
Network Working Group Jonathan P. Lang (Calient Networks)
Internet Draft Krishna Mitra (Calient Networks)
Expiration Date: September 2001 John Drake (Calient Networks)
 Kireeti Kompella (Juniper Networks)
 Yakov Rekhter (Juniper Networks)
 Lou Berger (Movaz Networks)
 Debanjan Saha (Tellium)
 Debashis Basak (Accelight Networks)
 Hal Sandick (Nortel Networks)
 Alex Zinin (Cisco Systems)
 Bala Rajagopalan (Tellium)

 Link Management Protocol (LMP)

draft-ietf-mpls-lmp-02.txt

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [RFC2026].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 Future networks will consist of photonic switches, optical
 crossconnects, and routers that may be configured with control
 channels, links, and bundled links. This draft specifies a link
 management protocol (LMP) that runs between neighboring nodes and is
 used to manage traffic engineering (TE) links. Specifically, LMP
 will be used to maintain control channel connectivity, verify the
 physical connectivity of the data-bearing channels, correlate the
 link property information, and manage link failures. A unique
 feature of the fault management technique is that it is able to
 localize failures in both opaque and transparent networks,
 independent of the encoding scheme used for the data.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Lang/Mitra et al [Page 1]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

Table of Contents

1. Introduction .. 3
2. LMP Overview .. 4
3. Control Channel Management 6

3.1 Parameter Negotiation 7
3.2 Hello Protocol .. 8

3.2.1 Hello Parameter Negotiation 8
3.2.2 Fast Keep-alive 9
3.2.3 Control Channel Availability 10
3.2.4 Taking a Control Channel Down Administratively ... 10
3.2.5 Degraded (DEG) State 10

4. Link Property Correlation 11
5. Verfifying Link Connectivity 12

5.1 Example of Link Connectivity 14
6. Fault Management .. 15

6.1 Fault Detection ... 16
6.2 Fault Localization Mechanism 16
6.3 Channel Activation Indication............................ 16
6.4 Examples of Fault Localization 17

7. LMP Authentication .. 18
8. LMP Finite State Machine 18

8.1 Control Channel FSM 18
8.1.1 Control Channel States 19
8.1.2 Control Channel Events 19
8.1.3 Control Channel FSM Description 22

8.2 TE Link FMS ... 23
8.2.1 TE link States 23
8.2.2 TE link Events 24
8.2.3 TE link FSM Description 26

8.3 Data Link FSM .. 27
8.3.1 Data Link States 27
8.3.2 Data Link Events 27
8.3.3 Active Data Link FSM Description 29
8.3.4 Passive Data Link FSM Description 30

9. LMP Message Formats ... 30
9.1 Common Header ... 30
9.2 LMP TLV Format .. 33
9.3 Parameter Negotiation 36
9.4 Hello ... 39
9.5 Link Verification 40
9.6 Link Summary .. 48
9.7 Fault Management .. 53

10 Security Conderations.. 58
11. References ... 58
12. Acknowledgments .. 60
13. Authors' Addresses .. 60

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 2]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Changes from previous version:

 o Added LMP length field to the common header.
 o Decoupled control channel and TE Link dependence. Removed
 control channel switchover procedure.
 o Modified the FSMs to align with current procedures.
 o Modified ConfigAck & ConfigNack to echo the NodeId received in
 the Config message.
 o Modified the Test messages to include VerifyId (provided by
 remote node) to differentiate test messages from different TE-
 links or LMP peers when testing in parallel.
 o Added Link Mux Capability to LinkSummary.
 o Added flags to LinkSummary indicating status of the ports or
 component links.
 o Added Channel Activate messages to Fault Management procedure.
 o General Text clarification including:
 o difference between port and component link
 o use of control channels

1. Introduction

 Future networks will consist of photonic switches (PXCs), optical
 crossconnects (OXCs), routers, switches, DWDM systems, and add-drop
 multiplexors (ADMs) that use the Generalized MPLS (GMPLS) control
 plane to dynamically provision resources and to provide network
 survivability using protection and restoration techniques. A pair
 of nodes (e.g., two PXCs) may be connected by thousands of fibers,
 and each fiber may be used to transmit multiple wavelengths if DWDM
 is used. Furthermore, multiple fibers and/or multiple wavelengths
 may be combined into a single traffic-engineering (TE) link for
 routing purposes. To enable communication between nodes for
 routing, signaling, and link management, a control channel must be
 established between the node pair. This draft specifies a link
 management protocol (LMP) that runs between neighboring nodes and is
 used to manage TE links.

 In this draft, we will follow the naming convention of [LAMBDA] and
 use OXC to refer to all categories of optical crossconnects,
 irrespective of the internal switching fabric. We distinguish
 between crossconnects that require opto-electronic conversion,
 called digital crossconnects (DXCs), and those that are all-optical,
 called photonic switches or photonic crossconnects (PXCs) - referred
 to as pure crossconnects in [LAMBDA], because the transparent nature
 of PXCs introduces new restrictions for monitoring and managing the
 data links (see [PERF-MON] for proposed extensions to MPLS for
 performance monitoring in photonic networks). LMP can be used for
 any type of node, enhancing the functionality of traditional DXCs
 and routers, while enabling PXCs and DWDMs to intelligently
 interoperate in heterogeneous optical networks.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 In GMPLS, the control channel between two adjacent nodes is no
 longer required to use the same physical medium as the data-bearing

Lang et al [Page 3]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 links between those nodes. For example, a control channel could use
 a separate wavelength or fiber, an Ethernet link, or an IP tunnel
 through a separate management network. A consequence of allowing
 the control channel(s) between two nodes to be physically diverse
 from the associated data links is that the health of a control
 channel does not necessarily correlate to the health of the data
 links, and vice-versa. Therefore, a clean separation between the
 fate of the control channel and data-bearing links must be made.
 Furthermore, new mechanisms must be developed to manage the data-
 bearing links, both in terms of link provisioning and fault
 localization.

 For the purposes of this document, a data-bearing link may be either
 a "port" or a "component link" depending on its multiplexing
 capability; component links are multiplex capable, whereas ports are
 not multiplex capable. This distinction is important since the
 management of such links (including, for example, resource
 allocation, label assignment, and their physical verification) is
 different based on their multiplexing capability. For example, a
 SONET crossconnect with OC-192 interfaces may be able to demultiplex
 the OC-192 stream into four OC-48 streams. If multiple interfaces
 are grouped together into a single TE link using link bundling
 [BUNDLE], then the link resources must be identified using three
 levels: TE link Id, component interface Id, and timeslot label.
 Resource allocation happens at the lowest level (timeslots), but
 physical connectivity happens at the component link level. As
 another example, consider the case where a PXC transparently
 switches OC-192 lightpaths. If multiple interfaces are once again
 grouped together into a single TE link, then link bundling [BUNDLE]
 is not required and only two levels of identification are required:
 TE link Id and port Id. Both resource allocation and physical
 connectivity happen at the lowest level (i.e. port level). LMP is
 designed to support aggregation of one or more data-bearing links
 into a TE link (either ports into TE links, or component links into
 TE links).

2. LMP Overview

 LMP runs between a pair of nodes and includes a core set of
 functions; two additional tools are defined in this draft to extend
 the functionality of LMP and are optional. The core function set
 includes control channel management and link property correlation.
 Control channel management is used to establish and maintain control
 channel connectivity between neighboring nodes. This is done using
 lightweight Hello messages that act as a fast keep-alive mechanism
 between the nodes. Link property correlation consists of a
 LinkSummary message exchange that is used to synchronize the link
 properties (e.g., local/remote Interface ID mappings) between the
 adjacent nodes.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 LMP requires that a pair of nodes have at least one active bi-
 directional control channel between them. This control channel may

Lang et al [Page 4]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 be implemented using two uni-directional control channels that are
 coupled together using the LMP Hello messages. All LMP messages are
 IP encoded [except, in some cases, the Test Message which may be
 limited by the transport mechanism for in-band messaging]; the link
 level encoding of the control channel is outside the scope of this
 document.

 In LMP, multiple control channels may be active simultaneously
 between a pair of nodes. Each control channel MUST individually
 negotiate the control channel parameters, and each active control
 channel MUST exchange LMP hello packets to maintain LMP
 connectivity. If a group of control channels share a common node
 pair and support the same LMP capabilities, then LMP control
 messages MAY be transmitted over any of the active control channels
 of that group without coordination between the local and remote
 nodes. LMP also allows secondary (or backup) control channels to be
 defined. For example, data-bearing may be used as backup control
 channels provided control channel traffic has preemptive priority
 over the data traffic on the link. Secondary control channels only
 become active control channels when the switchover is complete and
 they inherit the configuration properties of the primary control
 channel that is being switched over to it.

 The link property correlation function of LMP is designed to
 aggregate multiple ports or component links into a TE link, and to
 synchronize the properties of the TE link. As part of the link
 property correlation function, a LinkSummary message exchange is
 defined. The LinkSummary message includes the local and remote TE
 Link Id, a list of all ports or component links that comprise the TE
 link, and various link properties. In addition, TLVs may be
 included further describing the TE link. A LinkSummaryAck or
 LinkSummaryNack message MUST be sent in response to the receipt of a
 LinkSummary message indicating agreement or disagreement of the link
 properties.

 In this draft, two additional tools are defined that extend the
 functionality of LMP: link connectivity verification and fault
 management. These tools are particularly useful when the control
 channel is transmitted out-of-band from the data-bearing links.
 Link connectivity verification is used to verify the physical
 connectivity between the nodes and exchange the Interface Ids
 (either Port Ids or Component Interface Ids, depending on the
 configuration); these Ids are used in GMPLS signaling. The
 procedure uses in-band Test messages that are sent over the data-
 bearing links and TestStatus messages that are transmitted over the
 control channel. The fault management scheme uses ChannelActive and
 ChannelFail message exchanges between a pair of nodes to localize
 failures in both opaque and transparent networks, independent of the
 encoding scheme used for the data. As a result, both local span and

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 end-to-end path protection/restoration procedures can be initiated.

Lang et al [Page 5]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 For the LMP Test procedure, the free (unallocated) data-bearing
 links MUST be opaque (i.e., able to be terminated); however, once a
 data link is allocated, it may become transparent. The LMP Test
 procedure is coordinated using a BeginVerify message exchange over
 the control channel. To support various degrees of transparency
 (e.g., examining overhead bytes, terminating the payload, etc.), and
 hence, different mechanisms to transport the Test messages, a Verify
 Transport Mechanism is included in the BeginVerify and
 BeginVerifyAck messages. Note that there is no requirement that all
 of the data-bearing links must be terminated simultaneously, but at
 a minimum, they must be able to be terminated one at a time. There
 is also no requirement that the control channel and TE link share
 the same physical medium; however, the control channel MUST
 terminate on the same two nodes that the TE link spans. Since the
 BeginVerify message exchange coordinates the Test procedure, it also
 naturally coordinates the transition of the data links between
 opaque and transparent modes.

 The LMP fault management procedure is based on two message
 exchanges: ChannelActive and ChannelFail. The ChannelActive message
 is used to indicate that one or more data-bearing channels are now
 carrying user data. This is particularly useful for detecting
 unidirectional channel failures in the transparent case. Receipt of
 a ChannelActive message MUST be acknowledged with a ChannelActiveAck
 message, the data-bearing channels MUST move to the ACTIVE state (if
 not already there), and fault monitoring SHOULD be verified for the
 corresponding data channels. The ChannelFail message is used to
 indicate that one or more active data channels or an entire TE link
 have failed. Receipt of a ChannelFail message MUST be acknowledged
 with either a ChannelFailNack or ChannelFailAck message, depending
 on if the channel failure is CLEAR or not in the adjacent node.

 The organization of the remainder of this document is as follows.
 In Section 3, we discuss the role of the control channel and the
 messages used to establish and maintain link connectivity. In

Section 4, the link property correlation function using the
 LinkSummary message is described. The link verification procedure
 is discussed in Section 5. In Section 6, we show how LMP will be
 used to isolate link and channel failures within the optical
 network. Several finite state machines (FSMs) are given in Section

7 and the message formats are defined in Section 8.

