
Network Working Group Daniel O. Awduche
Internet Draft UUNET Worldcom, Inc.
Expiration Date: May 1999
 Lou Berger
 FORE Systems, Inc.

 Der-Hwa Gan
 Juniper Networks, Inc.

 Tony Li
 Juniper Networks, Inc.

 George Swallow
 Cisco Systems, Inc.

 Vijay Srinivasan
 Torrent Networks, Inc.

 November 1998

Extensions to RSVP for LSP Tunnels

draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 This document describes the use of RSVP, including all the necessary
 extensions, to establish label-switched paths (LSPs) in MPLS. Since

Swallow, et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 the flow along an LSP is completely identified by the label applied
 at the ingress node of the path, these paths may be treated as
 tunnels. A key application of LSP tunnels is traffic engineering
 with MPLS as specified in [3].

 We propose several additional objects that extend RSVP, allowing the
 establishment of explicitly routed label switched paths using RSVP as
 a signaling protocol. The result is the instantiation of label-
 switched tunnels which can be automatically routed away from network
 failures, congestion, and bottlenecks.

 Finally, we propose a number of mechanisms to reduce the refresh
 overhead of RSVP. The extensions can be used to reduce processing
 requirements of refresh messages, eliminate the state synchronization
 latency incurred when an RSVP message is lost and, when desired,
 eliminate the generation of refresh messages. An extension to
 support detection of when an RSVP neighbor resets its state is also
 presented. These extension present no backwards compatibility
 issues.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 2]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

Contents

1 Introduction and Background 5
1.1 Introduction ... 5
1.2 Background ... 6
2 Overview .. 8
2.1 LSP Tunnels .. 8
2.2 Operation of LSP Tunnels 8
2.3 Service Classes .. 10
2.4 Reservation Styles 10
2.4.1 Fixed Filter (FF) Style 11
2.4.2 Wildcard Filter (WF) Style 11
2.4.3 Shared Explicit (SE) Style 12
2.5 Rerouting LSP Tunnels 12
3 RSVP Message Formats 13
3.1 Path Message ... 14
3.2 Resv Message ... 14
4 Objects .. 15
4.1 Label Object ... 15
4.1.1 Handling Label Objects in Resv messages 16
4.1.2 Non-support of the Label Object 16
4.2 Label Request Object 17
4.2.1 Handling of LABEL_REQUEST 20
4.2.2 Non-support of the Label Request Object 21
4.3 Explicit Route Object 22
4.3.1 Applicability .. 22
4.3.2 Semantics of the Explicit Route Object 23
4.3.3 Subobjects ... 24
4.3.4 Processing of the Explicit Route Object 27
4.3.5 Loops .. 29
4.3.6 Non-support of the Explicit Route Object 29
4.4 Record Route Object 30
4.4.1 Subobjects ... 30
4.4.2 Applicability .. 32
4.4.3 Handling RRO ... 33
4.4.4 Loop Detection ... 34
4.4.5 Non-support of RRO 34
4.5 Error Subcodes for ERO and RRO 35
4.6 Session, Sender Template, and Filter Spec Objects 35
4.6.1 Session Object ... 36
4.6.2 Sender Template Object 36
4.6.3 Filter Specification Object 37
4.6.4 Reroute Procedure 37
4.7 Session Attribute Object 38
5 Refresh Related Extensions 41
5.1 RSVP Aggregate Message 42

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 3]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.1.1 Aggregate Header 42
5.1.2 Message Formats .. 43
5.1.3 Sending RSVP Aggregate Messages 43
5.1.4 Receiving RSVP Aggregate Messages 44
5.1.5 Forwarding RSVP Aggregate Messages 45
5.1.6 Aggregate-Capable Bit 45
5.2 MESSAGE_ID Extension 46
5.2.1 MESSAGE_ID Object 47
5.2.2 Ack Message Format 48
5.2.3 MESSAGE_ID Object Usage 49
5.2.4 MESSAGE_ID ACK Object Usage 50
5.2.5 Multicast Considerations 51
5.2.6 Compatibility .. 52
5.3 Hello Extension .. 52
5.3.1 Hello and Hello Ack Message Formats 54
5.3.2 STATE_SET Object 54
5.3.3 Hello Message Usage 55
5.3.4 Compatibility .. 55
6 Acknowledgments .. 56
7 References ... 56
8 Authors' Addresses 57

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 4]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

1. Introduction and Background

1.1. Introduction

 This document is a specification of extensions to RSVP for
 establishing label switched paths (LSPs) in Multi-protocol Label
 Switching (MPLS) networks. Several of the new features described in
 this document were motivated by the requirements for traffic
 engineering over MPLS (see [3]). In particular, the extended RSVP
 protocol supports the instantiation of explicitly routed LSPs, with
 or without resource reservations. It also supports smooth rerouting
 of LSPs, preemption, loop detection, and a fast reroute option to
 allow expedited service restoration under fault conditions.

 Since the traffic that flows along a label-switched path is defined
 by the label applied at the ingress node of the LSP, these paths can
 be treated as tunnels. When an LSP is used in this way we refer to
 it as an LSP tunnel.

 LSP tunnels allow the implementation of a variety of policies related
 to network performance optimization. For example, LSP tunnels can be
 automatically or manually routed away from network failures,
 congestion, and bottlenecks. Furthermore, multiple parallel LSP
 tunnels can be established between two nodes, and traffic between the
 two nodes can be mapped onto the LSP tunnels according to local
 policy. Although traffic engineering (that is, performance
 optimization of operational networks) is expected to be an important
 application of this specification, the extended RSVP protocol can be
 used in a much wider context.

 The purpose of this document is to describe the use of RSVP to
 establish LSP tunnels. The intent is to fully describe all the
 objects, packet formats, and procedures required to realize
 interoperable implementations.

