
Network Working Group A. Farrel
Internet-Draft Juniper Networks
Intended status: Experimental S. Farrell
Expires: January 23, 2016 Trinity College, Dublin
 July 23, 2015

Opportunistic Security in MPLS Networks
draft-ietf-mpls-opportunistic-encrypt-00.txt

Abstract

 This document describes a way to apply opportunistic security
 between adjacent nodes on an MPLS Label Switched Path (LSP) or
 between end points of an LSP. It explains how keys may be agreed
 to enable encryption, and how key identifiers are exchanged in
 encrypted MPLS packets. Finally, this document describes the
 applicability of this approach to opportunistic security in MPLS
 networks with an indication of the level of improved security as
 well as the continued vulnerabilities.

 This document does not describe security for MPLS control plane
 protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Farrel and Farrell [Page 1]

Internet-Draft Opportunistic MPLS Security July 2015

 described in the Simplified BSD License.

Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Table of Contents

1. Introduction ... 3
1.1. Experimental Status .. 4
1.2. Existing Security Tools for MPLS Data 5
2. Principles of Opportunistic Security 5
2.1. Why Do We Need Opportunistic Security? 5
2.2. Opportunistic Security at 10,000ft 7
2.3. What about a Man-in-the-Middle? 8
2.4. OS in MPLS Overview .. 9
3. MPLS Packet Encryption .. 11
3.1. MPLS Encryption Label 14
3.2. Control Word .. 14
3.3. Considerations for ECMP 15
3.4. Backward Compatibility 16
3.5. MTU Considerations .. 17
3.6. Recursive Encryption .. 17
4. Key Exchange For Opportunistic Security in MPLS 17
4.1. Initiating MPLS-OS .. 18
4.2. MPLS G-ACh Advertisement Protocol for Key Exchange 19
4.3. Key Exchange Protocol 19
4.4. Indicating the Return Path 24
4.5. Protecting the Key Exchange Protocol Messages 25
5. Applicability of MPLS Opportunistic Security 25
5.1. Tunnel MPLS Packets ... 27
5.2. Penultimate Hop Popping 28
6. Security Considerations 29
6.1. Security Improvements 29
6.2. Applicability ... 29
6.3. Continued Vulnerabilities 29
6.4. New Security Considerations 29
7. Manageability Considerations 30
7.1. MITM Detection .. 30
8. IANA Considerations .. 30
8.1. GAP Key Exchange TLV .. 30
8.2. Key Derivation Functions and Symmetric Algorithms 31
9. Acknowledgements ... 31
10. References .. 31
10.1. Normative References 31
10.2. Informative References 32

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

 Authors' Addresses ... 34

Farrel and Farrell [Page 2]

Internet-Draft Opportunistic MPLS Security July 2015

1. Introduction

 MPLS is an established data plane protocol in the Internet. It is
 found in the majority of core service provider networks and most end-
 to-end traffic in the Internet will be carried over MPLS at some
 point in its path. The MPLS data plane is defined by [RFC3031] and
 [RFC3032].

 Data security (e.g., confidentiality) in MPLS has previously relied
 on just two features:

 - Physical isolation of MPLS networks has been used to ensure that
 interception of MPLS traffic was not possible.

 - Higher-layer protocol security (such as IPsec [RFC4302], [RFC4303])
 has been used whenever a particular flow has determined that
 security was desirable.

 These features have a number of significant vulnerabilities:

 - Networks are increasingly easily compromised physically such that
 "taps" may be inserted in links between routers [RFC7258].

 - Routers may be compromised either in their entirety or through
 the management/control plane (or misconfiguration). This may
 result in packets being diverted to transit inspection points on
 their way to their destination.

 - The increased support for point-to-multipoint (P2MP) MPLS means
 that routers can easily be configured (or misconfigured) to make a
 copy of data and to send it to an additional destination.

 - End-to-end payload security may be hard to manage and operate and
 is not turned on by default by many users. While this form of
 security is desirable, the network should also improve the security
 of data transfer that it offers.

 The concept of Opportunistic Security (OS) is introduced in
 [RFC7435]. This document describes an OS design pattern for the MPLS
 data plane. It shows what part of an MPLS packet may be encrypted
 and provides a way to indicate that the packet is encrypted as well
 as to carry a key identifier with each packet.

 MPLS opportunistic security can be achieved between adjacent Label
 Switching Routers (LSRs) on an MPLS Label Switched Path (LSP), and
 also between end points of an LSP.

 This document also provides a mechanism for keys to be exchanged to

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7435

Farrel and Farrell [Page 3]

Internet-Draft Opportunistic MPLS Security July 2015

 facilitate encryption. Finally, this document describes the
 applicability of OS in MPLS networks with an indication of the level
 of improved security as well as the continued vulnerabilities.

 This document does not describe security for MPLS control plane
 protocols.

 Please note that a discussion of the applicability of MPLS
 opportunistic security is provided in Section 5.

1.1. Experimental Status

 This document is presented as experimental. Before advancing this
 work on the IETF's Standards Track, it is important to get experience
 of the practicality of the mechanisms described. In particular
 whether it is practical to achieve these mechanisms in existing
 hardware, and whether the imposition of additional MPLS labels is
 acceptable in the MPLS data plane. Additionally, the consequences
 of the reduced MTU caused by inserting the additional MPLS label and
 control word as well as the fact that the encrypted packet will be
 larger than the unencrypted packet need to be investigated.

 It is currently believed that MPLS OS can be deployed progressively
 without the need to negotiate capabilities outside the key exchange
 mechanisms described here. This means that no specific walled garden
 needs to be described in this document.

 Experimentation and further investigation of the security aspects of
 these mechanisms are encouraged especially with regard to mitigation
 of man-in-the-middle attacks. Consideration of the impact of MPLS OS
 on MPLS Operations, Administration, and Management (OAM) and other
 MPLS management techniques also needs further exploration.

 The key functions of MPLS OS described in Section 2.4 are based on
 an initial set of choices that may be adequate for MPLS OS. However,
 security knowledge is evolving and it may be advisable to "upgrade"
 for example to Elliptic Curve Diffie-Hellman (ECDH) [RFC6239], using
 NIST curves or new curves (such as 25519). Furthermore, alternative
 key derivation functions could be chosen, or symmetric cipher mode
 could be used. Note that changing to a symmetric cipher that is
 faster in software, but less likely to be available in hardware would
 not be a good change.

Section 2.4 also describes the frequency with which keys should be
 changed. The values described here should be subject to more
 research and experimentation since key change is fundamental to the
 actual security of the encryption.

https://datatracker.ietf.org/doc/html/rfc6239

Farrel and Farrell [Page 4]

Internet-Draft Opportunistic MPLS Security July 2015

Section 4.3.3 defines the input parameters to the key derivation
 function and includes the LSP identifier. This identifier is only
 needed if the scope of the key is per LSP. This document is written
 on that assumption because of the need to rotate the key after a
 certain number of packets have been transmitted. However, this could
 be the subject of some investigation since dropping the LSP
 identifier would simplify the TLV and the computation. It would also
 address the issue of identifying the LSP in the case of LDP.

Section 4.3.3 also specifies that the alt is not used. Further
 investigation is needed to see whether this input parameter would add
 value.

 Note that this experiment uses a special-purpose MPLS label. Since
 this document is experimental it makes use of an extended special-
 purpose label from the experimental range. If this work is moved to
 be published on the standards track, it will be possible to achieve
 the same function using a simple special-purpose label rather than an
 extended special-purpose label.

1.2. Existing Security Tools for MPLS Data

 This section is a placeholder for text that needs to be added to
 describe existing security tools for securing MPLS Data. The text
 needs to describe the use of IPsec used for the payload of MPLS LSPs,
 and should also cover the use of link layer security (such as
 MACsec).

>>> TBD

2. Principles of Opportunistic Security

 This section provides an overview of opportunistic security in the
 context of MPLS. Readers are advised to familiarize themselves with
 some of the attack vectors discussed in [RFC7258] and with the more
 general description of opportunistic security as described in
 [RFC7435]. The text here is intended for the consumption of MPLS
 experts who may not have a background in security: it is, therefore,
 tutorial and simplistic in nature.

2.1. Why Do We Need Opportunistic Security?

 To introduce this discussion we start from a basic view of how
 encryption is typically used in IETF protocols.