3. Control channel management

 To initiate an LMP session between two nodes, a bi-directional
 control channel MUST be established. The control channel can be
 used to exchange MPLS control-plane information such as link
 provisioning and fault isolation information (implemented using a
 messaging protocol such as LMP, proposed in this draft), path

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 management and label distribution information (implemented using a
 signaling protocol such as RSVP-TE [RSVP-TE] or CR-LDP [CR-LDP]),
 and network topology and state distribution information (implemented

Lang et al [Page 6]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 using traffic engineering extensions of protocols such as OSPF
 [OSPF-TE] and IS-IS [ISIS-TE]). For the purposes of LMP, we do not
 specify the exact implementation of the control channel; it could
 be, for example, a separate wavelength or fiber, an Ethernet link,
 an IP tunnel through a separate management network, or the overhead
 bytes of a data-bearing link. Rather, we assign a node-wide unique
 32-bit non-zero integer control channel identifier (CCId) to each
 direction of the control channel. One possible way to assign a CCId
 is to use the IP address or ifindex of the interface. Furthermore,
 we define the control channel messages (which have control channel
 identifiers in them) to be IP encoded. This allows the control
 channel implementation to encompass both in-band and out-of-band
 mechanisms; including the case where the control channel messages
 are transmitted separately from the associated data link(s).
 Furthermore, since the messages are sent directly over IP, the link
 level encoding is not part of LMP.

 The control channel can be either explicitly configured or
 automatically selected, however, for the purpose of this document we
 will assume the control channel is explicitly configured. Note that
 for in-band signaling, a control channel could be allocated to a
 data-bearing link; however, this is not true when the control
 channel is transmitted separately from the data links.

 Control channels exist independently of TE links and multiple
 control channels may be active simultaneously between a pair of
 nodes. The control channels may also be used for transmitting and
 receiving signaling and routing messages. Each LMP control channel
 MUST individually negotiate the control channel parameters, and each
 active control channel MUST exchange LMP Hello packets to maintain
 LMP connectivity. If a group of control channels share a common
 node pair and support the same LMP capabilities, then LMP control
 channel messages (except Config, ConfigAck, ConfigNack, and Hello)
 may be transmitted over any of the active control channels without
 coordination between the local and remote nodes.

 For LMP, it is essential that at least one control channel is always
 available. In the event of a control channel failure, it may be
 possible to use an alternate active control channel without
 coordination as mentioned above. Since control channels are
 electrically terminated at each node, lower layers (e.g., SONET/SDH)
 may also be used to detect control channel failures.

3.1. Parameter Negotiation

 For LMP, a generic parameter negotiation exchange is defined using
 Config, ConfigAck, and ConfigNack messages. The contents of these
 messages are built using TLV triplets. Config TLVs can be either
 negotiable or non-negotiable (identified by the N flag in the TLV

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 header). Negotiable TLVs can be used to let the devices agree on
 certain values. Non-negotiable TLVs are used for announcement of
 specific values that do not need, or do not allow, negotiation.

Lang et al [Page 7]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 To initiate the configuration procedure, a node MUST transmit Config
 messages to the remote node. It is possible that both the local and
 remote nodes initiate the configuration procedure at effectively the
 same time. To avoid ambiguities, the node with the higher Node Id
 wins the contention; the node with the lower Node Id SHOULD stop
 transmitting the Config message and respond to the Config messages
 it receives.

 The Config message MUST be periodically transmitted until (1) it
 receives a ConfigAck or ConfigNack message, (2) a timeout expires
 and no ConfigAck or ConfigNack message has been received, or (3) it
 receives a Config message from the remote node and has lost the
 contention (e.g., the Node Id of the remote node is higher than the
 Node Id of the local node). Both the retransmission interval and
 the timeout period are local configuration parameters.

 The Config message MUST include the LMP Capability TLV and the
 HelloConfig TLV.

 The ConfigAck message is used to acknowledge receipt of the Config
 message and express agreement on ALL of the configured parameters
 (both negotiable and non-negotiable). The ConfigNack message is
 used to acknowledge receipt of the Config message, indicate which
 (if any) non-negotiable parameters are unacceptable, and propose
 alternate values for the negotiable parameters.

3.2. Hello protocol

 Once a control channel is configured between two neighboring nodes,
 a Hello protocol will be used to establish and maintain control
 channel connectivity between the nodes and to detect control channel
 failures. The Hello protocol of LMP is intended to be a lightweight
 keep-alive mechanism that will react to control channel failures
 rapidly so that IGP Hellos are not lost and the associated link-
 state adjacencies are not removed unnecessarily. Furthermore, the
 RSVP Hello of [RSVP-TE] is not needed since the LMP Hellos will
 detect link layer failures.

 The Hello protocol consists of two phases: a negotiation phase and a
 keep-alive phase. Negotiation MUST only be done when the control
 channel is in the CONFIG state, and is used to exchange the CCIds
 and agree upon the parameters used in the keep-alive phase. The
 keep-alive phase consists of a fast lightweight Hello message
 exchange.

3.2.1. Hello Parameter Negotiation

 Before sending Hello messages as part of the keep-alive phase, the
 HelloInterval and HelloDeadInterval parameters MUST be agreed upon.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 These parameters are exchanged as a HelloConfig TLV object in the
 Config message. The HelloInterval indicates how frequently LMP

Lang et al [Page 8]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Hello messages will be sent, and is measured in milliseconds (ms).
 For example, if the value were 100, then the transmitting node would
 send the Hello message at least every 100ms. The HelloDeadInterval
 indicates how long a device should wait to receive a Hello message
 before declaring a control channel dead, and is measured in
 milliseconds (ms). The HelloDeadInterval MUST be greater than the
 HelloInterval, and SHOULD be at least 3 times the value of
 HelloInterval.

 When a node has either sent or received a ConfigAck message, it may
 begin sending Hello messages. Once it has both sent and received a
 Hello message, the control channel moves to the UP state. If,
 however, a node receives a ConfigNack message instead of a ConfigAck
 message, the node MUST not send Hello messages.

 In the event that multiple control channels are run over the same
 physical control channel interface, the parameter negotiation phase
 is run multiple times. The various LMP parameter negotiation
 messages associated with their corresponding control channels are
 tagged with their node-wide unique identifiers (CCIds).

3.2.2. Fast Keep-alive

 Each Hello message contains two sequence numbers: the first sequence
 number (TxSeqNum) is the sequence number for this Hello message and
 the second sequence number (RcvSeqNum) is the sequence number of the
 last Hello message received over this control channel from the
 adjacent node. Each node increments its sequence number when it sees
 its current sequence number reflected in Hellos received from its
 peer. The sequence numbers start at 1 and wrap around back to 2; 0
 is used in the RcvSeqNum to indicate that a Hello has not yet been
 seen and 1 is used in the TxSeqNum to indicate a control channel
 boot/reboot.

 Under normal operation, the difference between the RcvSeqNum in a
 Hello message that is received and the local TxSeqNum that is
 generated will be at most 1. There are two cases where this
 difference can be more than 1: when a control channel reboots and
 when switching over to a backup control channel.

 Having sequence numbers in the Hello messages allows each node to
 verify that its peer is receiving its Hello messages. This provides
 a two-fold service. First, the remote node will detect that a
 control channel has rebooted if TxSeqNum=1. If this occurs, the
 remote node will indicate its knowledge of the reboot by setting
 RcvSeqNum=1 in the Hello messages that it sends and SHOULD wait to
 receive a Hello message with TxSeqNum=2 before transmitting any
 messages other than Hello messages. Second, by including the
 RcvSeqNum in Hello packets, the local node will know which Hello

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 packets the remote node has received.

 The following example illustrates how the sequence numbers operate:

Lang et al [Page 9]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 1) After completing the configuration stage, Node A sends a Hello
 message with {TxSeqNum=1;RcvSeqNum=0}.
 2) When Node A receives a Hello with {TxSeqNum=1;RcvSeqNum=1}, it
 sends Hellos with {TxSeqNum=2;RcvSeqNum=1}.
 3) After some time, the control channel on Node B reboots.
 4) Node A is sending Hellos with {TxSeqNum=45;RcvSeqNum=44} and
 receives a Hello from Node B with {TxSeqNum=1;RcvSeqNum=0},
 indicating that Node B has rebooted. Node A sends Hello
 messages with {TxSeqNum=45;RcvSeqNum=1}.
 4) When Node A receives a Hello with {TxSeqNum=2;RcvSeqNum=45}, it
 sends Hellos with {TxSeqNum=46;RcvSeqNum=2}.

3.2.3. Control Channel Availability

 As mentioned above, LMP requires that a bi-directional control
 channel is available, and LMP includes mechanisms to ensure that a
 control channel is available. Control channels may need to be
 switched as a result of the associated physical control channel
 interface or link failure, or for administration purposes (e.g.,
 routine fiber maintenance). During these times, peer connectivity
 must be maintained to ensure that unnecessary rerouting of user
 traffic is avoided and false failures are not reported.

 If multiple active control channels share a common node pair and
 support the same LMP capabilities, then any of the active control
 channels may be used without coordination between the local and
 remote nodes.

3.2.4. Taking a Control Channel Down Administratively

 To ensure that bringing a control channel DOWN for administration
 purposes is done gracefully, a ControlChannelDown flag is available
 in the Common Header of LMP packets. When data links (ports or
 component links) are still in use between a pair of nodes, a control
 channel SHOULD only be taken down administratively when there are
 other active control channels that can be used to manage the data
 links.

 When a node receives LMP packets with ControlChannelDown = 1, it
 must first verify that it is able to bring the control channel down
 on its end. Once the verification is done, it must set the
 ControlChannelDown flag to 1 on all of the LMP packets that it
 sends. When the node that initiated the ControlChannelDown
 procedure receives LMP packets with ControlChannelDown = 1, it may
 then stop sending Hello packets.

3.2.5. Degraded State

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 A consequence of allowing the control channels and data links to be
 transmitted along a separate medium is that the TE link may be in a

Lang et al [Page 10]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 state where no active control channels are available, but the data
 links (ports or component links) are still in use. For many
 applications, it is unacceptable to tear down a link that is
 carrying user traffic simply because the control channel is no
 longer available; however, the traffic that is using the data links
 may no longer be guaranteed the same level of service. Hence the TE
 link is in a Degraded state.

 When a TE link is in the Degraded state, routing and signaling
 SHOULD be notified so that new connections are not accepted and
 resources are no longer advertised for the TE link.

4. Link Property Correlation

 As part of LMP, a link property correlation exchange is defined
 using the LinkSummary, LinkSummaryAck, and LinkSummaryNack messages.
 The contents of these messages are built using TLV triplets.
 LinkSummary TLVs can be either negotiable or non-negotiable
 (identified by the N flag in the TLV header). Negotiable TLVs can
 be used to let both sides agree on certain link parameters. Non-
 negotiable TLVs are used for announcment of specific values that do
 not need, or do not allow, negotiation.

 The LinkSummary message is used to aggregate multiple data links
 (either ports or component links) into a TE link; exchange,
 correlate, or change TE link parameters; and exchange, correlate, or
 change Interface Ids (either Port Ids or Component Interface Ids).

 The LinkSummary message can be exchanged at any time a link is UP
 and not in the Verification process. The LinkSummary mesasge MUST
 be periodically transmitted until (1) the node receives a
 LinkSummaryAck or LinkSummaryNack message or (2) a timeout expires
 and no LinkSummaryAck or LinkSummaryNack message has been received.
 Both the retransmission interval and the timeout period are local
 configuration parameters.

 If the LinkSummary message is received from a remote node and the
 Interface Id mappings match those that are stored locally, then the
 two nodes have agreement on the Verification process (see Section

5). If the verification procedure is not used, the LinkSummary
 message can be used to verify agreement on manual configuration.