 All objects described in this specification are optional with respect
 to RSVP. This document discusses what happens when an object
 described here is not supported by a node.

 Resilience and scalability are very important considerations in this
 specification. When an LSP tunnel fails, a significant amount of data
 can be lost. As a result, failure notification and service
 restoration should be fast and reliable. Accordingly, a number of
 features are provided to facilitate smooth reroute of LSP tunnels,
 fast reroute of LSP tunnels through intermediate detour paths under
 faults, and fast and reliable LSP tunnel teardown. A few new objects
 are also defined that enhance management and diagnostics of LSP
 tunnels.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 5]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 Several new RSVP objects and messages are used to reduced processing
 requirements related to RSVP refresh messages and address the latency
 and reliability of RSVP Signaling. First, an aggregate message is
 proposed to reduce the message handing load. Second tokens are added
 as a short hand method of identifying state. Third, procedures to
 suppress refreshes are defined. Last a Hello protocol is defined to
 detect loss of a neighbor's state.

 These extensions may be used in part in combination. They may be
 useful in other RSVP environments and may be supported independent of
 other MPLS related RSVP extensions.

 Throughout this document, the discussion will be restricted to
 unicast label switched paths. Multicast LSPs are left for further
 study.

1.2. Background

 Hosts and routers that support both RSVP [1] and Multi-Protocol Label
 Switching [2] can associate labels with RSVP flows. When MPLS and
 RSVP are combined, the definition of a flow can be made more
 flexible. Once a label switched path (LSP) is established, the
 traffic through the path is defined by the label applied at the
 ingress node of the LSP. The mapping of label to traffic can be
 accomplished using a number of different criteria. The set of
 packets that are assigned the same label value by a specific node are
 said to belong to the same forwarding equivalence class (FEC) (see
 [2]), and effectively define the "RSVP flow." When traffic is mapped
 onto a label-switched path in this way, we call the LSP an "LSP
 Tunnel".

 When labels are associated with traffic flows, it becomes possible
 for a router to identify the appropriate reservation state for a
 packet based on the packet's label value. This approach greatly
 simplifies packet classification and improves network performance
 because a single label lookup identifies both packet forwarding
 information and packet reservation state.

 The signaling protocol model uses downstream-on-demand label
 distribution. A request to bind labels to a specific LSP tunnel is
 initiated by an ingress node through the RSVP Path message. For this
 purpose, the RSVP Path message is augmented with a LABEL_REQUEST
 object. Labels are allocated downstream and distributed (propagated
 upstream) by means of the RSVP Resv message. For this purpose, the
 RSVP Resv message is extended with a special LABEL object. Label
 stacking is also supported. The procedures for label allocation,
 distribution, binding, and stacking are described in subsequent

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 6]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 sections of this document.

 The signaling protocol model also supports explicit routing
 capability. This is accomplished by incorporating a simple
 EXPLICIT_ROUTE object into RSVP Path messages. The EXPLICIT_ROUTE
 object encapsulates a concatenation of hops which constitutes the
 explicitly routed path. Using this object, the paths taken by label-
 switched RSVP-MPLS flows can be pre-determined, independent of
 conventional IP routing. The explicitly routed path can be
 administratively specified, or automatically computed by a suitable
 entity based on QoS and policy requirements, taking into
 consideration the prevailing network state. In general, path
 computation can be control-driven or data-driven. The mechanisms,
 processes, and algorithms used to compute explicitly routed paths are
 beyond the scope of this specification.

 One useful application of explicit routing is traffic engineering.
 Using explicitly routed LSPs, a node at the ingress edge of an MPLS
 domain can control the path through which traffic traverses from
 itself, through the MPLS network, to an egress node. Explicit
 routing can be used to optimize the utilization of network resources
 and enhance traffic oriented performance characteristics.

 The concept of explicitly routed label switched paths can be
 generalized through the notion of abstract nodes. An abstract node is
 a group of nodes whose internal topology is opaque to the ingress
 node of the LSP. An abstract node is said to be trivial if it is a
 singleton, that is if it contains only one physical node. Using this
 concept of abstraction, an explicitly routed LSP can be specified as
 a sequence of IP prefixes with subnet masks or a sequence of
 Autonomous Systems.

 The signaling protocol model supports the specification of an
 explicit path as a sequence of strict and loose routes. The
 combination of abstract nodes, and strict and loose routes
 significantly enhances the flexibility of path definitions.

 An advantage of using RSVP to establish LSP tunnels is that it
 enables the allocation of resources along the path. For example,
 bandwidth can be allocated to an LSP tunnel using standard RSVP
 reservations and Integrated Services service classes [4].

 While resource reservations are useful, they are not mandatory.
 Indeed, an LSP can be instantiated without any resource reservations
 whatsoever. Such LSPs without resource reservations can be used, for
 example, to carry best effort traffic. They can also be used in many
 other contexts, including implementation of fall-back and recovery
 policies under fault conditions, and so forth.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 7]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

2. Overview

2.1. LSP Tunnels

 According to [1], "RSVP defines a 'session' to be a data flow with a
 particular destination and transport-layer protocol." However, when
 RSVP and MPLS are combined, a flow or session can be defined with
 greater flexibility and generality. The ingress node of an LSP can
 use a variety of means to determine which packets are assigned a
 particular label. Once a label is assigned to a set of packets, the
 label effectively defines the "flow" through the LSP. We refer to
 such an LSP as an "LSP tunnel" because the traffic through it is
 opaque to intermediate nodes along the label switched path.

 A new RSVP SESSION object, called LSP_TUNNEL_IPv4, has been defined
 to support the LSP tunnel feature. The semantics of this object,
 from the perspective of a node along the label switched path, is that
 traffic belonging to the LSP tunnel is identified solely on the basis
 of packets arriving from the PHOP or "previous hop" (see [1]) with
 the particular label value(s) assigned by this node to upstream
 senders to the session. In fact, the IPv4 that appears in the object
 name only denotes that the destination address is an IPv4 address.