 Say we have two protocol entities, Alice and Bob, and they would like
 some message "M" sent from Alice to Bob to have confidentiality.
 Alice needs to send M encrypted with algorithm "E" under some

https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7435

Farrel and Farrell [Page 5]

Internet-Draft Opportunistic MPLS Security July 2015

 symmetric (e.g., AES) key, "k". Thus Alice wants to send Bob
 "E(k,M)", but for Bob to be able to understand (i.e., decrypt) the
 message Alice and Bob both need to agree on the key that will be
 used: this is called their shared secret.

 In many IETF protocols, such as the common usage of Transport Layer
 Security (TLS) S/MIME Cryptographic Message Syntax (CMS) or Pretty
 Good Privacy (PGP), Alice simply invents a random key "k" and then
 encrypts that under Bob's public key "Pub-b" and sends Bob both
 E(Pub-b,k) and E(k,M). (There are lots of other details and other
 options for how this can be handled, but we ignore those for now.)
 In such cases, before Alice can send "E(k,M)", she needs to acquire
 Bob's public key and she needs to be certain that it really is Bob's
 public key and not Charlie's. That knowledge requires some long-term
 key management, which is often done using a Public Key Infrastructure
 (PKI) so that Alice actually stores the public key (Pub-ca) of a
 Certification Authority (CA), and Bob gets his public key (Pub-b)
 "certified" by the CA, which means the CA creates a digitally signed
 data structure "Cert(Pub-ca,Pub-b)". The crucial thing is that
 Alice, Bob, and a CA need to co-ordinate before Alice and Bob can
 agree on a key "k", and that process imposes a key-management burden.

 Doing such key management is clearly quite possible, since TLS and
 IPsec and other well-deployed technologies depend on it. But, in
 the case of HTTP/TLS on the public web, we see that only roughly 30%
 of web sites actually take on this burden, even though the software
 required is ubiquitous and, at least for 2nd level DNS domains in
 .com for example, there are CAs who offer free domain-validated
 certificates. While some of the 70% who don't set up certificates
 might not actually want confidentiality, there are certainly some who
 would and arguably many that would benefit from confidentiality, if
 it just happened out of the box, without an administrator having to
 do anything. And there are also arguably many other protocols where
 the same is true.

 An alternative to the PKI is manual configuration of keys at Alice
 and Bob. Manual configuration is used in a large number of cases in
 deployments, however it has a set of issues that make it problematic.
 These issues include:
 - the scale of configuration that is needed for a full set of
 Security Associations (SAs) between all communicating parties
 - the likelihood of configuration errors
 - the security vulnerabilities associated with manual keying and
 unsecured exchange of keys.

 Opportunistic Security (OS) is a protocol design pattern to achieve
 encryption between Alice and Bob without requiring key-management
 through CAs and without relying on manual configuration of keys.

Farrel and Farrell [Page 6]

Internet-Draft Opportunistic MPLS Security July 2015

2.2. Opportunistic Security at 10,000ft

 Instead of the "key transport" mechanisms described in Section 2.1,
 OS aims to use "key agreement". With key management, Alice invents
 "k" and safely transports it to Bob encrypted with Bob's public key
 as "E(Pub-b,k)". With key agreement, both Alice and Bob contribute
 to calculating "k" as follows.

 Assume that Alice and Bob are using some protocol where they can
 exchange a few messages in order to agree on the key "k" to use.
 With a Diffie-Hellman key agreement ("D-H") both Alice and Bob have
 public and private values, where the private value can be randomly
 generated, perhaps even once per message "M". They swap the public
 values, and can then, thanks to the "magic" of Diffie-Hellman, derive
 a key "k" that nobody else can know.

 In this way Alice sends Bob "Pub-a" and Bob sends Alice "Pub-b" and
 at that point both of them can safely calculate a shared secret "k"
 from those values. And after that Alice can send Bob "E(k,M)".

 From here on, we change the terminology slightly and refer to Alice
 as the initiator, with private key "i" and Bob as the recipient, with
 private key "r" so that our notation is closer to that used in
 IPsec's Internet Key Exchange Protocol (IKE) on which we model our
 use of OS.

 D-H works as follows: Let "p" be well-known large prime number that
 we use for all modular arithmetic (meaning that "a^b" is actually
 "(a^b) mod p"), and let "g" be another well-known value (called a
 generator for the group determined by "p"). Also let Alice and Bob's
 private values be "i" and "r" respectively. Now, if Alice sends Bob
 "g^i" as her public value, and Bob similarly sends Alice "g^r" then
 both of them can easily calculate "g^(i*r)" or "g^ir" but nobody else
 can, since calculating "x" when only given "g^x" is a computationally
 hard problem for any "x". Once both Alice and Bob have the value
 "g^ir" in hand, they can easily derive a value "k" from that using
 any of a number of well-known key derivation functions (KDFs) such
 that k = f(g^ir) for a KDF "f".

 As you can see from the above, Alice and Bob do not need to pre-
 arrange anything other than "g", "p" and "f", and those can be public
 information that is used by everyone everywhere (or at least by all
 participants in a particular deployment). Yet, Alice and Bob have
 managed to derive a common and private value for a key "k" that they
 can use to encrypt (and decrypt) "M".

 This method of using the OS pattern provides strong confidentiality
 and can be built into any protocol that allows Alice and Bob to

Farrel and Farrell [Page 7]

Internet-Draft Opportunistic MPLS Security July 2015

 occasionally exchange public values.

 There are also additional advantages to key agreement when compared
 to key transport. The most important of those is that with key
 agreement we can easily ensure that k has a property called Perfect
 Forward Secrecy (PFS). That means that an attacker has to separately
 attack each key k. In contrast, if we use the key transport
 approach, then an attacker who somehow accesses Bob's private key
 "Priv-b" can record lots of traffic and later go back and decrypt all
 the "E(Pub-b,k)" values that all Alices have ever sent to Bob. With
 key agreement as described, since both Alice and Bob contribute to
 the value k, and since Alice and Bob will typically periodically
 generate new private values i and r (perhaps even for every single
 M), compromise of one party is far less catastrophic, and an attacker
 who gets access to one private value gets far less benefit.

2.3. What about a Man-in-the-Middle?

 OS as described so far is vulnerable to Man-in-the-Middle (MITM)
 attacks. The problem is that Alice does not know that it was
 really Bob's public value that she received; it could have been
 Charlie's public value sent by Charlie. And Charlie could also
 send Bob his public value pretending to be Alice. Now Charlie
 can share a key with Alice and a key with Bob so that Charlie
 can sit between Alice and Bob decrypting what he gets from Alice
 and then re-encrypting it to send to Bob. Neither Alice nor
 Bob can tell that Charlie is present as a "Man-in-the-Middle"
 and both Alice and Bob think they are safely exchanging encrypted
 messages.

 A MITM attack like that is bad and making a protocol proof against
 such attacks comes at the cost of the key-management burden described
 in Section 2.1. Most IETF protocols to date require that such MITM
 attacks not be feasible.

 However, despite its potential vulnerability to MITM attacks, OS
 still has value. This value arises because of the difficulty of
 inserting a MITM actor, and the cost of processing for the MITM
 in the case of a very large number of relationships. In
 particular, where the choice is between no encryption (as has been
 the case for MPLS to date) and OS, it is clear that using OS offers
 better (although not the best) security.

 Consider the case where an attacker taps a link on the path between
 Alice and Bob. In this case, the attacker can capture every packet
 between the two parties, and if there is no encryption, can read
 every message. Furthermore, consider that the attacker could tap a
 fiber in the core of the network and so capture every packet between

Farrel and Farrell [Page 8]

Internet-Draft Opportunistic MPLS Security July 2015

 a large number of Alices and their corresponding Bobs. In these
 cases, Charlie can operate as a "passive MITM" since all he has to do
 is watch the packets.

 With OS in use, Charlie is forced to be an "active MITM". That is he
 must engage in the D-H exchange between each pair of Alices and Bobs,
 and he must must decrypt and encrypt each packet he wants to inspect.
 This imposes a higher cost and is especially burdensome if he is
 attempting to do it in parallel for lots of Alice/Bob pairs using
 lots of different keys and communication sessions.

 Furthermore, when D-H is in use for OS, management tools can be used
 to detect the presence of Charlie as a MITM. This is because
 Charlie has to agree one key "kA" with Alice, and a different key
 "kB" with Bob. As far as we know, Charlie cannot arrange that kA
 equals kB because both sides contribute to the key value in the D-H
 key agreement. That means that if Alice and Bob can check with each
 other what value of "k" they are using and the values do not match,
 then they know that Charlie is present. What is more, Alice and Bob
 can make this check on the value of "k" for any of the "E(k,M)" they
 ever exchanged.