 Furthermore, any protection definitions that are included in the
 LinkSummary message MUST be accepted or rejected by the local node.
 The LinkSummaryAck message is used to signal agreement on the
 Interface Id mappings and link property definitions. Otherwise, a
 LinkSummaryNack message MUST be transmitted, indicating which
 Interface mappings are not correct and/or which link properties are
 not accepted. If a LinkSummaryNack message indicates that the

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 Interface Id mappings are not correct and the link verification
 procedure is enabled, the link verification process SHOULD be
 repeated for all mismatched free data links; if an allocated data

Lang et al [Page 11]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 link has a mapping mismatch, it SHOULD be flagged and verified when
 it becomes free.

 It is possible that the LinkSummary message could grow quite large
 due to the number of Data Link TLVs. Since the LinkSummary message
 is IP encoded, normal IP fragmentation should be used if the
 resulting PDU exceeds the MTU.

5. Verifying Link Connectivity

 In this section, we describe an optional mechanism that may be used
 to verify the physical connectivity of the data-bearing links
 (either ports or component links). The use of this procedure is
 negotiated as part of the configuration exchange using the
 Verification Procedure flag of the LMP Capability TLV. The
 procedure SHOULD be done when establishing a TE link, and
 subsequently, on a periodic basis for all unallocated (free) data
 links of the TE link.

 A unique characteristic of all-optical PXCs is that the data-bearing
 links are not terminated at the PXC, but instead passes through
 transparently. This characteristic of PXCs poses a challenge for
 validating the connectivity of the data links since shining
 unmodulated light through a link may not result in received light at
 the next PXC. This is because there may be terminating (or opaque)
 elements, such as DWDM equipment, in between the PXCs. Therefore,
 to ensure proper verification of data link connectivity, we require
 that until the links are allocated, they must be opaque. To support
 various degrees of opaqueness (e.g., examining overhead bytes,
 terminating the payload, etc.), and hence different mechanisms to
 transport the Test messages, a Verify Transport Mechanism is
 included in the BeginVerify and BeginVerifyAck messages. There is
 no requirement that all data links be terminated simultaneously, but
 at a minimum, the data links must be able to be terminated one at a
 time. Furthermore, we assume that the nodal architecture is
 designed so that messages can be sent and received over any data
 link. Note that this requirement is trivial for DXCs (and OEO
 devices in general) since each data link is received electronically
 before being forwarded to the next DXC, but that in PXCs this is an
 additional requirement.

 To interconnect two nodes, a TE link is added between them, and at a
 minimum, there MUST be at least one active control channel between
 the nodes. A TE link MUST include at least one data link.

 Once a control channel has been established between the two nodes,
 data link connectivity can be verified by exchanging Ping-type Test
 messages over each of the data links specified in the bundled link.
 It should be noted that all LMP messages except for the Test message

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 are exchanged over the control channel and that Hello messages
 continue to be exchanged over the control channel during the data
 link verification process. The Test message is sent over the data

Lang et al [Page 12]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 link that is being verified. Data links are tested in the transmit
 direction as they are uni-directional, and as such, it may be
 possible for both nodes to exchange the Test messages
 simultaneously.

 To initiate the link verification process, the local node MUST send
 a BeginVerify message over the control channel. The BeginVerify
 message contains fields for the local and remote TE Link Ids. When
 non-zero, these fields limit the scope of the data links being
 verified to the corresponding TE link; if the fields are zero, the
 data links can span multiple TE links and/or they may comprise a TE
 link that is yet to be configured. The BeginVerify message contains
 the number of data links that are to be verified; the interval
 (called VerifyInterval) at which the Test messages will be sent; the
 encoding scheme, the transport mechanisms that are supported, and
 data rate for Test messages; when the data links correspond to
 fibers, the wavelength over which the Test messages will be
 transmitted is also included.

 The BeginVerify message MUST be periodically transmitted until (1)
 the node receives either a BeginVerifyAck or BeginVerifyNack message
 to accept or reject the verify process or (2) a timeout expires and
 no BeginVerifyAck or BeginVerifyNack message has been received.
 Both the retransmission interval and the timeout period are local
 configuration parameters.

 If the remote node receives a BeginVerify message and it is ready to
 process Test messages, it MUST send a BeginVerifyAck message back to
 the local node specifying the desired transport mechanism for the
 TEST messages. The remote node includes a 32-bit node unique
 VerifyID in the BeginVerifyAck message. The VerifyID is then used
 in all corresponding Test messages to differentiate them from
 different LMP peers and/or parallel Test procedures. When the local
 node receives a BeginVerifyAck message from the remote node, it may
 begin testing the data links by transmitting periodic Test messages
 over each data link. The Test message includes the Verify Id and
 the local Interface Id for the associated data link. The remote
 node MUST send either a TestStatusSuccess or a TestStatusFailure
 message in response for each data link. A TestStatusAck message
 MUST be sent to confirm receipt of the TestStatusSuccess and
 TestStatusFailure messages.

 The local (transmitting) node sends a given Test message
 periodically (at least once every VerifyInterval ms) on the
 corresponding data link until (1) it receives a correlating
 TestStatusSuccess or TestStatusFailure message on the control
 channel from the remote (receiving) node or (2) all active control
 channels between the two nodes have failed. The remote node will
 send a given TestStatus message periodically over the control

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 channel until it receives either a correlating TestStatusAck message
 or an EndVerify message is received over the control channel.

Lang et al [Page 13]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 It is also permissible for the sender to terminate the Test
 procedure without receiving a TestStatusSuccess or TestStatusFailure
 message by sending an EndVerify message. Message correlation is
 done using message identifiers and the Verify Id; this enables
 verification of data links, belonging to different link bundles or
 LMP sessions, in parallel.

 When the Test message is detected at a node, the received Interface
 Id (used in GMPLS as either a Port Id or Component Interface Id
 depending on the configuration) is recorded and mapped to the local
 Interface Id for that channel. The receipt of a TestStatusSuccess
 message indicates that the Test message was detected at the remote
 node and the physical connectivity of the data link has been
 verified. The TestStatusSuccess message includes the local
 Interface Id and the remote Interface Id (received in the Test
 message), along with the VerifyId received in the Test message.
 When the TestStatusSuccess message is received, the local node
 SHOULD mark the data link as UP, send a TestStatusAck message to the
 remote node, and begin testing the next data link. If, however, the
 Test message is not detected at the remote node within an
 observation period (specified by the VerifyDeadInterval), the remote
 node will send a TestStatusFailure message over the control channel
 indicating that the verification of the physical connectivity of the
 data link has failed. When the local node receives a
 TestStatusFailure message, it will mark the data link as FAILED,
 send a TestStatusAck message to the remote node, and begin testing
 the next data link. When all the data links on the list have been
 tested, the local node SHOULD send an EndVerify message to indicate
 that testing has been completed on this link. The EndVerify message
 will be periodically transmitted until an EndVerifyAck message has
 been received.

 Both the local and remote nodes SHOULD maintain the complete list of
 Interface Id mappings for correlation purposes.

5.1. Example of Link Connectivity

 Figure 1 shows an example of the link verification scenario that is
 executed when a link between PXC A and PXC B is added. In this
 example, the TE link consists of three free ports (each transmitted
 along a separate fiber) and is associated with a bi-directional
 control channel (indicated by a "c"). The verification process is as
 follows: PXC A sends a BeginVerify message over the control channel
 ôcö to PXC B indicating it will begin verifying the ports. PXC B
 receives the BeginVerify message and returns the BeginVerifyAck
 message over the control channel to PXC A. When PXC A receives the
 BeginVerifyAck message, it begins transmitting periodic Test
 messages over the first port (Interface Id=1). When PXC B receives
 the Test messages, it maps the received Interface Id to its own

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 local Interface Id = 10 and transmits a TestStatusSuccess message
 over the control channel back to PXC A. The TestStatusSuccess
 message will include both the local and received Interface Ids for

Lang et al [Page 14]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 the port. PXC A will send a TestStatusAck message over the control
 channel back to PXC B indicating it received the TestStatusSuccess
 message. The process is repeated until all of the ports are
 verified. At this point, PXC A will send an EndVerify message over
 the control channel to PXC B to indicate that testing is complete
 and PXC B will respond by sending an EndVerifyAck message over the
 control channel back to PXC A.

 +---------------------+ +---------------------+
 + + + +
 + PXC A +<-------- c --------->+ PXC B +
 + + + +
 + + + +
 + 1 +--------------------->+ 10 +
 + + + +
 + + + +
 + 2 + /---->+ 11 +
 + + /----/ + +
 + + /---/ + +
 + 3 +----/ + 12 +
 + + + +
 + + + +
 + 4 +--------------------->+ 14 +
 + + + +
 +---------------------+ +---------------------+

 Figure 2: Example of link connectivity between PXC A and PXC B.

6. Fault Management

 In this section, we describe an optional LMP mechanism that is used
 to manage failures by rapidly locating link or channel failures.
 The use of this procedure is negotiated as part of the configuration
 exchange using the Fault Management Procedure flag of the LMP
 Capability TLV. As before, we assume each link has a bi-directional
 control channel that is always available for inter-node
 communication and that the control channel spans a single hop
 between two neighboring nodes. The case where a control channel is
 no longer available between two nodes is beyond the scope of this
 draft. The mechanism used to rapidly isolate link failures is
 designed to work for unidirectional LSPs, and can be easily extended
 to work for bi-directional LSPs; however, for the purposes of this
 document, we only discuss the operation when the LSPs are
 unidirectional.

 Recall that a TE link connecting two nodes may consist of a number
 of data links (ports or component links). If one or more data links
 fail between two nodes, a mechanism must be used to rapidly locate
 the failure so that appropriate protection/restoration mechanisms

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 can be initiated. An important implication of using PXCs is that
 traditional methods that are used to monitor the health of allocated
 data links in OEO nodes (e.g., DXCs) may no longer be appropriate,

Lang et al [Page 15]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 since PXCs are transparent to the bit-rate, format, and wavelength.
 Instead, fault detection is delegated to the physical layer (i.e.,
 loss of light or optical monitoring of the data) instead of layer 2
 or layer 3.

6.1. Fault Detection

 As mentioned earlier, fault detection must be handled at the layer
 closest to the failure; for optical networks, this is the physical
 (optical) layer. One measure of fault detection at the physical
 layer is simply detecting loss of light (LOL). Other techniques for
 monitoring optical signals are still being developed and will not be
 further considered in this document. However, it should be clear
 that the mechanism used to locate the failure is independent of the
 mechanism used to detect the failure, but simply relies on the fact
 that a failure is detected.

6.2. Fault Localization Mechanism

 If data links fail between two PXCs, the power monitoring system in
 all of the downstream nodes may detect LOL and indicate a failure.
 To correlate multiple failures between a pair of nodes, a monitoring
 window can be used in each node to determine if a single data link
 has failed or if multiple data links (possibly an entire TE link)
 have failed.

 As part of the fault localization, a downstream node that detects
 data link failures will send a ChannelFail message to its upstream
 neighbor (bundling together the notification of all of the failed
 data links). An upstream node that receives the ChannelFail message
 will correlate the failure to see if there is a failure on the
 corresponding LSP(s). If the failure has also been detected on the
 input port(s) of the upstream node, the node will return a
 ChannelFailAck message to the downstream node (bundling together the
 notification of all the data links), indicating that it too has
 detected a failure. If, however, the fault is CLEAR in the upstream
 node (e.g., there is no LOL on the corresponding input channels),
 then the upstream node will have localized the failure and will
 return a ChannelFailNack message to the downstream node. Once the
 failure has been localized, the signaling protocols can be used to
 initiate span or path protection/restoration procedures.

 If all of the data links of a TE link have failed, then the upstream
 node MAY be notified of the TE link failure without specifying that
 each data link of the TE link has failed. To do this, the Interface
 Id of the ChannelFail subobject MUST be 0.