2.2. Operation of LSP Tunnels

 This section summarizes some of the features supported by RSVP as
 extended by this document related to the operation of LSP tunnels.
 These include: (1) the capability to establish LSP tunnels with or
 without QoS requirements, (2) the capability to dynamically reroute
 an established LSP tunnel, (3) the capability to observe the actual
 route traversed by an established LSP tunnel, (4) the capability to
 identify and diagnose LSP tunnels, (5) the capability to preempt an
 established LSP tunnel under administrative policy control, and (6)
 the capability to perform downstream-on-demand label allocation,
 distribution, and binding. In the following paragraphs, these
 features are briefly described. More detailed descriptions can be
 found in subsequent sections of this document.

 To create an LSP tunnel, the first MPLS node on the path -- that is,
 the sender node with respect to the path -- creates an RSVP Path
 message with a session type of LSP_Tunnel_IPv4 and inserts a
 LABEL_REQUEST object into the Path message. The LABEL_REQUEST object
 indicates that a label binding for this path is requested and also
 provides an indication of the network layer protocol that is to be
 carried over this path. The reason for this is that the network layer
 protocol sent down an LSP cannot be assumed to be IPv4 and cannot be
 deduced from the L2 header, which simply identifies the higher layer

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 8]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 protocol as MPLS.

 If the sender node has knowledge of a route that has high likelihood
 of meeting the tunnel's QoS requirements, or that makes efficient use
 of network resources, or that satisfies some policy criteria, the
 node can decide to use the route for some or all of its sessions. To
 do this, the sender node adds an EXPLICIT_ROUTE object to the RSVP
 Path message. The EXPLICIT_ROUTE object specifies the route as a
 sequence of abstract nodes.

 If, after a session has been successfully established and the sender
 node discovers a better route, the sender can dynamically reroute the
 session by simply changing the EXPLICIT_ROUTE object. If problems
 are encountered with an EXPLICIT_ROUTE object, either because it
 causes a routing loop or because some intermediate routers do not
 support it, the sender node is notified.

 By adding a RECORD_ROUTE object to the Path message, the sender node
 can receive information about the actual route that the LSP tunnel
 traverses. The sender node can also use this object to request
 notification from the network concerning changes to the routing path.
 The RECORD_ROUTE object is analogous to a path vector, and hence can
 be used for loop detection.

 Finally, a SESSION_ATTRIBUTE object can be added to Path messages to
 aid in session identification and diagnostics. Additional control
 information, such as preemption, priority, and fast-reroute, are also
 included in this object.

 When the EXPLICIT_ROUTE object (ERO) is present, the Path message is
 forwarded towards its destination along a path specified by the ERO.
 Each node along the path records the ERO in its path state block.
 Nodes may also modify the ERO before forwarding the Path message. In
 this case the modified ERO should be stored in the path state block.

 The LABEL_REQUEST object requests intermediate routers and receiver
 nodes to provide a label binding for the session. If a node is
 incapable of providing a label binding, it sends a PathErr message
 with an "unknown object class" error. If the LABEL_REQUEST object is
 not supported end to end, the sender node will be notified by the
 first node which does not provide this support.

 The destination node of a label-switched path responds to a
 LABEL_REQUEST by including a LABEL object in its response RSVP Resv
 message. The LABEL object is inserted in the filter spec list
 immediately following the filter spec to which it pertains.

 The Resv message is sent back upstream towards the sender, in a

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 9]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 direction opposite to that followed by the Path message. Each node
 that receives a Resv message containing a LABEL object uses that
 label for outgoing traffic associated with this LSP tunnel. If the
 node is not the sender, it allocates a new label and places that
 label in the corresponding LABEL object of the Resv message which it
 sends upstream to the PHOP. The label sent upstream in the LABEL
 object is the label which this node will use to identify incoming
 traffic associated with this LSP tunnel. This label also serves as
 shorthand for the Filter Spec. The node can now update its "Incoming
 Label Map" (ILM), which is used to map incoming labeled packets to a
 "Next Hop Label Forwarding Entry" (NHLFE), see [2].

 When the Resv message propagates upstream to the sender node, a
 label-switched path is effectively established.

2.3. Service Classes

 This document does not restrict the type of Integrated Service
 requests for reservations. However, an implementation should support
 the Controlled-Load service [4].

 An LSP may not need bandwidth reservations or QoS guarantees. Such
 LSPs can be used to deliver best-effort traffic, even if RSVP is used
 for setting up LSPs. When resources do not have to be
 allocated to the LSP, the Sender_TSpec in the Path message can
 specify a token bucket rate of zero and a token bucket size of zero.
 The corresponding FLOWSPEC (in the Resv message) should carry a zero
 rate and size as well. LSPs with no bandwidth reservation are not
 subject to Admission Control and do not require traffic policing.

2.4. Reservation Styles

 The receiver node can select from among a set of possible reservation
 styles for each session, and each RSVP session must have a particular
 style. Senders have no influence on the choice of reservation style.
 The receiver can choose different reservation styles for different
 LSPs.

 An RSVP session can result in one or more LSPs, depending on the
 reservation style chosen.

 Some reservation styles, such as FF, dedicate a particular
 reservation to an individual sender node. Other reservation styles,
 such as WF and SE, can share a reservation among several sender
 nodes. The following sections discuss the different reservation
 styles and their advantages and disadvantages. A more detailed

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 10]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 discussion of reservation styles can be found in [1].

2.4.1. Fixed Filter (FF) Style

 The Fixed Filter (FF) reservation style creates a distinct
 reservation for traffic from each sender that is not shared by other
 senders. This style is common for applications in which traffic from
 each sender is likely to be concurrent and independent. The total
 amount of reserved bandwidth on a link for sessions using FF is the
 sum of the reservations for the individual senders.

