified as a set of one or more FEC elements. Each FEC
 element identifies a set of packets which may be mapped to the
 corresponding LSP. When an LSP is shared by multiple FEC elements,
 that LSP is terminated at (or before) the node where the FEC elements
 can no longer share the same path.

 Following are the currently defined types of FEC elements. New
 element types may be added as needed:

Andersson, et al. [Page 8]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 1. Address Prefix. This element is an address prefix of any
 length from 0 to a full address, inclusive.

 2. Host Address. This element is a full host address.

 (We will see below that an Address Prefix FEC element which is a full
 address has a different effect than a Host Address FEC element which
 has the same address.)

 We say that a particular address "matches" a particular address
 prefix if and only if that address begins with that prefix. We also
 say that a particular packet matches a particular LSP if and only if
 that LSP has an Address Prefix FEC element which matches the packet's
 destination address. With respect to a particular packet and a
 particular LSP, we refer to any Address Prefix FEC element which
 matches the packet as the "matching prefix".

 The procedure for mapping a particular packet to a particular LSP
 uses the following rules. Each rule is applied in turn until the
 packet can be mapped to an LSP.

 - If there is exactly one LSP which has a Host Address FEC element
 that is identical to the packet's destination address, then the
 packet is mapped to that LSP.

 - If there multiple LSPs, each containing a Host Address FEC
 element that is identical to the packet's destination address,
 then the packet is mapped to one of those LSPs. The procedure
 for selecting one of those LSPs is beyond the scope of this
 document.

 - If a packet matches exactly one LSP, the packet is mapped to that
 LSP.

 - If a packet matches multiple LSPs, it is mapped to the LSP whose
 matching prefix is the longest. If there is no one LSP whose
 matching prefix is longest, the packet is mapped to one from the
 set of LSPs whose matching prefix is longer than the others. The
 procedure for selecting one of those LSPs is beyond the scope of
 this document.

 - If it is known that a packet must traverse a particular egress
 router, and there is an LSP which has an Address Prefix FEC
 element which is an address of that router, then the packet is
 mapped to that LSP. The procedure for obtaining this knowledge
 is beyond the scope of this document.

 The procedure for determining that a packet must traverse a

Andersson, et al. [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 particular egress router is beyond the scope of this document. (As
 an example, if one is running a link state routing algorithm, it may
 be possible to obtain this information from the link state data base.
 As another example, if one is running BGP, it may be possible to
 obtain this information from the BGP next hop attribute of the
 packet's route.)

 It is worth pointing out a few consequences of these rules:

 - A packet may be sent on the LSP whose Address Prefix FEC element
 is the address of the packet's egress router ONLY if there is no
 LSP matching the packet's destination address.

 - A packet may match two LSPs, one with a Host Address FEC element
 and one with an Address Prefix FEC element. In this case, the
 packet is always assigned to the former.

 - A packet which does not match a particular Host Address FEC
 element may not be sent on the corresponding LSP, even if the
 Host Address FEC element identifies the packet's egress router.

2.2. Label Spaces, Identifiers, Sessions and Transport

2.2.1. Label Spaces

 The notion of "label space" is useful for discussing the assignment
 and distribution of labels. There are two types of label spaces:

 - Per interface label space. Interface-specific incoming labels
 are used for interfaces that use interface resources for labels.
 An example of such an interface is a label-controlled ATM
 interface that uses VCIs as labels, or a Frame Relay interface
 that uses DLCIs as labels.

 Note that the use of a per interface label space only makes sense
 when the LDP peers are "directly connected" over an interface,
 and the label is only going to be used for traffic sent over that
 interface.

 - Per platform label space. Platform-wide incoming labels are used
 for interfaces that can share the same labels.

Andersson, et al. [Page 10]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.2.2. LDP Identifiers

 An LDP identifier is a six octet quantity used to identify an LSR
 label space. The first four octets encode an IP address assigned to
 the LSR, and the last two octets identify a specific label space
 within the LSR. The last two octets of LDP Identifiers for
 platform-wide label spaces are always both zero. This document uses
 the following print representation for LDP Identifiers:

 <IP address> : <label space id>

 e.g., 171.32.27.28:0, 192.0.3.5:2.

 Note that an LSR that manages and advertises multiple label spaces
 uses a different LDP Identifier for each such label space.

 A situation where an LSR would need to advertise more than one label
 space to a peer and hence use more than one LDP Identifier occurs
 when the LSR has two links to the peer and both are ATM (and use per
 interface labels). Another situation would be where the LSR had two
 links to the peer, one of which is ethernet (and uses per platform
 labels) and the other of which is ATM.

2.2.3. LDP Sessions

 LDP sessions exist between LSRs to support label exchange between
 them.

 When an LSR uses LDP to advertise more than one label space to
 another LSR it uses a separate LDP session for each label space.

2.2.4. LDP Transport

 LDP uses TCP as a reliable transport for sessions.

 When multiple LDP sessions are required between two LSRs there is
 one TCP session for each LDP session.

Andersson, et al. [Page 11]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.3. LDP Sessions between non-Directly Connected LSRs

 LDP sessions between LSRs that are not directly connected at the link
 level may be desirable in some situations.

 For example, consider a "traffic engineering" application where LSRa
 sends traffic matching some criteria via an LSP to non-directly
 connected LSRb rather than forwarding the traffic along its normally
 routed path.

 The path between LSRa and LSRb would include one or more intermediate
 LSRs (LSR1,...LSRn). An LDP session between LSRa and LSRb would
 enable LSRb to label switch traffic arriving on the LSP from LSRa by
 providing LSRb means to advertise labels for this purpose to LSRa.

 In this situation LSRa would apply two labels to traffic it forwards
 on the LSP to LSRb: a label learned from LSR1 to forward traffic
 along the LSP path from LSRa to LSRb; and a label learned from LSRb
 to enable LSRb to label switch traffic arriving on the LSP.

 LSRa first adds the label learned via its LDP session with LSRb to
 the packet label stack (either by replacing the label on top of the
 packet label stack with it if the packet arrives labeled or by
 pushing it if the packet arrives unlabeled). Next, it pushes the
 label for the LSP learned from LSR1 onto the label stack.

2.4. LDP Discovery

 LDP discovery is a mechanism that enables an LSR to discover
 potential LDP peers. Discovery makes it unnecessary to explicitly
 configure an LSR's label switching peers.

 There are two variants of the discovery mechanism:

 - A basic discovery mechanism used to discover LSR neighbors that
 are directly connected at the link level.

 - An extended discovery mechanism used to locate LSRs that are not
 directly connected at the link level.

2.4.1. Basic Discovery Mechanism

 To engage in LDP Basic Discovery on an interface an LSR periodically
 sends LDP Link Hellos out the interface. LDP Link Hellos are sent as
 UDP packets addressed to the well-known LDP discovery port for the
 "all routers on this subnet" group multicast address.

Andersson, et al. [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 An LDP Link Hello sent by an LSR carries the LDP Identifier for the
 label space the LSR intends to use for the interface and possibly
 additional information.

 Receipt of an LDP Link Hello on an interface identifies a "Hello
 adjacency" with a potential LDP peer reachable at the link level on
 the interface as well as the label space the peer intends to use for
 the interface.

2.4.2. Extended Discovery Mechanism

 LDP sessions between non-directly connected LSRs are supported by LDP
 Extended Discovery.

 To engage in LDP Extended Discovery an LSR periodically sends LDP
 Targeted Hellos to a specific IP address. LDP Targeted Hellos are
 sent as UDP packets addressed to the well-known LDP discovery port at
 the specific address.

 An LDP Targeted Hello sent by an LSR carries the LDP Identifier for
 the label space the LSR intends to use and possibly additional
 optional information.

 Extended Discovery differs from Basic Discovery in the following
 ways:

 - A Targeted Hello is sent to a specific IP address rather than to
 the "all routers" group multicast address for the outgoing
 interface.

 - Unlike Basic Discovery, which is symmetric, Extended Discovery is
 asymmetric.

 One LSR initiates Extended Discovery with another targeted LSR,
 and the targeted LSR decides whether to respond to or ignore the
 Targeted Hello. A targeted LSR that chooses to respond does so
 by periodically sending Targeted Hellos to the initiating LSR.

 Receipt of an LDP Targeted Hello identifies a "Hello adjacency" with
 a potential LDP peer reachable at the network level and the label
 space the peer intends to use.

Andersson, et al. [Page 13]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.5. Establishing and Maintaining LDP Sessions

2.5.1. LDP Session Establishment

 The exchange of LDP Discovery Hellos between two LSRs triggers LDP
 session establishment. Session establishment is a two step process:

 - Transport connection establishment.
 - Session initialization

 The following describes establishment of an LDP session between LSRs
 LSR1 and LSR2 from LSR1's point of view. It assumes the exchange of
 Hellos specifying label space LSR1:a for LSR1 and label space LSR2:b
 for LSR2.

2.5.2. Transport Connection Establishment

 The exchange of Hellos results in the creation of a Hello adjacency
 at LSR1 that serves to bind the link (L) and the label spaces LSR1:a
 and LSR2:b.

 1. If LSR1 does not already have an LDP session for the exchange
 of label spaces LSR1:a and LSR2:b it attempts to open a TCP
 connection for a new LDP session with LSR2.

 LSR1 determines the transport addresses to be used at its end
 (A1) and LSR2's end (A2) of the LDP TCP connection. Address A1
 is determined as follows:

 a. If LSR1 uses the Transport Address optional object (TLV) in
 Hello's it sends to LSR2 to advertise an address, A1 is the
 address LSR1 advertises via the optional object;

 b. If LSR1 does not use the Transport Address optional object,
 A1 is the source IP address used in Hellos it sends to
 LSR2.

 Similarly, address A2 is determined as follows:

 a. If LSR2 uses the Transport Address optional object, A2 is
 the address LSR2 advertises via the optional object;

 b. If LSR2 does not use the Transport Address optional object,
 A2 is the source IP address in Hellos received from LSR2.

 2. LSR1 determines whether it will play the active or passive role
 in session establishment by comparing addresses A1 and A2 as

Andersson, et al. [Page 14]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 unsigned integers. If A1 > A2, LSR1 plays the active role;
 otherwise it is passive.

 3. If LSR1 is active, it attempts to establish the LDP TCP
 connection by connecting to the well-known LDP port at address
 A2. If LSR1 is passive, it waits for LSR2 to establish the LDP
 TCP connection to its well-known LDP port.

2.5.3. Session Initialization

 After LSR1 and LSR2 establish a transport connection they negotiate
 session parameters by exchanging LDP Initialization messages. The
 parameters negotiated include LDP protocol version, label
 distribution method, timer values, VPI/VCI ranges for label
 controlled ATM, DLCI ranges for label controlled Frame Relay, etc.

 Successful negotiation completes establishment of an LDP session
 between LSR1 and LSR2 for the advertisement of label spaces LSR1:a
 and LSR2:b.

 The following describes the session initialization from LSR1's point
 of view.

 After the connection is established, if LSR1 is playing the active
 role, it initiates negotiation of session parameters by sending an
 Initialization message to LSR2. If LSR1 is passive, it waits for
 LSR2 to initiate the parameter negotiation.

 In general when there are multiple links between LSR1 and LSR2 and
 multiple label spaces to be advertised by each, the passive LSR
 cannot know which label space to advertise over a newly established
 TCP connection until it receives the first LDP PDU on the connection.

 By waiting for the Initialization message from its peer the passive
 LSR can match the label space to be advertised by the peer (as
 determined from the LDP Identifier in the PDU header for the
 Initialization message) with a Hello adjacency previously created
 when Hellos were exchanged.

 1. When LSR1 plays the passive role:

 a. If LSR1 receives an Initialization message it attempts to
 match the LDP Identifier carried by the message PDU with a
 Hello adjacency.

 b. If there is a matching Hello adjacency, the adjacency
 specifies the local label space for the session.

Andersson, et al. [Page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Next LSR1 checks whether the session parameters proposed in
 the message are acceptable. If they are, LSR1 replies with
 an Initialization message of its own to propose the
 parameters it wishes to use and a KeepAlive message to
 signal acceptance of LSR2's parameters. If the parameters
 are not acceptable, LSR1 responds by sending a Session
 Rejected/Parameters Error Notification message and closing
 the TCP connection.

 c. If LSR1 cannot find a matching Hello adjacency it sends a
 Session Rejected/No Hello Error Notification message and
 closes the TCP connection.

 d. If LSR1 receives a KeepAlive in response to its
 Initialization message, the session is operational from
 LSR1's point of view.

 e. If LSR1 receives an Error Notification message, LSR2 has
 rejected its proposed session and LSR1 closes the TCP
 connection.

 2. When LSR1 plays the active role:

 a. If LSR1 receives an Error Notification message, LSR2 has
 rejected its proposed session and LSR1 closes the TCP
 connection.

 b. If LSR1 receives an Initialization message, it checks
 whether the session parameters are acceptable. If so, it
 replies with a KeepAlive message. If the session
 parameters are unacceptable, LSR1 sends a Session
 Rejected/Parameters Error Notification message and closes
 the connection.

 c. If LSR1 receives a KeepAlive message, LSR2 has accepted its
 proposed session parameters.

 d. When LSR1 has received both an acceptable Initialization
 message and a KeepAlive message the session is operational
 from LSR1's point of view.

 It is possible for a pair of incompatibly configured LSRs that
 disagree on session parameters to engage in an endless sequence
 of messages as each NAKs the other's Initialization messages with
 Error Notification messages.

 An LSR must throttle its session setup retry attempts with an
 exponential backoff in situations where Initialization messages

Andersson, et al. [Page 16]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 are being NAK'd. It is also recommended that an LSR detecting
 such a situation take action to notify an operator.

 The session establishment setup attempt following a NAK'd
 Initialization message must be delayed no less than 15 seconds,
 and subsequent delays must grow to a maximum delay of no less
 than 2 minutes. The specific session establishment action that
 must be delayed is the attempt to open the session transport
 connection by the LSR playing the active role.

 The throttled sequence of Initialization NAKs is unlikely to
 cease until operator intervention reconfigures one of the LSRs.
 After such a configuration action there is no further need to
 throttle subsequent session establishment attempts (until their
 initialization messages are NAK'd).

 Due to the asymmetric nature of session establishment,
 reconfiguration of the passive LSR will go unnoticed by the
 active LSR without some further action. Section "Hello Message"
 describes an optional mechanism an LSR can use to signal
 potential LDP peers that it has been reconfigured.

2.5.4. Initialization State Machine

 It is convenient to describe LDP session negotiation behavior in
 terms of a state machine. We define the LDP state machine to have
 five possible states and present the behavior as a state transition
 table and as a state transition diagram.

Andersson, et al. [Page 17]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Session Initialization State Transition Table

 STATE EVENT NEW STATE

 NON EXISTENT Session TCP connection established INITIALIZED
 established

 INITIALIZED Transmit Initialization msg OPENSENT
 (Active Role)

 Receive acceptable OPENREC
 Initialization msg
 (Passive Role)
 Action: Transmit Initialization
 msg and KeepAlive msg

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPENREC Receive KeepAlive msg OPERATIONAL

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPENSENT Receive acceptable OPENREC
 Initialization msg
 Action: Transmit KeepAlive msg

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPERATIONAL Receive Shutdown msg NON EXISTENT
 Action: Transmit Shutdown msg and
 close transport connection

 Receive other LDP msgs OPERATIONAL

 Timeout NON EXISTENT
 Action: Transmit Shutdown msg and
 close transport connection

Andersson, et al. [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Session Initialization State Transition Diagram

 +------------+
 | |
 +------------>|NON EXISTENT|<--------------------+
 | | | |
 | +------------+ |
 | Session | ^ | |
 | connection | | |
 | established | | Rx any LDP msg except |
 | V | Init msg or Timeout |
 | +-----------+ |
 Rx Any other | | | |
 msg or | |INITIALIZED| |
 Timeout / | +---| |-+ |
 Tx NAK msg | | +-----------+ | |
 | | (Passive Role) | (Active Role) |
 | | Rx Acceptable | Tx Init msg |
 | | Init msg / | |
 | | Tx Init msg | |
 | | Tx KeepAlive | |
 | V msg V |
 | +-------+ +--------+ |
 | | | | | |
 +---|OPENREC| |OPENSENT|----------------->|
 +---| | | | Rx Any other msg |
 | +-------+ +--------+ or Timeout |
 Rx KeepAlive | ^ | Tx NAK msg |
 msg | | | |
 | | | Rx Acceptable |
 | | | Init msg / |
 | +----------------+ Tx KeepAlive msg |
 | |
 | +-----------+ |
 +----->| | |
 |OPERATIONAL| |
 | |---------------------------->+
 +-----------+ Rx Shutdown msg
 All other | ^ or Timeout /
 LDP msgs | | Tx Shutdown msg
 | |
 +---+

Andersson, et al. [Page 19]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.5.5. Maintaining Hello Adjacencies

 An LDP session with a peer has one or more Hello adjacencies.

 An LDP session has multiple Hello adjacencies when a pair of LSRs is
 connected by multiple links that share the same label space; for
 example, multiple PPP links between a pair of routers. In this
 situation the Hellos an LSR sends on each such link carry the same
 LDP Identifier.

 LDP includes mechanisms to monitor the necessity of an LDP session
 and its Hello adjacencies.

 LDP uses the regular receipt of LDP Discovery Hellos to indicate a
 peer's intent to use the label space identified by the Hello. An LSR
 maintains a hold timer with each Hello adjacency which it restarts
 when it receives a Hello that matches the adjacency. If the timer
 expires without receipt of a matching Hello from the peer, LDP
 concludes that the peer no longer wishes to label switch using that
 label space for that link (or target, in the case of Targeted Hellos)
 or that the peer has failed. The LSR then deletes the Hello
 adjacency. When the last Hello adjacency for a LDP session is
 deleted, the LSR terminates the LDP session by sending a Notification
 message and closing the transport connection.

2.5.6. Maintaining LDP Sessions

 LDP includes mechanisms to monitor the integrity of the LDP session.

 LDP uses the regular receipt of LDP PDUs on the session transport
 connection to monitor the integrity of the session. An LSR maintains
 a KeepAlive timer for each peer session which it resets whenever it
 receives an LDP PDU from the session peer. If the KeepAlive timer
 expires without receipt of an LDP PDU from the peer the LSR concludes
 that the transport connection is bad or that the peer has failed, and
 it terminates the LDP session by closing the transport connection.

 After an LDP session has been established, an LSR must arrange that
 its peer receive an LDP PDU from it at least every KeepAlive time
 period to ensure the peer restarts the session KeepAlive timer. The
 LSR may send any protocol message to meet this requirement. In
 circumstances where an LSR has no other information to communicate to
 its peer, it sends a KeepAlive message.

 An LSR may choose to terminate an LDP session with a peer at any
 time. Should it choose to do so, it informs the peer with a Shutdown
 message.

Andersson, et al. [Page 20]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.6. Label Distribution and Management

 The MPLS architecture [ARCH] allows an LSR to distribute a FEC label
 binding in response to an explicit request from another LSR. This is
 known as Downstream On Demand label distribution. It also allows an
 LSR to distribute label bindings to LSRs that have not explicitly
 requested them. This is known as Downstream Unsolicited label
 distribution.

 Both of these label distribution techniques may be used in the same
 network at the same time. However, for any given LDP session, each
 LSR must be aware of the label distribution method used by its peer
 in order to avoid situations where one peer using Downstream
 Unsolicited label distribution assumes its peer is also. See Section
 "Downstream on Demand label Advertisement".

2.6.1. Label Distribution Control Mode

 The behavior of the initial setup of LSPs is determined by whether
 the LSR is operating with independent or ordered LSP control. An LSR
 may support both types of control as a configurable option.

2.6.1.1. Independent Label Distribution Control

 When using independent LSP control, each LSR may advertise label
 mappings to its neighbors at any time it desires. For example, when
 operating in independent Downstream on Demand mode, an LSR may answer
 requests for label mappings immediately, without waiting for a label
 mapping from the next hop. When operating in independent Downstream
 Unsolicited mode, an LSR may advertise a label mapping for a FEC to
 its neighbors whenever it is prepared to label-switch that FEC.