 Thus, in the case of a fiber tap where many Alice/Bob pairs are
 being monitored, it only takes one Alice and Bob to detect the MITM
 attack for all Alice/Bob pairs to be alerted to the problem. In
 such cases the cost of detection for Charlie may be even greater than
 the cost of performing the MITM attack.

 Hence we conclude that OS can have considerable value when used in
 MPLS networks.

2.4. OS in MPLS Overview

 The basic requirement for MPLS-OS is that we want to provide a way
 for two MPLS nodes to do a key exchange and to derive a session key
 from that to use in MPLS packet encryption.

 To do that we use a Diffie-Hellman key exchange as outlined in
Section 2.2. We model this on IKE [RFC7296] using essentially the

 same parameters. We feed the shared Diffie-Hellman value, which is
 g^ir, into a standard KDF that also takes as input an LSP identifier
 (LSP ID) together with the sending and receiving LSR IDs - where the
 sending LSR is the point of encryption and the receiving LSR is the
 point of decryption such that the pair of LSRs define the SA. These
 additional inputs are used to ensure that we end up with different
 keys on an LSP even if the same g^i and g^r values are re-used,
 however it is RECOMMENDED that fresh values of i and r are used each
 time [RFC4086]. The KDF to be used here is as defined in [RFC5869].

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5869

Farrel and Farrell [Page 9]

Internet-Draft Opportunistic MPLS Security July 2015

 The D-H values used MUST be of at least 2048-bits. Implementations
 MUST support the 2048-bit modular exponentiation (MODP) group from

Section 3 of [RFC3526] and SHOULD support the larger MODP groups from
 [RFC3526].

 This document also defines the mechanism used to derive an identifier
 for a key (the key-id) from the shared Diffie-Hellman value, which
 is also based on the KDF output. The key will be used with a
 symmetric encryption algorithm, such as AEAD_AES_GCM_128 (the
 default, following [RFC5116]).

 As with any symmetric block cipher, one should not use the same key
 for too long. The nonce defined for these keys is derived using
 a 96 bit counter incremented by one for each encrypted packet.
 It is critical for security that nonce values MUST NOT be re-used
 with a given key. (This is an inherent issue with how AES-GCM or any
 counter mode achieves high performance.)

 Accordingly, implementations MUST support mechanisms for key change.

 To support key change, this document defines a way for two LSRs using
 a key on an LSP to agree a new key and to switch over to using that
 key when desired. That means that implementations MUST be able to
 handle at least two keys (old and new) for a given LSP. Once a new
 key has been agreed then it should be used for sending packets; once
 encrypted data packets protected with the new key have been
 successfully received, the old key SHOULD be discarded. Section 4
 describes how two LSRs agree keys: to agree a new key two LSRs simply
 run the same key agreement exchange, but this time protected with the
 old session key as described in Section 4.5. This process can, of
 course, be repeated any number of times for the same LSP. It is
 RECOMMENDED that the key on an LSP be changed at least once every
 day or every 10^6 packets whichever is sooner, and MUST change keys
 before encrypting 2^64 packets. For an LSP running over a fully-
 busy 100Gbe interface, we might assume that means roughly 160
 million packets per second, or roughly 2^44 packets per day. The
 2^64 limit therefore means changing keys daily in the busiest cases
 of some of the largest current links capacities.

 In the event of a key agreement exchange or decryption failure, an
 alarm MUST be raised to the operator. Default (i.e., node-wide) and
 per-LSP behavior SHOULD be configurable in this case: actions may
 include reverting to non-encrypted traffic, re-attempting key
 exchange, or tearing down the LSP. Note that a simple attack on OS
 is to tamper with key agreement exchange messages or encrypted
 packets so that OS fails. Such attacks may be intended to cause the
 LSP to operate without encryption, so an operator should consider
 this when setting the behavior in this case.

https://datatracker.ietf.org/doc/html/rfc3526#section-3
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc5116

Farrel and Farrell [Page 10]

Internet-Draft Opportunistic MPLS Security July 2015

Section 7.1 also discusses a mechanism that allows a pair of LSRs
 using OS on an LSP to detect that a MITM attack has happened. For
 this, we simply define a function of the shared secret, which can be
 logged and later compared. Note that logging a sample of these
 "witness" values will likely be sufficient to detect pervasive MITM
 attacks [RFC7258]. As with the key-id, we base this on the same
 KDF output.

 We might want to consider deriving the witness value from a separate
 invocation of the KDF that does not depend on the LSP-specific
 inputs. The benefit from that would be that the same MITM-detection
 infrastructure could be used for many protocols. However, that would
 require standardizing a generic D-H MITM-detection protocol, or at
 least formats, in order to be useful. We also need to consider what
 additional information needs to be logged with the witness value so
 that comparisons can easily be made at scale but without creating new
 privacy-invasive meta-data. That last is not much of an issue for
 MPLS-OS, but could be elsewhere. At present we do not intend to go
 for the generic MITM-detection approach, but it is worth considering.

 An additional discussion of the applicability of MPLS-OS is found in
Section 5.

3. MPLS Packet Encryption

 MPLS packets are encrypted according to the mechanisms described in
 this section.

 When an MPLS packet is encrypted, this is indicated by the insertion
 of a new extended special-purpose label [RFC7274] in the label stack.
 This is referred to as the MPLS Encryption Label (MEL). The format
 of the MEL is described in Section 3.1.

 The MEL MUST have the bottom of stack bit (the S bit) set and MUST be
 followed by a pseudowire control word [RFC4385]. The format of the
 control word is described in Section 3.2.

 The remainder of the MPLS packet is encrypted and cannot be parsed
 without decryption. It needs to be understood, therefore, that the
 phrase "bottom of stack" refers to the parsable label stack (i.e.,
 those label stack entries that have not been encrypted) and does not
 indicate the full label stack of the unencrypted packet. Figures 1
 and 2 should make this point clear.

 Implementations MUST support the AEAD_AES_GCM_128 encryption
 algorithm, as specified in Section 5.1 of [RFC5116], which is the
 default algorithm as described in Section 4.3 of this document.

https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7274
https://datatracker.ietf.org/doc/html/rfc4385
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1

Farrel and Farrell [Page 11]

Internet-Draft Opportunistic MPLS Security July 2015

 Note that it is critical that a new nonce is used for every
 encryption. The nonce is an implicit packet counter. The initial
 nonce value is derived from the HMAC-based Key Derivation Function
 (HKDF) output (see Section 4.3.2) at key agreement time and the
 counter is incremented by one for each packet encrypted on the
 sending side and by one for each packet successfully decrypted on the
 receiver side.

 Although the nonce is not transmitted with the packets, a 16-bit
 counter carried in the control Word indicates the nonce value modulo
 65536. This feature allows a receiving node to quickly spot that a
 packet has been dropped and resynch its own counter in order to be
 able to continue to decrypt received packets. In the event that the
 counter cannot be resynchronized or that more than 65536 packet are
 lost in one batch the receiver will encounter a decryption error. In
 this case the receiver may report a general decryption error or may
 attempt to resynchronize by advancing its own counter in units of
 65536 according to the modulo value in the received packet. Note
 that incrementing the counter in order to test for decryption failure
 does generate a potential DoS if, e.g., an attacker decrements the
 nonce-mod-65536 value. Implementations that do such tests SHOULD
 maintain a small maximum window size beyond which they will cease
 attempting to decrypt. It could be that throwing an error might be
 the more effective response if the packet loss rates are expected to
 be low enough.

 It should also be noted that the output from encryption will be 16
 octets longer than the input.

 The bottom of stack bit is set in the MEL to stop implementations
 continuing to search down the label stack (which is encrypted) and
 attempting to use the data as though it was a valid label stack. The
 control word is needed because many implementations that find the
 bottom of stack expect the next bytes to be a control word or
 protocol indicator.

 The position of the MEL and control word depend on whether hop-by-hop
 or end-to-end encryption is being applied.

 Figure 1 illustrates the format of an example MPLS packet before and
 after hop-by-hop encryption. The left hand part of the
 figure shows a normal MPLS packet with a label stack and payload.
 The bottom label in the stack has the S bit set. The payload is the
 data carried by the MPLS packet (such as IP) and may be prefixed by a
 control word.

 The right hand part of Figure 1 shows the same packet after it has
 been encrypted. The top of stack is a label with value 15 that

Farrel and Farrell [Page 12]

Internet-Draft Opportunistic MPLS Security July 2015

 indicates that an extended special-purpose label follows. Next comes
 the MEL with the S bit set. The label value of the MEL is from the
 experimental range 240-255 and is selected according to the scope of
 the MPLS OS experiment being run. The MEL is followed by a control
 word. Everything that follows the control word is the entire
 original MPLS packet encrypted.