 Because each sender has its own reservation, a unique label and a
 separate label-switched-path can be assigned to each sender. This
 can result in a point-to-point LSP between every sender/receiver
 pair.

2.4.2. Wildcard Filter (WF) Style

 With the Wildcard Filter (WF) reservation style, a single shared
 reservation is used for all senders to a session. The total
 reservation on a link remains the same regardless of the number of
 senders.

 A single multipoint-to-point label-switched-path is created for all
 senders to the session. On links that senders to the session share, a
 single label value is allocated to the session. If there is only one
 sender, the LSP looks like a normal point-to-point connection. When
 multiple senders are present, a multipoint-to-point LSP (a reversed
 tree) is created.

 This style is useful for applications in which not all senders send
 traffic at the same time. A phone conference, for example, is an
 application where not all speakers talk at the same time. If,
 however, the reservation requested is greater than a single sender's
 requirements, then the reserved bandwidth on links close to the some
 senders may be greater than what is required. This restricts the
 applicability of WF for traffic engineering purposes.

 Furthermore, because of the merging rules of WF, EXPLICIT_ROUTE
 objects cannot be used with WF reservations. As a result of this
 issue and the lack of applicability to traffic engineering, use of WF
 is not considered in this document.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 11]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

2.4.3. Shared Explicit (SE) Style

 The Shared Explicit (SE) style allows a receiver to explicitly
 specify the senders to be included in a reservation. There is a
 single reservation on a link for all the senders listed.

 Because each sender is explicitly listed in the Resv message,
 separate labels may be assigned to each sender, thereby creating
 separate LSPs for each sender.

 Having separate LSPs for each sender ensures compatibility with the
 EXPLICIT_ROUTE object. Path messages from different senders can
 carry their own ERO, and the paths taken by the senders can converge
 and diverge at any point in the network topology.

2.5. Rerouting LSP Tunnels

 One of the requirements for Traffic Engineering is the capability to
 reroute an established LSP tunnel under a number of conditions, based
 on administrative policy. For example, in some contexts, an
 administrative policy may dictate that a given LSP tunnel is to be
 rerouted when a more "optimal" route becomes available. Another
 important context when LSP tunnel reroute is usually required is upon
 failure of a resource along the tunnel's established path. Under
 some policies, it may also be necessary to return the LSP tunnel to
 its original path when the failed resource becomes re-activated.

 In general, it is highly desirable not to disrupt traffic, or
 adversely impact network operations while LSP tunnel rerouting is in
 progress. This adaptive and smooth rerouting requirement
 necessitates establishing a new LSP tunnel and transferring traffic
 from the old LSP tunnel onto it before tearing down the old LSP
 tunnel. This concept is called "make-before-break." A problem can
 arise because the old and new LSP tunnels might compete with other
 for resources on network segments which they have in common.
 Depending on availability of resources, this competition can cause
 Admission Control to prevent the new tunnel from being established.
 An advantage of using RSVP to establish LSP tunnels is that it solves
 this problem very elegantly.

 To support make-before-break in a smooth fashion, it is necessary
 that on links that are common to the old and new LSPs, resources used
 by the old LSP tunnel should not be released before traffic is
 transitioned to the new LSP tunnel, and reservations should not be
 counted twice because this might cause Admission Control to reject
 the new LSP tunnel.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 12]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 The combination of the LSP_TUNNEL_IPv4 SESSION object and the SE
 reservation style naturally achieves smooth transitions. The basic
 idea is that the old and new LSP tunnels share resources along links
 which they have in common. The LSP_TUNNEL_IPv4 SESSION object is used
 to narrow the scope of the RSVP session to the particular tunnel in
 question. To uniquely identify a tunnel, we use the combination of
 the destination IP address, a Tunnel ID, and the sender's IP address,
 which is placed in the Extended Tunnel ID field.

 During the reroute operation, the source needs to appear as two
 different sources to RSVP. This is achieved by the inclusion of an
 "LSP ID", which is carried in the SENDER_TEMPLATE and FILTER_SPEC
 objects. Since the semantics of these objects are changed, a new C-
 Type is assigned.

 To effect a reroute, the source node picks a new LSP ID and forms a
 new SENDER_TEMPLATE. The source node then creates a new ERO to
 define the new path. Thereafter the node sends a new Path Message
 using the original SESSION object and the new SENDER_TEMPLATE and
 ERO. It continues to use the old LSP and refresh the old Path
 message. On links that are not held in common, the new Path message
 is treated as a conventional new LSP tunnel setup. On links held in
 common, the shared SESSION object and SE style allow the LSP to be
 established sharing resources with the old LSP. Once the sender
 receives a Resv message for the new LSP, it can transition traffic to
 it and tear down the old LSP.

3. RSVP Message Formats

 Five new objects are defined in this document:

 Object name Applicable RSVP messages
 --------------- ------------------------
 LABEL_REQUEST Path
 LABEL Resv
 EXPLICIT_ROUTE Path
 RECORD_ROUTE Path, Resv
 SESSION_ATTRIBUTE Path

 New C-Types are also assigned for the SESSION, SENDER_TEMPLATE, and
 FILTER_SPEC objects.

 Detailed descriptions of the new objects are given in later sections.
 All new objects are optional with respect to RSVP. An implementation
 can choose to support a subset of objects. However, the
 LABEL_REQUEST and LABEL objects are mandatory with respect to this

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 13]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 specification.

 The LABEL and RECORD_ROUTE objects, are sender specific. They must
 immediately follow either the SENDER_TEMPLATE in Path messages, or
 the FILTER_SPEC in Resv messages.

 The placement of EXPLICIT_ROUTE, LABEL_REQUEST, and SESSION_ATTRIBUTE
 objects is simply a recommendation. The ordering of these objects is
 not important, so an implementation must be prepared to accept
 objects in any order.