 A consequence of using independent mode is that an upstream label can
 be advertised before a downstream label is received.

2.6.1.2. Ordered Label Distribution Control

 When using LSP ordered control, an LSR may initiate the transmission
 of a label mapping only for a FEC for which it has a label mapping
 for the FEC next hop, or for which the LSR is the egress. For each
 FEC for which the LSR is not the egress and no mapping exists, the
 LSR MUST wait until a label from a downstream LSR is received before
 mapping the FEC and passing corresponding labels to upstream LSRs.

 An LSR may be an egress for some FECs and a non-egress for others.

Andersson, et al. [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 An LSR may act as an egress LSR, with respect to a particular FEC,
 under any of the following conditions:

 1. The FEC refers to the LSR itself (including one of its directly
 attached interfaces).

 2. The next hop router for the FEC is outside of the Label
 Switching Network.

 3. FEC elements are reachable by crossing a routing domain
 boundary, such as another area for OSPF summary networks, or
 another autonomous system for OSPF AS externals and BGP routes
 [rfc1583] [rfc1771].

 Note that whether an LSR is an egress for a given FEC may change over
 time, depending on the state of the network and LSR configuration
 settings.

2.6.2. Label Retention Mode

2.6.2.1. Conservative Label Retention Mode

 In Downstream Unsolicited advertisement mode, label mapping
 advertisements for all routes may be received from all peer LSRs.
 When using conservative label retention, advertised label mappings
 are retained only if they will be used to forward packets (i.e., if
 they are received from a valid next hop according to routing). If
 operating in Downstream on Demand mode, an LSR will request label
 mappings only from the next hop LSR according to routing. Since
 Downstream on Demand mode is primarily used when label conservation
 is desired (e.g., an ATM switch with limited cross connect space), it
 is typically used with the conservative label retention mode.

 The main advantage of the conservative mode is that only the labels
 that are required for the forwarding of data are allocated and
 maintained. This is particularly important in LSRs where the label
 space is inherently limited, such as in an ATM switch. A
 disadvantage of the conservative mode is that if routing changes the
 next hop for a given destination, a new label must be obtained from
 the new next hop before labeled packets can be forwarded.

2.6.2.2. Liberal Label Retention Mode

 In Downstream Unsolicited advertisement mode, label mapping
 advertisements for all routes may be received from all LDP peers.
 When using liberal label retention, every label mappings received

Andersson, et al. [Page 22]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc1583
https://datatracker.ietf.org/doc/html/rfc1771

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 from a peer LSR is retained regardless of whether the LSR is the next
 hop for the advertised mapping. When operating in Downstream on
 Demand mode with liberal label retention, an LSR might choose to
 request label mappings for all known prefixes from all peer LSRs.
 Note, however, that Downstream on Demand mode is typically used by
 devices such as ATM switch-based LSRs for which the conservative
 approach is recommended.

 The main advantage of the liberal label retention mode is that
 reaction to routing changes can be quick because labels already
 exist. The main disadvantage of the liberal mode is that unneeded
 label mappings are distributed and maintained.

2.6.3. Label Advertisement Mode

 Each interface on an LSR is configured to operate in either
 Downstream Unsolicited or Downstream on Demand advertisement mode.
 LSRs exchange advertisement modes during initialization. The major
 difference between Downstream Unsolicited and Downstream on Demand
 modes is in which LSR takes responsibility for initiating mapping
 requests and mapping advertisements.

2.7. LDP Identifiers and Next Hop Addresses

 An LSR maintains learned labels in a Label Information Base (LIB).
 When operating in Downstream Unsolicited mode, the LIB entry for an
 address prefix associates a collection of (LDP Identifier, label)
 pairs with the prefix, one such pair for each peer advertising a
 label for the prefix.

 When the next hop for a prefix changes the LSR must retrieve the
 label advertised by the new next hop from the LIB for use in
 forwarding. To retrieve the label the LSR must be able to map the
 next hop address for the prefix to an LDP Identifier.

 Similarly, when the LSR learns a label for a prefix from an LDP peer,
 it must be able to determine whether that peer is currently a next
 hop for the prefix to determine whether it needs to start using the
 newly learned label when forwarding packets that match the prefix.
 To make that decision the LSR must be able to map an LDP Identifier
 to the peer's addresses to check whether any are a next hop for the
 prefix.

 To enable LSRs to map between a peer LDP identifier and the peer's
 addresses, LSRs advertise their addresses using LDP Address and
 Withdraw Address messages.

Andersson, et al. [Page 23]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 An LSR sends an Address message to advertise its addresses to a peer.
 An LSR sends a Withdraw Address message to withdraw previously
 advertised addresses from a peer

2.8. Loop Detection

 Loop detection is a configurable option which provides a mechanism
 for finding looping LSPs and for preventing Label Request messages
 from looping in the presence of non-merge capable LSRs.

 The mechanism makes use of Path Vector and Hop Count TLVs carried by
 Label Request and Label Mapping messages. It builds on the following
 basic properties of these TLVs:

 - A Path Vector TLV contains a list of the LSRs that its containing
 message has traversed. An LSR is identified in a Path Vector
 list by its unique LSR Identifier (Id), which is the IP address
 component of its LDP Identifier. When an LSR propagates a
 message containing a Path Vector TLV it adds its LSR Id to the
 Path Vector list. An LSR that receives a message with a Path
 Vector that contains its LSR Id detects that the message has
 traversed a loop. LDP supports the notion of a maximum allowable
 Path Vector length; an LSR that detects a Path Vector has reached
 the maximum length behaves as if the containing message has
 traversed a loop.

 - A Hop Count TLV contains a count of the LSRS that the containing
 message has traversed. When an LSR propagates a message
 containing a Hop Count TLV it increments the count. An LSR that
 detects a Hop Count has reached a configured maximum value
 behaves as if the containing message has traversed a loop. By
 convention a count of 0 is interpreted to mean the hop count is
 unknown. Incrementing an unknown hop count value results in an
 unknown hop count value (0).

 The following paragraphs describes LDP loop detection procedures. In
 these paragraphs, "MUST" means "MUST if configured for loop
 detection". The paragraphs specify messages that must carry Path
 Vector and Hop Count TLVs. Note that the Hop Count TLV and its
 procedures are used without the Path Vector TLV in situations when
 loop detection is not configured (see [ATM] and [FR]).

Andersson, et al. [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.8.1. Label Request Message

 The use of the Path Vector TLV and Hop Count TLV prevent Label
 Request messages from looping in environments that include non-merge
 capable LSRs.

 The rules that govern use of the Hop Count TLV in Label Request
 messages by LSR R when Loop Detection is enabled are the following:

 - The Label Request message MUST include a Hop Count TLV.

 - If R is sending the Label Request because it is a FEC ingress, it
 MUST include a Hop Count TLV with hop count value 1.

 - If R is sending the Label Request as a result of having received a
 Label Request from an upstream LSR, and if the received Label
 Request contains a Hop Count TLV, R MUST increment the received hop
 count value by 1 and MUST pass the resulting value in a Hop Count
 TLV to its next hop along with the Label Request message;

 The rules that govern use of the Path Vector TLV in Label Request
 messages by LSR R when Loop Detection is enabled are the following:

 - If R is sending the Label Request because it is a FEC ingress, then
 if R is non-merge capable, it MUST include a Path Vector TLV of
 length 1 containing its own LSR Id.

 - If R is sending the Label Request as a result of having received a
 Label Request from an upstream LSR, then if the received Label
 Request contains a Path Vector TLV or if R is non-merge capable:

 R MUST add its own LSR Id to the Path Vector, and MUST pass the
 resulting Path Vector to its next hop along with the Label
 Request message. If the Label Request contains no Path Vector
 TLV, R MUST include a Path Vector TLV of length 1 containing
 its own LSR Id.

 Note that if R receives a Label Request message for a particular FEC,
 and R has previously sent a Label Request message for that FEC to its
 next hop and has not yet received a reply, and if R intends to merge
 the newly received Label Request with the existing outstanding Label
 Request, then R does not propagate the Label Request to the next hop.

 If R receives a Label Request message from its next hop with a Hop
 Count TLV which exceeds the configured maximum value, or with a Path
 Vector TLV containing its own LSR Id or which exceeds the maximum
 allowable length, then R detects that the Label Request message has
 traveled in a loop.

Andersson, et al. [Page 25]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 When R detects a loop, it MUST send a Loop Detected Notification
 message to the source of the Label Request message and drop the Label
 Request message.

2.8.2. Label Mapping Message

 The use of the Path Vector TLV and Hop Count TLV in the Label Mapping
 message provide a mechanism to find and terminate looping LSPs. When
 an LSR receives a Label Mapping message from a next hop, the message
 is propagated upstream as specified below until an ingress LSR is
 reached or a loop is found.

 The rules that govern the use of the Hop Count TLV in Label Mapping
 messages sent by an LSR R when Loop Detection is enabled are the
 following:

 - R MUST include a Hop Count TLV.

 - If R is the egress, the hop count value MUST be 1.

 - If the Label Mapping message is being sent to propagate a Label
 Mapping message received from the next hop to an upstream peer, the
 hop count value MUST be determined as follows:

 o If R is a member of the edge set of an LSR domain whose LSRs do
 not perform 'TTL-decrement' (e.g., an ATM LSR domain or a Frame
 Relay LSR domain) and the upstream peer is within that domain, R
 MUST reset the hop count to 1 before propagating the message.

 o Otherwise, R MUST increment the hop count received from the next
 hop before propagating the message.

 - If the Label Mapping message is not being sent to propagate a Label
 Mapping message, the hop count value MUST be the result of
 incrementing R's current knowledge of the hop count learned from
 previous Label Mapping messages. Note that this hop count value
 will be unknown if R has not received a Label Mapping message from
 the next hop.

 Any Label Mapping message MAY contain a Path Vector TLV. The rules
 that govern the mandatory use of the Path Vector TLV in Label Mapping
 messages sent by LSR R when Loop Detection is enabled are the
 following:

 - If R is the egress, the Label Mapping message need not include a
 Path Vector TLV.

Andersson, et al. [Page 26]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - If R is sending the Label Mapping message to propagate a Label
 Mapping message received from the next hop to an upstream peer,
 then:

 o If R is merge capable and if R has not previously sent a Label
 Mapping message to the upstream peer, then it MUST include a
 Path Vector TLV.

 o If the received message contains an unknown hop count, then R
 MUST include a Path Vector TLV.

 o If R has previously sent a Label Mapping message to the
 upstream peer, then it MUST include a Path Vector TLV if the
 received message reports an LSP hop count increase, a change in
 hop count from unknown to known, or a change from known to
 unknown.

 If the above rules require R include a Path Vector TLV in the Label
 Mapping message, R computes it as follows:

 o If the received Label Mapping message included a Path Vector,
 the Path Vector sent upstream MUST be the result of adding R's
 LSR Id to the received Path Vector.

 o If the received message had no Path Vector, the Path Vector
 sent upstream MUST be a path vector of length 1 containing R's
 LSR Id.

 - If the Label Mapping message is not being sent to propagate a
 received message upstream, the Label Mapping message MUST include a
 Path Vector of length 1 containing R's LSR Id.

 If R receives a Label Mapping message from its next hop with a Hop
 Count TLV which exceeds the configured maximum value, or with a Path
 Vector TLV containing its own LSR Id or which exceeds the maximum
 allowable length, then R detects that the corresponding LSP contains
 a loop.

 When R detects a loop, it MUST stop using the label for forwarding,
 drop the Label Mapping message. and send a Loop Detected Notification
 message to the source of the Label Mapping message.

Andersson, et al. [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

2.8.3. Discussion

 LSRs which are configured for loop detection are NOT expected to
 store the path vectors as part of the LSP state.

 Note that in a network where only non-merge capable LSRs are present,
 Path Vectors are passed downstream from ingress to egress, and are
 not passed upstream. Even when merge is supported, Path Vectors need
 not be passed upstream along an LSP which is known to reach the
 egress. When an LSR experiences a change of next hop, it need pass
 Path Vectors upstream only when it cannot tell from the hop count
 that the change of next hop does not result in a loop.

 In the case of ordered label distribution, Label Mapping messages are
 propagated from egress toward ingress, naturally creating the Path
 Vector along the way. In the case of independent label distribution,
 an LSR may originate a Label Mapping message for an FEC before
 receiving a Label Mapping message from its downstream peer for that
 FEC. In this case, the subsequent Label Mapping message for the FEC
 received from the downstream peer is treated as an update to LSP
 attributes, and the Label Mapping message must be propagated
 upstream. Thus, it is recommended that loop detection be configured
 in conjunction with ordered label distribution, to minimize the
 number of Label Mapping update messages.

 If loop detection is desired in an MPLS domain, then it should be
 turned on in ALL LSRs within that MPLS domain, else loop detection
 will not operate properly.

2.9. Label Distribution for Explicitly Routed LSPs

 Traffic Engineering [TE] is expected to be an important MPLS
 application. MPLS support for Traffic Engineering uses explicitly
 routed LSPs, which need not follow normally-routed (hop-by-hop) paths
 as determined by destination-based routing protocols. CR-LDP [CRLDP]
 defines extensions to LDP to use LDP to set up explicitly routed
 LSPs.

Andersson, et al. [Page 28]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3. Protocol Specification

 Previous sections that describe LDP operation have discussed
 scenarios that involve the exchange of messages among LDP peers.
 This section specifies the message encodings and procedures for
 processing the messages.

 LDP message exchanges are accomplished by sending LDP protocol data
 units (PDUs) over LDP session TCP connections.

 Each LDP PDU can carry one or more LDP messages. Note that the
 messages in an LDP PDU need not be related to one another. For
 example, a single PDU could carry a message advertising FEC-label
 bindings for several FECs, another message requesting label bindings
 for several other FECs, and a third notification message signaling
 some event.

3.1. LDP PDUs

 Each LDP PDU is an LDP header followed by one or more LDP messages.
 The LDP header is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | PDU Length |
 +-+
 | LDP Identifier |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Version
 Two octet unsigned integer containing the version number of the
 protocol. This version of the specification specifies LDP protocol
 version 1.

 PDU Length
 Two octet integer specifying the total length of this PDU in
 octets, excluding the Version and PDU Length fields.

 The maximum allowable PDU Length is negotiable when an LDP session
 is initialized. Prior to completion of the negotiation the maximum
 allowable length is 4096 bytes.

 LDP Identifier

Andersson, et al. [Page 29]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Six octet field that uniquely identifies the label space of the
 sending LSR for which this PDU applies. The first four octets
 encode an IP address assigned to the LSR. This address should be
 the router-id, also used to identify the LSR in loop detection Path
 Vectors. The last two octets identify a label space within the
 LSR. For a platform-wide label space, these should both be zero.

 Note that there is no alignment requirement for the first octet of an
 LDP PDU.

3.2. LDP Procedures

 LDP defines messages, TLVs and procedures in the following areas:

 - Peer discovery;
 - Session management;
 - Label distribution;
 - Notification of errors and advisory information.

 The sections that follow describe the message and TLV encodings for
 these areas and the procedures that apply to them.

 The label distribution procedures are complex and are difficult to
 describe fully, coherently and unambiguously as a collection of
 separate message and TLV specifications.

Appendix A, "LDP Label Distribution Procedures", describes the label
 distribution procedures in terms of label distribution events that
 may occur at an LSR and how the LSR must respond. Appendix A is the
 specification of LDP label distribution procedures. If a procedure
 described elsewhere in this document conflicts with Appendix A,

Appendix A specifies LDP behavior.

3.3. Type-Length-Value Encoding

 LDP uses a Type-Length-Value (TLV) encoding scheme to encode much of
 the information carried in LDP messages.

 An LDP TLV is encoded as a 2 octet field that uses 14 bits to specify
 a Type and 2 bits to specify behavior when an LSR doesn't recognize
 the Type, followed by a 2 octet Length Field, followed by a variable
 length Value field.

Andersson, et al. [Page 30]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U|F| Type | Length |
 +-+
 | |
 | Value |
 ~ ~
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 U bit
 Unknown TLV bit. Upon receipt of an unknown TLV, if U is clear
 (=0), a notification must be returned to the message originator and
 the entire message must be ignored; if U is set (=1), the unknown
 TLV is silently ignored and the rest of the message is processed as
 if the unknown TLV did not exist. The sections following that
 define TLVs specify a value for the U-bit.

 F bit
 Forward unknown TLV bit. This bit applies only when the U bit is
 set and the LDP message containing the unknown TLV is to be
 forwarded. If F is clear (=0), the unknown TLV is not forwarded
 with the containing message; if F is set (=1), the unknown TLV is
 forwarded with the containing message. The sections following that
 define TLVs specify a value for the F-bit.

 Type
 Encodes how the Value field is to be interpreted.

 Length
 Specifies the length of the Value field in octets.

 Value
 Octet string of Length octets that encodes information to be
 interpreted as specified by the Type field.

 Note that there is no alignment requirement for the first octect of a
 TLV.

 Note that the Value field itself may contain TLV encodings. That is,
 TLVs may be nested.

 The TLV encoding scheme is very general. In principle, everything
 appearing in an LDP PDU could be encoded as a TLV. This

Andersson, et al. [Page 31]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 specification does not use the TLV scheme to its full generality. It
 is not used where its generality is unnecessary and its use would
 waste space unnecessarily. These are usually places where the type
 of a value to be encoded is known, for example by its position in a
 message or an enclosing TLV, and the length of the value is fixed or
 readily derivable from the value encoding itself.

 Some of the TLVs defined for LDP are similar to one another. For
 example, there is a Generic Label TLV, an ATM Label TLV, and a Frame
 Relay TLV; see Sections "Generic Label TLV", "ATM Label TLV", and
 "Frame Relay TLV".

 While it is possible to think about TLVs related in this way in terms
 of a TLV type that specifies a TLV class and a TLV subtype that
 specifies a particular kind of TLV within that class, this
 specification does not formalize the notion of a TLV subtype.

 The specification assigns type values for related TLVs, such as the
 label TLVs, from a contiguous block in the 16-bit TLV type number
 space.

 Section "TLV Summary" lists the TLVs defined in this version of the
 protocol and the section in this document that describes each.

3.4. TLV Encodings for Commonly Used Parameters

 There are several parameters used by more than one LDP message. The
 TLV encodings for these commonly used parameters are specified in
 this section.

3.4.1. FEC TLV

 Labels are bound to Forwarding Equivalence Classes (FECs). a FEC is
 a list of one or more FEC elements. The FEC TLV encodes FEC items.

 Its encoding is:

Andersson, et al. [Page 32]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| FEC (0x0100) | Length |
 +-+
 | FEC Element 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | FEC Element n |
 +-+

 FEC Element 1 to FEC Element n
 There are several types of FEC elements; see Section "FECs". The
 FEC element encoding depends on the type of FEC element.

 A FEC Element value is encoded as a 1 octet field that specifies
 the element type, and a variable length field that is the type-
 dependent element value. Note that while the representation of the
 FEC element value is type-dependent, the FEC element encoding
 itself is one where standard LDP TLV encoding is not used.

 The FEC Element value encoding is:

 FEC Element Type Value
 type name

 Wildcard 0x01 No value; i.e., 0 value octets;
 see below.
 Prefix 0x02 See below.
 Host Address 0x03 Full host address; see below.

 Note that this version of LDP supports the use of multiple FEC
 Elements per FEC for the Label Mapping message only. The use of
 multiple FEC Elements in other messages is not permitted in this
 version, and is a subject for future study.

 Wildcard FEC Element
 To be used only in the Label Withdraw and Label Release Messages.
 Indicates the withdraw/release is to be applied to all FECs
 associated with the label within the following label TLV. Must
 be the only FEC Element in the FEC TLV.