 ----------- . -----------
 | Top Label | . | Label 15 |
 +-----------+ . +-----------+
 | Label | . | MEL S=1 |
 +-----------+ . +-----------+
 | Label S=1 | .| Ctrl Word |
 +-----------+ +-----------+
 | | | |
 ~ Payload ~ ~ Encrypted ~
 | | | |
 -----------........-----------

 Figure 1 : The Use of the MEL for Hop-by-Hop Encryption

 Figure 2 illustrates the format of an example MPLS packet before and
 after end-to-end encryption. The left hand part of the figure shows
 a normal MPLS packet with a label stack and payload. The bottom
 label in the stack has the S bit set and the payload may be prefixed
 by a control word. The right hand part of the figure shows how the
 top two labels (or however many labels are needed for end-to-end
 delivery) remain at the top of the label stack. Then follows label
 15 to indicate that an extended special-purpose label follows, then

 ----------- -----------
 | Top Label | | Top Label |
 +-----------+ +-----------+
 | Label | | Label |
 +-----------+. +-----------+
 | Label | . | Label 15 |
 +-----------+ . +-----------+
 | Label | . | MEL S=1 |
 +-----------+ . +-----------+
 | Label S=1 | .| Ctrl Word |
 +-----------+ +-----------+
 | | | |
 ~ Payload ~ ~ Encrypted ~
 | | | |
 -----------........-----------

 Figure 2 : The Use of the MEL for End-to-End Encryption

Farrel and Farrell [Page 13]

Internet-Draft Opportunistic MPLS Security July 2015

 comes the MEL with S bit set, and a control word. The remainder of
 the packet is encrypted and contains the rest of the label stack and
 the payload.

3.1. MPLS Encryption Label

 The MPLS Encryption Label (MEL) is a normal label stack entry
 carrying an extended special-purpose label with a value from the
 experimental range 240-255. The format of the label stack entry is
 defined in [RFC3032] and shown in Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Label | TC |S| TTL |
 +-+

 Figure 3 : Format of the MEL Label Stack Entry

 Label: The value of MEL for this experiment
 TC: For end-to-end encryption, the value of the TC field SHOULD
 be set to the value of the unencrypted label stack entry that
 immediately precedes the MEL. In the case of hop-by-hop
 encryption, the value of the TC SHOULD be copied from the TC
 of the first encrypted label if there is a label stack
 present. Otherwise this field SHOULD be set to all zero
 (0b000).
 S: MUST be set to one.
 TTL: SHOULD be set to two to prevent encrypted packets being
 accidentally forwarded too far beyond the point of intended
 decryption. Note that setting to zero might cause a
 receiver to discard the packet when the MEL becomes top of
 stack, and setting to one might cause the packet to be sent
 to the slow path when the MEL becomes the top of the stack
 even though decryption should be a fast-path function.

 The sending LSR MAY choose different values for the TTL and TC fields
 if it is known that label 15 or the MEL will not be exposed as the
 top label at any point along the LSP (for example, by penultimate hop
 popping - but see Section 5 for a discussion of MPLS tunnels and
 penultimate hop popping).

3.2. Control Word

 The control word is inserted after the MEL as described in Section 3.
 The S bit set to one in the MEL and the presence of the control word
 helps protect against transit nodes that may perform hashing or

https://datatracker.ietf.org/doc/html/rfc3032

Farrel and Farrell [Page 14]

Internet-Draft Opportunistic MPLS Security July 2015

 inspection of the label stack and payload packet headers when
 forwarding MPLS packets (for example, to enable ECMP). The control
 word indicates that the payload is not a protocol that can be
 meaningfully hashed or inspected.

 The format of the control word is defined in [RFC4385] and shown in
 Figure 4.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0 0 0| Flags |FRG| Length | Sequence Number |
 +-+

 Figure 4: Control Word for Encrypted MPLS

 Flags: The Flags field is treated as a four-bit number. It
 contains the key-id that identifies the algorithm
 and key as established through configuration or
 dynamic key exchange as described in Section 4.
 FRG: Must be sent as 0, and ignored on receipt.
 Fragmentation is not used.
 Length: MUST be sent as 0, and ignored on receipt.
 Sequence Number: This field contains the packet counter (nonce) for
 the encryption algorithm and key currently in use
 modulo 65536. It can be used by a receiver to
 quickly check that the value of the nonce being used
 for decryption is likely to be correct as described
 in Section 3.

3.3. Considerations for ECMP

 As previously stated, the S bit set in the MEL and the presence of
 the control word prevent implementations from attempting to use the
 encrypted MPLS packet and its payload to determine a hash value for
 uses such as ECMP. However, the resultant label stack shown in
 Figure 2 will probably not provide sufficient entropy for ECMP
 purposes.

 In order to increase the entropy, an implementation that inserts an
 MEL and MEL MAY also insert an Entropy Label Indicator (ELI) and
 Entropy Label (EL) as defined in [RFC6790] ELI and EL are positioned
 in the label stack before the MEL as shown in Figure 5. The setting
 of the fields in the ELI and EL label stack entries are as described
 in [RFC6790].

 The ELI and EL will normally occur immediately before the label 15
 and MEL pair, but they MAY be placed higher up the label stack.

https://datatracker.ietf.org/doc/html/rfc4385
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc6790

Farrel and Farrell [Page 15]

Internet-Draft Opportunistic MPLS Security July 2015

 | Top Label |
 +-----------+
 | Label |
 ----------- +-----------+
 | Top Label | | ELI |
 +-----------+ +-----------+
 | Label | | EL |
 +-----------+. +-----------+
 | Label | . | Label 15 |
 +-----------+ . +-----------+
 | Label | . | MEL S=1 |
 +-----------+ . +-----------+
 | Label S=1 | .| Ctrl Word |
 +-----------+ +-----------+
 | | | |
 ~ Payload ~ ~ Encrypted ~
 | | | |
 -----------........-----------

 Figure 5 : The Use of ELI and EL with MEL

3.4. Backward Compatibility

 Keys and encryption algorithms may be configured manually or
 exchanged dynamically as described in Section 4. These mechanisms
 provide a preliminary way to protect against a sender encrypting data
 that the receiver cannot decrypt, however, misconfiguration may lead
 to a sender using the MEL when the receiver does not support
 encryption.

 When a node finds an unknown label at the top of the label stack it
 must discard the packet as described in [RFC3031]. Therefore, when a
 receiver discovers label 15 and does not support extended special-
 purpose labels it will discard the packet. Similarly when a receiver
 that supports extended special-purpose labels, but does not support
 the MEL (i.e., does not support encryption) it will discard the
 packet. (Note that care must be taken if multiple experiments are
 being carried out in the same network since a different extended
 special-purpose label must be used for each experiment.) The net
 result is that when a sender uses encryption in error, all packets
 that it sends on the LSP will be discarded by the receiver. Note
 that in this discussion, "the receiver" may be the next hop if single
 hop encryption is used, or may be the end of the LSP if end-to-end
 encryption is used.

 Transit nodes that are not actively participating in the encryption
 will not inspect the MEL except potentially as part of an ECMP hash,

https://datatracker.ietf.org/doc/html/rfc3031

Farrel and Farrell [Page 16]

Internet-Draft Opportunistic MPLS Security July 2015

 and it should be noted that the use of Special Purpose Labels in
 hashing is strongly discouraged (see Section 2.4.5.1 of [RFC7325]).
 This means that transit nodes will not encounter the MEL during
 normal packet processing and will not discard packets.

3.5. MTU Considerations

 Adding label 15, the MEL, and the Control Word as described above
 will reduce the available data size by 12 octets. Furthermore, as
 described in Section 3, the output of the encryption algorithm is
 at least 16 octets longer than the input. Therefore, the use of
 encryption reduces the available MTU by at least 28 octets. Other
 encryption algorithms may result in even greater reductions in the
 available MTU.

 When end-to-end encryption is in use this can be considered by the
 ingress LSR, however, when single-hop encryption is in use the
 participating LSRs need to advertise this reduction in link MTU
 so that the packets do not overflow. MPLS packets MUST NOT be
 fragmented as a result of encryption.

3.6. Recursive Encryption

 The use of MEL and control word described in Section 3 may be applied
 recursively. That is, the payload of an encrypted MPLS packet may,
 itself be an encrypted MPLS packet. This may be particularly useful
 in the case where an MPLS VPN has native MPLS traffic.