3.1. Path Message

 The format of the Path message is as follows:

 <Path Message> ::= <Common Header> [<INTEGRITY>]
 <SESSION> <RSVP_HOP>
 <TIME_VALUES>
 [<EXPLICIT_ROUTE>]
 <LABEL_REQUEST>
 [<SESSION_ATTRIBUTE>]
 [<POLICY_DATA> ...]
 [<sender descriptor>]

 <sender descriptor> ::= <SENDER_TEMPLATE> [<SENDER_TSPEC>]
 [<ADSPEC>]
 [<RECORD_ROUTE>]

3.2. Resv Message

 The format of the Resv message is as follows:

 <Resv Message> ::= <Common Header> [<INTEGRITY>]
 <SESSION> <RSVP_HOP>
 <TIME_VALUES>
 [<RESV_CONFIRM>] [<SCOPE>]
 [<POLICY_DATA> ...]
 <STYLE> <flow descriptor list>

 <FF flow descriptor list> ::= <FLOWSPEC> <FILTER_SPEC> <LABEL>
 [<RECORD_ROUTE>]
 | <FF flow descriptor list> <FF flow descriptor>

 <FF flow descriptor> ::= [<FLOWSPEC>] <FILTER_SPEC> <LABEL>
 [<RECORD_ROUTE>]

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 14]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 <SE flow descriptor> ::= <FLOWSPEC> <SE filter spec list>

 <SE filter spec list> ::= <SE filter spec>
 | <SE filter spec list> <SE filter spec>

 <SE filter spec> ::= <FILTER_SPEC> <LABEL> [<RECORD_ROUTE>]

 Note: LABEL and RECORD_ROUTE (if present), are bound to the
 preceding FILTER_SPEC. No more than one LABEL and/or
 RECORD_ROUTE may follow each FILTER_SPEC.

4. Objects

4.1. Label Object

 Labels may be carried in Resv messages. For the FF and SE styles, a
 label is associated with each sender. The label for a sender must
 immediately follow the FILTER_SPEC for that sender in the Resv
 message.

 The LABEL object has the following format:

 LABEL class = 16, C_Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | |
 // (Object contents) //
 | |
 +-+
 | (top label) |
 +-+

 The contents of a LABEL object are a stack of labels, where each
 label is encoded right aligned in 4 octets. The top of the stack is
 in the right 4 octets of the object contents. A LABEL object that
 contains no labels is illegal.

 Each label is an unsigned integer in the range 0 through 1048575.

 The decision concerning whether to create a label stack with more
 than one label, when to push a new label, and when to pop the label
 stack are to be specified in a separate document. For

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 15]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 implementations that do not support a label stack, only the top label
 is examined. The rest of the label stack should be passed through
 unchanged. Such implementations are required to generate a label
 stack of depth 1 when initiating the first LABEL.

4.1.1. Handling Label Objects in Resv messages

 A router uses the top label carried in the LABEL object as the
 outgoing label associated with the sender. The router allocates a
 new label and binds it to the incoming interface of this
 session/sender. This is the same interface that the router uses to
 forward Resv messages to the previous hops.

 In MPLS a node may support multiple label spaces, perhaps associating
 a unique space with each incoming interface. For the purposes of the
 following discussion, the term "same label" means the identical label
 value drawn from the identical label space. Further, the following
 applies only to unicast sessions.

 If a node receives a Resv message that has assigned the same label
 value to multiple senders, then that node may also assign the same
 value to those same senders or to any subset of those senders. Note
 that if a node intends to police individual senders to a session, it
 must assign unique labels to those senders.

 Labels received in Resv messages on different interfaces are always
 considered to be different even if the label value is the same.

 To construct a new LABEL object, the router replaces the top label
 (from the received Resv message) with the locally allocated new
 label. The router then sends the new LABEL object as part of the
 Resv message to the previous hop. The LABEL object should be kept in
 the Reservation State Block. It is then used in the next Resv
 refresh event for formatting the Resv message.

 A router can decide to send a Resv message before its refresh timers
 expire if the contents of the LABEL object change.

4.1.2. Non-support of the Label Object

 Under normal circumstances, a node should never receive a LABEL
 object in a Resv message unless it had included a LABEL_REQUEST
 object in the corresponding Path message. However, an RSVP router
 that does not recognize the LABEL object sends a ResvErr with the
 error code "Unknown object class" toward the receiver. This causes
 the reservation to fail.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 16]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 RSVP is designed to cope gracefully with non-RSVP routers anywhere
 between senders and receivers. However, non-RSVP routers cannot
 receive label-switched packets conveyed in PATH or RESV messages.
 This means that if a router has a neighbor that is not RSVP capable,
 the router must not advertise the LABEL object when sending messages
 that pass through the non-RSVP router. The RSVP specification [1]
 describes how routers can determine the presence of non-RSVP routers.

4.2. Label Request Object

 The LABEL_REQUEST object formats are shown below. Currently there
 three possible C_Types. Type 1 is a Label Request without label
 range. Type 2 is a label request with an ATM label range. Type 3 is
 a label request with a Frame Relay label range.

 Label Request without Label Range

 class = 19, C_Type = 1 (need to get an official class num from
 the IANA)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | Reserved | L3PID |
 +-+

 Reserved

 This field is reserved. It must be set to zero on transmis-
 sion and must be ignored on receipt.

 L3PID

 an identifier of the layer 3 protocol using this path.
 Standard Ethertype values are used.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 17]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 Label Request with ATM Label Range

 class = 19, C_Type = 2 (need to get an official class num from
 the IANA)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | Reserved | L3PID |
 +-+
 | Res | Minimum VPI | Minimum VCI |
 +-+
 | Res | Maximum VPI | Maximum VCI |
 +-+

 Reserved (Res)

 This field is reserved. It must be set to zero on transmis-
 sion and must be ignored on receipt.