 Prefix FEC Element value encoding:

Andersson, et al. [Page 33]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prefix (2) | Address Family | PreLen |
 +-+
 | Prefix |
 +-+

 Address Family
 Two octet quantity containing a value from ADDRESS FAMILY
 NUMBERS in [rfc1700] that encodes the address family for the
 address prefix in the Prefix field.

 PreLen
 One octet unsigned integer containing the length in bits of the
 address prefix that follows. A length of zero indicates a
 prefix that matches all addresses (the default destination); in
 this case the Prefix itself is zero octets).

 Prefix
 An address prefix encoded according to the Address Family
 field, whose length, in bits, was specified in the PreLen
 field, padded to a byte boundary.

 Host Address FEC Element encoding:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Host Addr (3) | Address Family | Host Addr Len |
 +-+
 | |
 | Host Addr |
 | |
 +-+

 Address Family
 Two octet quantity containing a value from ADDRESS FAMILY
 NUMBERS in [rfc1700] that encodes the address family for the
 address prefix in the Prefix field.

 Host Addr Len
 Length of the Host address in octets.

 Host Addr

Andersson, et al. [Page 34]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1700

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 An address encoded according to the Address Family field.

3.4.1.1. FEC Procedures

 If in decoding a FEC TLV an LSR encounters a FEC Element type it
 cannot decode, it should stop decoding the FEC TLV, abort processing
 the message containing the TLV, and send an Notification message to
 its LDP peer signaling an error.

3.4.2. Label TLVs

 Label TLVs encode labels. Label TLVs are carried by the messages
 used to advertise, request, release and withdraw label mappings.

 There are several different kinds of Label TLVs which can appear in
 situations that require a Label TLV.

3.4.2.1. Generic Label TLV

 An LSR uses Generic Label TLVs to encode labels for use on links for
 which label values are independent of the underlying link technology.
 Examples of such links are PPP and Ethernet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Generic Label (0x0200) | Length |
 +-+
 | Label |
 +-+

 Label
 This is a 20-bit label value as specified in [ENCAP] represented as
 a 20-bit number in a 4 octet field.

3.4.2.2. ATM Label TLV

 An LSR uses ATM Label TLVs to encode labels for use on ATM links.

Andersson, et al. [Page 35]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| ATM Label (0x0201) | Length |
 +-+
 |Res| V | VPI | VCI |
 +-+

 Res
 This field is reserved. It must be set to zero on transmission and
 must be ignored on receipt.

 V-bits
 Two-bit switching indicator. If V-bits is 00, both the VPI and VCI
 are significant. If V-bits is 01, only the VPI field is
 significant. If V-bit is 10, only the VCI is significant.

 VPI
 Virtual Path Identifier. If VPI is less than 12-bits it should be
 right justified in this field and preceding bits should be set to
 0.

 VCI
 Virtual Channel Identifier. If the VCI is less than 16- bits, it
 should be right justified in the field and the preceding bits must
 be set to 0. If Virtual Path switching is indicated in the V-bits
 field, then this field must be ignored by the receiver and set to 0
 by the sender.

3.4.2.3. Frame Relay Label TLV

 An LSR uses Frame Relay Label TLVs to encode labels for use on Frame
 Relay links.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Frame Relay Label (0x0202)| Length |
 +-+
 | Reserved |Len| DLCI |
 +-+

 Res
 This field is reserved. It must be set to zero on transmission and
 must be ignored on receipt.

Andersson, et al. [Page 36]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Len
 This field specifies the number of bits of the DLCI. The following
 values are supported:

 0 = 10 bits DLCI
 1 = 17 bits DLCI
 2 = 23 bits DLCI

 DLCI
 The Data Link Connection Identifier. Refer to [FR] for the label
 values and formats.

3.4.3. Address List TLV

 The Address List TLV appears in Address and Address Withdraw
 messages.

 Its encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Address List (0x0101) | Length |
 +-+
 | Address Family | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | Addresses |
 ~ ~
 | |
 +-+

 Address Family
 Two octet quantity containing a value from ADDRESS FAMILY NUMBERS
 in [rfc1700] that encodes the addresses contained in the Addresses
 field.

 Addresses
 A list of addresses from the specified Address Family. The
 encoding of the individual addresses depends on the Address Family.

 The following address encodings are defined by this version of the
 protocol:

Andersson, et al. [Page 37]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc1700

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Address Family Address Encoding

 IPv4 4 octet full IPv4 address

3.4.4. Hop Count TLV

 The Hop Count TLV appears as an optional field in messages that set
 up LSPs. It calculates the number of LSR hops along an LSP as the
 LSP is being setup.

 Note that setup procedures for LSPs that traverse ATM and Frame Relay
 links require use of the Hop Count TLV (see [ATM] and [FR]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Hop Count (0x0103) | Length |
 +-+
 | HC Value |
 +-+-+-+-+-+-+-+-+

 HC Value
 1 octet unsigned integer hop count value.

3.4.4.1. Hop Count Procedures

 During setup of an LSP an LSR R may receive a Label Mapping or Label
 Request message for the LSP that contains the Hop Count TLV. If it
 does, it should record the hop count value.

 If LSR R then propagates the Label Mapping message for the LSP to an
 upstream peer or the Label Request message to a downstream peer to
 continue the LSP setup, it must must determine a hop count to include
 in the propagated message as follows:

 - If the message is a Label Request message, R must increment the
 received hop count;

 - If the message is a Label Mapping message, R determines the hop
 count as follows:

 o If R is a member of the edge set of an LSR domain whose LSRs do
 not perform 'TTL-decrement' and the upstream peer is within that
 domain, R must reset the hop count to 1 before propagating the

Andersson, et al. [Page 38]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 message.

 o Otherwise, R must increment the received hop count.

 The first LSR in the LSP (ingress for a Label Request message, egress
 for a Label Mapping message) should set the hop count value to 1.

 By convention a value of 0 indicates an unknown hop count. The
 result of incrementing an unknown hop count is itself an unknown hop
 count (0).

 Use of the unknown hop count value greatly reduces the signalling
 overhead when independent control is used. When a new LSP is
 established, each LSR starts with unknown hop count. Addition of a
 new LSR whose hop count is also unknown does not cause a hop count
 update to be propagated upstream since the hop count remains unknown.
 When the egress is finally added to the LSP, then the LSRs propagate
 hop count updates upstream via Label Mapping messages.

 Without use of the unknown hop count, each time a new LSR is added to
 the LSP a hop count update would need to be propagated upstream if
 the new LSR is closer to the egress than any of the other LSRs.
 These updates are useless overhead since they don't reflect the hop
 count to the egress.

 From the perspective of the ingress node, the fact that the hop count
 is unknown implies nothing about whether a packet sent on the LSP
 will actually make it to the egress. All it implies is that the hop
 count update from the egress has not yet reached the ingress.

 If an LSR receives a message containing a Hop Count TLV, it must
 check the hop count value to determine whether the hop count has
 exceeded its configured maximum allowable value. If so, it must
 behave as if the containing message has traversed a loop by sending a
 Notification message signaling Loop Detected in reply to the sender
 of the message.

 If Loop Detection is configured, the LSR must follow the procedures
 specified in Section "Loop Detection".

3.4.5. Path Vector TLV

 The Path Vector TLV is used with the Hop Count TLV in Label Request
 and Label Mapping messages to implement the optional LDP loop
 detection mechanism. See Section "Loop Detection". Its use in the
 Label Request message records the path of LSRs the request has
 traversed. Its use in the Label Mapping message records the path of

Andersson, et al. [Page 39]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 LSRs a label advertisement has traversed to setup an LSP.

 Its encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Path Vector (0x0104) | Length |
 +-+
 | LSR Id 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | LSR Id n |
 +-+

 One or more LSR Ids
 A list of router-ids indicating the path of LSRs the message has
 traversed. Each LSR Id is the IP address (router-id) component of
 the LDP identifier for the corresponding LSR. This ensures it is
 unique within the LSR network.

3.4.5.1. Path Vector Procedures

 The Path Vector TLV is carried in Label Mapping and Label Request
 messages when loop detection is configured.

3.4.5.1.1. Label Request Path Vector

 Section "Loop Detection" specifies situations when an LSR must
 include a Path Vector TLV in a Label Request message.

 An LSR that receives a Path Vector in a Label Request message must
 perform the procedures described in Section "Loop Detection".

 If the LSR detects a loop, it must reject the Label Request message.
 The LSR must:

 1. Transmit a Notification message to the sending LSR signaling
 "Loop Detected".

Andersson, et al. [Page 40]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 2. Not propagate the Label Reqeust message further.

 Note that a Label Request message with Path Vector TLV is forwarded
 until:

 1. A loop is found,

 2. The LSP egress is reached,

 3. The maximum Path Vector limit or maximum Hop Count limit is
 reached. This is treated as if a loop had been detected.

3.4.5.1.2. Label Mapping Path Vector

 Section "Loop Detection" specifies the situations when an LSR must
 include a Path Vector TLV in a Label Mapping message.

 An LSR that receives a Path Vector in a Label Mapping message must
 perform the procedures described in Section "Loop Detection".

 If the LSR detects a loop, it must reject the Label Mapping message
 in order to prevent a forwarding loop. The LSR must:

 1. Transmit a Notification message to the sending LSR signaling
 "Loop Detected".

 2. Not propagate the message further.

 3. Check whether the Label Mapping message is for an existing LSP.
 If so, the LSR must unsplice any upstream labels which are
 spliced to the downstream label for the FEC.

 Note that a Label Mapping message with a Path Vector TLV is forwarded
 until:

 1. A loop is found,

 2. An LSP ingress is reached, or

 3. The maximum Path Vector or maximum Hop Count limit is reached.
 This is treated as if a loop had been detected.

Andersson, et al. [Page 41]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.4.6. Status TLV

 Notification messages carry Status TLVs to specify events being
 signaled.

 The encoding for the Status TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Status (0x0300) | Length |
 +-+
 | Status Code |
 +-+
 | Message ID |
 +-+
 | Message Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Status Code
 32-bit unsigned integer encoding the event being signaled. The
 structure of a Status Code is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E|F| Status Data |
 +-+

 E bit
 Fatal error bit. If set (=1), this is a fatal error
 notification. If clear (=0), this is an advisory notification.

 F bit
 Forward bit. If set (=1), the notification should be forwarded
 to the LSR for the next-hop or previous-hop for the LSP, if any,
 associated with the event being signaled. If clear (=0), the
 notification should not be forwarded.

 Status Data
 30-bit unsigned integer which specifies the status information.

 This specification defines Status Codes (32-bit unsigned integers
 with the above encoding).

 A Status Code of 0 signals success.

Andersson, et al. [Page 42]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Message ID
 If non-zero, 32-bit value that identifies the peer message to which
 the Status TLV refers. If zero, no specific peer message is being
 identified.

 Message Type
 If non-zero, the type of the peer message to which the Status TLV
 refers. If zero, the Status TLV does not refer to any specific
 message type.

 Note that use of the Status TLV is not limited to Notification
 messages. A message other than a Notification message may carry a
 Status TLV as an Optional Parameter. When a message other than a
 Notification carries a Status TLV the U-bit of the Status TLV should be
 set to 1 to indicate that the receiver should silently discard the TLV
 if unprepared to handle it.

3.5. LDP Messages

 All LDP messages have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U| Message Type | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 + +
 | Mandatory Parameters |
 + +
 | |
 +-+
 | |
 + +
 | Optional Parameters |
 + +
 | |
 +-+

 U bit
 Unknown message bit. Upon receipt of an unknown message, if U is
 clear (=0), a notification is returned to the message originator;
 if U is set (=1), the unknown message is silently ignored. The

Andersson, et al. [Page 43]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 sections following that define messages specify a value for the U-
 bit.

 Message Type
 Identifies the type of message

 Message Length
 Specifies the cumulative length in octets of the Message ID,
 Mandatory Parameters, and Optional Parameters.

 Message ID
 32-bit value used to identify this message. Used by the sending
 LSR to facilitate identifying notification messages that may apply
 to this message. An LSR sending a notification message in response
 to this message should include this Message Id in the notification
 message; see Section "Notification Message".

 Mandatory Parameters
 Variable length set of required message parameters. Some messages
 have no required parameters.

 For messages that have required parameters, the required parameters
 MUST appear in the order specified by the individual message
 specifications in the sections that follow.

 Optional Parameters
 Variable length set of optional message parameters. Many messages
 have no optional parameters.

 For messages that have optional parameters, the optional parameters
 may appear in any order.

 Note that there is no alignment requirement for the first octet of an
 LDP message.

 The following message types are defined in this version of LDP:

Andersson, et al. [Page 44]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Message Name Section Title

 Notification "Notification Message"
 Hello "Hello Message"
 Initialization "Initialization Message"
 KeepAlive "KeepAlive Message"
 Address "Address Message"
 Address Withdraw "Address Withdraw Message"
 Label Mapping "Label Mapping Message"
 Label Request "Label Request Message"
 Label Abort Request "Label Abort Request Message"
 Label Withdraw "Label Withdraw Message"
 Label Release "Label Release Message"

 The sections that follow specify the encodings and procedures for
 these messages.

 Some of the above messages are related to one another, for example
 the Label Mapping, Label Request, Label Withdraw, and Label Release
 messages.

 While it is possible to think about messages related in this way in
 terms of a message type that specifies a message class and a message
 subtype that specifies a particular kind of message within that
 class, this specification does not formalize the notion of a message
 subtype.

 The specification assigns type values for related messages, such as
 the label messages, from of a contiguous block in the 16-bit message
 type number space.

3.5.1. Notification Message

 An LSR sends a Notification message to inform an LDP peer of a
 significant event. A Notification message signals a fatal error or
 provides advisory information such as the outcome of processing an
 LDP message or the state of the LDP session.

 The encoding for the Notification Message is:

Andersson, et al. [Page 45]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Notification (0x0001) | Message Length |
 +-+
 | Message ID |
 +-+
 | Status (TLV) |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 Status TLV
 Indicates the event being signaled. The encoding for the Status
 TLV is specified in Section "Status TLV".

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The following Optional Parameters are generic
 and may appear in any Notification Message:

 Optional Parameter Type Length Value

 Extended Status 0x0301 4 See below
 Returned PDU 0x0302 var See below
 Returned Message 0x0303 var See below

 Other Optional Parameters, specific to the particular event being
 signaled by the Notification Messages may appear. These are
 described elsewhere.

 Extended Status
 The 4 octet value is an Extended Status Code that encodes
 additional information that supplements the status information
 contained in the Notification Status Code.

 Returned PDU
 An LSR uses this parameter to return part of an LDP PDU to the
 LSR that sent it. The value of this TLV is the PDU header and
 as much PDU data following the header as appropriate for the
 condition being signalled by the Notification message.

 Returned Message

Andersson, et al. [Page 46]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 An LSR uses this parameter to return part of an LDP message to
 the LSR that sent it. The value of this TLV is the message
 type and length fields and as much message data following the
 type and length fields as appropriate for the condition being
 signalled by the Notification message.

3.5.1.1. Notification Message Procedures

 If an LSR encounters a condition requiring it to notify its peer with
 advisory or error information it sends the peer a Notification
 message containing a Status TLV that encodes the information and
 optionally additional TLVs that provide more information about the
 event.

 If the condition is one that is a fatal error the Status Code carried
 in the notification will indicate that. In this case, after sending
 the Notification message the LSR should terminate the LDP session by
 closing the session TCP connection and discard all state associated
 with the session, including all label-FEC bindings learned via the
 session.

 When an LSR receives a Notification message that carries a Status
 Code that indicates a fatal error, it should terminate the LDP
 session immediately by closing the session TCP connection and discard
 all state associated with the session, including all label-FEC
 bindings learned via the session.

3.5.1.2. Events Signaled by Notification Messages

 It is useful for descriptive purpose to classify events signaled by
 Notification Messages into the following categories.

3.5.1.2.1. Malformed PDU or Message

 Malformed LDP PDUs or Messages that are part of the LDP Discovery
 mechanism are handled by silently discarding them.

 An LDP PDU received on a TCP connection for an LDP session is
 malformed if:

 - The LDP Identifier in the PDU header is unknown to the receiver,
 or it is known but is not the LDP Identifier associated by the
 receiver with the LDP peer for this LDP session. This is a fatal
 error signaled by the Bad LDP Identifier Status Code.

Andersson, et al. [Page 47]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - The LDP protocol version is not supported by the receiver, or it
 is supported but is not the version negotiated for the session
 during session establishment. This is a fatal error signaled by
 the Bad Protocol Version Status Code.

 - The PDU Length field is too small (< 14) or too large
 (> maximum PDU length). This is a fatal error signaled by the
 Bad PDU Length Status Code. Section "Initialization Message"
 describes how the maximum PDU length for a session is determined.

 An LDP Message is malformed if:

 - The Message Type is unknown.

 If the Message Type is < 0x8000 (high order bit = 0) it is an
 error signaled by the Unknown Message Type Status Code.

 If the Message Type is >= 0x8000 (high order bit = 1) it is
 silently discarded.

 - The Message Length is too large, that is, indicates that the
 message extends beyond the end of the containing LDP PDU. This
 is a fatal error signaled by the Bad Message Length Status Code.

3.5.1.2.2. Unknown or Malformed TLV

 Malformed TLVs contained in LDP messages that are part of the LDP
 Discovery mechanism are handled by silently discarding the containing
 message.

 A TLV contained in an LDP message received on a TCP connection of an
 LDP is malformed if:

 - The TLV Length is too large, that is, indicates that the TLV
 extends beyond the end of the containing message. This is a
 fatal error signaled by the Bad TLV Length Status Code.

 - The TLV type is unknown.

 If the TLV type is < 0x8000 (high order bit 0) it is an error
 signaled by the Unknown TLV Status Code.

 If the TLV type is >= 08000 (high order bit 1) the TLV is
 silently dropped. Section "Unknown TLV in Known Message Type"
 elaborates on this behavior.

Andersson, et al. [Page 48]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - The TLV Value is malformed. This occurs when the receiver
 handles the TLV but cannot decode the TLV Value. This is
 interpreted as indicative of a bug in either the sending or
 receiving LSR. It is a fatal error signaled by the Malformed TLV
 Value Status Code.

3.5.1.2.3. Session KeepAlive Timer Expiration

 This is a fatal error signaled by the KeepAlive Timer Expired Status
 Code.

3.5.1.2.4. Unilateral Session Shutdown

 This is a fatal event signaled by the Shutdown Status Code. The
 Notification Message may optionally include an Extended Status TLV to
 provide a reason for the Shutdown. The sending LSR terminates the
 session immediately after sending the Notification.

3.5.1.2.5. Initialization Message Events

 The session initialization negotiation (see Section "Session
 Initialization") may fail if the session parameters received in the
 Initialization Message are unacceptable. This is a fatal error. The
 specific Status Code depends on the parameter deemed unacceptable,
 and is defined in Sections "Initialization Message".

3.5.1.2.6. Events Resulting From Other Messages

 Messages other than the Initialization message may result in events
 that must be signaled to LDP peers via Notification Messages. These
 events and the Status Codes used in the Notification Messages to
 signal them are described in the sections that describe these
 messages.

3.5.1.2.7. Miscellaneous Events

 These are events that fall into none of the categories above. There
 are no miscellaneous events defined in this version of the protocol.

Andersson, et al. [Page 49]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.5.2. Hello Message

 LDP Hello Messages are exchanged as part of the LDP Discovery
 Mechanism; see Section "LDP Discovery".

 The encoding for the Hello Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Hello (0x0100) | Message Length |
 +-+
 | Message ID |
 +-+
 | Common Hello Parameters TLV |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 Common Hello Parameters TLV
 Specifies parameters common to all Hello messages. The encoding
 for the Common Hello Parameters TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Common Hello Parms(0x0400)| Length |
 +-+
 | Hold Time |T|R| Reserved |
 +-+

 Hold Time,
 Hello hold time in seconds. An LSR maintains a record of Hellos
 received from potential peers (see Section "Hello Message
 Procedures"). Hello Hold Time specifies the time the sending LSR
 will maintain its record of Hellos from the receiving LSR without
 receipt of another Hello.