 There are no special considerations except to note that encryption
 and decryption processing may be burdensome if an LSP and its payload
 LSP have encryption applied at the same LSR. Additionally, it
 should be noted that, as described in Section 3.6, each recursive
 encryption reduces the MTU by 28 octets.

4. Key Exchange For Opportunistic Security in MPLS

 For encryption to be useful both ends of an encrypted session must
 know which algorithm is in use and which key to use. The mechanism
 described in Section 3 provides a way to indicate an index into a
 table of algorithms and keys that can be used to decrypt an encrypted
 MPLS packet.

 It is possible that this table has been manually configured or set up
 using a key exchange protocol such as Internet Key Exchange version 2
 (IKEv2) [RFC7296]. However, such a process implies a stable security
 association between encrypter and decrypter of MPLS packets. While
 such a stable association is entirely consistent with the concept of
 OS, OS nonetheless calls for a more dynamic key agreement method.

https://datatracker.ietf.org/doc/html/rfc7325#section-2.4.5.1
https://datatracker.ietf.org/doc/html/rfc7296

Farrel and Farrell [Page 17]

Internet-Draft Opportunistic MPLS Security July 2015

 This section provides a mechanism for adjacent MPLS LSRs, or for a
 pair of LSRs at opposite ends of an MPLS LSP, to dynamically
 exchange keys and algorithm identifiers so that encryption may be
 applied opportunistically.

 The mechanism uses message exchanges in the MPLS Generic Associated
 Channel (G-ACh) [RFC5586] as part of the MPLS Generic Associated
 Channel (G-ACh) Advertisement Protocol (GAP) [RFC7212]. This channel
 is in-band with an LSP and may be used to carry messages between
 neighbors or between the end points of the LSP. A type field within
 the common message header, the Associated Channel Header (ACH), is
 used to indicate the type of message carried.

 Nodes that receive G-ACh messages and do not understand them, or
 nodes that understand the G-ACh but do not recognize the ACH message
 type drop the packets as described in [RFC5586].

 Note that this mechanism may benefit from encryption that is already
 in use on an LSP. Thus key changes using this mechanism can be made
 using encrypted messages.

4.1. Initiating MPLS-OS

 This document assumes that the use of MPLS-OS is initiated by the
 upstream of a pair of LSRs (either a pair of adjacent LSRs on an LSP,
 or a pair of LSP end points). That is, the upstream LSR send the
 first G-ACh that initiates key exchange. The key that is generated
 after the exchange is then used to encrypt traffic travelling in the
 direction between initiating and responding LSRs: that is, from
 upstream to downstream LSR.

 In the case of a bidirectional LSP, each direction is treated
 separately. That is, "upstream" refers to the direction of traffic
 flow, and not to any signaling that is used to establish the LSP.
 Thus, it is possible that a bidirectional LSP uses MPLS-OS on none,
 either one, or both of the directions of traffic flow for the LSP.
 But it is important to note that the keys used are different in each
 direction, each being generated and exchanged through a separate
 instance of the procedures described in this document. Note that the
 input parameters for key derivation listed in Section 4.3.3 show LSP
 identifier, initiator LSR identifier, and responder LSR identifier as
 three of the ordered list of pieces of information used by the key
 derivation function. In the case of a bidirectional LSP, the LSP
 identifier will be the same in each direction, and the two LSR
 identifiers will be the same, but the LSR identifiers will be used in
 the reverse order at the two end points of the MPLS-OS exchange and
 this will reduce the chance of the same key being used in each
 direction.

https://datatracker.ietf.org/doc/html/rfc5586
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc5586

Farrel and Farrell [Page 18]

Internet-Draft Opportunistic MPLS Security July 2015

 Note also that in the case of a pair of unidirectional LSPs in
 reverse directions between a pair of LSRs there should be no
 relationship between the keys used on each LSP even if there is a
 tight coupling between the LSPs such as might be the case for
 associated bidirectional LSPs [RFC7551]. The key derivation function
 will use different LSP identifiers as well as using the LSR
 identifiers in a different order.

4.2. MPLS G-ACh Advertisement Protocol for Key Exchange

 GAP defines messages exchanged in G-ACh on a common Associated
 Channel Type code point (0x0059) [RFC7212]. The application for
 which the messages are exchanged is defined by the Application ID
 field carried in the Applications Data Block (ADB). MPLS OS
 capability notification and key exchange uses the GAP Application ID
 (0x0000) defined by [RFC7212] and a new ADB TLV for MPLS OS.

 Implementations that do not support GAP will discard received packets
 with this Associated Channel Type as described in [RFC5586].
 Implementations that support GAP but that do not support key exchange
 will discard received packets with this ADB TLV as described in
 [RFC7212]. Either of these discards will result in no dynamic key
 exchange, but other key definitions are still supported (such as
 manual configuration) and may be used to construct a table of
 algorithms and keys that can be used to achieve MPLS encryption using
 the mechanisms described in Section 3.

4.3. Key Exchange Protocol

4.3.1. Communication Channels

 The key exchange protocol described in this document uses a D-H
 exchange that assumes a bidirectional communication channel. GAP is
 designed to run over a unidirectional channel and uses normal IP
 forwarding for return path messages with an optimization to use the
 return path of a bidirectional LSP. However, LSPs in packet networks
 are usually unidirectional. That means that, while the key exchange
 messages can be sent on the LSP in one direction, a channel needs to
 be established for the return messages.

 This document uses a process similar to that defined for MPLS LSP
 Ping [RFC4379] and [RFC7110], and that described to indicate a return
 path for MPLS performance measurement in
 [I-D.ietf-mpls-pm-udp-return]. That is, the forward message is sent
 on the LSP and includes the identity of the return path communication
 channel. The return path may be indicated as a UDP communication
 over IP, as an LSP running in the opposite direction, or as the
 reverse direction of a bidirectional LSP.

https://datatracker.ietf.org/doc/html/rfc7551
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc5586
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc4379
https://datatracker.ietf.org/doc/html/rfc7110

Farrel and Farrell [Page 19]

Internet-Draft Opportunistic MPLS Security July 2015

 Note that the GAP messages defined in [RFC7212] include a TLV that
 enables authentication. This feature SHOULD be used if possible, but
 it is in the nature of opportunistic security that the necessary
 security association might not exist. In this case the ability to
 tamper with the instructions that select a return path may provide a
 mechanism that makes MITM attacks easier. An implementation that
 initiates key exchange for MPLS Opportunistic Security MUST verify
 that the response messages are received on the expected return path
 channel and SHOULD raise an operator alert if the channel is
 unexpected.

4.3.2. Key Exchange Messages

 The format of a GAP message is described in [RFC7212]. When used for
 key exchange the GAP message includes an ADB with the fields set as
 follows.

 Application ID is set to 0x0000.

 Element Length is set to the total length in octets of this ADB
 including the Application ID and this field.

 Lifetime field SHOULD be set to zero and MUST be ignored.

 A key exchange ADB MUST include a Key Exchange TLV as shown in
Section 4.3.3. The ADB and MAY also include an Authentication TLV as

 described in [RFC7212] to provide authentication and integrity
 validation for a GAP message (see Section 4.5). Additionally, the
 ADB MAY include a Source TLV as described in [RFC7212] and discussed
 in Section 4.4.

4.3.3. Key Exchange TLV

 A session key is to be established between an initiator (Alice) and
 a recipient (Bob). The D-H public value for Alice is g^i and for
 Bob, g^r. The shared Diffie-Hellman value is g^ir. g^ir is
 represented as a string of octets in big endian order padded with
 zeros if necessary to make it the length of the modulus. Both g^i
 and g^r will be 2048 bits long, if the Diffie-Hellman modulus is 2048
 bits long.

 The Key Exchange TLV is modelled on that from Section 3.4 of
 [RFC7296] with the addition of information to identify the LSP and
 its return path, and is encoded as shown in Figure 6.

https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7296#section-3.4
https://datatracker.ietf.org/doc/html/rfc7296#section-3.4

Farrel and Farrell [Page 20]

Internet-Draft Opportunistic MPLS Security July 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Reserved | Length |
 +-+
 |D|Rsvd | Return| Path Identifier |
 +-+
 | LSP-ID |
 +-+
 | Algorithm | Group Num | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 ~ D-H Public Value ~
 | |
 +-+

 Figure 6 - Key Exchange Message TLV

 Type is set to TBD1 to indicate that this is a Key Exchange TLV

 The Reserved and Length fields are defined in [RFC7212].