 L3PID

 an identifier of the layer 3 protocol using this path.
 Standard Ethertype values are used.

 Minimum VPI (12 bits)

 This 12 bit field specifies the lower bound of a block of
 Virtual Path Identifiers that is supported on the originating
 switch. If the VPI is less than 12-bits it should be right
 justified in this field and preceding bits should be set to
 zero.

 Minimum VCI (16 bits)

 This 16 bit field specifies the lower bound of a block of
 Virtual Connection Identifiers that is supported on the ori-
 ginating switch. If the VCI is less than 16-bits it should be
 right justified in this field and preceding bits should be set
 to zero.

 Maximum VPI (12 bits)

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 18]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 This 12 bit field specifies the upper bound of a block of
 Virtual Path Identifiers that is supported on the originating
 switch. If the VPI is less than 12-bits it should be right
 justified in this field and preceding bits should be set to
 zero.

 Maximum VCI (16 bits)

 This 16 bit field specifies the upper bound of a block of
 Virtual Connection Identifiers that is supported on the ori-
 ginating switch. If the VCI is less than 16-bits it should be
 right justified in this field and preceding bits should be set
 to zero.

 Label Request with Frame Relay Label Range
 class = 19, C_Type = 3 (need to get an official class num from
 the IANA)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | Reserved | L3PID |
 +-+
 | Reserved |DLI| Minimum DLCI |
 +-+
 | Reserved | Maximum DLCI |
 +-+

 Reserved

 This field is reserved. It must be set to zero on transmis-
 sion and ignored on receipt.

 L3PID

 an identifier of the layer 3 protocol using this path.
 Standard Ethertype values are used.

 DLI

 DLCI Length Indicator. The number of bits in the DLCI.
 The following values are supported:

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 19]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 Len DLCI bits

 0 10
 1 17
 2 23

 Minimum DLCI

 This 23-bit field specifies the lower bound of a block of Data
 Link Connection Identifiers (DLCIs) that is supported on the
 originating switch. The DLCI should be right justified in this
 field and unused bits should be set to 0.

 Maximum DLCI

 This 23-bit field specifies the upper bound of a block of Data
 Link Connection Identifiers (DLCIs) that is supported on the
 originating switch. The DLCI should be right justified in this
 field and unused bits should be set to 0.

4.2.1. Handling of LABEL_REQUEST

 To establish an LSP tunnel the sender creates a Path message with a
 LABEL_REQUEST object. The LABEL_REQUEST object indicates that a
 label binding for this path is requested and provides an indication
 of the network layer protocol that is to be carried over this path.
 This permits non-IP network layer protocols to be sent down an LSP.
 This information can also be useful in actual label allocation,
 because some reserved labels are protocol specific, see [5].

 The LABEL_REQUEST should be stored in the Path State Block, so that
 Path refresh messages will also contain the LABEL_REQUEST object.
 When the Path message reaches the receiver, the presence of the
 LABEL_REQUEST object triggers the receiver to allocate a label and to
 place the label in the LABEL object for the corresponding Resv
 message. If a label range was specified, the label must be allocated
 from that range. A receiver that accepts a LABEL_REQUEST object MUST
 include a LABEL object in Resv messages pertaining to that Path
 message. If a LABEL_REQUEST object was not present in the Path
 message, a node MUST NOT include a LABEL object in a Resv message for
 that Path message's session and PHOP.

 A node that sends a LABEL_REQUEST object must be ready to accept and
 correctly process a LABEL object in the corresponding Resv messages.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 20]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 A node that recognizes a LABEL_REQUEST object, but that is unable to
 support it (possibly because of a failure to allocate labels) should
 send a PathErr with the error code "Routing problem" and the subcode
 "MPLS label allocation failure." This includes the case where a
 label range has been specified and a label cannot be allocated from
 that range.

 If the receiver cannot support the protocol L3PID, it should send a
 PathErr with the error code "Routing problem" and the subcode
 "Unsupported L3PID." This causes the RSVP session to fail.

4.2.2. Non-support of the Label Request Object

 An RSVP router that does not recognize the LABEL_REQUEST object sends
 a PathErr with the error code "Unknown object class" toward the
 sender. An RSVP router that recognizes the LABEL_REQUEST object but
 does not recognize the C_Type send a PathErr with the error code
 "Unknown object C_Type" toward the sender. This causes the path
 setup to fail. The sender should notify management that a LSP cannot
 be established and possibly take action to continue the reservation
 without the LABEL_REQUEST.

 RSVP is designed to cope gracefully with non-RSVP routers anywhere
 between the sender and the receiver. However, non-RSVP routers cannot
 receive label-switched packets. This means that if a router has a
 neighbor that is not RSVP capable, the router must not advertise
 LABEL_REQUEST objects when sending messages that pass through the
 non-RSVP routers. The router should send a PathErr back to the
 sender, with the error code "Routing problem" and the subcode "MPLS
 being negotiated, but a non-RSVP capable router stands in the path."
 See [1] for a description of how routers can determine the presence
 of non-RSVP routers.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 21]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.3. Explicit Route Object

 As stated earlier, explicit routes are to be specified through a new
 EXPLICIT_ROUTE object (ERO) in RSVP Path messages. The
 EXPLICIT_ROUTE object has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | |
 // (Object contents) //
 | |
 +-+

 Class-Num

 The Class-Num for an EXPLICIT_ROUTE object is 18 (need to get
 an official one from the IANA with the high order two bits set
 to 11)

 C-Type

 The C-Type for an EXPLICIT_ROUTE object is 2 (need to get an
 official one from the IANA)

 If a Path message contains multiple EXPLICIT_ROUTE objects, only the
 first object is meaningful. Subsequent EXPLICIT_ROUTE objects may be
 ignored and should not be propagated.