 A pair of LSRs negotiates the hold times they use for Hellos from
 each other. Each proposes a hold time. The hold time used is
 the minimum of the hold times proposed in their Hellos.

 A value of 0 means use the default, which is 15 seconds for Link

Andersson, et al. [Page 50]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Hellos and 45 seconds for Targeted Hellos. A value of 0xffff
 means infinite.

 T, Targeted Hello
 A value of 1 specifies that this Hello is a Targeted Hello. A
 value of 0 specifies that this Hello is a Link Hello.

 R, Request Send Targeted Hellos
 A value of 1 requests the receiver to send periodic Targeted
 Hellos to the source of this Hello. A value of 0 makes no
 request.

 An LSR initiating Extended Discovery sets R to 1. If R is 1, the
 receiving LSR checks whether it has been configured to send
 Targeted Hellos to the Hello source in response to Hellos with
 this request. If not, it ignores the request. If so, it
 initiates periodic transmission of Targeted Hellos to the Hello
 source.

 Reserved
 This field is reserved. It must be set to zero on transmission
 and ignored on receipt.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters defined by this
 version of the protocol are

 Optional Parameter Type Length Value

 Transport Address 0x0401 4 See below
 Configuration 0x0402 4 See below
 Sequence Number

 Transport Address
 Specifies the IPv4 address to be used for the sending LSR when
 opening the LDP session TCP connection. If this optional TLV
 is not present the IPv4 source address for the UDP packet
 carrying the Hello should be used.

 Configuration Sequence Number
 Specifies a 4 octet unsigned configuration sequence number that
 identifies the configuration state of the sending LSR. Used by
 the receiving LSR to detect configuration changes on the
 sending LSR.

Andersson, et al. [Page 51]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.5.2.1. Hello Message Procedures

 An LSR receiving Hellos from another LSR maintains a Hello adjacency
 corresponding to the Hellos. The LSR maintains a hold timer with the
 Hello adjacency which it restarts whenever it receives a Hello that
 matches the Hello adjacency. If the hold timer for a Hello adjacency
 expires the LSR discards the Hello adjacency: see sections
 "Maintaining Hello Adjacencies" and "Maintaining LDP Sessions".

 We recommend that the interval between Hello transmissions be at most
 one third of the Hello hold time.

 An LSR processes a received LDP Hello as follows:

 1. The LSR checks whether the Hello is acceptable. The criteria
 for determining whether a Hello is acceptable are
 implementation dependent (see below for example criteria).

 2. If the Hello is not acceptable, the LSR ignores it.

 3. If the Hello is acceptable, the LSR checks whether it has a
 Hello adjacency for the Hello source. If so, it restarts the
 hold timer for the Hello adjacency. If not it creates a Hello
 adjacency for the Hello source and starts its hold timer.

 4. If the Hello carries any optional TLVs the LSR processes them
 (see below).

 5. Finally, if the LSR has no LDP session for the label space
 specified by the LDP identifier in the PDU header for the
 Hello, it follows the procedures of Section "LDP Session
 Establishment".

 The following are examples of acceptability criteria for Link and
 Targeted Hellos:

 A Link Hello is acceptable if the interface on which it was
 received has been configured for label switching.

 A Targeted Hello from IP source address a.b.c.d is acceptable if
 either:

 - The LSR has been configured to accept Targeted Hellos, or

 - The LSR has been configured to send Targeted Hellos to
 a.b.c.d.

 The following describes how an LSR processes Hello optional TLVs:

Andersson, et al. [Page 52]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Transport Address
 The LSR associates the specified transport address with the
 Hello adjacency.

 Configuration Sequence Number
 The Configuration Sequence Number optional parameter is used by
 the sending LSR to signal configuration changes to the
 receiving LSR. When a receiving LSR playing the active role in
 LDP session establishment detects a change in the sending LSR
 configuration, it may clear the session setup backoff delay, if
 any, associated with the sending LSR (see Section "Session
 Initialization").

 A sending LSR using this optional parameter is responsible for
 maintaining the configuration sequence number it transmits in
 Hello messages. Whenever there is a configuration change on
 the sending LSR, it increments the configuration sequence
 number.

3.5.3. Initialization Message

 The LDP Initialization Message is exchanged as part of the LDP
 session establishment procedure; see Section "LDP Session
 Establishment".

 The encoding for the Initialization Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Initialization (0x0200) | Message Length |
 +-+
 | Message ID |
 +-+
 | Common Session Parameters TLV |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 Common Session Parameters TLV
 Specifies values proposed by the sending LSR for parameters that
 must be negotiated for every LDP session.

Andersson, et al. [Page 53]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 The encoding for the Common Session Parameters TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Common Sess Parms (0x0500)| Length |
 +-+
 | Protocol Version | KeepAlive Time |
 +-+
 |A|D| Reserved | PVLim | Max PDU Length |
 +-+
 | Receiver LDP Identifer |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++

 Protocol Version
 Two octet unsigned integer containing the version number of the
 protocol. This version of the specification specifies LDP
 protocol version 1.

 KeepAlive Time
 Two octet unsigned non zero integer that indicates the number
 of seconds that the sending LSR proposes for the value of the
 KeepAlive Time. The receiving LSR MUST calculate the value of
 the KeepAlive Timer by using the smaller of its proposed
 KeepAlive Time and the KeepAlive Time received in the PDU. The
 value chosen for KeepAlive Time indicates the maximum number of
 seconds that may elapse between the receipt of successive PDUs
 from the LDP peer on the session TCP connection. The KeepAlive
 Timer is reset each time a PDU arrives.

 A, Label Advertisement Discipline
 Indicates the type of Label advertisement. A value of 0 means
 Downstream Unsolicited advertisement; a value of 1 means
 Downstream On Demand.

 If one LSR proposes Downstream Unsolicited and the other
 proposes Downstream on Demand, the rules for resolving this
 difference is:

 - If the session is for a label-controlled ATM link or a
 label-controlled Frame Relay link, then Downstream on
 Demand must be used.

Andersson, et al. [Page 54]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - Otherwise, Downstream Unsolicited must be used.

 If the label advertisement discipline determined in this way is
 unacceptable to an LSR, it must send a Session
 Rejected/Parameters Advertisement Mode Notification message in
 response to the Initialization message and not establish the
 session.

 D, Loop Detection
 Indicates whether loop detection based on path vectors is
 enabled. A value of 0 means loop detection is disabled; a
 value of 1 means that loop detection is enabled.

 PVLim, Path Vector Limit
 The configured maximum path vector length. Must be 0 if loop
 detection is disabled (D = 0). If the loop detection
 procedures would require the LSR to send a path vector that
 exceeds this limit, the LSR will behave as if a loop had been
 detected for the FEC in question.

 When Loop Detection is enabled in a portion of a network, it is
 recommended that all LSRs in that portion of the network be
 configured with the same path vector limit. Although
 knowledege of a peer's path vector limit will not change an
 LSR's behavior, it does enable the LSR to alert an operator to
 a possible misconfiguration.

 Reserved
 This field is reserved. It must be set to zero on transmission
 and ignored on receipt.

 Max PDU Length
 Two octet unsigned integer that proposes the maximum allowable
 length for LDP PDUs for the session. A value of 255 or less
 specifies the default maximum length of 4096 octets.

 The receiving LSR MUST calculate the maximum PDU length for the
 session by using the smaller of its and its peer's proposals
 for Max PDU Length. The default maximum PDU length applies
 before session initialization completes.

 If the maximum PDU length determined this way is unacceptable
 to an LSR, it must send a Session Rejected/Parameters Max PDU
 Length Notification message in response to the Initialization
 message and not establish the session.

 Receiver LDP Identifer
 Identifies the receiver's label space. This LDP Identifier,

Andersson, et al. [Page 55]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 together with the sender's LDP Identifier in the PDU header
 enables the receiver to match the Initialization message with
 one of its Hello adjacencies; see Section "Hello Message
 Procedures".

 If there is no matching Hello adjacency, the LSR must send a
 Session Rejected/No Hello Notification message in response to
 the Initialization message and not establish the session.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 Optional Parameter Type Length Value

 ATM Session Parameters 0x0501 var See below
 Frame Relay Session 0x0502 var See below
 Parameters

 ATM Session Parameters
 Used when an LDP session manages label exchange for an ATM link
 to specify ATM-specific session parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| ATM Sess Parms (0x0501) | Length |
 +-+
 | M | N |D| Reserved |
 +-+
 | ATM Label Range Component 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | ATM Label Range Component N |
 +-+

 M, ATM Merge Capabilities
 Specifies the merge capabilities of an ATM switch. The
 following values are supported in this version of the
 specification:

 Value Meaning

Andersson, et al. [Page 56]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 Merge not supported
 1 VP Merge supported
 2 VC Merge supported
 3 VP & VC Merge supported

 If the merge capabilities of the LSRs differ, then:

 - Non-merge and VC-merge LSRs may freely interoperate.

 - The interoperability of VP-merge-capable switches with
 non-VP-merge-capable switches is a subject for future
 study.

 Note that if VP merge is used, it is the responsibility of the
 ingress node to ensure that the chosen VCI is unique within the
 LSR domain (see [ATM-VP]).

 N, Number of label range components
 Specifies the number of ATM Label Range Components included in
 the TLV.

 D, VC Directionality
 A value of 0 specifies bidirectional VC capability, meaning the
 LSR can (within a given VPI) support the use of a given VCI as
 a label for both link directions independently. A value of 1
 specifies unidirectional VC capability, meaning (within a given
 VPI) a given VCI may appear in a label mapping for one
 direction on the link only. When either or both of the peers
 specifies unidirectional VC capability, both LSRs use
 unidirectional VC label assignment for the link as follows.
 The LSRs compare their LDP Identifiers as unsigned integers.
 The LSR with the larger LDP Identifier may assign only odd-
 numbered VCIs in the VPI/VCI range as labels. The system with
 the smaller LDP Identifier may assign only even-numbered VCIs
 in the VPI/VCI range as labels.

 Reserved
 This field is reserved. It must be set to zero on transmission
 and ignored on receipt.

 One or more ATM Label Range Components
 A list of ATM Label Range Components which together specify the
 Label range supported by the transmitting LSR.

 A receiving LSR MUST calculate the intersection between the
 received range and its own supported label range. The
 intersection is the range in which the LSR may allocate and
 accept labels. LSRs MUST NOT establish a session with

Andersson, et al. [Page 57]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 neighbors for which the intersection of ranges is NULL. In
 this case, the LSR must send a Session Rejected/Parameters
 Label Range Notification message in response to the
 Initialization message and not establish the session.

 The encoding for an ATM Label Range Component is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Res | Minimum VPI | Minimum VCI |
 +-+
 | Res | Maximum VPI | Maximum VCI |
 +-+

 Res
 This field is reserved. It must be set to zero on
 transmission and must be ignored on receipt.

 Minimum VPI (12 bits)
 This 12 bit field specifies the lower bound of a block of
 Virtual Path Identifiers that is supported on the originating
 switch. If the VPI is less than 12-bits it should be right
 justified in this field and preceding bits should be set to
 0.

 Minimum VCI (16 bits)
 This 16 bit field specifies the lower bound of a block of
 Virtual Connection Identifiers that is supported on the
 originating switch. If the VCI is less than 16-bits it
 should be right justified in this field and preceding bits
 should be set to 0.

 Maximum VPI (12 bits)
 This 12 bit field specifies the upper bound of a block of
 Virtual Path Identifiers that is supported on the originating
 switch. If the VPI is less than 12-bits it should be right
 justified in this field and preceding bits should be set to
 0.

 Maximum VCI (16 bits)
 This 16 bit field specifies the upper bound of a block of
 Virtual Connection Identifiers that is supported on the
 originating switch. If the VCI is less than 16-bits it
 should be right justified in this field and preceding bits
 should be set to 0.

Andersson, et al. [Page 58]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 When peer LSRs are connected indirectly by means of an ATM VP,
 the sending LSR should set the Minimum and Maximum VPI fields to
 0, and the receiving LSR must ignore the Minimum and Maximum VPI
 fields.

 See [ATM-VP] for specification of the fields for ATM Label Range
 Components to be used with VP merge LSRs.

 Frame Relay Session Parameters
 Used when an LDP session manages label exchange for a Frame Relay
 link to specify Frame Relay-specific session parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| FR Sess Parms (0x0502) | Length |
 +-+
 | M | N |D| Reserved |
 +-+
 | Frame Relay Label Range Component 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | Frame Relay Label Range Component N |
 +-+

 M, Frame Relay Merge Capabilities
 Specifies the merge capabilities of a Frame Relay switch. The
 following values are supported in this version of the
 specification:

 Value Meaning

 0 Merge not supported
 1 Merge supported

 Non-merge and merge Frame Relay LSRs may freely interoperate.

 N, Number of label range components
 Specifies the number of Frame Relay Label Range Components
 included in the TLV.

 D, VC Directionality
 A value of 0 specifies bidirectional VC capability, meaning the
 LSR can support the use of a given DLCI as a label for both

Andersson, et al. [Page 59]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 link directions independently. A value of 1 specifies
 unidirectional VC capability, meaning a given DLCI may appear
 in a label mapping for one direction on the link only. When
 either or both of the peers specifies unidirectional VC
 capability, both LSRs use unidirectional VC label assignement
 for the link as follows. The LSRs compare their LDP
 Identifiers as unsigned integers. The LSR with the larger LDP
 Identifier may assign only odd-numbered DLCIs in the range as
 labels. The system with the smaller LDP Identifier may assign
 only even-numbered DLCIs in the range as labels.

 Reserved
 This field is reserved. It must be set to zero on transmission
 and ignored on receipt.

 One or more Frame Relay Label Range Components
 A list of Frame Relay Label Range Components which together
 specify the Label range supported by the transmitting LSR.

 A receiving LSR MUST calculate the intersection between the
 received range and its own supported label range. The
 intersection is the range in which the LSR may allocate and
 accept labels. LSRs MUST NOT establish a session with
 neighbors for which the intersection of ranges is NULL. In
 this case, the LSR must send a Session Rejected/Parameters
 Label Range Notification message in response to the
 Initialization message and not establish the session.

 The encoding for a Frame Relay Label Range Component is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved |Len| Minimum DLCI |
 +-+
 | Reserved | Maximum DLCI |
 +-+

 Reserved
 This field is reserved. It must be set to zero on
 transmission and ignored on receipt.

 Len
 This field specifies the number of bits of the DLCI. The
 following values are supported:

Andersson, et al. [Page 60]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Len DLCI bits

 0 10
 1 17
 2 23

 Minimum DLCI
 This 23-bit vield specifies the lower bound of a block of
 Data Link Connection Identifiers (DLCIs) that is supported on
 the originating switch. The DLCI should be right justified
 in this field and unused bits should be set to 0.

 Maximum DLCI
 This 23-bit vield specifies the upper bound of a block of
 Data Link Connection Identifiers (DLCIs) that is supported on
 the originating switch. The DLCI should be right justified
 in this field and unused bits should be set to 0.

 Note that there is no Generic Session Parameters TLV for sessions
 which advertise Generic Labels.

3.5.3.1. Initialization Message Procedures

 See Section "LDP Session Establishment" and particularly Section
 "Session Initialization" for general procedures for handling the
 Initialization Message.

3.5.4. KeepAlive Message

 An LSR sends KeepAlive Messages as part of a mechanism that monitors
 the integrity of the LDP session transport connection.

 The encoding for the KeepAlive Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| KeepAlive (0x0201) | Message Length |
 +-+
 | Message ID |
 +-+
 | Optional Parameters |
 +-+

Andersson, et al. [Page 61]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Message ID
 32-bit value used to identify this message.

 Optional Parameters
 No optional parameters are defined for the KeepAlive message.

3.5.4.1. KeepAlive Message Procedures

 The KeepAlive Timer mechanism described in Section "Maintaining LDP
 Sessions" resets a session KeepAlive timer every time an LDP PDU is
 received on the session TCP connection. The KeepAlive Message is
 provided to allow reset of the KeepAlive Timer in circumstances where
 an LSR has no other information to communicate to an LDP peer.

 An LSR must arrange that its peer receive an LDP Message from it at
 least every KeepAlive Time period. Any LDP protocol message will do
 but, in circumstances where no other LDP protocol messages have been
 sent within the period, a KeepAlive message must be sent.

3.5.5. Address Message

 An LSR sends the Address Message to an LDP peer to advertise its
 interface addresses.

 The encoding for the Address Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Address (0x0300) | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 | Address List TLV |
 | |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 Address List TLV
 The list of interface addresses being advertised by the sending

Andersson, et al. [Page 62]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 LSR. The encoding for the Address List TLV is specified in Section
 "Address List TLV".

 Optional Parameters
 No optional parameters are defined for the Address message.

3.5.5.1. Address Message Procedures

 An LSR that receives an Address Message message uses the addresses it
 learns to maintain a database for mapping between peer LDP
 Identifiers and next hop addresses; see Section "LDP Identifiers and
 Next Hop Addresses".

 When a new LDP session is initialized and before sending Label
 Mapping or Label Request messages an LSR should advertise its
 interface addresses with one or more Address messages.

 Whenever an LSR "activates" a new interface address, it should
 advertise the new address with an Address message.

 Whenever an LSR "de-activates" a previously advertised address, it
 should withdraw the address with an Address Withdraw message; see
 Section "Address Withdraw Message".

3.5.6. Address Withdraw Message

 An LSR sends the Address Withdraw Message to an LDP peer to withdraw
 previously advertised interface addresses.

 The encoding for the Address Withdraw Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Address Withdraw (0x0301) | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 | Address List TLV |
 | |
 +-+
 | Optional Parameters |
 +-+

Andersson, et al. [Page 63]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Message ID
 32-bit value used to identify this message.

 Address list TLV
 The list of interface addresses being withdrawn by the sending LSR.
 The encoding for the Address list TLV is specified in Section
 "Address List TLV".

 Optional Parameters
 No optional parameters are defined for the Address Withdraw
 message.

3.5.6.1. Address Withdraw Message Procedures

 See Section "Address Message Procedures"

3.5.7. Label Mapping Message

 An LSR sends a Label Mapping message to an LDP peer to advertise
 FEC-label bindings to the peer.

 The encoding for the Label Mapping Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Mapping (0x0400) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Specifies the FEC component of the FEC-Label mapping being
 advertised. See Section "FEC TLV" for encoding.

 Label TLV

Andersson, et al. [Page 64]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Specifies the Label component of the FEC-Label mapping. See
 Section "Label TLV" for encoding.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 Optional Parameter Length Value

 Label Request 4 See below
 Message ID TLV
 Hop Count TLV 1 See below
 Path Vector TLV variable See below

 The encodings for the Hop Count, and Path Vector TLVs can be found
 in Section "TLV Encodings for Commonly Used Parameters".

 Label Request Message ID
 If this Label Mapping message is a response to a Label Request
 message it must include the Request Message Id optional
 parameter. The value of this optional parameter is the Message
 Id of the corresponding Label Request Message.

 Hop Count
 Specifies the running total of the number of LSR hops along the
 LSP being setup by the Label Message. Section "Hop Count
 Procedures" describes how to handle this TLV.

 Path Vector
 Specifies the LSRs along the LSP being setup by the Label
 Message. Section "Path Vector Procedures" describes how to
 handle this TLV.

3.5.7.1. Label Mapping Message Procedures

 The Mapping message is used by an LSR to distribute a label mapping
 for a FEC to an LDP peer. If an LSR distributes a mapping for a FEC
 to multiple LDP peers, it is a local matter whether it maps a single
 label to the FEC, and distributes that mapping to all its peers, or
 whether it uses a different mapping for each of its peers.

 An LSR is responsible for the consistency of the label mappings it
 has distributed, and that its peers have these mappings.

 An LSR receiving a Label Mapping message from a downstream LSR for a
 Prefix or Host Address FEC Element should not use the label for
 forwarding unless its routing table contains an entry that exactly

Andersson, et al. [Page 65]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 matches the FEC Element.