6.3. Channel Activiation Indication

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 The ChannelActive message is the counterpart to the ChannelFail
 message described in Section 6.2 and is used to notify the
 downstream neighboring node that the data link is in the Active

Lang et al [Page 16]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 state. This is particularly useful in networks with transparent
 nodes where the status of data links may need to be triggered using
 control channel messages. For example, if a data link is pre-
 provisioned and the physical link fails after verification and
 before inserting user traffic, the pair of nodes need a mechanism to
 indicate the data link is active or they may not be able to detect
 the failure.

 The ChannelActive message is used to indicate that a channel or
 group of channels are now active. The ChannelActiveAck message MUST
 be transmitted upon receipt of a ChannelActive message. When a
 ChannelActive message is received, the corresponding data link(s)
 MUST be put into the Active state. If upon putting them into the
 Active state, a failure is detected, the ChannelFail message MUST be
 transmitted as described in Section 6.2.

6.4. Examples of Fault Localization

 In Fig. 2, a sample network is shown where four PXCs are connected
 in a linear array configuration. The control channels are bi-
 directional and are labeled with a "c". All LSPs are uni-
 directional going left to right.

 In the first example [see Fig. 2(A)], there is a failure on a single
 data link between PXC2 and PXC3. Both PXC3 and PXC4 will detect the
 failure and each node will send a ChannelFail message to the
 corresponding upstream node (PXC3 will send a message to PXC2 and
 PXC4 will send a message to PXC3). When PXC3 receives the
 ChannelFail message from PXC4, it will correlate the failure and
 return a ChannelFailAck message back to PXC4. Upon receipt of the
 ChannelFailAck message, PXC4 will move the associated ports into a
 standby state. When PXC2 receives the ChannelFail message from PXC3,
 it will correlate the failure, verify that it is CLEAR, localize the
 failure to the data link between PXC2 and PXC3, and send a
 ChannelFailNack message back to PXC3.

 In the second example [see Fig. 2(B)], there is a failure on three
 data links between PXC3 and PXC4. In this example, PXC4 has
 correlated the failures and will send a bundled ChannelFail message
 for the three failures to PXC3. PXC3 will correlate the failures,
 localize them to the channels between PXC3 and PXC4, and return a
 bundled ChannelFailNack message back to PXC4.

 In the last example [see Fig. 2(C)], there is a failure on the
 tributary link of the ingress node (PXC1) to the network. Each
 downstream node will detect the failure on the corresponding input
 ports and send a ChannelFail message to the upstream neighboring
 node. When PXC2 receives the message from PXC3, it will correlate
 the ChannelFail message and return a ChannelFailAck message to PXC3

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 (PXC3 and PXC4 will also act accordingly). Since PXC1 is the ingress
 node to the optical network, it will correlate the failure and

Lang et al [Page 17]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 localize the failure to the data link between itself and the network
 element outside the optical network.

 +-------+ +-------+ +-------+ +-------+
 + PXC 1 + + PXC 2 + + PXC 3 + + PXC 4 +
 + +-- c ---+ +-- c ---+ +-- c ---+ +
 ----+---\ + + + + + + +
 + \--+--------+-------+---\ + + + /--+--->
 ----+---\ + + + \---+-------+---##---+---/ +
 + \--+--------+-------+--------+-------+---##---+-------+--->
 ----+-------+--------+-------+--------+-------+---##---+-------+--->
 ----+-------+--------+---\ + + + (B) + +
 + + + \--+---##---+--\ + + +
 + + + + (A) + \ + + +
 -##-+--\ + + + + \--+--------+-------+--->
 (C) + \ + + /--+--------+---\ + + +
 + \--+--------+---/ + + \--+--------+-------+--->
 + + + + + + + +
 +-------+ +-------+ +-------+ +-------+

 Figure 3: We show three types of data link failures (indicated
 by ## in the figure): (A) a single data link fails
 between two PXCs, (B) three data links fail between
 two PXCs, and (C) a single data link fails on the
 tributary input of PXC 1. The control channel
 connecting two PXCs is indicated with a "c".

7. LMP Authentication

 LMP authentication is optional (included in the Common Header) and,
 if used, MUST be supported by both sides of the control channel. The
 method used to authenticate LMP packets is based on the
 authentication technique used in [OSPF]. This uses cryptographic
 authentication using MD5.

 As a part of the LMP authentication mechanism, a flag is included in
 the LMP common header indicating the presence of authentication
 information. Authentication information itself is appended to the
 LMP packet. It is not considered to be a part of the LMP packet, but
 is transferred in the same IP packet.

 When the Authentication flag is set in the LMP packet header, an
 authentication data block is attached to the packet. This block has
 a standard authentication header and a data portion. The contents of
 the data portion depend on the authentication type. Currently, only
 MD5 is supported for LMP.

8. LMP Finite State Machines

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

8.1. Control Channel FSM

Lang et al [Page 18]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 The control channel FSM defines the states and logics of operation
 of an LMP control channel. The description of FSM state transitions
 and associated actions is given in Section 3.

8.1.1. Control Channel States

 A control channel can be in one of the states described below.
 Every state corresponds to a certain condition of the control
 channel and is usually associated with a specific type of LMP
 message that is periodically transmitted to the far end.

 Down: This is the initial control channel state. In this
 state, no attempt is being made to bring the control
 channel up and no LMP messages are sent. The control
 channel parameters should be set to the initial values.

 ConfigSnd: The control channel is in the parameter negotiation
 state. In this state the node periodically sends a
 Config message, and is expecting the other side to
 reply with either a ConfigAck or ConfigNack message.
 The FSM does not transition into the Active state until
 the remote side positively acknowledges the parameters.

 ConfRcv: The control channel is in the parameter negotiation
 state. In this state, the node is waiting for
 acceptable configuration parameters from the remote
 side. Once such parameters are received and
 acknowledged, the FSM can transition to the Active
 state.

 Active: In this state the node periodically sends a Hello
 message and is waiting to receive a valid Hello
 message. Once a valid Hello message is received, it
 can transition to the UP state.

 Up: The CC is in an operational state. The node receives
 valid Hello messages and sends Hello messages.

 GoingDown: A CC may go into this state because of two reasons:
 administrative action, and a ControlChannelDown bit
 received in an LMP message. While a CC is in this
 state, the node sets the ControlChannelDown bit in all
 the messages it sends.

8.1.2. Control Channel Events

 Operation of the LMP control channel is described in terms of FSM
 states and events. Control channel Events are generated by the
 underlying protocols and software modules, as well as by the packet
 processing routines and FSMs of associated TE links. Every event

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 has its number and a symbolic name. Description of possible control
 channel events is given below.

Lang et al [Page 19]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 1 : evBringUp: This is an externally triggered event indicating
 that the control channel negotiation should begin.
 This event, for example, may be triggered by a
 provisioner command or by the successful
 completion of a control channel bootstrap
 procedure. Depending on the configuration, this
 will trigger either
 1a) the sending of a Config message,
 1b) a period of waiting to receive a Config
 message from the remote node.

 2 : evCCDn: This event is generated when there is indication
 that the control channel is no longer available.

 3 : evConfDone: This event indicates a ConfigAck message has been
 received, acknowledging the Config parameters.

 4 : evConfErr: This event indicates a ConfigNack message has been
 received, rejecting the Config parameters.

 5 : evNewConfOK: New Config message was received from neighbor and
 positively Acknowledged.

 6 : evNewConfErr: New Config message was received from neighbor and
 rejected with a ConfigNack message.

 7 : evContenWin: New Config message was received from neighbor at
 the same time a Config message was sent to the
 neighbor. The Local node wins the contention. As
 a result, the received Config message is ignored.

 8 : evContenLost: New Config message was received from neighbor at
 the same time a Config message was sent to the
 neighbor. The Local node looses the contention.
 As a result, the node must (positively or
 negatively) respond to the Config message.

 9 : evAdminDown: The administrator has requested that the control
 channel is brought down administratively.

 10: evDownOk: A packet with the LinkDown flag has been received
 and the local node was the initiator of the link
 down procedure.

 11: evDownErr: A timer has expired indicating that the other node
 did not start setting the LinkDown flag in its
 messages.

 12: evNbrGoesDn: A packet with LinkDown flag is received from the

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 neighbor.

Lang et al [Page 20]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 13: evHelloRcvd: A Hello packet with expected SeqNum has been
 received.

 14: evHoldTimer: The HelloDeadInterval timer has expired indicating
 that no Hello packet has been received. This
 moves the control channel back into the
 Negotiation state, and depending on the local
 configuration, this will trigger either
 14a) the sending of periodic Config messages,
 14b) a period of waiting to receive Config
 messages from the remote node.

 15: evSeqNumErr: A Hello with unexpected SeqNum received and
 discarded.

 16: evReconfig: Control channel parameters have been reconfigured
 and require renegotiation.
 17: evConfRet: A retransmission timer has expired and a Config
 message is resent.
 18: evHelloRet: The HelloInterval timer has expired and a Hello
 packet is sent.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 21]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

8.1.3 Control Channel FSM Description

 Figure 4 illustrates operation of the control channel FSM
 in a form of FSM state transition diagram.

 +--------+
 +----------->| |<--------------+
 | | Down |<----------+ | | | | | |
 | +--------| |<-------+ | |
 | | +--------+ | | |
 | | | ^ 2| 2| 2|
 | |1b 1a| | | | |
 | | v | 2 | | |
 | | +--------+ | | |
 | | +->| |<------+| | |
 | | 4,7,| |ConfSnd | || | |
 | | 17 +--| |<----+ || | |
 | | +--------+ | || | |
 | | 3| | | || | |
 | | +--------+ |8 4,14a| || | |
 | | | v | || | |
 | +-|----->+--------+ | || | |
 | | +->| |-----|-|+ | |
 | | 6| |ConfRcv | | | | |
 | | +--| |<--+ | | | |
 | | +--------+ | | | | |
 | | 5| ^ | | | | |
 | +--------+ | | | | | | |
 | | | | | | | | |
 |10,2 v v |6,14b | | | | |
 +--------+ +--------+ | | | | |
 | | +--| |---|-+ | | |
 | GoingDn| 5,18| | Active |-------|---+ |
 | | +->| | | | |
 +--------+ +--------+ | | |
 ^ 13| ^ | | |
 | | |5 | | |
 | v | 6,14b| | |
 |9,12 +--------+ | |14a,16 |
 +------------| |---+ | |
 | Up |-------+ |
 | |---------------+
 +--------+
 | ^
 | |
 +---+
 13,15,18
 Figure 4: Control Channel FSM

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 Event evCCDn always forces the FSM to the Down State. Events
 evHoldTimer evReconfig always force the FSM to the Negotiation state
 (either ConfigSnd or ConfigRcv).

Lang et al [Page 22]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

8.2 TE Link FSM

 The TE Link FSM defines the states and logics of operation of an LMP
 TE Link.

8.2.1 TE Link States

 An LMP TE link can be in one of the states described below. Every
 state corresponds to a certain condition of the TE link and is
 usually associated with a specific type of LMP message that is
 periodically transmitted to the far end via the associated control
 channel or in-band via the data links.

 Down: There are no control channels available and no data
 links are allocated to the TE link.

 LinkVrf: In this state, the link verification procedure is
 performed for the data links of the TE link. LinkVrf is
 a composite state that consists of two substates
 described below.

 VrfBegin: This state is valid only for the side initiating the
 verification process. In this state, the node
 periodically sends a BeginVerify message and expects an
 BeginVerifyAck or BeginVerifyNack message. The
 BeginVerify messages include information about the data
 links in the BegVerify state.

 VrfProcess: In this state, two FSMs are performing the link
 verification procedure. The initiator periodically sends
 Test messages over the data links in the Testing state
 and waits for TestStatus messages to be received over a
 control channel. The passive side listens for incoming
 link test messages on the data links in the PasvTst
 state.

 VrfResult: In this state, the passive side periodically retransmits
 the TestStatus messages for the data links verified
 during the link verification procedure and waits for
 acknowledgement. Once all messages have been
 acknowledged, the passive side can go out of VrfResult
 state. The initiator waits for the incoming TestStatus
 message and goes out of it after receiving and
 acknowledging TestStatus messages for all data links.
 Note that the initiator must be prepared to receive and
 acknowledge the TestStatus messages even after it has
 transitioned out of the VrfResult state.