4.3.1. Applicability

 The EXPLICIT_ROUTE object is intended to be used only for unicast
 situations. Applications of explicit routing to multicast are a
 topic for further research.

 The EXPLICIT_ROUTE object is to be used only when all routers along
 the explicit route support RSVP and the EXPLICIT_ROUTE object. The
 mechanisms for determining, a priori, that such support is present
 are beyond the scope of this document.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 22]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.3.2. Semantics of the Explicit Route Object

 An explicit route is a particular path in the network topology.
 Typically, the explicit route is determined by a node, with the
 intent of directing traffic along that path.

 An explicit route is described as a list of groups of nodes along the
 explicit route. Certain operations to be performed along the path
 can also be encoded in the EXPLICIT_ROUTE object.

 In addition to the ability to identify specific nodes along the path,
 an explicit route can identify a group of nodes that must be
 traversed along the path. This capability allows the routing system
 a significant amount of local flexibility in fulfilling a request for
 an explicit route. This capability allows the generator of the
 explicit route to have imperfect information about the details of the
 path.

 The explicit route is encoded as a series of subobjects contained in
 an EXPLICIT_ROUTE object. Each subobject may identify a group of
 nodes in the explicit route or may specify an operation to be
 performed along the path. An explicit route then becomes a
 specification of groups of nodes to be traversed and a set of
 operations to be performed along the path.

 To formalize the discussion, we call each group of nodes an abstract
 node. Thus, we say that an explicit route is a specification of a
 set of abstract nodes to be traversed and a set operations to be
 performed along that path. If an abstract node consists of only one
 node, we refer to it as a simple abstract node.

 As an example of the concept of abstract nodes, consider an explicit
 route that consists solely of Autonomous System number subobjects.
 Each subobject corresponds to an Autonomous System in the global
 topology. In this case, each Autonomous System is an abstract node,
 and the explicit route is a path that includes each of the specified
 Autonomous Systems. There may be multiple hops within each
 Autonomous System, but these are opaque to the source node for the
 explicit route.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 23]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.3.3. Subobjects

 The contents of an EXPLICIT_ROUTE object are a series of variable-
 length data items called subobjects. Each subobject has the form:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------//----------------+
 |L| Type | Length | (Subobject contents) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-------------//----------------+

 L

 The L bit is an attribute of the subobject. The L bit is set
 if the subobject represents a loose hop in the explicit route.
 If the bit is not set, the subobject represents a strict hop in
 the explicit route.

 Type

 The Type indicates the type of contents of the subobject.
 Currently defined values are:

 0 Reserved
 1 IPv4 prefix
 2 IPv6 prefix
 32 Autonomous system number
 64 MPLS label switched path termination

 Length

 The Length contains the total length of the subobject in bytes,
 including the L, Type and Length fields. The Length must be at
 least 4, and must be a multiple of 4.

4.3.3.1. Strict and Loose Subobjects

 The L bit in the subobject is a one-bit attribute. If the L bit is
 set, then the value of the attribute is 'loose.' Otherwise, the
 value of the attribute is 'strict.' For brevity, we say that if the
 value of the subobject attribute is 'loose' then it is a 'loose
 subobject.' Otherwise, it's a 'strict subobject.' Further, we say
 that the abstract node of a strict or loose subobject is a strict or
 a loose node, respectively. Loose and strict nodes are always
 interpreted relative to their prior abstract nodes.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 24]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 The path between a strict node and its preceding node MUST include
 only network nodes from the strict node and its preceding abstract
 node.

 The path between a loose node and its preceding node MAY include
 other network nodes that are not part of the strict node or its
 preceding abstract node.

 The L bit has no meaning in operation subobjects.

4.3.3.2. Subobject 1: IPv4 prefix

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | IPv4 address (4 bytes) |
 +-+
 | IPv4 address (continued) | Mask | Padding |
 +-+

 Type

 0x81 IPv4 address

 IPv4 address

 An IPv4 address. This address is treated as a prefix based on
 the mask value below. Bits beyond the mask are ignored and
 should be set to zero.

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The Length
 is always 8.

 Mask

 Length in bits of the IPv4 prefix

 Padding

 Zero on transmission. Ignored on receipt.

 The contents of an IPv4 prefix subobject are a 4-octet IPv4 address,
 a 1-octet prefix length, and a 1-octet pad. The abstract node
 represented by this subobject is the set of nodes that have an IP

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 25]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 address which lies within this prefix. Note that a prefix length of
 32 indicates a single IPv4 node.

4.3.3.3. Subobject 2: IPv6 Prefix

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | IPv6 address (16 bytes) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) | Mask | Padding |
 +-+

 Type

 0x82 IPv6 address

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The Length
 is always 20.

 IPv6 address

 An IPv6 address. This address is treated as a prefix based on
 the mask value below. Bits beyond the mask are ignored and
 should be set to zero.

 Mask

 Length in bits of the IPv6 prefix.

 Padding

 Zero on transmission. Ignored on receipt.

 The contents of an IPv6 prefix subobject are a 16-octet IPv6 address,
 a 1-octet prefix length, and a 1-octet pad. The abstract node
 represented by this subobject is the set of nodes that have an IP

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 26]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 address which lies within this prefix. Note that a prefix length of
 128 indicates a single IPv6 node.

4.3.3.4. Subobject 32: Autonomous System Number

 The contents of an Autonomous System (AS) number subobject are a 2-
 octet AS number. The abstract node represented by this subobject is
 the set of nodes belonging to the autonomous system.

 The length of the AS number subobject is 4 octets.

4.3.3.5. Subobject 64: MPLS Label Switched Path Termination

 The contents of an MPLS label switched path termination subobject are
 2 octets of padding. This subobject is an operation subobject. This
 object is only meaningful if there is a LABEL_REQUEST object in the
 Path message.