 See Appendx A "LDP Label Distribution Procedures" for more details.

3.5.7.1.1. Independent Control Mapping

 If an LSR is configured for independent control, a mapping message is
 transmitted by the LSR upon any of the following conditions:

 1. The LSR recognizes a new FEC via the forwarding table, and the
 label advertisement mode is Downstream Unsolicited
 advertisement.

 2. The LSR receives a Request message from an upstream peer for a
 FEC present in the LSR's forwarding table.

 3. The next hop for a FEC changes to another LDP peer, and loop
 detection is configured.

 4. The attributes of a mapping change.

 5. The receipt of a mapping from the downstream next hop AND
 a) no upstream mapping has been created OR
 b) loop detection is configured OR
 c) the attributes of the mapping have changed.

3.5.7.1.2. Ordered Control Mapping

 If an LSR is doing ordered control, a Mapping message is transmitted
 by downstream LSRs upon any of the following conditions:

 1. The LSR recognizes a new FEC via the forwarding table, and is
 the egress for that FEC.

 2. The LSR receives a Request message from an upstream peer for a
 FEC present in the LSR's forwarding table, and the LSR is the
 egress for that FEC OR has a downstream mapping for that FEC.

 3. The next hop for a FEC changes to another LDP peer, and loop
 detection is configured.

 4. The attributes of a mapping change.

Andersson, et al. [Page 66]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 5. The receipt of a mapping from the downstream next hop AND
 a) no upstream mapping has been created OR
 b) loop detection is configured OR
 c) the attributes of the mapping have changed.

3.5.7.1.3. Downstream on Demand Label Advertisement

 In general, the upstream LSR is responsible for requesting label
 mappings when operating in Downstream on Demand mode. However,
 unless some rules are followed, it is possible for neighboring LSRs
 with different advertisement modes to get into a livelock situation
 where everything is functioning properly, but no labels are
 distributed. For example, consider two LSRs Ru and Rd where Ru is
 the upstream LSR and Rd is the downstream LSR for a particular FEC.
 In this example, Ru is using Downstream Unsolicited advertisement
 mode and Rd is using Downstream on Demand mode. In this case, Rd may
 assume that Ru will request a label mapping when it wants one and Ru
 may assume that Rd will advertise a label if it wants Ru to use one.
 If Rd and Ru operate as suggested, no labels will be distributed from
 Rd to Ru.

 This livelock situation can be avoided if the following rule is
 observed: an LSR operating in Downstream on Demand mode should not be
 expected to send unsolicited mapping advertisements. Therefore, if
 the downstream LSR is operating in Downstream on Demand mode, the
 upstream LSR is responsible for requesting label mappings as needed.

3.5.7.1.4. Downstream Unsolicited Label Advertisement

 In general, the downstream LSR is responsible for advertising a label
 mapping when it wants an upstream LSR to use the label. An upstream
 LSR may issue a mapping request if it so desires.

 The combination of Downstream Unsolicited mode and conservative label
 retention can lead to a situation where an LSR releases the label for
 a FEC that it later needs. For example, if LSR Rd advertises to LSR
 Ru the label for a FEC for which it is not Ru's next hop, Ru will
 release the label. If Ru's next hop for the FEC later changes to Rd,
 it needs the previously released label.

 To deal with this situation either Ru can explicitly request the
 label when it needs it, or Rd can periodically readvertise it to Ru.
 In many situations Ru will know when it needs the label from Rd. For
 example, when its next hop for the FEC changes to Rd. However, there
 could be situations when Ru does not. For example, Rd may be
 attempting to establish an LSP with non-standard properties. Forcing

Andersson, et al. [Page 67]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Ru to explicitly request the label in this situation would require it
 to maintain state about a potential LSP with non-standard properties.

 In situations where Ru knows it needs the label, it is responsible
 for explicitly requesting the label by means of a Label Request
 message. In situations where Ru may not know that it needs the
 label, Rd is responsible for periodically readvertising the label to
 Ru.

 For this version of LDP, the only situation where Ru knows it needs a
 label for a FEC from Rd is when Rd is its next hop for the FEC, Ru
 does not have a label from Rd, and the LSP for the FEC is one that
 can be established with TLVs defined in this document.

3.5.8. Label Request Message

 An LSR sends the Label Request Message to an LDP peer to request a
 binding (mapping) for a FEC.

 The encoding for the Label Request Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Request (0x0401) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 The FEC for which a label is being requested. See Section "FEC
 TLV" for encoding.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 Optional Parameter Length Value

Andersson, et al. [Page 68]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Hop Count TLV 1 See below
 Path Vector TLV variable See below

 The encodings for the Hop Count, and Path Vector TLVs can be found
 in Section "TLV Encodings for Commonly Used Parameters".

 Hop Count
 Specifies the running total of the number of LSR hops along the
 LSP being setup by the Label Request Message. Section "Hop
 Count Procedures" describes how to handle this TLV.

 Path Vector
 Specifies the LSRs along the LSR being setup by the Label
 Request Message. Section "Path Vector Procedures" describes
 how to handle this TLV.

3.5.8.1. Label Request Message Procedures

 The Request message is used by an upstream LSR to explicitly request
 that the downstream LSR assign and advertise a label for a FEC.

 An LSR may transmit a Request message under any of the following
 conditions:

 1. The LSR recognizes a new FEC via the forwarding table, and the
 next hop is an LDP peer, and the LSR doesn't already have a
 mapping from the next hop for the given FEC.

 2. The next hop to the FEC changes, and the LSR doesn't already
 have a mapping from that next hop for the given FEC.

 Note that if the LSR already has a pending Label Request
 message for the new hext hop it should not issue an additional
 Label Request in response to the next hop change.

 3. The LSR receives a Label Request for a FEC from an upstream LDP
 peer, the FEC next hop is an LDP peer, and the LSR doesn't
 already have a mapping from the next hop.

 Note that since a non-merge LSR must setup a separate LSP for
 each upstream peer requesting a label, it must send a separate
 Label Request for each such peer. A consequence of this is
 that a non-merge LSR may have multiple Label Request messages
 for a given FEC outstanding at the same time.

 The receiving LSR should respond to a Label Request message with a
 Label Mapping for the requested label or with a Notification message

Andersson, et al. [Page 69]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 indicating why it cannot satisfy the request.

 When the FEC for which a label is requested is a Prefix FEC Element
 or a Host Address FEC Element, the receiving LSR uses its routing
 table to determine its response. Unless its routing table includes
 an entry that exactly matches the requested Prefix or Host Address,
 the LSR must respond with a No Route Notification message.

 The message ID of the Label Request message serves as an identifier
 for the Label Request transaction. When the receiving LSR responds
 with a Label Mapping message, the mapping message must include a
 Label Request/Returned Message ID TLV optional parameter which
 includes the message ID of the Label Request message. Note that
 since LSRs use Label Request message IDs as transaction identifiers
 an LSR should not reuse the message ID of a Label Request message
 until the corresponding transaction completes.

 This version of the protocol defines the following Status Codes for
 the Notification message that signals a request cannot be satisfied:

 No Route
 The FEC for which a label was requested includes a FEC Element
 for which the LSR does not have a route.

 No Label Resources
 The LSR cannot provide a label because of resource limitations.
 When resources become available the LSR must notify the
 requesting LSR by sending a Notification message with the Label
 Resources Available Status Code.

 An LSR that receives a No Label Resources response to a Label
 Request message must not issue further Label Request messages
 until it receives a Notification message with the Label Resources
 Available Status code.

 Loop Detected
 The LSR has detected a looping Label Requst message.

 See Appendx A "LDP Label Distribution Procedures" for more details.

3.5.9. Label Abort Request Message

 The Label Abort Request message may be used to abort an outstanding
 Label Request message.

 The encoding for the Label Abort Request Message is:

Andersson, et al. [Page 70]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Abort Req (0x0404) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label Request Message ID TLV |
 +-+
 | Optional Parameters |
 +-+

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the FEC-label mapping is being
 withdrawn.

 Label Request Message ID TLV
 Specifies the message ID of the Label Request message to be
 aborted.

 Optional Parameters
 No optional parameters are defined for the Label Abort Req message.

3.5.9.1. Label Abort Request Message Procedures

 An LSR Ru may send a Label Abort Request message to abort an
 outstanding Label Request message for FEC sent to LSR Rd in the
 following circumstances:

 1. Ru's next hop for FEC has changed from LSR Rd to LSR X; or

 2. Ru is a non-merge, non-ingress LSR and has received a Label
 Abort Request for FEC from an upstream peer Y.

 3. Ru is a merge, non-ingress LSR and has received a Label Abort
 Request for FEC from an upstream peer Y and Y is the only
 (last) upstream LSR requesting a label for FEC.

 There may be other situations where an LSR may choose to abort an
 outstanding Label Request message in order to reclaim resource
 associated with the pending LSP. However, specificaion of general

Andersson, et al. [Page 71]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 strategies for using the abort mechanism is beyond the scope of LDP.

 When an LSR receives a Label Abort Request message, if it has not
 previously responded to the Label Request being aborted with a Label
 Mapping message or some other Notification message, it must
 acknowledge the abort by responding with a Label Request Aborted
 Notification message. The Notification must include a Label Request
 Message ID TLV that carries the message ID of the aborted Label
 Request message.

 If an LSR receives a Label Abort Request Message after it has
 responded to the Label Request in question with a Label Mapping
 message or a Notification message, it ignores the abort request.

 If an LSR receives a Label Mapping message in response to a Label
 Request message after it has sent a Label Abort Request message to
 abort the Label Request, the label in the Label Mapping message is
 valid. The LSR may choose to use the label or to release it with a
 Label Release mesage.

 An LSR aborting a Label Request message may not reuse the Message ID
 for the Label Request message until it receives one of the following
 from its peer:

 - A Label Request Aborted Notfication message acknowledging the
 abort;

 - A Label Mapping message in response to the Label Request message
 being aborted;

 - A Notification message in response to the Label Request message
 being aborted (e.g., Loop Detected, No Label Resources, etc.).

 To protect itself against tardy peers or faulty peer implementations
 an LSR may choose to time out receipt of the above. The time out
 period should be relatively long (several minutes).

 Note that the response to a Label Abort Request message is never
 "ordered". That is, the response does not depend on the downstream
 state of the LSP setup being aborted. An LSR receiving a Label Abort
 Request message must process it immediately, regardless of the
 downstream state of the LSP, responding with a Label Request Aborted
 Notification or ignoring it, as appropriate.

Andersson, et al. [Page 72]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.5.10. Label Withdraw Message

 An LSR sends a Label Withdraw Message to an LDP peer to signal the
 peer that the peer may not continue to use specific FEC-label
 mappings the LSR had previously advertised. This breaks the mapping
 between the FECs and the labels.

 The encoding for the Label Withdraw Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Withdraw (0x0402) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV (optional) |
 +-+

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the FEC-label mapping is being
 withdrawn.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 Optional Parameter Length Value

 Label TLV variable See below

 The encoding for Label TLVs are found in Section "Label TLVs".

 Label
 If present, specifies the label being withdrawn (see procedures
 below).

3.5.10.1. Label Withdraw Message Procedures

 An LSR transmits a Label Withdraw message under the following
 conditions:

Andersson, et al. [Page 73]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 1. The LSR no longer recognizes a previously known FEC for which
 it has advertised a label.

 2. The LSR has decided unilaterally (e.g., via configuration) to
 no longer label switch a FEC (or FECs) with the label mapping
 being withdrawn.

 The FEC TLV specifies the FEC for which labels are to be withdrawn.
 If no Label TLV follows the FEC, all labels associated with the FEC
 are to be withdrawn; otherwise only the label specified in the
 optional Label TLV is to be withdrawn.

 The FEC TLV may contain the Wildcard FEC Element; if so, it may
 contain no other FEC Elements. In this case, if the Label Withdraw
 message contains an optional Label TLV, then the label is to be
 withdrawn from all FECs to which it is bound. If there is not an
 optional Label TLV in the Label Withdraw message, then the sending
 LSR is withdrawing all label mappings previously advertised to the
 receiving LSR.

 An LSR that receives a Label Withdraw message must respond with a
 Label Release message.

 See Appendx A "LDP Label Distribution Procedures" for more details.

3.5.11. Label Release Message

 An LSR sends a Label Release message to an LDP peer to signal the
 peer that the LSR no longer needs specific FEC-label mappings
 previously requested of and/or advertised by the peer.

 The encoding for the Label Release Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Release (0x0403) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV (optional) |
 +-+

 Message ID

Andersson, et al. [Page 74]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the FEC-label mapping is being
 released.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 Optional Parameter Length Value

 Label TLV variable See below

 The encodings for Label TLVs are found in Section "Label TLVs".

 Label
 If present, the label being released (see procedures below).

3.5.11.1. Label Release Message Procedures

 An LSR transmits a Label Release message to a peer when it is no
 longer needs a label previously received from or requested of that
 peer.

 An LSR must transmit a Label Release message under any of the
 following conditions:

 1. The LSR which sent the label mapping is no longer the next hop
 for the mapped FEC, and the LSR is configured for conservative
 operation.

 2. The LSR receives a label mapping from an LSR which is not the
 next hop for the FEC, and the LSR is configured for
 conservative operation.

 3. The LSR receives a Label Withdraw message.

 Note that if an LSR is configured for "liberal mode", a release
 message will never be transmitted in the case of conditions (1) and
 (2) as specified above. In this case, the upstream LSR keeps each
 unused label, so that it can immediately be used later if the
 downstream peer becomes the next hop for the FEC.

 The FEC TLV specifies the FEC for which labels are to be released.
 If no Label TLV follows the FEC, all labels associated with the FEC
 are to be released; otherwise only the label specified in the

Andersson, et al. [Page 75]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 optional Label TLV is to be released.

 The FEC TLV may contain the Wildcard FEC Element; if so, it may
 contain no other FEC Elements. In this case, if the Label Release
 message contains an optional Label TLV, then the label is to be
 released for all FECs to which it is bound. If there is not an
 optional Label TLV in the Label Release message, then the sending LSR
 is releasing all label mappings previously learned from the receiving
 LSR.

 See Appendx A "LDP Label Distribution Procedures" for more details.

3.6. Messages and TLVs for Extensibility

 Support for LDP extensibility includes the rules for the U and F bits
 that specify how an LSR should handle unknown TLVs and messages.

 This section specifies TLVs and messages for vendor-private and
 experimental use.

3.6.1. LDP Vendor-private Extensions

 Vendor-private TLVs and messages are used to convey vendor-private
 information between LSRs.

3.6.1.1. LDP Vendor-private TLVs

 The Type range 0x3E00 through 0x3EFF is reserved for vendor-private
 TLVs.

 The encoding for a vendor-private TLV is:

Andersson, et al. [Page 76]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U|F| Type (0x3E00-0x3EFF) | Length |
 +-+
 | Vendor ID |
 +-+
 | |
 | Data.... |
 ~ ~
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 U bit
 Unknown TLV bit. Upon receipt of an unknown TLV, if U is clear
 (=0), a notification must be returned to the message originator and
 the entire message must be ignored; if U is set (=1), the unknown
 TLV is silently ignored and the rest of the message is processed as
 if the unknown TLV did not exist.

 The determination as to whether a vendor-private message is
 understood is based on the Type and the mandatory Vendor ID field.

 F bit
 Forward unknown TLV bit. This bit only applies when the U bit is
 set and the LDP message containing the unknown TLF is is to be
 forwarded. If F is clear (=0), the unknown TLV is not forwarded
 with the containing message; if F is set (=1), the unknown TLV is
 forwarded with the containing message.

 Type
 Type value in the range 0x3E00 through 0x3EFF. Together, the Type
 and Vendor Id field specify how the Data field is to be
 interpreted.

 Length
 Specifies the cumulative length in octets of the Vendor ID and Data
 fields.

 Vendor Id
 802 Vendor ID as assigned by the IEEE.

 Data
 The remaining octets after the Vendor ID in the Value field are
 optional vendor-dependent data.

Andersson, et al. [Page 77]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

3.6.1.2. LDP Vendor-private Messages

 The Message Type range 0x3E00 through 0x3EFF is reserved for vendor-
 private Messages.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U| Msg Type (0x3E00-0x3EFF) | Message Length |
 +-+
 | Message ID |
 +-+
 | Vendor ID |
 +-+
 + +
 | Remaining Mandatory Parameters |
 + +
 | |
 +-+
 | |
 + +
 | Optional Parameters |
 + +
 | |
 +-+

 U bit
 Unknown message bit. Upon receipt of an unknown message, if U is
 clear (=0), a notification is returned to the message originator;
 if U is set (=1), the unknown message is silently ignored.

 The determination as to whether a vendor-private message is
 understood is based on the Msg Type and the Vendor ID parameter.

 Msg Type
 Message type value in the range 0x3E00 through 0x3EFF. Together,
 the Msg Type and the Vendor ID specify how the message is to be
 interpreted.

 Message Length
 Specifies the cumulative length in octets of the Message ID, Vendor
 ID, Remaining Mandatory Parameters and Optional Parameters.

 Message ID
 32-bit integer used to identify this message. Used by the sending
 LSR to facilitate identifying notification messages that may apply
 to this message. An LSR sending a notification message in response

Andersson, et al. [Page 78]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 to this message will include this Message Id in the notification
 message; see Section "Notification Message".

 Vendor ID
 802 Vendor ID as assigned by the IEEE.

 Remaining Mandatory Parameters
 Variable length set of remaining required message parameters.

 Optional Parameters
 Variable length set of optional message parameters.

3.6.2. LDP Experimental Extensions

 LDP support for experimentation is similar to support for vendor-
 private extensions with the following differences:

 - The Type range 0x3F00 through 0x3FFF is reserved for experimental
 TLVs.

 - The Message Type range 0x3F00 through 0x3FFF is reserved for
 experimental messages.

 - The encodings for experimental TLVs and messages are similar to
 the vendor-private encodings with the following difference.

 Experimental TLVs and messages use an Experiment ID field in
 place of a Vendor ID field. The Experiment ID field is used with
 the Type or Message Type field to specify the interpretation of
 the experimental TLV or Message.

 Administration of Experiment IDs is the responsiblity of the
 experimenters.

3.7. Message Summary

 The following are the LDP messages defined in this version of the
 protocol.

Andersson, et al. [Page 79]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Message Name Type Section Title

 Notification 0x0001 "Notification Message"
 Hello 0x0100 "Hello Message"
 Initialization 0x0200 "Initialization Message"
 KeepAlive 0x0201 "KeepAlive Message"
 Address 0x0300 "Address Message"
 Address Withdraw 0x0301 "Address Withdraw Message"
 Label Mapping 0x0400 "Label Mapping Message"
 Label Request 0x0401 "Label Request Message"
 Label Withdraw 0x0402 "Label Withdraw Message"
 Label Release 0x0403 "Label Release Message"
 Label Abort Request 0x0404 "Label Abort Request Message"
 Vendor-Private 0x3E00- "LDP Vendor-private Extensions"
 0x3EFF
 Experimental 0x3F00- "LDP Experimental Extensions"
 0x3FFF

3.8. TLV Summary

 The following are the TLVs defined in this version of the protocol.

 TLV Type Section Title

 FEC 0x0100 "FEC TLV"
 Address List 0x0101 "Address List TLV"
 Hop Count 0x0103 "Hop Count TLV"
 Path Vector 0x0104 "Path Vector TLV"
 Generic Label 0x0200 "Generic Label TLV"
 ATM Label 0x0201 "ATM Label TLV"
 Frame Relay Label 0x0202 "Frame Relay Label TLV"
 Status 0x0300 "Status TLV"
 Extended Status 0x0301 "Notification Message"
 Returned PDU 0x0302 "Notification Message"
 Returned Message 0x0303 "Notification Message"
 Common Hello 0x0400 "Hello Message"
 Parameters
 Transport Address 0x0401 "Hello Message"
 Configuration 0x0402 "Hello Message"
 Sequence Number
 Common Session 0x0500 "Initialization Message"
 Parameters
 ATM Session Parameters 0x0501 "Initialization Message"
 Frame Relay Session 0x0502 "Initialization Message"
 Parameters

Andersson, et al. [Page 80]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Label Request 0x0600 "Label Mapping Message"
 Message ID
 Vendor-Private 0x3E00- "LDP Vendor-private Extensions"
 0x3EFF
 Experimental 0x3F00- "LDP Experimental Extensions"
 0x3FFF

3.9. Status Code Summary

 The following are the Status Codes defined in this version of the
 protocol.