 Summary: In this state, the new TE link configuration is

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 announced by periodically sending the LinkSummary
 messages over the control channel.

Lang et al [Page 23]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Up: This is the normal operational state of the TE link. At
 least one primary CC is required to be operational
 between the nodes sharing the TE link.

 Degraded: In this state, all primary CCs are down, but the TE link
 still includes some allocated data links.

 STDBY: A ChannelFail message has been received indicating a
 failure has been detected on the far-end node of the TE
 link. The failure is locally correlated to determine if
 the failure can be localized to the TE link or if the
 failure is further upstream along the path.

8.2.2 TE Link Events

 Operation of the LMP TE link is described in terms of FSM states and
 events. TE Link events are generated by the packet processing
 routines and by the FSMs of the associated primary control
 channel(s) and the data links. Every event has its number and a
 symbolic name. Description of possible control channel events is
 given below.

 1 : evCCUp: First primary CC goes Up
 2 : evCCDown: Last primary CC goes Down
 3 : evVerDone: Verification done; EndVerifyAck message
 received.
 4 : evVerify: An external event indicates that the Link
 verification procedure should begin.
 5 : evRecnfReq: TE link has been reconfigured and the new
 configuration needs to be announced/agreed upon.
 6 : evSummaryAck: LinkSummaryAck message has been received
 acknowledging the TE link configuration.
 7 : evLastCompDn: The last allocated data link has been freed.
 8 : evStartVer: BeginVerifyAck message has been received
 indicating the remote node is ready to start
 link verification.
 9 : evTELinkOk: An external event has indicated that the TE link
 is available.
 10: evBeginRet: Retransmission timer expires and no
 BeginVerifyAck or BeginVerifyNack message has
 been received. BeginVerify message is resent.
 11: evSummaryRet: Retransmission timer expires and no
 LinkSummaryAck or LinkSummaryNack message has
 been received. LinkSummary message is resent.
 12: evChannFail: ChannelFail message is received for TE link.
 The failure is locally correlated and either a
 ChannelFailAck or a ChannelFailNack message is
 transmitted.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 13: evNodeReBoot: The neighboring node has rebooted.
 14: evSummaryNack1: LinkSummaryNack message has been received
 indicating negotiable parameters not accepted.

Lang et al [Page 24]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 15: evSummaryNack2 LinkSummaryNack message received indicating
 misconfiguration of non-negotiable parameters.
 Free ports that are misconfigured are moved to
 Down state. Allocated ports that are
 misconfigured are flagged.
 16: evSummaryNack3: LinkSummaryNack message has been received
 indicating misconfiguration of non-negotiable
 parameters for all ports.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 25]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

8.2.3 TE Link FSM Description

 Figure 5 illustrates operation of the LMP TE Link FSM in a form of
 FSM state transition diagram.

 +--------+
 +------------>| |
 | +----->| Down |
 | | +----| |
 | | | +--------+
 | | | |
 | | | 4|
 | | |9 |
 | | | v
 | | | +--------+
 | | | 2 | |<-+
 | +---|-|----| VrfBeg | |10
 | | | | | |--+
 | | | | +--------+
 | | | | 8| ^
 | | | | | |
 | | | | | +---------+
 | | | | v | | |
 | | | | +-------+ |
 | | | | 2 | | |
 | +---|-|----|VrfProc| |
 | | | | | | |
 | | | | +-------+ |
 | | | | 3| |
 | | | | | +----------+
 | | | | v |4 |
 | | | | 16 +-------+ |
 | | +-|----| |<-+ |
 | | +--->|Summary| |11,14 |
 | | +--------| |--+ |
 | | |2 +-------+ |
 | | | 6,15| ^ |
 | | | | | |
 | | | | | |
 |7 | | | | |
 | v v v |5,13 |
 +--------+ +--------+ |
 | |1 | |--------+
 | Deg |------>| Up | 4
 | |<------| |
 +--------+ 2+--------+
 | ^
 | |
 +--+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 12

 Figure 5: LMP TE Link FSM

Lang et al [Page 26]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

8.3 Data Link FSM

 The data link FSM defines the states and logics of operation of a
 port or component link within an LMP TE link. Operation of a data
 link is described in terms of FSM states and events. Data-bearing
 links can either be in the active (transmitting) state, where Test
 messages are transmitted from them, or the passive (receiving)
 state, where Test messages are received through them. For clarity,
 we define separate FSMs for the active/passive data-bearing links;
 however, we define a single set of data link states and events.

8.3.1 Data Link States

 Any data link can be in one of the states described below. Every
 state corresponds to a certain condition of the TE link.

 Down: The data link has not been put in the resource pool.

 Test: The data link is being tested. An LMP Test message
 is periodically sent through the link.

 PasvTest: The data link is being checked for incoming test
 messages.

 Retest: The data link is being re-validated. An LMP Test
 message is periodically sent through the link.

 PasvRetest: The data link is being checked for incoming
 test.messages as part of link re-validation.

 Up/Free: The link has been successfully tested and is now put
 in the pool of resources. The link has not yet been
 allocated to data traffic.

 Up/Allocated: The link has been allocated for data traffic.

 Degraded: The link was in the Up/Allocated state when the last
 CC associated with data link's TE Link has gone down.
 The link is put in the Degraded state, since it is
 still being used for data LSP.

 TstRecv: A Test message has been detected on the data link and
 a TestStatusSuccess message has been sent to the
 transmitter over the control channel.

8.3.2 Data Link Events

 Data bearing link events are generated by the packet processing

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 routines and by the FSMs of the associated control channel and the

Lang et al [Page 27]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 TE link. Every event has its number and a symbolic name.
 Description of possible data link events is given below:

 1 :evCCUp: CC has gone up.
 2 :evCCDown: LMP neighbor connectivity is lost. This indicates
 the last LMP control channel has failed between
 neighboring nodes.
 3 :evStartTst: This is an external event that triggers the sending
 of Test messages over the data bearing link.

 4 :evStartPsv: This is an external event that triggers the
 listening for Test messages over the data bearing
 link.

 5 :evTestOK: Link verification was successful and the link can
 be used for path establishment.
 (a) This event indicates the Link Verification
 procedure (see Section 5) was successful
 for this data link and a TestStatusSuccess
 message was received over the control
 channel.
 (b) This event indicates the link is ready for
 path establishment, but the Link
 Verification procedure was not used. For
 in-band signaling of the control channel,
 the control channel establishment may be
 sufficient to verify the link.
 6 :evTestRcv: Test message was received over the data port and a
 TestStatusSuccess message is transmitted over the
 control channel.
 7 :evTestFail: Link verification returned negative results. This
 could be because (a) a ChannelStatusFailure message
 was received, or (b) an EndVerifyAck message was
 received without receiving a ChannelStatusSuccess
 or ChannelStatusFailure message for the data link.
 8 :evPsvTestFail:Link verification returned negative results. This
 indicates that a Test message was not detected and
 either (a) the VerifyDeadInterval has expired or
 (b) an EndVerifyAck messages has been received and
 the VerifyDeadInterval has not yet expired.
 9 :evLnkAlloc: The data link has been allocated.
 10:evLnkDealloc: The data link has been deallocated.
 11:evTestRet: A retransmission timer has expired and the Test
 message is resent.

 11:evVerifyAbrt: The other side did not confirm it is ready to
 perform link verification.
 12:evSummaryFail:The LinkSummary did not match for this data port.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 28]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

7.3.3 Active Data Link FSM Description

 Figure 6 illustrates operation of the LMP active data link FSM in a
 form of FSM state transition diagram.

 +------+
 +------------->| |
 | +--------->| Down |<---------+
 | | +----| | | | |
 | | | +------+ |
 | | |5b 3| ^ |
 | | | | |2,7 |
 | | | v | |
 | | | +------+ |
 | | | | |<-+ |
 | | | | Test | |11 |
 | | | | |--+ |
 | | | +------+ |
 | | | 5a| |
 | | | | |2,7
 | | | v |
 | |2,12 | +---------+ 3 +--------+
 | | +-->| |---->| |
 | | | Up/Free | | Retest |
 | +---------| |<----| |
 | +---------+ 5a +--------+
 | 9| ^
 | | |
 |10 v |10
 +-----+ 2 +---------+
 | |<--------| |
 | Deg | |Up/Alloc |
 | |-------->| |
 +-----+ 1 +---------+

 Figure 6: Active LMP Data Link FSM

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 29]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

8.3.3 Passive Data Link FSM Description

 Figure 7 illustrates operation of the LMP passive data link FSM in a
 form of FSM state transition diagram.

 +------+
 +----------->| |
 | +-------->| Down |<-----------+
 | | +-----| | | |
 | | | +------+ |
 | | |5b 4| ^ |
 | | | | |2 |
 | | | v | |
 | | | +----------+ |
 | | | | PasvTest | |
 | | | +----------+ |
 | | | 6| |
 | | | | |2
 | | | v |
 | |2,12 | +---------+ 4 +------------+
 | | +--->| Up/Free |---->| |
 | | | | | PasvRetest |
 | +----------| |<----| |
 | +---------+ 5b +------------+
 | 9| ^
 | | |
 |10 v |10
 +-----+ +---------+
 | | 2 | |
 | Deg |<--------|Up/Alloc |
 | |-------->| |
 +-----+ 1 +---------+

 Figure 7: Passive LMP Data Link FSM
9. LMP Message Formats

 All LMP messages are IP encoded (except, in some cases, the Test
 message are limited by the transport mechanism for in-band
 messaging) with protocol Id = 140 (value not yet assigned by IANA).

9.1. Common Header

 In addition to the standard IP header, all LMP messages (except, in
 some cases, the Test messages are limited by the transport mechanism
 for in-band messaging) have the following common header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 +-+
 | Vers | (Reserved) | Flags | Msg Type |
 +-+

Lang et al [Page 30]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 | LMP Length | Checksum |
 +-+
 | Local Control Channel Id |
 +-+

 Vers: 4 bits

 Protocol version number. This is version 1.

 Flags: 8 bits. The following values are defined. All other values
 are reserved.

 0x01: ControlChannelDown

 0x02: Node Reboot

 This bit is set to indicate the node has rebooted. This
 flag may be reset to 0 when a Hello message is received
 with RcvSeqNum equal to the local TxSeqNum.

 0x04: DWDM Node

 If this bit is set, the node is identifying itself as a
 DWDM system. This is used when running LMP-DWDM
 extensions as defined in [LMP-DWDM].

 0x08: Authenticatino

 When set, this bit indicates that an authentication
 block is attached at the end of the LMP message. See
 Sections 7 and 8.3 for more details.

 Msg Type: 8 bits. The following values are defined. All other
 values are reserved.

 1 = Config

 2 = ConfigAck

 3 = ConfigNack

 4 = Hello

 5 = BeginVerify

 6 = BeginVerifyAck

 7 = BeginVerifyNack

 8 = EndVerify

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 9 = EndVerifyAck

Lang et al [Page 31]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 10 = Test

 11 = TestStatusSuccess

 12 = TestStatusFailure

 13 = TestStatusAck

 14 = LinkSummary

 15 = LinkSummaryAck

 16 = LinkSummaryNack

 17 = ChannelFail

 18 = ChannelFailAck

 19 = ChannelFailNack

 20 = ChannelActive

 21 = ChannelActiveAck

 All of the messages are sent over the control channel EXCEPT
 the Test message which is sent over the data link that is being
 tested.

 LMP Length: 16 bits

 The total length of this LMP message in bytes, including the
 common header and any variable-length objects that follow.

 Checksum: 16 bits

 The standard IP checksum of the entire contents of the LMP
 message, starting with the LMP message header. This checksum is
 calculated as the 16-bit one's complement of the one's
 complement sum of all the 16-bit words in the packet. If the
 packet's length is not an integral number of 16-bit words, the
 packet is padded with a byte of zero before calculating the
 checksum.