 The flag D denotes the direction of the message, '0' indicates a
 message from initiator (Alice) to recipient. '1' indicates the
 reverse direction.

 The Rsvd bits are reserved. They SHOULD be set to zero and ignored
 on receipt.

 The Return field is used on a message from the initiator to indicate
 the type of return path to be used for messages from the responder.
 The Path Identifier field is interpreted in this context. Possible
 values are as follows:

 0 The reverse path of a bidirectional LSP is to be used for the
 response. Used on a message from an initiator.
 1 The reverse path messages are to be sent encapsulated in UDP.
 Used on a message from an initiator.
 2 Any LSP between the recipient and the initiator may be used.
 3 Any LSP between the recipient and the initiator that is already
 using MPLS-OS may be used.
 4 The reverse path messages are to be sent on a specific LSP.

 All other values are undefined and MUST be processed as an
 encoding error as described in Section 4.3.4. Similarly, if the
 value zero is used on a unidirectional LSP then it MUST be handled
 as an encoding error.

https://datatracker.ietf.org/doc/html/rfc7212

Farrel and Farrell [Page 21]

Internet-Draft Opportunistic MPLS Security July 2015

 The Path Identifier is interpreted in the context of the Return
 field. The field only has meaning on messages from the initiator and
 SHOULD be ignored on responses. If the Return is set to the
 following values, the Path Identifier has the following meaning:

 0 In this case the Path Identifier field has no meaning and SHOULD
 be ignored.
 1 The Path Identifier field contains a UDP port number from the
 dynamic port range that the initiator will listen on for a
 response.
 2 In this case the Path Identifier field has no meaning and SHOULD
 be ignored.
 3 In this case the Path Identifier field has no meaning and SHOULD
 be ignored.
 4 The Path Identifier field contains an LSP-ID that must be used
 for reverse path messages.

 See Section 4.4 for more discussion of return paths.

 The LSP-ID parameter indicates the LSP to which this key exchange
 applies. On messages from initiator to recipient this field MUST be
 set to the LSP on which the message flows and any mismatch MUST be
 treated as an encoding error (Section 4.3.4). On messages from
 recipient to initiator, this value MUST be copied from the received
 message and an initiator that cannot match the message and LSP-ID to
 a message that it previously sent MUST treat the situation as an
 encoding error.

 The Algorithm field is a one octet field that specifies both the KDF
 to use and the symmetric algorithm to be used for data packet
 encryption. A registry for values of this field is defined in

Section 8.2. The value 0 is used to indicate the default KDF and
 symmetric encryption mode. An implementation receiving a value for
 an Algorithm it does not support MUST treat the case as an encoding
 error as described in Section 4.3.4. All implementations MUST
 support the default KDF. Note that since implementation of
 encryption and decryption is likely to be implemented in hardware for
 reasons of data throughput performance, the introduction of new
 algorithms may be bound by firmware or even hardware upgrades.

 The Diffie-Hellman Group Num is from [RFC3526], so the group number
 for 2048 MODP is decimal 14. Note that this is a one octet field,
 but is two octets in the [RFC7296] equivalent. This is not an issue
 because there are only 30 MODP groups defined at present and new
 groups are not added frequently.

 The D-H public value will contain g^i or g^r depending on the
 direction (i.e., the setting of the D flag) and is in big endian

https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc7296

Farrel and Farrell [Page 22]

Internet-Draft Opportunistic MPLS Security July 2015

 order.

 The length of the Diffie-Hellman public value for MODP groups MUST be
 equal to the length of the prime modulus over which the
 exponentiation was performed, prepending zero bits to the value if
 necessary.

 Once both sides have derived g^ir they need to feed that and the
 other inputs described in Section 2.4 into the KDF indicated by the
 algorithm field. With the default algorithm (value zero), the KDF to
 be used is HKDF as specified in [RFC5869].

 The parameters for the use of HKDF are:

 Hash: SHA-256

 Salt: Not used

 Skip: Do not skip

 Info: The catenation of a fixed string indicating use of MPLS-OS,
 with the value "MPLS-OS", the first 32 bits of the key
 exchange message, with the D flag set to 0, plus the LSP
 ID and the sender and receiver LSR IDs in that order. That
 is:

 MPLS-OS||0||payloadLen||alg||group Num||LSP-ID||i-LSR-ID||r-LSR-ID

 L: The output length in bits is 272.

 The fixed string "MPLS-OS" is used as an input here to prevent
 potential cross-protocol attacks. Those might otherwise be
 possible if this mechanism were to be copied in other protocols.
 (If copying this mechanism for any reason, then a different
 fixed string value should be used.)

 LSP-ID is a unique identifier shared between the initiator and
 receiver (Alice and Bob) that uniquely identifies the LSP.

 [[If RSVP-TE is used for signaling, the LSP-ID is known along the LSP
 and at the two end points. Similarly, the LSP-ID is known if the
 LSP is manually configured. It is not so clear how the LSP-ID is
 known for LSPs established using LDP, although possibly we could use
 the FEC as defined for RFC 4379 and its extensions.]]

 i-LSR-ID and r-LSR-ID are the LSR-IDs of the initiator and receiver
 respectively (Alice and Bob), where an LSR-ID is the 32 bit, globally
 unique identifier of the LSR as described in [RFC5036] and [RFC4990].

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4379
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc4990

Farrel and Farrell [Page 23]

Internet-Draft Opportunistic MPLS Security July 2015

 superior security.

 The default encryption algorithm, AEAD_AES_GCM_128, specified in
Section 3, requires a 128 bit session key.

 The 272-bit HKDF output is the catenation of the session key, the
 key-id, the witness value and the high-order 16 bits of the initial
 nonce value in that order. That is the session key is the leftmost
 128 bits of the HKDF output. The key-id is the next 4 bits, the
 witness value is the next 124 bits and the last 16 bits are the 16
 most significant bits of the initial nonce value. The low order 64
 bits of the initial nonce value are set to zero before the first
 call to the AES-GCM encryption function. The key-id is carried in
 encrypted packets as described in Section 3.2.

 Note that a 4 bit key-id is adequate in a system where, for any one
 LSP there is one active key and one new or replaced key. There might
 also be more than one algorithm, and it is possible that new keys
 need to be pipelined if roll-over is frequent. In the case that a
 newly-generated key-id is already in use, the key-id value is
 repeatedly incremented (modulo 16) until an unused value is found.
 If all 16 values are already in use, the key derivation function
 should not be executed.

4.3.4. Encoding Errors

 Unknown values in received key Exchange TLVs MUST be treated as
 encoding errors. All messages that constitute encoding errors MUST
 be silently discarded. That is, such errors MUST NOT cause response
 messages to be sent since those messages could be used as part of an
 attack to determine the capabilities of an LSR.

 An LSR SHOULD log such errors and notify the operator. However, care
 is needed even in these actions since they may be externally visible.

4.4. Indicating the Return Path

 The key exchange for MPLS-OS requires a two-way exchange of messages.
 The Return field of the Key Exchange TLV indicates the reverse path
 to use for key exchange messages relevant to a particular LSP.

 Whenever the LSP being secured is bidirectional, the same LSP SHOULD
 be used for reverse path messages. Otherwise, the initiator selects
 the communication channel as described in Section 4.3.3.

 If UDP is being used and it may be unclear to what address the
 messages should be sent, the initiator MUST include a Source Address
 TLV [RFC7212] to provide this information.

https://datatracker.ietf.org/doc/html/rfc7212

Farrel and Farrell [Page 24]

Internet-Draft Opportunistic MPLS Security July 2015

 Operators should consider the security implications of the return
 path. The use of an already-secured LSP (Return type 3) may provide

 Implementations MUST make the choice of return path request sent by
 an initiator available as a configuration option. As noted in

Section 4.3.1, the fact that the the initial GAP messages might not
 be protected means that there is the potential to tamper with the
 instructions that select a return path. This could be used as a
 vector for MITM attacks. To protect against this, an implementation
 that initiates key exchange for MPLS Opportunistic Security MUST
 verify that the response messages are received on the expected return
 path channel and SHOULD raise an operator alert if the channel is
 unexpected. In these circumstances an implementation MAY be
 configured to abort establishment of MPLS-OS although, since that in
 itself is an attack vector, it is RECOMMENDED that implementations
 continue toward the use of MPLS-OS while notifying the operator.