 The "E" column is the required setting of the Status Code E-bit; the
 "Status Data" column is the value of the 30-bit Status Data field in
 the Status Code TLV.

 Note that the setting of the Status Code F-bit is at the discretion
 of the LSR originating the Status TLV.

 Status Code E Status Data Section Title

 Success 0 0x00000000 "Status TLV"
 Bad LDP Identifer 1 0x00000001 "Events Signaled by ..."
 Bad Protocol Version 1 0x00000002 "Events Signaled by ..."
 Bad PDU Length 1 0x00000003 "Events Signaled by ..."
 Unknown Message Type 0 0x00000004 "Events Signaled by ..."
 Bad Message Length 1 0x00000005 "Events Signaled by ..."
 Unknown TLV 0 0x00000006 "Events Signaled by ..."
 Bad TLV length 1 0x00000007 "Events Signaled by ..."
 Malformed TLV Value 1 0x00000008 "Events Signaled by ..."
 Hold Timer Expired 1 0x00000009 "Events Signaled by ..."
 Shutdown 1 0x0000000A "Events Signaled by ..."
 Loop Detected 0 0x0000000B "Loop Detection"
 Unknown FEC 0 0x0000000C "FEC Procedures"
 No Route 0 0x0000000D "Label Request Mess ..."
 No Label Resources 0 0x0000000E "Label Request Mess ..."
 Label Resources / 0 0x0000000F "Label Request Mess ..."
 Available
 Session Rejected/ 1 0x00000010 "Session Initialization"
 No Hello
 Session Rejected/ 1 0x00000011 "Session Initialization"
 Parameters Advertisement Mode
 Session Rejected/ 1 0x00000012 "Session Initialization"
 Parameters Max PDU Length
 Session Rejected/ 1 0x00000013 "Session Initialization"
 Parameters Label Range

Andersson, et al. [Page 81]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 KeepAlive Timer 1 0x00000014 "Events Signaled by ..."
 Expired
 Label Request Aborted 0 0x00000015 "Label Request Abort ..."

3.10. Well-known Numbers

3.10.1. UDP and TCP Ports

 The UDP port for LDP Hello messages is 646.

 The TCP port for establishing LDP session connections is 646.

3.10.2. Implicit NULL Label

 The Implicit NULL label (see [ARCH]) is represented as a Generic
 Label TLV with a Label field value as specified by [ENCAP].

4. Security Considerations

 This section specifies an optional mechanism to protect against the
 introduction of spoofed TCP segments into LDP session connection
 streams.

 It is based on use of the TCP MD5 Signature Option specified in
 [rfc2385] for use by BGP. See [rfc1321] for a specification of the
 MD5 hash function.

4.1. The TCP MD5 Signature Option

 The following quotes from [rfc2385] outline the security properties
 achieved by using the TCP MD5 Signature Option and summarizes its
 operation:

 "IESG Note

 This document describes currrent existing practice for securing
 BGP against certain simple attacks. It is understood to have
 security weaknesses against concerted attacks."

 "Abstract

 This memo describes a TCP extension to enhance security for
 BGP. It defines a new TCP option for carrying an MD5 [RFC1321]
 digest in a TCP segment. This digest acts like a signature for

Andersson, et al. [Page 82]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1321

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 that segment, incorporating information known only to the
 connection end points. Since BGP uses TCP as its transport,
 using this option in the way described in this paper
 significantly reduces the danger from certain security attacks
 on BGP."

 "Introduction

 The primary motivation for this option is to allow BGP to
 protect itself against the introduction of spoofed TCP segments
 into the connection stream. Of particular concern are TCP
 resets.

 To spoof a connection using the scheme described in this paper,
 an attacker would not only have to guess TCP sequence numbers,
 but would also have had to obtain the password included in the
 MD5 digest. This password never appears in the connection
 stream, and the actual form of the password is up to the
 application. It could even change during the lifetime of a
 particular connection so long as this change was synchronized
 on both ends (although retransmission can become problematical
 in some TCP implementations with changing passwords).

 Finally, there is no negotiation for the use of this option in
 a connection, rather it is purely a matter of site policy
 whether or not its connections use the option."

 "MD5 as a Hashing Algorithm

 Since this memo was first issued (under a different title), the
 MD5 algorithm has been found to be vulnerable to collision
 search attacks [Dobb], and is considered by some to be
 insufficiently strong for this type of application.

 This memo still specifies the MD5 algorithm, however, since the
 option has already been deployed operationally, and there was
 no "algorithm type" field defined to allow an upgrade using the
 same option number. The original document did not specify a
 type field since this would require at least one more byte, and
 it was felt at the time that taking 19 bytes for the complete
 option (which would probably be padded to 20 bytes in TCP
 implementations) would be too much of a waste of the already
 limited option space.

 This does not prevent the deployment of another similar option
 which uses another hashing algorithm (like SHA-1). Also, if
 most implementations pad the 18 byte option as defined to 20
 bytes anyway, it would be just as well to define a new option

Andersson, et al. [Page 83]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 which contains an algorithm type field.

 This would need to be addressed in another document, however."

 End of quotes from [rfc2385].

4.2. LDP Use of the TCP MD5 Signature Option

 LDP uses the TCP MD5 Signature Option as follows:

 - Use of the MD5 Signature Option for LDP TCP connections is a
 configurable LSR option.

 - An LSR that uses the MD5 Signature Option is configured with a
 password for each potential LDP peer.

 - The LSR applies the MD5 algorithm as specified in [RFC2385] to
 compute the MD5 digest for a TCP segment to be sent to a peer.
 This computation makes use of the peer password as well as the
 TCP segment.

 - When the LSR receives a TCP segment with an MD5 digest, it
 validates the segment by calculating the MD5 digest (using its
 own record of the password) and compares the computed digest with
 the received digest. If the comparison fails, the segment is
 dropped without any response to the sender.

 - The LSR ignores LDP Hellos from any LSR for which a password has
 not been configured. This ensures that the LSR establishes LDP
 TCP connections only with LSRs for which a password has been
 configured.

5. Intellectual Property Considerations

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

Andersson, et al. [Page 84]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

6. Acknowledgments

 The ideas and text in this document have been collected from a number
 of sources. We would like to thank Rick Boivie, Ross Callon, Alex
 Conta, Eric Gray, Yoshihiro Ohba, Eric Rosen, Bernard Suter, Yakov
 Rekhter, and Arun Viswanathan.

7. References

 [ARCH] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label
 Switching Architecture", Work in Progress, July 1998.

 [ATM] B. Davie, J. Lawrence, K. McCloghrie, Y. Rekhter, E. Rosen, G.
 Swallow, P. Doolan, "Use of Label Switching With ATM", Work in
 Progress, September, 1998.

 [ATM-VP] N. Feldman, B. Jamoussi, S. Komandur, A, Viswanathan, T
 Worster, "MPLS using ATM VP Switching", Work in Progress, February,
 1999.

 [CRLDP] L. Andersson, A. Fredette, B. Jamoussi, R. Callon, P. Doolan,
 N. Feldman, E. Gray, J. Halpern, J. Heinanen T. E. Kilty, A. G.
 Malis, M. Girish, K. Sundell, P. Vaananen, T. Worster, L. Wu, R.
 Dantu, "Constraint-Based LSP Setup using LDP", Work in Progress,
 January, 1999.

 [DIFFSERV] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.
 Weiss, "An Architecture for Differentiated Services", Work in
 Progress, October, 1998.

 [ENCAP] E. Rosen, Y. Rekhter, D. Tappan, D. Farinacci, G. Fedorkow,
 T. Li, A. Conta, "MPLS Label Stack Encoding", Work in Progress, July,
 1998.

 [FR] A. Conta, P. Doolan, A. Malis, "Use of Label Switching on Frame
 Relay Networks", Work in Progress, October, 1998.

 [FRAMEWORK] R. Callon, P. Doolan, N. Feldman, A. Fredette, G.
 Swallow, A. Viswanathan, "A Framework for Multiprotocol Label
 Switching", Work in Progress, November 1997.

 [LSPTUN] D. Awduche, L. Berger, D. Gan, T. Li, G. Swallow, Vijay
 Srinivasan, "Extensions to RSVP for LSP Tunnels", Work in Progress,
 November 1998.

 [rfc1321] Rivest, R., "The MD5 Message-Digest Algorithm," RFC 1321,
 April 1992.

Andersson, et al. [Page 85]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc1321

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 [rfc1483] J. Heinanen, "Multiprotocol Encapsulation over ATM
 Adaptation Layer 5", RFC 1483, Telecom Finland, July 1993.

 [rfc1583] J. Moy, "OSPF Version 2", RFC 1583, Proteon Inc, March
 1994.

 [rfc1700] J. Reynolds, J.Postel, "ASSIGNED NUMBERS", October 1994.

 [rfc1771] Y. Rekhter, T. Li, "A Border Gateway Protocol 4 (BGP-4)",
RFC 1771, IBM Corp, Cisco Systems, March 1995.

 [rfc2205] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification", RFC 2205, September 1997.

 [rfc2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, August 1998.

 [TE] D. Awduche, J. Malcolm, J Agogbua, M. O'Dell, J. McManus, "
 Requirements for Traffic Engineering over MPLS", Work in Progress,
 October 1998.

8. Author Information

 Loa Andersson Andre Fredette
 Nortel Networks Inc Nortel Networks Inc
 Kungsgatan 34, PO Box 1788 3 Federal Street
 111 97 Stockholm Billerica, MA 01821
 Sweden Phone: 978-916-8524
 Phone: +46 8 441 78 34 email: fredette@baynetworks.com
 Mobile: +46 70 522 78 34
 email: loa_andersson@baynetworks.com

 Paul Doolan Bob Thomas
 Ennovate Networks Cisco Systems, Inc.
 330 Codman Hill Rd 250 Apollo Dr.
 Marlborough MA 01719 Chelmsford, MA 01824
 Phone: 978-263-2002 Phone: 978-244-8078
 email: pdoolan@ennovatenetworks.com email: rhthomas@cisco.com

 Nancy Feldman
 IBM Corp.
 17 Skyline Drive
 Hawthorne NY 10532
 Phone: 914-784-3254
 email: nkf@us.ibm.com

Andersson, et al. [Page 86]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt
https://datatracker.ietf.org/doc/html/rfc1483
https://datatracker.ietf.org/doc/html/rfc1583
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2385

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

Appendix A. LDP Label Distribution Procedures

 This section specifies label distribution behavior in terms of LSR
 response to the following events:

 - Receive Label Request Message;
 - Receive Label Mapping Message;
 - Receive Label Abort Request Message;
 - Receive Label Release Message;
 - Receive Label Withdraw Message;
 - Recognize new FEC;
 - Detect change in FEC next hop;
 - Receive Notification Message / Label Request Aborted;
 - Receive Notification Message / No Label Resources;
 - Receive Notification Message / No Route;
 - Receive Notification Message / Loop Detected;
 - Receive Notification Message / Label Resources Available;
 - Detect local label resources have become available;
 - LSR decides to no longer label switch a FEC;
 - Timeout of deferred label request.

 The specification of LSR behavior in response to an event has three
 parts:

 1. Summary. Prose that describes LSR response to the event in
 overview.

 2. Context. A list of elements referred to by the Algorithm part
 of the specification. (See 3.)

 3. Algorithm. An algorithm for LSR response to the event.

 The Summary may omit details of the LSR response, such as bookkeeping
 action or behavior dependent on the LSR label advertisement mode,
 control mode, or label retention mode in use. The intent is that the
 Algorithm fully and unambiguously specify the LSR response.

 The algorithms in this section use procedures defined in the MPLS
 architecture specification [ARCH] for hop-by-hop routed traffic.
 These procedures are:

 - Label Distribution procedure, which is performed by a downstream
 LSR to determine when to distribute a label for a FEC to LDP
 peers. The architecture defines four Label Distribution
 procedures:

Andersson, et al. [Page 87]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 . Downstream Unsolicited Independent Control, called
 PushUnconditional in [ARCH].

 . Downstream Unsolicited Ordered Control, called
 PushConditional in [ARCH].

 . Downstream On Demand Independent Control, called
 PulledUnconditional in [ARCH].

 . Downstream On Demand Ordered Control, called
 PulledConditional in [ARCH].

 - Label Withdrawal procedure, which is performed by a downstream
 LSR to determine when to withdraw a FEC label mapping previously
 distributed to LDP peers. The architecture defines a single Label
 Withdrawal procedure. Whenever an LSR breaks the binding between
 a label and a FEC, it must withdraw the FEC label mapping from
 all LDP peers to which it has previously sent the mapping.

 - Label Request procedure, which is performed by an upstream LSR to
 determine when to explicitly request that a downstrem LSR bind a
 label to a FEC and send it the corresponding label mapping. The
 architecture defines three Label Request procedures:

 . Request Never. The LSR never requests a label.

 . Request When Needed. The LSR requests a label whenever it
 needs one.

 . Request On Request. This procedure is used by non-label
 merging LSRs. The LSR requests a label when it receives a
 request for one, in addition to whenever it needs one.

 - Label Release procedure, which is performed by an upstream LSR to
 determine when to release a previously received label mapping for
 a FEC. The architecture defines two Label Release procedures:

 . Conservative label retention, called Release On Change in
 [ARCH].

 . Liberal label retention, called No Release On Change in
 [ARCH].

 - Label Use procedure, which is performed by an LSR to determine
 when to start using a FEC label for forwarding/switching. The
 architecture defines three Label Use procedures:

Andersson, et al. [Page 88]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 . Use Immediate. The LSR immediately uses a label received from
 a FEC next hop for forwarding/switching.

 . Use If Loop Free. The LSR uses a FEC label received from a
 FEC next hop for forwarding/switching only if it has
 determined that by doing so it will not cause a forwarding
 loop.

 . Use If Loop Not Detected. This procedure is the same as Use
 Immediate unless the LSR has detected a loop in the FEC LSP.
 Use of the FEC label for forwarding/switching will continue
 until the next hop for the FEC changes or the loop is no
 longer detected.

 This version of LDP does not include a loop prevention mechanism;
 therefore, the procedures below do not make use of the Use If
 Loop Free procedure.

 - Label No Route procedure (called Label Not Available procedure in
 [ARCH]), which is performed by an upstream LSR to determine how
 to respond to a No Route notification from a downstream LSR in
 response to a request for a FEC label mapping. The architecture
 specification defines two Label No Route procedures:

 . Request Retry. The LSR should issue the label request at a
 later time.

 . No Request Retry. The LSR should assume the downstream LSR
 will provide a label mapping when the downstream LSR has a
 next hop and it should not reissue the request.

A.1. Handling Label Distribution Events

 This section defines LDP label distribution procedures by specifying
 an algorithm for each label distribution event. The requirement on
 an LDP implementation is that its event handling must have the effect
 specifid by the algorithms. That is, an implementation need not
 follow exactly the steps specified by the algorithms as long as the
 effect is identical.

 The algorithms for handling label distribution events share common
 actions. The specifications below package these common actions into
 procedure units. Specifications for these common procedures are in
 their own section "Common Label Distribution Procedures", which
 follows this.

 An implementation would use data structures to store information

Andersson, et al. [Page 89]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 about protocol activity. This appendix specifies the information to
 be stored in sufficient detail to describe the algorithms, and
 assumes the ability to retrieve the information as needed. It does
 not specify the details of the data structures.

A.1.1. Receive Label Request

 Summary:

 The response by an LSR to receipt of a FEC label request from an
 LDP peer may involve one or more of the following actions:

 - Transmission of a notification message to the requesting LSR
 indicating why a label mapping for the FEC cannot be provided;

 - Transmission of a FEC label mapping to the requesting LSR;

 - Transmission of a FEC label request to the FEC next hop;

 - Installation of labels for forwarding/switching use by the LSR.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - RAttributes. Attributes received with the message. E.g., Hop
 Count Path Vector.

 - SAttributes. Attributes to be included in Label Request message,
 if any, propagated to FEC Next Hop.

 - StoredHopCount. The hop count, if any, previously recorded for
 the FEC.

 Algorithm:

 LRq.1 Execute procedure Check_Received_Attributes (MsgSource,
 RAttributes).
 If Loop Detected, goto LRq.13.

 LRq.2 Is there a Next Hop for FEC?
 If not, goto LRq.5.

Andersson, et al. [Page 90]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 LRq.3 Is MsgSource the Next Hop?
 Ifnot, goto LRq.6.

 LRq.4 Execute procedure Send_Notification (MsgSource, Loop
 Detected).
 Goto LRq.13

 LRq.5 Execute procedure Send_Notification (MsgSource, No Route).
 Goto LRq.13.

 LRq.6 Has LSR previously received a label request for FEC from
 MsgSource?
 If not, goto LRq.8. (See Note 1.)

 LRq.7 Is the label request a duplicate request?
 If so, Goto LRq.13. (See Note 2.)

 LRq.8 Record label request for FEC received from MsgSource and mark
 it pending.

 LRq.9 Perform LSR Label Distribution procedure:

 For Downstream Unsolicited Independent Control OR
 For Downstream On Demand Independent Control

 1. Has LSR previously received and retained a label
 mapping for FEC from Next Hop?.
 Is so, set Propagating to IsPropagating.
 If not, set Propagating to NotPropagating.

 2. Execute procedure
 Prepare_Label_Mapping_Attributes(MsgSource, FEC,
 RAttributes, SAttributes, Propagating,
 StoredHopCount).

 3. Execute procedure Send_Label (MsgSource, FEC,
 SAttributes).

 4. Is LSR egress for FEC? OR
 Has LSR previously received and retained a label
 mapping for FEC from Next Hop?
 If so, goto LRq.11. If not, goto LRq.10.

 For Downstream Unsolicited Ordered Control OR
 For Downstream On Demand Ordered Control

 1. Is LSR egress for FEC? OR
 Has LSR previously received and retained a label

Andersson, et al. [Page 91]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 mapping for FEC from Next Hop? (See Note 3.)
 If not, goto LRq.10.

 2. Execute procedure
 Prepare_Label_Mapping_Attributes(MsgSource, FEC,
 RAttributes, SAttributes, IsPropagating,
 StoredHopCount)

 3. Execute procedure Send_Label (MsgSource, FEC,
 SAttributes).
 Goto LRq.11.

 LRq.10 Perform LSR Label Request procedure:

 For Request Never

 1. Goto LRq.13.

 For Request When Needed OR
 For Request On Request

 1. Execute procedure Prepare_Label_Request_Attributes
 (Next Hop, FEC, RAttributes, SAttributes);

 2. Execute procedure Send_Label_Request (Next Hop, FEC,
 SAttributes).
 Goto LRq.13.

 LRq.11 Has LSR successfully sent a label for FEC to MsgSource?
 If not, goto LRq.13. (See Note 4.)

 LRq.12 Perform LSR Label Use procedure.

 For Use Immediate OR
 For Use If Loop Not Detected

 1. Install label sent to MsgSource and label from Next
 Hop (if LSR is not egress) for forwarding/switching
 use.

 LRq.13 DONE

Andersson, et al. [Page 92]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Notes:

 1. In the case where MsgSource is a non-label merging LSR it will
 send a label request for each upstream LDP peer that has
 requested a label for FEC from it. The LSR must be able to
 distinguish such requests from a non-label merging MsgSource
 from duplicate label requests.