 Local Control Channel Id: 32 bits

 The Local Control Channel Id (CCId) identifies the control
 channel of the sender associated with the message and is node-
 wide unique. This value MAY be ignored upon receipt of the
 Test message.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 32]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

9.2 LMP TLV Format

 Many LMP messages are TLV based. The format the LMP TLV is as
 follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |N| Type | Length |
 +-+
 | |
 // (TLV Object) //
 | |
 +-+

 N: 1 bit

 The N flag indicates if the object is a negotiable parameter
 (N=1) or a non-negotiable parameter (N=0).

 Type: 15 bits

 The Type field indicates the TLV type.

 Length: 16 bits

 The Length field indicates the length of the TLV object in
 bytes.

9.3 Authentication

 When authentication is used for LMP, the authentication itself is
 appended to the LMP packet. It is not considered to be a part of
 the LMP packet, but is transmitted in the same IP packet as shown
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 // LMP Common Header //
 | |
 +-+
 | |
 // LMP Payload //
 | |
 +-+
 | |
 // Authentication Block //
 | |

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 +-+

Lang et al [Page 33]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 The authentication block looks as follows:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 | Auth Type | Key ID | Auth Data Len |
 +-+
 | Cryptographic Sequence Number |
 +-+
 | |
 | MD5 Signature (16) |
 | |
 | |
 +-+

 Auth Type: 8 bits

 This defines the type of authentication used for LMP
 messages. The following authentication types are
 defined, all other are reserved for future use:

 0 No authentication
 1 Cryptographic authentication

 Key ID: 8 bits

 This field is defined only for cryptographic
 authentication.

 Auth Data Length: 8 bits
 This field contains the length of the data portion of the
 authentication block.

 LMP authentication is performed on a per control channel basis. The
 packet authentication procedure is very similar to the one used in
 OSPF, including multiple key support, key management, etc. The
 details specific to LMP are defined below.

 Sending authenticated packets

 When a packet needs to be sent over a control channel and an
 authentication method is configured for it, the Authentication flag
 in the LMP header is set to 1, the LMP Length field is set to the
 length of the LMP packet only, not including the authentication
 block.

 1) The Checksum field in the LMP packet is set to zero (this will
 make the receiving side drop the packet if authentication is not
 supported).
 2) The LMP authentication header is filled out properly. The message

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 digest is calculated over the LMP packet together with the LMP
 authentication header. The input to the message digest

Lang et al [Page 34]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 calculation consists of the LMP packet, the LMP authentication
 header, and the secret key. When using MD5 as the authentication
 algorithm, the message digest calculation proceeds as follows:

 (a) The authentication header is appended to the LMP packet.
 (b) The 16 byte MD5 key is appended after the LMP authentication
 header.
 (c) Trailing pad and length fields are added, as specified in
 [MD5].
 (d) The MD5 authentication algorithm is run over the
 concatenation of the LMP packet, authentication header,
 secret key, pad and length fields, producing a 16 byte
 message digest (see [MD5]).
 (e) The MD5 digest is written over the secret key (i.e., appended
 to the original authentication header).

 The authentication block is added to the IP packet right after the
 LMP packet, so IP packet length includes the length of both LMP
 packet and LMP authentication blocks.

 Receiving authenticated packets

 When an LMP packet with the Authentication flag set has been received
 on a control channel that is configured for authentication, it must
 be authenticated. The value of the Authentication field MUST match
 the authentication type configured for the control channel (if any).

 If an LMP protocol packet is accepted as authentic, processing of the
 packet continues. Packets that fail authentication are discarded.
 Note that the checksum field in the LMP packet header is not checked
 when the packet is authenticated.

 (1) Locate the receiving control channel's configured key having Key
 ID equal to that specified in the received LMP authentication
 block. If the key is not found, or if the key is not valid for
 reception (i.e., current time does not fall into the key's
 active time frame), the LMP packet is discarded.
 (2) If the cryptographic sequence number found in the LMP
 authentication header is less than the cryptographic sequence
 number recorded in the control channel data structure, the LMP
 packet is discarded.
 (3) Verify the message digest in the data portion of the
 authentication block in the following steps:
 (a) The received digest is set aside.
 (b) A new digest is calculated, as specified in the previous
 section.
 (c) The calculated and received digests are compared. If they
 do not match, the LMP packet is discarded. If they do

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 match, the LMP protocol packet is accepted as authentic, and
 the "cryptographic sequence number" in the control channel's

Lang et al [Page 35]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 data structure is set to the sequence number found in the
 packet's LMP header.

9.4 Parameter Negotiation

9.4.1 Config Message (MsgType = 1)

 The Config message is used in the negotiation phase of LMP. The
 contents of the Config message are built using TLV triplets. TLVs
 can be either negotiable or non-negotiable (identified by the N flag
 in the TLV header). Negotiable TLVs can be used to let the devices
 agree on certain values. Non-negotiable TLVs are used for
 announcement of specific values that do not need or do not allow
 negotiation. The format of the Config message is as follows:

 <Config Message> ::= <Common Header> <Config>

 The Config Object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node ID |
 +-+
 | MessageId |
 +-+
 | |
 // (Config TLVs) //
 | |
 +-+

 Node ID: 32 bits.

 This is the Node ID for the node.

 MessageId: 32 bits.

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgment.

9.4.1.1 HelloConfig TLV

 The HelloConfig TLV is TLV Type=1 and is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |N| 1 | 4 |

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 +-+
 | HelloInterval | HelloDeadInterval |

Lang et al [Page 36]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 +-+

 The Length field of HelloConfig is always set to 4.

 N: 1 bit

 The N flag indicates if the parameter is negotiable (N=1) or
 non-negotiable (N=0).

 HelloInterval: 16 bits.

 Indicates how frequently the Hello packets will be sent and is
 measured in milliseconds (ms).

 HelloDeadInterval: 16 bits.

 If no Hello packets are received within the HelloDeadInterval,
 the control channel is assumed to have failed and is measured
 in milliseconds (ms).

9.4.1.2 LMP Capability TLV

 The LMP Capability TLV is TLV Type=2 and is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |N| 2 | 4 |
 +-+
 | Capability Flags |
 +-+

 The Length field of LMP Capability TLV is always set to 4.

 N: 1 bit

 The N flag indicates if the parameter is negotiable (N=1) or
 non-negotiable (N=0).

 Capability Flags: 32 bits

 The Capability Flags indicate which extended LMP procedures
 will be supported. A value of 0 indicates that only the base
 LMP procedures are supported. More than one bit may be set to
 indicate multiple extended LMP procedures are supported.

 The following flags are defined:

 0x01 Link Verification Procedure

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 0x02 Fault Management Procedure

Lang et al [Page 37]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 0x04 LMP-DWDM Procedure. See [LMP-DWDM].

9.4.2 ConfigAck Message (MsgType = 2)

 The ConfigAck message is used to indicate the receipt of the Config
 message and indicate agreement on all parameters.

 <ConfigAck Message> ::= <Common Header> <ConfigAck>

 The ConfigAck Object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node ID |
 +-+
 | MessageId |
 +-+
 | Rcv Node ID |
 +-+
 | Rcv CCId |
 +-+

 Node ID: 32 bits.

 This is the Node ID for the node sending the ConfigAck message.

 MessageId: 32 bits.

 This is copied from the Config message being acknowledged.

 Rcv Node ID: 32 bits.

 This is copied from the Config message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the Config message being acknowledged.

9.4.3 ConfigNack Message (MsgType = 3)

 The ConfigNack message is used to indicate disagreement on non-
 negotiable parameters or propose other values for negotiable
 parameters. Parameters where agreement was reached MUST NOT be
 included in the ConfigNack Object. The format of the ConfigNack
 message is as follows:

 <ConfigNack Message> ::= <Common Header> <ConfigNack>

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 The ConfigNack Object has the following format:

Lang et al [Page 38]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node ID |
 +-+
 | MessageId |
 +-+
 | Rcv Node ID |
 +-+
 | Rcv CCId |
 +-+
 | |
 // (Config TLVs) //
 | |
 +-+

 Node ID: 32 bits.

 This is the Node ID for the node.

 MessageId: 32 bits.

 This is copied from the Config message being negatively
 acknowledged.

 Rcv Node ID: 32 bits.

 This is copied from the Config message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the Config message being negatively acknowledged.

 The Config TLVs MUST include acceptable values for all negotiable
 parameters. If the ConfigNack includes Config TLVs for non-
 negotiable parameters, they MUST be copied from the Config TLVs
 received in the Config message.

9.5 Hello Message (MsgType = 4)

 The format of the Hello message is as follows:

 <Hello Message> ::= <Common Header> <Hello>.

 The Hello object format is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 +-+
 | TxSeqNum |

Lang et al [Page 39]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 +-+
 | RcvSeqNum |
 +-+

 TxSeqNum: 32 bits

 This is the current sequence number for this Hello message.
 This sequence number will be incremented when either (a) the
 sequence number is reflected in the RcvSeqNum of a Hello packet
 that is received over the control channel, or (b) the Hello
 packet is transmitted over a backup control channel.

 TxSeqNum=0 is not allowed.

 TxSeqNum=1 is reserved to indicate that a node has booted or
 rebooted.

 RcvSeqNum: 32 bits

 This is the sequence number of the last Hello message received
 over the control channel. RcvSeqNum=0 is reserved to indicate
 that a Hello message has not yet been received.

9.6 Link Verification

9.6.1 BeginVerify Message (MsgType = 5)

 The BeginVerify message is sent over the control channel and is used
 to initiate the link verification process. The format is as
 follows:

 <BeginVerify Message> ::= <Common Header> <BeginVerify>

 The BeginVerify object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | VerifyInterval |
 +-+
 | MessageId |
 +-+
 | Local TE Link Id |
 +-+
 | Remote TE Link Id |
 +-+
 | Number of Data Links |
 +-+
 | EncType | Verify Transport Mechanism |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 | BitRate |
 +-+

Lang et al [Page 40]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 | Wavelength |
 +-+

 Flags: 16 bits

 The following flags are defined:
 0x01 TE Link type
 If this bit is set, the TE Link Id is numbered;
 otherwise the TE Link Id is unnumbered.
 0x02 Verify all Links
 If this bit is set, the verification process checks all
 unallocated links; else it only verifies new ports or
 component links that have been added to this TE link.
 0x04 Data Link Type
 If set, the data links to be verified are ports,
 otherwise they are component links

 VerifyInterval: 16 bits

 This is the interval between successive Test messages and is
 measured in milliseconds (ms).

 MessageId: 32 bits

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgment in the BeginVerifyAck and BeginVerifyNack
 messages.

 Local TE Link Id: 32 bits

 This identifies the TE LinkId of the local node, which may be
 numbered or unnumbered (see Flags), for the ports or component
 links that are being verified. If this value is set to 0, the
 port or component links to be verified are not yet locally
 assigned to a TE link.

 Remote TE Link Id: 32 bits

 This identifies the TE Link Id of the remote node, which may be
 numbered or unnumbered (see Flags), for the ports or component
 links that are being verified. If this value is set to 0, the
 local node has no knowledge of the remote TE Link Id. It is
 expected that for unnumbered TE LinkÆs this will be set to 0.

 Number of Data Links: 32 bits

 This is the number of data links that will be verified.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 EncType: 16 bits

Lang et al [Page 41]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 This is the encoding type of the data link and is required for
 the purpose of testing where the data links are not required to
 be the same encoding type as the control channel. The defined
 EncType values are consistent with the Link Encoding Type
 values of [OSPF-GEN] and [ISIS-GEN].

 Verify Transport Mechanism: 16 bits

 This defines the transport mechanism for the Test Messages. The
 scope of this bit mask is restricted to each link encoding
 type. The local node will set the bits corresponding to the
 various mechanisms it can support for transmitting LMP test
 messages. The receiver chooses the appropriate mechanism in the
 BeginVerifyAck message.