4.5. Protecting the Key Exchange Protocol Messages

 GAP includes an Authentication TLV that can be used to protect GAP
 messages as described in [RFC7212]. If there is already an SA
 between the initiator and recipient this TLV SHOULD be used.
 However, it is probable with MPLS-OS that no such SA exists and the
 point of the mechanisms described in this document is to exchange
 keys in that case, therefore, it is quite likely that the
 Authentication TLV cannot be used on the first GAP exchanges.

 As described in Section 2.4, once one key exchange has been
 successfully completed, further key exchanges should be protected
 using a previous key. This is simply achieved since key exchange
 messages are, themselves, carried in MPLS packets on the LSP and may
 be subject to encryption exactly as any other packet.

 Furthermore, once keys have been established, they may also be used
 in the GAP Authentication TLV.

5. Applicability of MPLS Opportunistic Security

 MPLS-OS provides another tool in the security and privacy toolkit.
 It is not a panacea and does not solve (nor is it intended to solve)
 all security or privacy problems. In particular, the use of MPLS-OS
 does not protect user-data end-to-end that might be better secured
 using encryption at the IP layer or at higher layers.

 As noted throughout this document, the intention of OS in MPLS is to
 allow one LSR to enable encryption between itself and its neighbor,
 or between itself and the other end of an LSP, in a dynamic and un-
 planned way. This can have benefits in a number of scenarios where

https://datatracker.ietf.org/doc/html/rfc7212

Farrel and Farrell [Page 25]

Internet-Draft Opportunistic MPLS Security July 2015

 the network that generates MPLS traffic transmits it over another
 network (for example, carrier's carrier, or some deployments of
 enterprise network). Additionally, the use of MPLS-OS might allow a
 service provider to offer a secure edge-to-edge service for a variety
 of applications ranging from VPNs through pseudowires and where the
 payload traffic might not always be IP. Lastly, in some non-
 traditional carriers the user data belongs to the operator or is the
 direct responsibility of the operator (for example, in data centers,
 or in large-scale private networks).

 As with all security mechanisms, there is a trade-off between a
 number of factors. On one side is the completeness of the security
 of the user-data, and on the other side is the complexity of
 configuring and managing the necessary security associations.
 Furthermore, while mechanisms closer to the end-user than MPLS-OS
 (for example, TLS and IPsec in tunnel mode) provide better security
 for user-data by virtue of not transmitting the data across any
 network hops without it being encrypted, such mechanisms often
 expose more metadata for inspection by snoopers within the network.

 Additionally, while a variety of per-link encryption mechanisms exist
 and could be used to guard against attacks such as fiber taps, those
 approaches do not protect against subverted nodes (i.e., routers) on
 the path since, by definition, per-link encryption does not protect
 packets once they come off the link. MPLS-OS in the end-to-end LSP
 mode protects packets on the links and as they cross transit routers.

 Nevertheless, it is not the purpose of this document to recommend the
 use of MPLS-OS to the exclusion of all other encryption techniques.
 As already mentioned, MPLS-OS is offered as another tool in the tool
 kit and users as well as network operators are strongly advised to
 consider using a variety of tools to achieve the level of security
 and privacy that they desire.

 Note that, in order that OS can be used, one end of a peering
 (neighbor or LSP end) must decide to attempt OS and the other end
 must support it. This can be determined by the message exchanges
 described in Section 4.3 since if one peer does not send a key
 exchange message then encryption will not be used, and if the other
 peer does not respond then it is unwilling or unable to decrypt
 messages.

 MPLS-OS should be applicable to all forms of MPLS. That is, it should
 be possible to use it in RSVP-TE systems, in LDP systems, and in
 MPLS-TP systems (by which we mean those that have manually configured
 LSPs). Equally, it should work for point-to-point (P2P) and
 multipoint-to-point (MP2P) uses of MPLS because there is a simple
 relationship between the sender (encrypter) and the receiver

Farrel and Farrell [Page 26]

Internet-Draft Opportunistic MPLS Security July 2015

 (decrypter) in both cases. In the MP2P case, the sender's identity
 can be extracted from the key identifier and there are considered to
 be enough key identifiers to allow an arbitrary number of senders on
 the LSP. There will, however, be the need for the receiver to hold OE
 state (keys, packet counters) for each sender which may be a
 significant amount of data for an MP2P LSP (although no more than if
 the same LSP were replaced by multiple P2P LSPs). Additionally, it
 should be noted that not only will each sender on an MP2P LSP have a
 different key, but each may separately decide whether to encrypt data
 or not.

 At this time it is not certain whether MPLS-OS can be applied to a
 point-to-multipoint (P2MP) or a multipoint-to-multipoint LSP in its
 entirety because packet replication cannot handle the necessary key
 conversions for each receiver. However, MPLS-OS can certainly be
 applied to individual hops on these LSPs. Further work is needed to
 determine whether non-branching multi-hop segments of P2MP and MP2P
 LSPs can also be protected using MPLS-OS.

5.1. Tunnel MPLS Packets

 Note that in the case of tunneling of MPLS packets in another
 technology (such as MPLS-in-UDP [RFC7510]) there are two approaches
 that are viable:

 - The payload of the encapsulation (i.e., the entire MPLS packet) can
 be encypted using the mechanisms described in this document without
 any changes. Any payload identifier in the encapsulation header
 can remain set to "MPLS" since the encrypted packet is always just
 an MPLS packet.

 - The encryption mechanisms present in the encapsulating technology
 can be used without any need to use the mechanisms described in
 this document.

 In some cases that processing of one label on the label stack depends
 on the values contained in the previous label stack entry. For
 example, in the "Pipe Model" [RFC3270], the Diff-Serv treatment of
 the packet that is forwarded beyond the end of the tunnel depends on
 the setting of the TC field in the previous label stack entry. This
 requires that when a label is popped, the value of the TC field in
 the label stack entry is cached for use while forwarding. In the
 case that the next label on the stack is the MEL, decryption of the
 rest of the packet is required, and this caching would be a little
 more complicated to implement. This situation is mitigated by
 setting the TC field of the label stack entry that contains the MEL
 to the value from the preceding label stack entry as described in

Section 3.1.

https://datatracker.ietf.org/doc/html/rfc7510
https://datatracker.ietf.org/doc/html/rfc3270

Farrel and Farrell [Page 27]

Internet-Draft Opportunistic MPLS Security July 2015

 The "Short Pipe Model" [RFC3270] can be handled using a combination
 of the above technique and the procedures described in the next
 section.

5.2. Penultimate Hop Popping

 In penultimate hop popping (PHP) a label is removed from the label
 stack of a packet one hop before the end of the LSP. The packet is
 forwarded as though it was still carried on the LSP, but the label
 stack entry for the LSP is removed. Sometimes we say that packet uses
 the "implicit null label".

 When there are additional subsequent labels on the label stack, this
 has no impact on the use of the mechanisms described in this
 document. It is possible that after PHP the MEL will become the top
 label in the stack meaning that the received packet may encounter the
 MEL as te top label. This has implications for the setting of the TC
 and TTL fields in the MEL label stack entry as described in Section

3.1.

 However, in some cases of PHP the popped label is the bottom of the
 label stack and the packet after the popped label is some non-MPLS
 payload protocol (such as IPv6). PHP is used specifically because
 the receiving interface does not have MPLS capabilities in the
 forwarding plane. In this situation the packet is identified within
 the link encapsulation on the final hop by its payload protocol type
 (such as IPv6). If MPLS-OS is used this situation will change
 because even when the final label is stripped using PHP there will
 remain a MEL entry in the label stack. Therefore the packet will
 need to be identified as "MPLS" in the link encapsulation on the
 final hop, yet the receiver might not be capable of handling MPLS
 packets.

 This problem can be approached in two ways:

 - The penultimate hop may note the presence of the MEL during PHP
 and attempt to remove the MEL as well. This is unlikely to be
 successful as the encryption negotiation has been conducted
 between the end points of the LSP and the penultimate hop is not
 aware of the keys or algorithms needed for decryption.

 Furthermore, this approach would leave the packet unencrypted on
 its final hop which may be counter to the intent of the LSP end
 points.

 - The end point of the LSP should recognize that it cannot have both
 MPLS-OS and PHP. Indeed, in agreeing to the use of MPLS-OS the end
 point is making a statement about its ability to handle the MEL and

https://datatracker.ietf.org/doc/html/rfc3270

Farrel and Farrell [Page 28]

Internet-Draft Opportunistic MPLS Security July 2015

 so it can choose:

 - to request PHP and allow the penultimate hop to set the payload
 indicator of the link encapsulation header to "MPLS"; or

 - to not request PHP.