 The LSR uses the message ID of received Label Request messages
 to detect duplicate requests. This means that an LSR (the
 upstream peer) may not reuse the message ID used for a Label
 Request until the Label Request transaction has completed.

 2. When an LSR sends a label request to a peer it records that the
 request has been sent and marks it as outstanding. As long as
 the request is marked outstanding the LSR should not send
 another request for the same label to the peer. Such a second
 request would be a duplicate. The Send_Label_Request procedure
 described below obeys this rule.

 A duplicate label request is considered a protocol error and
 should be dropped by the receiving LSR (perhaps with a suitable
 notification returned to MsgSource).

 3. If LSR is not merge-capable, this test will fail.

 4. The Send_Label procedure may fail due to lack of label
 resources, in which case the LSR should not perform the Label
 Use procedure.

A.1.2. Receive Label Mapping

 Summary:

 The response by an LSR to receipt of a FEC label mapping from an
 LDP peer may involve one or more of the following actions:

 - Transmission of a label release message for the FEC label to the
 LDP peer;

 - Transmission of label mapping messages for the FEC to one or more
 LDP peers,

 - Installation of the newly learned label for forwarding/switching
 use by the LSR.

Andersson, et al. [Page 93]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - Label. The label specified in the message.

 - PrevAdvLabel. The label for FEC, if any, previously advertised to
 an upstream peer.

 - StoredHopCount. The hop count previously recorded for the FEC.

 - RAttributes. Attributes received with the message. E.g., Hop
 Count, Path Vector.

 - SAttributes to be included in Label Mapping message, if any,
 propagated to upstream peers.

 Algorithm:

 LMp.1 Does the received label mapping match an outstanding label
 request for FEC previously sent to MsgSource.
 If not, goto LMp.9.

 LMp.2 Delete record of outstanding FEC label request.

 LMp.3 Execute procedure Check_Received_Attributes (MsgSource,
 RAttributes).
 If No Loop Detected, goto LMp.9.

 LMp.4 Does the LSR have a previously received label mapping for FEC
 from MsgSource?
 If not, goto LMp.8. (See Note 1.).

 LMp.5 Does the label previously received from MsgSource match Label
 (i.e., the label received in the message)?
 If not, goto LMp.8. (See Note 2.)

 LMp.6 Delete matching label mapping for FEC previously received
 from MsgSource.

 LMp.7 Remove Label from forwarding/switching use. (See Note 3.).
 Goto LMp.26.

 LMp.8 Execute procedure Send_Message (MsgSource, Label Release,

Andersson, et al. [Page 94]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 FEC, Label). Goto LMp.26.

 LMp.9 Determine the Next Hop for FEC.

 LMp.10 Is MsgSource the Next Hop for FEC?
 If so, goto LMp.12.

 LMp.11 Perform LSR Label Release procedure:

 For Conservative Label retention:

 1. Execute procedure Send_Message (MsgSource, Label
 Release, FEC, Label).
 Goto LMp.26.

 For Liberal Label retention:

 1. Record label mapping for FEC with Label and
 RAttributes has been received from MsgSource.
 Goto LMp.26.

 LMp.12 Does LSR have a previously received label mapping for FEC
 from MsgSource?
 If not, goto LMp.14

 LMp.13 Does the label previously received from MsgSource match Label
 (i.e., the label received in the message)?
 If not, goto LMp.8. (See Note 2.)

 LMp.14 Is LSR an ingress for FEC?
 If not, goto LMp.16.

 LMp.15 Install Label for forwarding/switching use.

 LMp.16 Record label mapping for FEC with Label and RAttributes has
 been received from MsgSource.

 LMp.17 Iterate through for LMp.25 for each Peer, other than
 MsgSource.

 LMp.18 Has LSR previously sent a label mapping for FEC to Peer?
 If not, goto LMp.23.

 LMp.19 Are RAttributes in the received label mapping consistent with
 those previously sent to Peer?
 If so, goto LMp.24. (See Note 4.)

 LMp.20 Execute procedure Prepare_Label_Mapping_Attributes(Peer, FEC,

Andersson, et al. [Page 95]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 RAttributes, SAttributes, IsPropagating, StoredHopCount).

 LMp.21 Execute procedure Send_Message (Peer, Label Mapping, FEC,
 PrevAdvLabel, SAttributes). (See Note 5.)

 LMp.22 Update record of label mapping for FEC previously sent to
 Peer to include the new attributes sent.
 Goto LMp.24.

 LMp.23 Perform LSR Label Distribution procedure:

 For Downstream Unsolicited Independent Control OR
 For Downstream Unsolicited Ordered Control

 1. Execute procedure
 Prepare_Label_Mapping_Attributes(Peer, FEC,
 RAttributes, SAttributes, IsPropagating,
 UnknownHopCount).

 2. Execute procedure Send_Label (Peer, FEC,
 SAttributes).
 If the procedure fails, continue iteration for next
 Peer at LMp.17.

 3. Goto LMp.24.

 For Downstream On Demand Independent Control OR
 For Downstream On Demand Ordered Control

 1. Does LSR have a label request for FEC from Peer
 marked as pending?
 If not, continue iteration for next Peer at LMp.17.

 2. Execute procedure
 Prepare_Label_Mapping_Attributes(Peer, FEC,
 RAttributes, SAttributes, IsPropagating,
 UnknownHopCount)

 3. Execute procedure Send_Label (Peer, FEC,
 SAttributes).
 If the procedure fails, continue iteration for next
 Peer at LMp.17.

 4. Goto LMp.24.

 LMp.24 Perform LSR Label Use procedure:

 For Use Immediate OR

Andersson, et al. [Page 96]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 For Use If Loop Not Detected

 1. Install label received and label sent to Peer for
 forwarding/switching use.
 Goto LMp.25.

 LMp.25 End iteration from LMp.17.

 LMp.26 DONE.

 Notes:

 1. If LSR has detected a loop and it has not previously received a
 label mapping from MsgSource for the FEC, it simply releases
 the label.

 2. A mapping with a different label from the same peer would be an
 attempt to establish multipath label switching, which is not
 supported in this version of LDP.

 3. If Label is not in forwarding/switching use, LMp.7 has no
 effect.

 4. The loop detection Path Vector attribute is considered in this
 check. If the received RAttributes include a Path Vector and
 no Path Vector had been previously sent to the Peer, or if the
 received Path Vector is inconsistent with the Path Vector
 previously sent to the Peer, then the attributes are considered
 to be inconsistent. Note that an LSR is not required to store
 a received Path Vector after it propagates the Path Vector in a
 mapping message. If an LSR does not store the Path Vector, it
 has no way to check the consistency of a newly received Path
 Vector. This means that whenever such an LSR receives a
 mapping message carrying a Path Vector it must always propagate
 the Path Vector.

 5. LMp.19 through LMp.21 deal with a situation that can arise when
 the LSR is using independent control and it receives a mapping
 from the downstream peer after it has sent a mapping to an
 upstream peer. In this situation the LSR needs to propagate any
 changed attributes, such as Hop Count, upstream. If Loop
 Detection is configured on, the propagated attributes must
 include the Path Vector

Andersson, et al. [Page 97]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

A.1.3. Receive Label Abort Request

 Summary:

 When an LSR receives a label abort request message from a peer, it
 checks whether it has already responded to the label request in
 question. If it has, it silently ignores the message. If it has
 not, it sends the peer a Label Request Aborted Notification. In
 addition, if it has a label request outstanding for the LSP in
 question to a downstream peer, it sends a Label Abort Request to
 the downstream peer to abort the LSP.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - RequestMessageID. The message ID of the label request message to
 be aborted.

 - Next Hop. The next hop for the FEC.

 Algorithm:

 LAbR.1 Does the message match a previously received label request
 message from MsgSource? (See Note 1.)
 If not, goto LAbR.12.

 LAbR.2 Has LSR responded to the previously received label request?
 If so, goto LAbR.12.

 LAbR.3 Execute procedure Send_Message(MsgSource, Notification, Label
 Request Aborted, TLV), where TLV is the Label Request Message
 ID TLV received in the label abort request message.

 LAbR.4 Does LSR have a label request message outstanding for FEC?
 If so, goto LAbR.7

 LAbR.5 Does LSR have a label mapping for FEC?
 If not, goto LAbR.11

 LAbR.6 Generate Event: Received Label Release Message for FEC from
 MsgSource. (See Note 2.)
 Goto LAbR.11.

Andersson, et al. [Page 98]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 LAbR.7 Is LSR merging the LSP for FEC?
 If not, goto LAbR.9.

 LAbR.8 Are there upstream peers other than MsgSource that have
 requested a label for FEC?
 If so, goto LAbR.11.

 LAbR.9 Execute procedure Send_Message (Next Hop, Label Abort
 Request, FEC, TLV), where TLV is a Label Request Message ID
 TLV containing the Message ID used by the LSR in the
 outstanding Label Request message.

 LAbR.10 Record that a label abort request for FEC is pending.

 LAbR.11 Delete record of label request for FEC from MsgSource.

 LAbR.12 DONE

 Notes:

 1. LSR uses FEC and the Label Request Message ID TLV carried by
 the label abort request to locate its record (if any) for the
 previously received label request from MsgSource.

 2. If LSR has received a label mapping from NextHop, it should
 behave as if it had advertised a label mapping to MsgSource and
 MsgSource has released it.

A.1.4. Receive Label Release

 Summary:

 When an LSR receives a label release message for a FEC from a peer,
 it checks whether other peers hold the released label. If none do,
 the LSR removes the label from forwarding/switching use, if it has
 not already done so, and if the LSR holds a label mapping from the
 FEC next hop, it releases the label mapping.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

Andersson, et al. [Page 99]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - Label. The label specified in the message.

 - FEC. The FEC specified in the message.

 Algorithm:

 LRl.1 Remove MsgSource from record of peers that hold Label for
 FEC. (See Note 1.)

 LRl.2 Does message match an outstanding label withdraw for FEC
 previously sent to MsgSource?
 If not, goto LRl.4

 LRl.3 Delete record of outstanding label withdraw for FEC
 previously sent to MsgSource.

 LRl.4 Is LSR merging labels for this FEC?
 If not, goto LRl.6. (See Note 2.)

 LRl.5 Has LSR previously advertised a label for this FEC to other
 peers?
 If so, goto LRl.10.

 LRl.6 Is LSR egress for the FEC?
 If so, goto LRl.10

 LRl.7 Is there a Next Hop for FEC? AND
 Does LSR have a previously received label mapping for FEC
 from Next Hop?
 If not, goto LRl.10.

 LRl.8 Is LSR configured to propagate releases?
 If not, goto LRl.10. (See Note 3.)

 LRl.9 Execute procedure Send_Message (Next Hop, Label Release, FEC,
 Label from Next Hop).

 LRl.10 Remove Label from forwarding/switching use for traffic from
 MsgSource.

 LRl.11 Do any peers still hold Label for FEC?
 If so, goto LRl.13.

 LRl.12 Free the Label.

 LRl.13 DONE.

Andersson, et al. [Page 100]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Notes:

 1. If LSR is using Downstream Unsolicited label distribution, it
 should not re-advertise a label mapping for FEC to MsgSource
 until MsgSource requests it.

 2. LRl.4 through LRl.8 deal with determining whether where the LSR
 should propagate the label release to a downstream peer
 (LRl.9).

 3. If LRl.8 is reached, no upstream LSR holds a label for the FEC,
 and the LSR holds a label for the FEC from the FEC Next Hop.
 The LSR could propagate the Label Release to the Next Hop. By
 propagating the Label Release the LSR releases a potentially
 scarce label resource. In doing so, it also increases the
 latency for re-establishing the LSP should MsgSource or some
 other upstream LSR send it a new Label Request for FEC.

 Whether or not to propagate the release is not a protocol
 issue. Label distribution will operate properly whether or not
 the release is propagated. The decision to propagate or not
 should take into consideration factors such as: whether labels
 are a scarce resource in the operating environment; the
 importance of keeping LSP setup latency low by keeping the
 amount of signalling required small; whether LSP setup is
 ingress-controlled or egress-controlled in the operating
 environment.

A.1.5. Receive Label Withdraw

 Summary:

 When an LSR receives a label withdraw message for a FEC from an LDP
 peer, it responds with a label release message and it removes the
 label from any forwarding/switching use. If ordered control is in
 use, the LSR sends a label withdraw message to each LDP peer to
 which it had previously sent a label mapping for the FEC. If the
 LSR is using Downstream on Demand label advertisement with
 independent control, it then acts as if it had just recognized the
 FEC.

 Context:

 - LSR. The LSR handling the event.

Andersson, et al. [Page 101]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - MsgSource. The LDP peer that sent the message.

 - Label. The label specified in the message.

 - FEC. The FEC specified in the message.

 Algorithm:

 LWd.1 Remove Label from forwarding/switching use. (See Note 1.)

 LWd.2 Execute procedure Send_Message (MsgSource, Label Release,
 FEC, Label)

 LWd.3 Has LSR previously received and retained a matching label
 mapping for FEC from MsgSource?
 If not, goto LWd.13.

 LWd.4 Delete matching label mapping for FEC previously received
 from MsgSource.

 LWd.5 Is LSR using ordered control?
 If so, goto LWd.8.

 LWd.6 Is MsgSource using Downstream On Demand label advertisement?
 If not, goto LWd.13.

 LWd.7 Generate Event: Recognize New FEC for FEC.
 Goto LWd.13. (See Note 2.)

 LWd.8 Iterate through LWd.12 for each Peer, other than MsgSource.

 LWd.9 Has LSR previously sent a label mapping for FEC to Peer?
 If not, continue interation for next Peer at LWd.8.

 LWd.10 Does the label previously sent to Peer "map" to the withdrawn
 Label?
 If not, continue iteration for next Peer at LWd.8. (See Note
 3.)

 LWd.11 Execute procedure Send_Label_Withdraw (Peer, FEC, Label
 previously sent to Peer).

 LWd.12 End iteration from LWd.8.

 LWd.13 DONE

Andersson, et al. [Page 102]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Notes:

 1. If Label is not in forwarding/switching use, LWd.1 has no
 effect.

 2. LWd.7 handles the case where the LSR is using Downstream On
 Demand label distribution with independent control. In this
 situation the LSR should send a label request to the FEC next
 hop as if it had just recognized the FEC.

 3. LWd.10 handles both label merging (one or more incoming labels
 map to the same outgoing label) and no label merging (one label
 maps to the outgoing label) cases.

A.1.6. Recognize New FEC

 Summary:

 The response by an LSR to learning a new FEC via the routing table
 may involve one or more of the following actions:

 - Transmission of label mappings for the FEC to one or more LDP
 peers;

 - Transmission of a label request for the FEC to the FEC next hop;

 - Any of the actions that can occur when the LSR receives a label
 mapping for the FEC from the FEC next hop.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The newly recognized FEC.

 - Next Hop. The next hop for the FEC.

 - InitAttributes. Attributes to be associated with the new FEC.
 (See Note 1.)

 - SAttributes. Attributes to be included in Label Mapping or Label
 Request messages, if any, sent to peers.

 - StoredHopCount. Hop count associated with FEC label mapping, if
 any, previously received from Next Hop.

Andersson, et al. [Page 103]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Algorithm:

 FEC.1 Perform LSR Label Distribution procedure:

 For Downstream Unsolicited Independent Control

 1. Iterate through 5 for each Peer.

 2. Has LSR previously received and retained a label
 mapping for FEC from Next Hop?
 If so, set Propagating to IsPropagating.
 If not, set Propagating to NotPropagating.

 3. Execute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, InitAttributes, SAttributes, Propagating,
 Unknown hop count(0)).

 4. Execute procedure Send_Label (Peer, FEC, SAttributes)

 5. End iteration from 1.
 Goto FEC.2.

 For Downstream Unsolicited Ordered Control

 1. Iterate through 5 for each Peer.

 2. Is LSR egress for the FEC? OR
 Has LSR previously received and retained a label
 mapping for FEC from Next Hop?
 If not, continue iteration for next Peer.

 3. xecute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, InitAttributes, SAttributes, Propagating,
 StoredHopCount).

 4. Execute procedure Send_Label (Peer, FEC, SAttributes)

 5. End iteration from 1.
 Goto FEC.2.

 For Downstream On Demand Independent Control OR
 For Downstream On Demand Ordered Control

 1. Goto FEC.2. (See Note 2.)

 FEC.2 Has LSR previously received and retained a label mapping for
 FEC from Next Hop?
 If so, goto FEC.5

Andersson, et al. [Page 104]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 FEC.3 Is Next Hop an LDP peer?
 If not, Goto FEC.6

 FEC.4 Perform LSR Label Request procedure:

 For Request Never

 1. Goto FEC.6

 For Request When Needed OR
 For Request On Request

 1. Execute procedure Prepare_Label_Request_Attributes
 (Next Hop, FEC, InitAttributes, SAttributes);

 2. Execute procedure Send_Label_Request (Next Hop, FEC,
 SAttributes).
 Goto FEC.6.

 FEC.5 Generate Event: Received Label Mapping from Next Hop. (See
 Note 3.)

 FEC.6 DONE.

 Notes:

 1. An example of an attribute that might be part of InitAttributes
 is one which specifies desired LSP characteristics, such as
 class of service (CoS). (Note that while the current version
 of LDP does not specify a CoS attribute, LDP extensions may.)
 The means by which FEC InitAttributes, if any, are specified is
 beyond the scope of LDP. Note that the InitAttributes will not
 include a known Hop Count or a Path Vector.

 2. An LSR using Downstream On Demand label distribution would send
 a label only if it had a previously received label request
 marked as pending. The LSR would have no such pending requests
 because it responds to any label request for an unknown FEC by
 sending the requesting LSR a No Route notification and
 discarding the label request; see LRq.3

 3. If the LSR has a label for the FEC from the Next Hop, it should
 behave as if it had just received the label from the Next Hop.
 This occurs in the case of Liberal label retention mode.

Andersson, et al. [Page 105]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

A.1.7. Detect Change in FEC Next Hop

 Summary:

 The response by an LSR to a change in the next hop for a FEC may
 involve one or more of the following actions:

 - Removal of the label from the FEC's old next hop from
 forwarding/switching use;

 - Transmission of label mappping messages for the FEC to one or
 more LDP peers;

 - Transmission of a label request to the FEC's new next hop;

 - Any of the actions that can occur when the LSR receives a label
 mapping from the FEC's new next hop.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC whose next hop changed.

 - New Next Hop. The current next hop for the FEC.

 - Old Next Hop. The previous next hop for the FEC.

 - OldLabel. Label, if any, previously received from Old Next Hop.

 - CurAttributes. The attributes, if any, currently associated with
 the FEC.

 - SAttributes. Attributes to be included in Label Label Request
 message, if any, sent to New Next Hop.

 Algorithm:

 NH.1 Has LSR previously received and retained a label mapping for
 FEC from Old Next Hop?
 If not, goto NH.6.

 NH.2 Remove label from forwarding/switching use. (See Note 1.)

 NH.3 Is LSR using Liberal label retention?
 If so, goto NH.6.

 NH.4 Execute procedure Send_Message (Old Next Hop, Label Release,

Andersson, et al. [Page 106]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 OldLabel).

 NH.5 Delete label mapping for FEC previously received from Old
 Next Hop.

 NH.6 Does LSR have a label request pending with Old Next Hop?
 If not, goto NH.10.

 NH.7 Is LSR using Conservative label retention?
 If not, goto NH.10.

 NH.8 Execute procedure Send_Message (Old Next Hop, Label Abort
 Request, FEC, TLV), where TLV is a Label Request Message ID
 TLV that carries the message ID of the pending label request.

 NH.9 Record a label abort request is pending for FEC with Old Next
 Hop.

 NH.10 Is there a New Next Hop for the FEC?
 If not, goto NH.16.

 NH.11 Has LSR previously received and retained a label mapping for
 FEC from New Next Hop?
 If not, goto NH.13.

 NH.12 Generate Event: Received Label Mapping from New Next Hop.
 Goto NH.20. (See Note 2.)