 For SONET/SDH Encoding Type, the following flags are defined:
 0x01 Capable of communicating using JO overhead bytes.
 Test Message is transmitted using the J0 bytes.
 0x02 Capable of communicating using Section DCC bytes.
 Test Message is transmitted using the DCC Section
 Overhead bytes with an HDLC framing format.
 0x04 Capable of communicating using Line DCC bytes.
 Test Message is transmitted using the DCC Line Overhead
 bytes with an HDLC framing format.
 0x08 Capable of communicating using POS.
 Test Message is transmitted using Packet over SONET
 framing using the encoding type specified in the
 EncType field.

 For GigE Encoding Type, the following flags are defined: TBD

 For 10GigE Encoding Type, the following flags are defined: TBD

 BitRate: 32 bits

 This is the bit rate of the data link over which the Test
 messages will be transmitted and is expressed in bytes per
 second.

 Wavelength: 32 bits

 When a data link is assigned to a port or component link that
 is capable of transmitting multiple wavelengths (e.g., a fiber
 or waveband-capable port), it is essential to know which
 wavelength the test messages will be transmitted over. This
 value corresponds to the wavelength at which the Test messages
 will be transmitted over and is measured in nanometers (nm).
 If each data link corresponds to a separate wavelength and
 there is no ambiguity as to the wavelength over which the

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 message will be sent, than this value SHOULD be set to 0.

Lang et al [Page 42]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

9.6.2 BeginVerifyAck Message (MsgType = 6)

 When a BeginVerify message is received and Test messages are ready
 to be processed, a BeginVerifyAck message MUST be transmitted.

 <BeginVerifyAck Message> ::= <Common Header> <BeginVerifyAck>

 The BeginVerifyAck object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+
 | VerifyDeadInterval | Verify Transport Response |
 +-+
 | VerfifyId |
 +-+
 MessageId: 32 bits

 This is copied from the BeginVerify message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the BeginVerify message being negatively acknowledged.

 VerifyDeadInterval: 16 bits

 If a Test message is not detected within the
 VerifyDeadInterval, then a node will send the TestStatusFailure
 message for that data link.

 Verification Transport Response: 16 bits

 It is illegal to set more than one bit in the verification
 transport response. The recipient of the BeginVerify message
 (and the future recipient of the TEST messages) chooses the
 transport mechanism from the various types that are offered by
 the transmitter of the Test messages.

 VerifyId: 32 bits

 This is used to differentiate Test messages from different TE
 links and/or LMP peers. The recipient of the BeginVerify
 message assigns this value and it MUST node unique. This is a
 node-unique value that is assigned by the recipient of the
 BeginVerify message.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

9.6.3 BeginVerifyNack Message (MsgType = 7)

Lang et al [Page 43]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 If a BeginVerify message is received and a node is unwilling or
 unable to begin the Verification procedure, a BeginVerifyNack
 message MUST be transmitted.

 <BeginVerifyNack Message> ::= <Common Header> <BeginVerifyNack>

 The BeginVerifyNack object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+
 | Error Code | (Reserved) |
 +-+

 MessageId: 32 bits

 This is copied from the BeginVerify message being negatively
 acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the BeginVerify message being negatively acknowledged.

 Error Code: 16 bits

 The following values are defined:
 1 = Unwilling to verify at this time
 2 = TE Link Id configuration error
 3 = Unsupported verification transport mechanism

 If a BeginVerifyNack message is received with Error Code 1, the node
 that originated the BeginVerify SHOULD schedule a BeginVerify
 retransmission after Rf seconds, where Rf is a locally defined
 parameter.

9.6.4 EndVerify Message (MsgType = 8)

 The EndVerify message is sent over the control channel and is used
 to terminate the link verification process. The EndVerify message
 may be sent at any time a node desires to end the Verify procedure.
 The format is as follows:

 <EndVerify Message> ::= <Common Header> <EndVerify>

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 The EndVerify object has the following format:

Lang et al [Page 44]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | VerifyId |
 +-+

 MessageId: 32 bits

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgement in the EndVerifyAck message.

 VerifyId: 32 bits

 This is the VerifyId corresponding to the link verification
 process that is being terminated.

9.6.5 EndVerifyAck Message (MsgType =9)

 The EndVerifyAck message is sent over the control channel and is
 used to acknowledge the termination of the link verification
 process. The format is as follows:

 <EndVerifyAck Message> ::= <Common Header> <EndVerifyAck>

 The EndVerifyAck object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+

 MessageId: 32 bits

 This is copied from the EndVerify message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the EndVerify message being acknowledged.

9.6.6 Test Message

 The Test message is transmitted over the data link and is used to

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 verify its physical connectivity. Unless explicitly stated below,
 this is transmitted as an IP packet with payload format as follows:

Lang et al [Page 45]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 <Test Message> ::= <Common Header> <Test>

 The Test object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | VerifyId |
 +-+
 | Interface Id |
 +-+

 VerifyId: 32 bits

 The VerifyId identifies the link verification procedure with
 which the data link verification is associated.

 Interface Id: 32 bits

 The Interface Id identifies the data link (either port or
 component link) over which this message is sent. A valid
 Interface Id MUST be nonzero.

 Note that this message is sent over a data link and NOT over the
 control channel.

9.6.7 TestStatusSuccess Message (MsgType = 10)

 The TestStatusSuccess message is transmitted over the control
 channel and is used to transmit the mapping between the local
 Interface Id and the Interface Id that was received in the Test
 message.

 <TestStatus Message> ::= <Common Header> <TestStatusSuccess>

 The TestStatusSuccess object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Received Interface Id |
 +-+
 | Local Interface Id |
 +-+
 | VerifyId |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 MessageId: 32 bits

Lang et al [Page 46]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgement in the TestStatusAck message.

 Received Interface Id: 32 bits

 This is the value of the Interface Id that was received in the
 Test message. A valid Interface Id MUST be nonzero.

 Local Interface Id: 32 bits

 This is the local value of the Interface Id. A valid Interface
 Id MUST be nonzero.

 VerifyId: 32 bits

 The VerifyId identifies the link verification procedure with
 which the data link is associated.

9.6.8 TestStatusFailure Message (MsgType = 11)

 The TestStatusFailure message is transmitted over the control
 channel and is used to indicate that the Test message was not
 received.

 <TestStatus Message> ::= <Common Header> <TestStatusFailure>

 The TestStatusFailure object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | VerifyId |
 +-+

 MessageId: 32 bits

 When combined with the CCId and MsgType, the MessageId field
 uniquely identifies a message. This value is incremented and
 only decreases when the value wraps. This is used for message
 acknowledgement in the TestStatusAck message.

 VerifyId: 32 bits

 The VerifyId identifies the link verification procedure for
 which the timer has expired and no TEST messages have been
 received.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 47]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

9.6.9 TestStatusAck Message (MsgType = 12)

 The TestStatusAck message is used to acknowledge receipt of the
 TestStatusSuccess or TestStatusFailure messages.

 <TestStatusAck Message> ::= <Common Header> <TestStatusAck>

 The TestStatusAck object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+

 MessageId: 32 bits

 This is copied from the TestStatusSuccess or TestStatusFailure
 message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the TestStatusSuccess or TestStatusFailure message being
 acknowledged.

9.7 Link Summary Messages

9.7.1 LinkSummary Message (MsgType = 13)

 The LinkSummary message is used to synchronize the Interface Ids and
 correlate the properties of the TE link. The format of the
 LinkSummary message is as follows:

 <LinkSummary Message> ::= <Common Header> <LinkSummary>

 The LinkSummary Object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | |
 // (LinkSummary TLVs) //
 | |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 MessageId: 32 bits

Lang et al [Page 48]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgement in the LinkSummaryAck and LinkSummaryNack
 messages.

9.7.1.1 TE Link TLV

 The TE Link TLV is TLV Type=3 and is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| 3 | 0xC |
 +-+
 | Flags | Link Mux Cap | Prot. Type | (Reserved) |
 +-+
 | Local TE Link Id |
 +-+
 | Received TE Link Id |
 +-+

 The TE Link TLV is non-negotiable.

 Flags: 8 bits

 The following flags are defined:
 0x01 TE Link Id Type
 If this bit is set, the TE Link Id is numbered;
 otherwise the TE Link Id is unnumbered.

 Link Mux Cap: 8 bits

 This is used to identify the associated
 multiplexing/demultiplexing capability of the TE link. See
 [LSP-HIER].

 Protection Type: 8 bits

 The Protection Type Flags indicate the link protection, if any,
 that is used. Multiple bits may be set when multiple link
 protection types are available. The following flags are
 defined:

 0x01 Extra Traffic

 Indicates that the TE link is protecting one or more
 (primary) link(s). Any LSPs using a link of this
 type will be lost if the primary links being
 protected fail.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 0x02 Unprotected

Lang et al [Page 49]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Indicates that the link is unprotected.

 0x04 Shared (M:N)

 Indicates that the link is protected using a M:N
 shared protection scheme.

 0x08 Dedicated 1:1

 Indicates that the link is protected using a 1:1
 dedicated link protection scheme,

 0x10 Dedicated 1+1

 Indicates that the link is protected using a 1+1
 dedicated link protection scheme.

 Local TE Link Id: 32 bits

 This identifies the TE link of the local node, which may be
 numbered or unnumbered (see Flags).

 Remote TE Link Id: 32 bits

 This identifies the TE link of the remote node, which may be
 numbered or unnumbered (see Flags). If the local node has no
 knowledge of the remote TE Link Id, this value MUST be set to
 0.

9.7.1.2 Data-link TLV

 The Data Link TLV is TLV Type=4 and is defined as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| 4 | Length |
 +-+
 | Flags | Link Type | (Reserved) |
 +-+
 | Local Interface Id |
 +-+
 | Received Interface Id |
 +-+
 | |
 // (Data-link sub-TLVs) //
 | |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 The Data Link TLV is non-negotiable.

Lang et al [Page 50]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Length: 16 bits

 The Length of the Primary Data Link TLV including all data-link sub-
 TLVs.

 Flags: 8 bits

 The following flags are defined. All other values are
 reserved.

 0x01 Interface Type: If set, the data link is a port,
 otherwise it is a component link.
 0x02 Allocated Link: If set, the data link is currently
 allocated for user traffic.

 Link Type: 8 bits

 This is used to identify the encoding type of the data link.
 See [OSPF-GEN] or [ISIS-TE].

 Local Interface Id: 32 bits

 This is the local value of the Interface Id (for the port or
 component link) or CCId (for control channel).

 Received Interface Id: 32 bits

 This is the value of the corresponding Interface Id. If this
 is a port or component link, then this is the value that was
 received in the Test message. If this is the primary control
 channel, then this is the value that is received in all of the
 Verify messages.

9.7.1.3 Data Link Sub-TLV

 The data link sub-TLV is used to provide characteristics of the
 data-bearing links. Currently, there are no data link sub-TLVs
 defined.

9.7.2 LinkSummaryAck Message (MsgType = 14)

 The LinkSummaryAck message is used to indicate agreement on the
 Interface Id synchronization and acceptance/agreement on all the
 link parameters. It is on the reception of this message that the
 local node makes the TE Link Id associations.

 <LinkSummaryAck Message> ::= <Common Header> <LinkSummaryAck>

 The LinkSummaryAck object has the following format:

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Lang et al [Page 51]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 +-+
 | Flags | Reserved |
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+
 | Local TE Link Id |
 +-+
 | Remote TE Link Id |
 +-+

 Flags: 8 bits

 The following flags are defined:
 0x01 TE Link Id type
 If this bit is set, the TE Link Id is numbered;
 otherwise the TE Link Id is unnumbered.

 MessageId: 32 bits

 This is copied from the LinkSummary message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the LinkSummary message being acknowledged.

 Local TE Link Id: 32 bits

 This identifies the TE Link Id of the local node, which may be
 numbered or unnumbered (see Flags).

 Remote TE Link Id: 32 bits

 This identifies the TE Link Id of the remote node, which may be
 numbered or unnumbered (see Flags).