6. Security Considerations

6.1. Security Improvements

 See Section 2.1.

6.2. Applicability

 See Section 5.

6.3. Continued Vulnerabilities

 The mechanisms described in this document do not provide protection
 against certain types of MITM attacks. For example, the key exchange
 protocol in Section 4.3 will not detect if key exchange messages or
 their responses are intercepted and discarded such that the
 initiating peer believes that encryption is not supported.
 Similarly, those messages may be tampered with such that a receiver
 cannot determine the correct mapping of table index to algorithm and
 key when an encrypted packet is received. Furthermore, the MEL in an
 MPLS packet is not protected and may be overwritten such that a
 receiver is unable to decrypt the packet.

 See Section 7.1 for a discussion of how active MITM attacks can be
 detected.

6.4. New Security Considerations

 If a pair of LSRs do not do the key exchange before sending any data
 packets on the LSP then those first packets will not be protected by
 OS and hence will be available to a monitor.

 If a MITM can prevent the OS key exchange from completing, e.g.
 via deleting messages or changing bits in messages, and if the LSRs
 continue to send data regardless then those data packets will be
 available to a monitor. That is, in simple terms, a MITM attacker is
 able to prevent OS from being used through a very simple attack, and
 the only options for the end points in this situation are to send no
 data or to send data in the clear. Again, it should be pointed out
 that this occurrence is not worse than not running OS at all, but has
 the benefit of being detectable by end points. See Section 2.4 and

Farrel and Farrell [Page 29]

Internet-Draft Opportunistic MPLS Security July 2015

Section 7.1 for a description of how alarms should be raised in these
 circumstances. Furthermore, Section 4.3.1 and Section 4 describe how
 the return path for key exchange messages might be hijacked to better
 facilitate MITM attacks and indicates how the initiator of MPLS-OS
 can detect this and what actions it should take.

 Thus, as been previously noted, OS is not a cure for all ills or a
 prevention against all attacks, but it does offer a way to increase
 security in some circumstances.

7. Manageability Considerations

 As described in Section 2.4 node-wide and per-LSP behavior SHOULD be
 configurable to describe the action where key agreement exchange or
 packet decryption fails. In any case, such events MUST trigger
 alarms to the operator.

7.1. MITM Detection

Section 2.4 introduces the concept of a function of the shared
 secret that can be compared by two LSRs that are using OS to see
 whether they are victims of an active MITM attack.

Section 4.3 describes how a witness value is derived for the
 default KDF, HKDF.

 The participating LSRs can simply log this value plus the LSP
 and LSR IDs from time to time and a management application can
 compare the values. If they are different for the same LSP ID,
 then an active MITM attack has taken place.

 It needs to be carefully noted that the management channel used to
 log or otherwise compare the witness values from the two LSRs MUST be
 secure. It is likely that routers use relatively high security
 management channels for configuration and other management
 operations.

8. IANA Considerations

8.1. GAP Key Exchange TLV

 IANA maintains a registry called "Generic Associated Channel (G-ACh)
 Parameters" with a sub-registry called "G-ACh Advertisement Protocol
 Application Registry" from which new assignments may be made through
 the "IETF review" allocation policy [RFC5226]. IANA is requested to
 make a new allocation as follows:

https://datatracker.ietf.org/doc/html/rfc5226

Farrel and Farrell [Page 30]

Internet-Draft Opportunistic MPLS Security July 2015

 Value | Description | Reference
 ------+---+-----------
 TBD1 | Opportunistic Key Exchange Protocol for MPLS | [This.ID]

8.2. Key Derivation Functions and Symmetric Algorithms

 IANA maintains a registry called "Generic Associated Channel (G-ACh)
 Parameters". IANA is requested to create a new sub-registry called
 "G-ACh Advertisement Protocol: MPLS Encryption Algorithms Registry"
 with new values to be assigned through "IETF Review" as defined in
 [RFC5226].

 The available range is 0 - 255.

 IANA is requested to record the following information and create an
 initial entry as follows:

 Value | Key Derivation Function | Symmetric Algorithm | Reference
 ------+-------------------------+---------------------+-----------
 0 | HKDF | AEAD_AES_GCM_128 | [This.I-D]
 1-255 | Unassigned | |

9. Acknowledgements

 Many thanks to Alia Atlas for detailed discussion of the implications
 and mechanisms of MPLS opportunistic security. Thanks also to Ron
 Bonica for encouraging this work, to Sean Turner and Stewart Bryant
 for early review, and to Jeff Haas, Eric Rosen, and Ross Callon for
 discussions. Thanks for MPLS Review Team comments from Mach Chen and
 Lizhong Jin, and to Charlie Kaufman for review comments.

 Additional thanks to Andy Malis and Danny McPherson for advice about
 the use of the Control Word.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3526] Kivinen, T., and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3526

Farrel and Farrell [Page 31]

Internet-Draft Opportunistic MPLS Security July 2015

 [RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
 "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
 Use over an MPLS PSN", RFC 4385, February 2006.

 [RFC5116] D. McGrew, "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5586] Bocci, M., Vigoureux, M., and S. Bryant, "MPLS Generic
 Associated Channel", RFC 5586, June 2009.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and
 L. Yong, "The Use of Entropy Labels in MPLS Forwarding",

RFC 6790, November 2012.

 [RFC7212] Frost, D., Bryant, S., and M. Bocci, "MPLS Generic
 Associated Channel (G-ACh) Advertisement Protocol", RFC

7212, June 2014.

 [RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating
 and Retiring Special-Purpose MPLS Labels" RFC 7274,
 June 2014.

10.2. Informative References

 [I-D.ietf-mpls-pm-udp-return]
 Bryant, S., Sivabalan, S., and S. Soni, "MPLS Performance
 Measurement UDP Return Path", draft-ietf-mpls-pm-udp-

return, work in progress.

 [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
 Label Switching Architecture", RFC 3031, January 2001.

 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, January 2001.

 [RFC3270] Le Faucheur, F. (Ed), "Multi-Protocol Label Switching
 (MPLS) Support of Differentiated Services", RFC 3207, May
 2002.

https://datatracker.ietf.org/doc/html/rfc4385
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5586
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7212
https://datatracker.ietf.org/doc/html/rfc7274
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-pm-udp-return
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-pm-udp-return
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc3207

Farrel and Farrell [Page 32]

Internet-Draft Opportunistic MPLS Security July 2015

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302, December
 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

 [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
 Label Switched (MPLS) Data Plane Failures" RFC 4379,
 February 2006.

 [RFC4990] Shiomoto, K., Papneja, R., and R. Rabbat, "Use of
 Addresses in Generalized Multiprotocol Label Switching
 (GMPLS) Networks", RFC 4990, September 2007.

 [RFC5036] Andersson, L., Minei, I., and B. Thomas, "LDP
 Specification", RFC 5036, October 2007.

 [RFC6239] K. Igoe, "Suite B Cryptographic Suites for Secure Shell
 (SSH)", RFC 6239, May 2011.

 [RFC7110] Chen, M., Cao, W., Ning, S., Jounay, F., and Delord, S.,
 "Return Path Specified Label Switched Path (LSP) Ping",

RFC 7110, January 2014.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring
 Is an Attack", BCP 188, RFC 7258, May 2014.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and
 T. Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, October 2014.

 [RFC7325] C. Villamizar, Ed., "MPLS Forwarding Compliance and
 Performance Requirements", RFC 7325, August 2014.

 [RFC7435] V. Dukhovni, "Opportunistic Security: Some Protection Most
 of the Time", RFC 7435, December 2014.

 [RFC7510] X. Xu et al., "Encapsulating MPLS in UDP", RFC 7510, April
 2015.

 [RFC7551] Zhang, F., Jing, R., and R. Gandhi, "RSVP-TE Extensions
 for Associated Bidirectional Label Switched Paths (LSPs)",

RFC 7551, May 2015.

https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4379
https://datatracker.ietf.org/doc/html/rfc4990
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc6239
https://datatracker.ietf.org/doc/html/rfc7110
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7325
https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc7510
https://datatracker.ietf.org/doc/html/rfc7551

Farrel and Farrell [Page 33]

Internet-Draft Opportunistic MPLS Security July 2015

Authors' Addresses

 Adrian Farrel
 Juniper Networks

 EMail: adrian@olddog.co.uk

 Stephen Farrell
 Trinity College Dublin
 Dublin, 2
 Ireland

 Phone: +353-1-896-2354
 Email: stephen.farrell@cs.tcd.ie

Farrel and Farrell [Page 34]