 NH.13 Is LSR using Downstream on Demand advertisement? OR
 Is Next Hop using Downstream on Demand advertisement? OR
 Is LSR using Conservative label retention? (See Note 3.)
 If so, goto NH.14.
 If not, goto NH.20.

 NH.14 Execute procedure Prepare_Label_Request_Attributes (Next Hop,
 FEC, CurAttributes, SAttributes)

 NH.15 Execute procedure Send_Label_Request (New Next Hop, FEC,
 SAttributes). (See Note 4.)
 Goto NH.20.

 NH.16 Iterate through NH.19 for each Peer.

 NH.17 Has LSR previously sent a label maping for FEC to Peer?
 If not, continue iteration for next Peer at NH.16.

 NH.18 Execute procedure Send_Label_Withdraw (Peer, FEC, Label
 previously sent to Peer).

Andersson, et al. [Page 107]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 NH.19 End iteration from NH.16.

 NH.20 DONE.

 Notes:

 1. If Label is not in forwarding/switching use, NH.2 has no
 effect.

 2. If the LSR has a label for the FEC from the New Next Hop, it
 should behave as if it had just received the label from the New
 Next Hop.

 3. The purpose of the check on label retention mode is to avoid a
 race with steps LMp.10-LMp.11 of the procedure for handling a
 Label Mapping message where the LSR operating in Conservative
 Label retention mode may have released a label mapping received
 from the New Next Hop before it detected the FEC next hop had
 changed.

 4. Regardless of the Label Request procedure in use by the LSR, it
 must send a label request if the conditions in NH.8 hold.
 Therefore it executes the Send_Label_Request procedure directly
 rather than perform LSR Label Request procedure.

A.1.8. Receive Notification / Label Request Aborted

 Summary:

 When an LSR receives a Label Request Aborted notification from an
 LDP peer it records that the corresponding label request
 transaction, if any, has completed.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC for which a label was requested.

 - RequestMessageID. The message ID of the label request message to
 be aborted.

 - MsgSource. The LDP peer that sent the Notification message.

Andersson, et al. [Page 108]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Algorithm:

 LRqA.1 Does the notification correspond to an outstanding label
 request abort for FEC? (See Note 1).
 If not, goto LRqA.3.

 LRqA.2 Record that the label request for FEC has been aborted.

 LRqA.3 DONE

 Notes:

 1. The LSR uses the FEC and RequestMessageID to locate its record,
 if any, of the outstanding label request abort.

A.1.9. Receive Notification / No Label Resources

 Summary:

 When an LSR receives a No Label Resources notification from an LDP
 peer, it stops sending label request messages to the peer until it
 receives a Label Resources Available Notification from the peer.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC for which a label was requested.

 - MsgSource. The LDP peer that sent the Notification message.

 Algorithm:

 NoRes.1 Delete record of outstanding label request for FEC sent to
 MsgSource.

 NoRes.2 Record label mapping for FEC from MsgSource is needed but
 that no label resources are available.

 NoRes.3 Set status record indicating it is not OK to send label
 requests to MsgSource.

 NoRes.4 DONE.

Andersson, et al. [Page 109]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

A.1.10. Receive Notification / No Route

 Summary:

 When an LSR receives a No Route notification from an LDP peer in
 response to a Label Request message, the Label No Route procedure
 in use dictates its response. The LSR either will take no further
 action, or it will defer the label request by starting a timer and
 send another Label Request message to the peer when the timer later
 expires.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC for which a label was requested.

 - Attributes. The attibutes associated with the label request.

 - MsgSource. The LDP peer that sent the Notification message.

 Algorithm:

 NoNH.1 Delete record of outstanding label request for FEC sent to
 MsgSource.

 NoNH.2 Perform LSR Label No Route procedure.

 For Request No Retry

 1. Goto NoNH.3.

 For Request Retry

 1. Record deferred label request for FEC and Attributes
 to be sent to MsgSource.

 2. Start timeout. Goto NoNH.3.

 NoNH.3 DONE.

A.1.11. Receive Notification / Loop Detected

Andersson, et al. [Page 110]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Summary:

 When an LSR receives a Loop Detected notification from an LDP peer
 in response to a Label Request message, it behaves as if it had
 received a No Route notification.

 Context:

 See "Receive Notification / No Route".

 Algorithm:

 See "Receive Notification / No Route"

A.1.12. Receive Notification / Label Resources Available

 Summary:

 When an LSR receives a Label Resources Available notification from
 an LDP peer, it resumes sending label requests to the peer.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the Notification message.

 - SAttributes. Attributes stored with postponed Label Request
 message.

 Algorithm:

 Res.1 Set status record indicating it is OK to send label requests
 to MsgSource.

 Res.2 Iterate through Res.6 for each record of a FEC label mapping
 needed from MsgSource for which no label resources are
 available.

 Res.3 Is MsgSource the next hop for FEC?
 If not, goto Res.5.

 Res.4 Execute procedure Send_Label_Request (MsgSource, FEC,
 SAttributes). If the procedure fails, terminate iteration.

 Res.5 Delete record that no resources are available for a label
 mapping for FEC needed from MsgSource.

Andersson, et al. [Page 111]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Res.6 End iteration from Res.2

 Res.7 DONE.

A.1.13. Detect local label resources have become available

 Summary:

 After an LSR has sent a No Label Resources notification to an LDP
 peer, when label resources later become available it sends a Label
 Resources Available notification to each such peer.

 Context:

 - LSR. The LSR handling the event.

 - Attributes. Attributes stored with postponed Label Mapping
 message.

 Algorithm:

 ResA.1 Iterate through ResA.4 for each Peer to which LSR has
 previously sent a No Label Resources notification.

 ResA.2 Execute procedure Send_Notification (Peer, Label Resources
 Available)

 ResA.3 Delete record that No Label Resources notification was
 previously sent to Peer.

 ResA.4 End iteration from ResA.1

 ResA.5 Iterate through ResA.8 for each record of a label mapping
 needed for FEC for Peer but no-label-resources. (See Note
 1.)

 ResA.6 Execute procedure Send_Label (Peer, FEC, Attributes). If the
 procedure fails, terminate iteration.

 ResA.7 Clear record of FEC label mapping needed for peer but no-
 label-resources.

 ResA.8 End iteration from ResA.5

 ResA.9 DONE.

Andersson, et al. [Page 112]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Notes:

 1. Iteration ResA.5 through ResA.8 handles the situation where the
 LSR is using Downstream Unsolicited label distribution and was
 previously unable to allocate a label for a FEC.

A.1.14. LSR decides to no longer label switch a FEC

 Summary:

 An LSR may unilaterally decide to no longer label switch a FEC for
 an LDP peer. An LSR that does so must send a label withdraw message
 for the FEC to the peer.

 Context:

 - Peer. The peer.

 - FEC. The FEC.

 - PrevAdvLabel. The label for FEC previously advertised to Peer.

 Algorithm:

 NoLS.1 Execute procedure Send_Label_Withdraw (Peer, FEC,
 PrevAdvLabel). (See Note 1.)

 NoLS.2 DONE.

 Notes:

 1. The LSR may remove the label from forwarding/switching use as
 part of this event or as part of processing the label release
 from the peer in response to the label withdraw.

A.1.15. Timeout of deferred label request

 Summary:

 Label requests are deferred in response to No Route and Loop
 Detected notifications. When a deferred FEC label request for a
 peer times out, the LSR sends the label request.

Andersson, et al. [Page 113]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC associated with the timeout event.

 - Peer. The LDP peer associated with the timeout event.

 - Attributes. Attributes stored with deferred Label Request
 message.

 Algorithm:

 TO.1 Retrieve the record of the deferred label request.

 TO.2 Is Peer the next hop for FEC?
 If not, goto TO.4.

 TO.3 Execute procedure Send_Label_Request (Peer, FEC).

 TO.4 DONE.

A.2. Common Label Distribution Procedures

 This section specifies utility procedures used by the algorithms that
 handle label distribution events.

A.2.1. Send_Label

 Summary:

 The Send_Label procedure allocates a label for a FEC for an LDP
 peer, if possible, and sends a label mapping for the FEC to the
 peer. If the LSR is unable to allocate the label and if it has a
 pending label request from the peer, it sends the LDP peer a No
 Label Resources notification.

 Parameters:

 - Peer. The LDP peer to which the label mapping is to be sent.

 - FEC. The FEC for which a label mapping is to be sent.

Andersson, et al. [Page 114]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - Attributes. The attributes to be included with the label mapping.

 Additional Context:

 - LSR. The LSR executing the procedure.

 - Label. The label allocated and sent to Peer.

 Algorithm:

 SL.1 Does LSR have a label to allocate?
 If not, goto SL.9.

 SL.2 Allocate Label and bind it to the FEC.

 SL.3 Install Label for forwarding/switchng use.

 SL.4 Execute procedure Send_Message (Peer, Label Mapping, FEC,
 Label, Attributes).

 SL.5 Record label mapping for FEC with Label and Attributes has
 been sent to Peer.

 SL.6 Does LSR have a record of a FEC label request from Peer
 marked as pending?
 If not, goto SL.8.

 SL.7 Delete record of pending label request for FEC from Peer.

 SL.8 Return success.

 SL.9 Does LSR have a label request for FEC from Peer marked as
 pending?
 If not, goto SL.13.

 SL.10 Execute procedure Send_Notification (Peer, No Label
 Resources).

 SL.11 Delete record of pending label request for FEC from Peer.

 SL.12 Record No Label Resources notification has been sent to Peer.
 Goto SL.14.

 SL.13 Record label mapping needed for FEC and Attributes for Peer,
 but no-label-resources. (See Note 1.)

 SL.14 Return failure.

Andersson, et al. [Page 115]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Notes:

 1. SL.13 handles the case of Downstream Unsolicited label
 distribution when the LSR is unable to allocate a label for a
 FEC to send to a Peer.

A.2.2. Send_Label_Request

 Summary:

 An LSR uses the Send_Label_Request procedure to send a request for
 a label for a FEC to an LDP peer if currently permitted to do so.

 Parameters:

 - Peer. The LDP peer to which the label request is to be sent.

 - FEC. The FEC for which a label request is to be sent.

 - Attributes. Attributes to be included in the label request. E.g.,
 Hop Count, Path Vector.

 Additional Context:

 - LSR. The LSR executing the procedure.

 Algorithm:

 SLRq.1 Has a label request for FEC previously been sent to Peer and
 is it marked as outstanding?
 If so, Return success. (See Note 1.)

 SLRq.2 Is status record indicating it is OK to send label requests
 to Peer set?
 If not, goto SLRq.6

 SLRq.3 Execute procedure Send_Message (Peer, Label Request, FEC,
 Attributes).

 SLRq.4 Record label request for FEC has been sent to Peer and mark
 it as outstanding.

 SLRq.5 Return success.

 SLRq.6 Postpone the label request by recording label mapping for FEC
 and Attributes from Peer is needed but that no label
 resources are available.

Andersson, et al. [Page 116]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 SLRq.7 Return failure.

 Notes:

 1. If the LSR is a non-merging LSR it must distinguish between
 attempts to send label requests for a FEC triggered by
 different upstream LDP peers from duplicate requests. This
 procedure will not send a duplicate label request.

A.2.3. Send_Label_Withdraw

 Summary:

 An LSR uses the Send_Label_Withdraw procedure to withdraw a label
 for a FEC from an LDP peer. To do this the LSR sends a Label
 Withdraw message to the peer.

 Parameters:

 - Peer. The LDP peer to which the label withdraw is to be sent.

 - FEC. The FEC for which a label is being withdrawn.

 - Label. The label being withdrawn

 Additional Context:

 - LSR. The LSR executing the procedure.

 Algorithm:

 SWd.1 Execute procedure Send_Message (Peer, Label Withdraw, FEC,
 Label)

 SWd.2 Record label withdraw for FEC has been sent to Peer and mark
 it as outstanding.

A.2.4. Send_Notification

 Summary:

 An LSR uses the Send_Notification procedure to send an LDP peer a
 notificaction message.

Andersson, et al. [Page 117]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Parameters:

 - Peer. The LDP peer to which the Notification message is to be
 sent.

 - Status. Status code to be included in the Notification message.

 Additional Context:

 None.

 Algorithm:

 SNt.1 Execute procedure Send_Message (Peer, Notification, Status)

A.2.5. Send_Message

 Summary:

 An LSR uses the Send_Message procedure to send an LDP peer an LDP
 message.

 Parameters:

 - Peer. The LDP peer to which the message is to be sent.

 - Message Type. The type of message to be sent.

 - Additional message contents

 Additional Context:

 None.

 Algorithm:

 This procedure is the means by which an LSR sends an LDP message of
 the specified type to the specified LDP peer.

A.2.6. Check_Received_Attributes

Andersson, et al. [Page 118]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Summary:

 Check the attributes received in a Label Mapping or Label Request
 message. If the attributes include a Hop Count or Path Vector,
 perform a loop detection check. If a loop is detected, send a Loop
 Detected Notification message to MsgSource.

 Parameters:

 - MsgSource. The LDP peer that sent the message.

 - RAttributes. The attributes in the message.

 Additional Context:

 - LSR Id. The unique LSR Id of this LSR.

 - Hop Count. The Hop Count, if any, in the received attributes.

 - Path Vector. The Path Vector, if any in the received attributes.

 Algorithm:

 CRa.1 Do RAttributes include Hop Count?
 If not, goto CRa.5.

 CRa.2 Does Hop Count exceed Max allowable hop count?
 If so, goto CRa.6.

 CRa.3 Do RAttributes include Path Vector?
 If not, goto CRa.5.

 CRa.4 Does Path Vector Include LSR Id? OR
 Does length of Path Vector exceed Max allowable length?
 If so, goto CRa.6

 CRa.5 Return No Loop Detected.

 CRa.6 Execute procedure Send_Notification (MsgSource, Loop
 Detected)

 CRa.7 Return Loop Detected.

 CRa.8 DONE

Andersson, et al. [Page 119]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

A.2.7. Prepare_Label_Request_Attributes

 Summary:

 This procedure is used whenever a Label Request is to be sent to a
 Peer to compute the Hop Count and Path Vector, if any, to include
 in the message.

 Parameters:

 - Peer. The LDP peer to which the message is to be sent.

 - FEC. The FEC for which a label request is to be sent.

 - RAttributes. The attributes this LSR associates with the LSP for
 FEC.

 - SAttributes. The attributes to be included in the Label Request
 message.

 Additional Context:

 - LSR Id. The unique LSR Id of this LSR.

 Algorithm:

 PRqA.1 Is Hop Count required for this Peer (see Note 1.) ? OR
 Do RAttributes include a Hop Count? OR
 Is Loop Detection configured on LSR?
 If not, goto PRqA.14.

 PRqA.2 Is LSR ingress for FEC?
 If not, goto PRqA.6.

 PRqA.3 Include Hop Count of 1 in SAttributes.

 PRqA.4 Is Loop Detection configured on LSR?
 If not, goto PRqA.14.

 PRqA.5 Is LSR merge-capable?
 If so, goto PRqA.14.
 If not, goto PRqA.13.

 PRqA.6 Do RAttributes include a Hop Count?
 If not, goto PRqA.8.

 PRqA.7 Increment RAttributes Hop Count and copy the resulting Hop
 Count to SAttributes. (See Note 2.)

Andersson, et al. [Page 120]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 Goto PRqA.9.

 PRqA.8 Include Hop Count of unknown (0) in SAttributes.

 PRqA.9 Is Loop Detection configured on LSR?
 If not, goto PRqA.14.

 PRqA.10 Do RAttributes have a Path Vector?
 If so, goto PRqA.12.

 PRqA.11 Is LSR merge-capable?
 If so, goto PRqA.14.
 If not, goto PRqA.13.

 PRqA.12 Add LSR Id to beginning of Path Vector from RAttributes and
 copy the resulting Path Vector into SAttributes.
 Goto PRqA.14.

 PRqA.13 Include Path Vector of length 1 containing LSR Id in
 SAttributes.

 PRqA.14 DONE.

 Notes:

 1. The link with Peer may require that Hop Count be included in
 Label Request messages; for example, see [ATM] and [FR].

 2. For hop count arithmetic, unknown + 1 = unknown.

A.2.8. Prepare_Label_Mapping_Attributes

 Summary:

 This procedure is used whenever a Label Mapping is to be sent to a
 Peer to compute the Hop Count and Path Vector, if any, to include
 in the message.

 Parameters:

 - Peer. The LDP peer to which the message is to be sent.

 - FEC. The FEC for which a label request is to be sent.

Andersson, et al. [Page 121]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 - RAttributes. The attributes this LSR associates with the LSP for
 FEC.

 - SAttributes. The attributes to be included in the Label Mapping
 message.

 - IsPropagating. The LSR is sending the Label Mapping message to
 propagate one received from the FEC next hop.

 - PrevHopCount. The Hop Count, if any, this LSR associates with the
 LSP for the FEC.

 Additional Context:

 - LSR Id. The unique LSR Id of this LSR.

 Algorithm:

 PMpA.1 Is Hop Count required for this Peer (see Note 1.) ? OR
 Do RAttributes include a Hop Count? OR
 Is Loop Detection configured on LSR?
 If not, goto PMpA.21.

 PMpA.2 Is LSR egress for FEC?
 If not, goto PMpA.4.

 PMpA.3 Include Hop Count of 1 in SAttributes. Goto PMpA.21.

 PMpA.4 Do RAttributes have a Hop Count?
 If not, goto PMpA.8.

 PMpA.5 Is LSR member of edge set for an LSR domain whose LSRs do not
 perform TTL decrement AND
 Is Peer in that domain (See Note 2.).
 If not, goto PMpA.7.

 PMpA.6 Include Hop Count of 1 in SAttributes. Goto PMpA.9.

 PMpA.7 Increment RAttributes Hop Count and copy the resulting Hop
 Count to SAttributes. See Note 2. Goto PMpA.9.

 PMpA.8 Include Hop Count of unknown (0) in SAttributes.

 PMpA.9 Is Loop Detection configured on LSR?
 If not, goto PMpA.21.

 PMpA.10 Do RAttributes have a Path Vector?
 If so, goto PMpA.19.

Andersson, et al. [Page 122]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 PMpA.11 Is LSR propagating a received Label Mapping?
 If not, goto PMpA.20.

 PMpA.12 Does LSR support merging?
 If not, goto PMpA.14.

 PMpA.13 Has LSR previously sent a Label Mapping for FEC to Peer?
 If not, goto PMpA.20.

 PMpA.14 Do RAttributes include a Hop Count?
 If not, goto PMpA.21.

 Res.15 Is Hop Count in Rattributes unknown(0)?
 If so, goto PMpA.20.

 PMpA.16 Has LSR previously sent a Label Mapping for FEC to Peer?
 If not goto PMpA.21.

 PMpA.17 Is Hop Count in RAttributes different from PrevHopCount ?
 If not goto PMpA.21.

 PMpA.18 Is the Hop Count in RAttributes > PrevHopCount? OR
 Is PrevHopCount unknown(0)
 If not, goto PMpA.21.

 PMpA.19 Add LSR Id to beginning of Path Vector from RAttributes and
 copy the resulting Path Vector into SAttributes. Goto
 PMpA.21.

 PMpA.20 Include Path Vector of length 1 containing LSR Id in
 SAttributes.

 PMpA.21 DONE.

 Notes:

 1. The link with Peer may require that Hop Count be included in
 Label Mapping messages; for example, see [ATM] and [FR].

 2. If the LSR is at the edge of a cloud of LSRs that do not
 perform TTL-decrement and it is propagating the Label Mapping
 message upstream into the cloud, it sets the Hop Count to 1 so
 that Hop Count across the cloud is calculated properly. This
 ensures proper TTL management for packets forwarded across the
 part of the LSP that passes through the cloud.

Andersson, et al. [Page 123]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

Internet Draft draft-ietf-mpls-ldp-05.txt June 1999

 3. For hop count arithmetic, unknown + 1 = unknown.

Andersson, et al. [Page 124]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-05.txt