9.7.3 LinkSummaryNack Message (MsgType = 15)

 The LinkSummaryNack message is used to indicate disagreement on non-
 negotiated parameters or propose other values for negotiable
 parameters. Parameters where agreement was reached MUST NOT be
 included in the LinkSummaryNack Object.

 <LinkSummaryNack Message> ::= <Common Header> <LinkSummaryNack>

 The LinkSummaryNack object has the following format:

 0 1 2 3

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

Lang et al [Page 52]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 | MessageId |
 +-+
 | Rcv CCId |
 +-+
 | |
 // (LinkSummary TLVs) //
 | |
 +-+

 MessageId: 32 bits

 This is copied from the LinkSummary message being negatively
 acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the LinkSummary message being negatively acknowledged.

 The LinkSummary TLVs MUST include acceptable values for all
 negotiable parameters. If the LinkSummaryNack includes LinkSummary
 TLVs for non-negotiable parameters, they MUST be copied from the
 LinkSummary TLVs received in the LinkSummary message.

9.8 Fault Management Messages

9.8.1 ChannelFail Message (MsgType = 16)

 The ChannelFail message is sent over the control channel and is used
 to notify a neighboring node that a data link (port or component
 link) failure has been detected. A neighboring node that receives a
 ChannelFail message MUST respond with either a ChannelFailAck or a
 ChannelFailNack message indicating that a failure has also been
 detected in the corresponding data link in the neighboring node.
 The format is as follows:

 <ChannelFail Message> ::= <Common Header> <ChannelFail>

 The format of the ChannelFail object is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Local TE Link Id |
 +-+
 | |
 // (Failure TLVs) //
 | |

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 +-+

Lang et al [Page 53]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 MessageId: 32 bits

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgement in the ChannelFailAck and ChannelFailNack
 messages.

 Local TE Link Id: 32 bits

 This is the local TE Link Id for the failed TE link.

 If no Failure TLVs are included, the ChannelFail message indicates
 the entire TE Link has failed.

9.8.1.2 Failed Channel TLV

 The Failed Channel TLV is TLV Type=5. This TLV contains one or more
 Failed Channels of a TE link and has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| 5 | Length |
 +-+
 | |
 // (Local Interface Ids) //
 | |
 +-+

 The Failed Channel TLV is non-negotiable.

 Length: 16 bits

 The Length has a minimum value of 0x08 and MUST be a multiple
 of 4.

 Local TE Link Id: 32 bits

 This is the local TE Link Id within which the data link has
 failed.

 Local Interface Id: 32 bits

 This is the local Interface Id (either Port Id or Component
 Interface Id) of the data link that has failed. This is within
 the scope of the TE Link Id. Multiple Local Interface Ids may
 be placed into a single Failed Channel TLV if they belong to
 the same TE Link.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

9.8.2 ChannelFailAck Message (MsgType = 17)

Lang et al [Page 54]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 The ChannelFailAck message is used to indicate that all of the
 reported failures in the ChannelFail message also have failures on
 the corresponding input channels. The format is as follows:

 <ChannelFailureAck Message> ::= <Common Header> <ChannelFailureAck>

 The ChannelFailureAck object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+

 MessageId: 32 bits

 This is copied from the ChannelFail message being acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the ChannelFail message being acknowledged.

9.8.3 ChannelFailNack Message (MsgType = 18)

 The ChannelFailNack message is used to indicate that the reported
 failures are CLEAR in the upstream node, and hence, the failure has
 been isolated between the two nodes.

 <ChannelFailNack Message> ::= <Common Header> <ChannelFailNack>

 The ChannelFailNack object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+
 | |
 // (Failure TLVs) //
 | |
 +-+

 MessageId: 32 bits

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 This is copied from the ChannelFail message being negatively
 acknowledged.

Lang et al [Page 55]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the ChannelFail message being negatively acknowledged.

9.8.4 ChannelActive Message (MsgType = 19)

 The ChannelActive message is sent over the control channel and is
 used to notify a neighboring node that a data link (port or
 component link) is now carrying user data traffic. A
 ChannelActiveAck message MUST be sent to acknowledge receipt of the
 ChannelActive message. The format is as follows:

 <ChannelActive Message> ::= <Common Header> <ChannelActive>

 The format of the ChannelActive object is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Local TE Link Id |
 +-+
 | |
 // (Active TLVs) //
 | |
 +-+

 MessageId: 32 bits

 When combined with the CCId, the MessageId field uniquely
 identifies a message. This value is incremented and only
 decreases when the value wraps. This is used for message
 acknowledgement in the ChannelActiveAck message.

 Local TE Link Id: 32 bits

 This is the local TE Link Id within which the data link has
 become active.

 There MUST be at least one Active TLV.

9.8.4.1 Active Channel TLV

 The Active Channel TLV is TLV Type=6. This TLV contains one or more
 Active Channels of a TE link and has the following format:

 0 1 2 3

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+

Lang et al [Page 56]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 |0| 6 | Length |
 +-+
 | |
 // (Local Interface Ids) //
 | |
 +-+

 The Active Channel TLV is non-negotiable.

 Length: 16 bits

 The Length has a minimum value of 0x08 and MUST be a multiple
 of 4.

 Local Interface Id: 32 bits

 This is the local Interface Id (either Port Id or Component
 Interface Id) of the data link that has become active. This is
 within the scope of the TE Link Id. Multiple Local Interface
 Ids may be placed into a single Active Channel TLV if they
 belong to the same TE Link.

9.8.5 ChannelActiveAck Message (MsgType = 20)

 The ChannelActiveAck message is used to acknowledge receipt of the
 ChannelActive message. The format is as follows:

 <ChannelActiveAck Message> ::= <Common Header> <ChannelActiveAck>

 The ChannelActiveAck object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MessageId |
 +-+
 | Rcv CCId |
 +-+

 MessageId: 32 bits

 This is copied from the ChannelActive message being
 acknowledged.

 Rcv CCId: 32 bits

 This is the Control Channel Id copied from the Common Header of
 the ChannelActive message being acknowledged.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt

Lang et al [Page 57]

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

10. Security Considerations

 LMP exchanges may be authenticated using the Cryptographic
 authentication option. MD5 is currently the only message digest
 algorithm specified.

11. References

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3," BCP 9, RFC 2026, October 1996.
 [LAMBDA] Awduche, D. O., Rekhter, Y., Drake, J., Coltun, R.,
 "Multi-Protocol Lambda Switching: Combining MPLS Traffic
 Engineering Control with Optical Crossconnects,"
 Internet Draft, draft-awduche-mpls-te-optical-02.txt,
 (work in progress), July 2000.
 [PERF-MON] Ceuppens, L., Blumenthal, D., Drake, J., Chrostowski,
 J., Edwards, W. L., "Performance Monitoring in Photonic
 Networks," Internet Draft, draft-ceuppens-mpls-optical-

00.txt, (work in progress), March 2000.
 [BUNDLE] Kompella, K., Rekhter, Y., Berger, L., ôLink Bundling in
 MPLS Traffic Engineering,ö Internet Draft, draft-

kompella-mpls-bundle-04.txt, (work in progress), November
 2000.
 [RSVP-TE] Awduche, D. O., Berger, L., Gan, D.-H., Li, T.,
 Srinivasan, V., Swallow, G., "Extensions to RSVP for LSP
 Tunnels," Internet Draft, draft-ietf-mpls-rsvp-lsp-

tunnel-07.txt, (work in progress), August 2000.
 [CR-LDP] Jamoussi, B., et al, "Constraint-Based LSP Setup using
 LDP," Internet Draft, draft-ietf-mpls-cr-ldp-03.txt,
 (work in progress), September 1999.
 [OSPF-TE] Katz, D., Yeung, D., "Traffic Engineering Extensions to
 OSPF," Internet Draft, draft-katz-yeung-ospf-traffic-

03.txt, (work in progress), August 2000.
 [ISIS-TE] Li, T., Smit, H., "IS-IS extensions for Traffic
 Engineering," Internet Draft,draft-ietf-isis-traffic-

02.txt, (work in progress), September 2000.
 [OSPF] Moy, J., "OSPF Version 2," RFC 2328, April 1998.
 [LMP-DWDM] Fredette, A., Snyder, E., Shantigram, J., et al, ôLink
 Management Protocol (LMP) for WDM Transmission Systems,ö
 Internet Draft, draft-fredette-lmp-wdm-00.txt, (work in
 progress), December 2000.
 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm," RFC

1321, April 1992.
 [OSPF-GEN] Kompella, K., Rekhter, Y., Banerjee, A., et al, "OSPF
 Extensions in Support of Generalized MPLS," Internet
 Draft, draft-kompella-ospf-extensions-00.txt, (work in
 progress), July 2000.
 [ISIS-GEN] Kompella, K., Rekhter, Y., Banerjee, A., et al, "IS-IS
 Extensions in Support of Generalized MPLS," Internet

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/draft-awduche-mpls-te-optical-02.txt
https://datatracker.ietf.org/doc/html/draft-ceuppens-mpls-optical-00.txt
https://datatracker.ietf.org/doc/html/draft-ceuppens-mpls-optical-00.txt
https://datatracker.ietf.org/doc/html/draft-kompella-mpls-bundle-04.txt
https://datatracker.ietf.org/doc/html/draft-kompella-mpls-bundle-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-cr-ldp-03.txt
https://datatracker.ietf.org/doc/html/draft-katz-yeung-ospf-traffic-03.txt
https://datatracker.ietf.org/doc/html/draft-katz-yeung-ospf-traffic-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-isis-traffic-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-isis-traffic-02.txt
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/draft-fredette-lmp-wdm-00.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/draft-kompella-ospf-extensions-00.txt

 Draft, draft-kompella-isis-extensions-00.txt, (work in
 progress), July 2000.

Lang et al [Page 58]

https://datatracker.ietf.org/doc/html/draft-kompella-isis-extensions-00.txt

Internet Draft draft-ietf-mpls-lmp-02.txt September 2001

 [LSP-HIER] Kompella, K. and Rekhter, Y., ôLSP Hierarchy with MPLS
 TE,ö Internet Draft, draft-ietf-mpls-lsp-hierarchy-

01.txt, (work in progress), September 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lmp-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lsp-hierarchy-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-lsp-hierarchy-01.txt

Lang et al [Page 59]

12. Acknowledgments

 The authors would like to thank Ayan Banerjee, George Swallow, Andre
 Fredette, and Adrian Farrel for their insightful comments and
 suggestions. We would also like to thank John Yu, Suresh Katukan,
 and Greg Bernstein for their helpful suggestions for the in-band
 control channel applicability.

13. Author's Addresses

 Jonathan P. Lang Krishna Mitra
 Calient Networks Calient Networks
 25 Castilian Drive 5853 Rue Ferrari
 Goleta, CA 93117 San Jose, CA 95138
 Email: jplang@calient.net email: krishna@calient.net

 John Drake Kireeti Kompella
 Calient Networks Juniper Networks, Inc.
 5853 Rue Ferrari 385 Ravendale Drive
 San Jose, CA 95138 Mountain View, CA 94043
 email: jdrake@calient.net email: kireeti@juniper.net

 Yakov Rekhter Lou Berger
 Juniper Networks, Inc. Movaz Networks
 385 Ravendale Drive email: lberger@movaz.com
 Mountain View, CA 94043
 email: yakov@juniper.net

 Debanjan Saha Debashis Basak
 Tellium Optical Systems Accelight Networks
 2 Crescent Place 70 Abele Road, Suite 1201
 Oceanport, NJ 07757-0901 Bridgeville, PA 15017-3470
 email:dsaha@tellium.com email: dbasak@accelight.com

 Hal Sandick Alex Zinin
 Nortel Networks Cisco Systems
 email: hsandick@nortelnetworks.com 150 W. Tasman Dr.
 San Jose, CA 95134
 email: azinin@cisco.com
 Bala Rajagopalan
 Tellium Optical Systems
 2 Crescent Place
 Oceanport, NJ 07757-0901
 email: braja@tellium.com

Lang/Mitra et al [Page 1]