 If a LABEL_REQUEST object is present in the Path message, this Path
 message is being used to establish a label-switched path. In this
 case, this subobject indicates that the prior abstract node should
 remove one level of label from all packets following this label-
 switched path.

 The length of the MPLS label termination subobject is 4 octets.

4.3.4. Processing of the Explicit Route Object

4.3.4.1. Selection of the Next Hop

 A node receiving a Path message containing an EXPLICIT_ROUTE object
 must determine the next hop for this path. This is necessary because
 the next abstract node along the explicit route might be an IP subnet
 or an Autonomous System. Therefore, selection of this next hop may
 involve a decision from a set of feasible alternatives. The criteria
 used to make a selection from feasible alternatives is implementation
 dependent and can also be impacted by local policy, and is beyond the
 scope of this specification. However, it is assumed that each node
 will make a best effort attempt to determine a loop-free path. Note
 that paths so determined can be overridden by local policy.

 To determine the next hop for the path, a node performs the following
 steps:

 1) The node receiving the RSVP message must first evaluate the first

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 27]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 subobject. If the node is not part of the abstract node described by
 the first subobject, it has received the message in error and should
 return a "Bad initial subobject" error. If the first subobject is an
 operation subobject, the message is in error and the system should
 return a "Bad EXPLICIT_ROUTE object" error. If there is no first
 subobject, the message is also in error and the system should return
 a "Bad EXPLICIT_ROUTE object" error.

 2) If there is no second subobject, this indicates the end of the
 explicit route. The EXPLICIT_ROUTE object should be removed from the
 Path message. This node may or may not be the end of the path.
 Processing continues with section 4.3.4.2, where a new EXPLICIT_ROUTE
 object may be added to the Path message.

 3) Next, the node evaluates the second subobject. If the subobject
 is an operation subobject, the node records the subobject, deletes it
 from the EXPLICIT_ROUTE object and continues processing with step 2,
 above. Note that this changes the third subobject into the second
 subobject in subsequent processing. The precise operations to be
 performed by this node must be defined by the operation subobject.

 4) If the node is also a part of the abstract node described by the
 second subobject, then the node deletes the first subobject and
 continues processing with step 2, above. Note that this makes the
 second subobject into the first subobject of the next iteration.

 5) The node determines whether it is topologically adjacent to the
 abstract node described by the second subobject. If so, the node
 selects a particular next hop which is a member of the abstract node.
 The node then deletes the first subobject and continues processing
 with section 4.3.4.2.

 6) Otherwise, the node selects a next hop within the abstract node of
 the first subobject that is along the path to the abstract node of
 the second subobject. If no such path exists then there are two
 cases:

 6a) If the second subobject is a strict subobject, there is an error
 and the node should return a "Bad strict node" error.

 6b) Otherwise, if the second subobject is a loose subobject, the node
 selects any next hop that is along the path to the next abstract
 node. If no path exists, there is an error, and the node should
 return a "Bad loose node" error.

 7) Finally, the node replaces the first subobject with any subobject
 that denotes an abstract node containing the next hop. This is
 necessary so that when the explicit route is received by the next

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 28]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 hop, it will be accepted.

4.3.4.2. Adding subobjects to the Explicit Route Object

 After selecting a next hop, the node may alter the explicit route in
 the following ways.

 If, as part of executing the algorithm in section 4.3.4.1, the
 EXPLICIT_ROUTE object is removed, the node may add a new
 EXPLICIT_ROUTE object.

 Otherwise, if the node is a member of the abstract node for the first
 subobject, a series of subobjects may be inserted before the first
 subobject or may replace the first subobject. Each subobject in this
 series must denote an abstract node that is a subset of the current
 abstract node.

 Alternately, if the first subobject is a loose subobject, an
 arbitrary series of subobjects may be inserted prior to the first
 subobject.

4.3.5. Loops

 While the EXPLICIT_ROUTE object is of finite length, the existence of
 loose nodes implies that it is possible to construct forwarding loops
 during transients in the underlying routing protocol. This can be
 detected by the originator of the explicit route through the use of
 another opaque route object called the RECORD_ROUTE object. The
 RECORD_ROUTE object is used to collect detailed path information and
 is useful for loop detection and for diagnostics.

4.3.6. Non-support of the Explicit Route Object

 An RSVP router that does not recognize the EXPLICIT_ROUTE object
 sends a PathErr with the error code "Unknown object class" toward the
 sender. This causes the path setup to fail. The sender should
 notify management that a LSP cannot be established and possibly take
 action to continue the reservation without the EXPLICIT_ROUTE or via
 a different explicit route.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 29]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.4. Record Route Object

 The format of the RECORD_ROUTE object (RRO) is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | |
 // (Subobjects) //
 | |
 +-+

 Class-Num

 The Class-Num for a RECORD_ROUTE object is 194 (need to get an
 official one from the IANA with the high order two bits set to
 11)

 C-Type

 The C-Type for a RECORD_ROUTE object is 1 (need to get an offi-
 cial one from the IANA)

 The RRO can be present in both RSVP Path and Resv messages. If a
 message contains multiple RROs, only the first RRO is meaningful.
 Subsequent RROs can be ignored and should not be propagated.

4.4.1. Subobjects

 The contents of a RECORD_ROUTE object are a series of variable-length
 data items called subobjects. Each subobject has its own Length
 field. The length contains the total length of the subobject in
 bytes, including the Type and Length fields. The length must always
 be a multiple of 4, and at least 4.

 Subobjects are organized as a last-in-first-out stack. The first
 subobject relative to the beginning of RRO is considered the top.
 The last subobject is considered the bottom. When a new subobject is
 added, it is always added to the top.

 An empty RRO with no subobjects is considered illegal.

 Two kinds of subobjects are currently defined.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 30]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.4.1.1. Subobject 1: IPv4 address

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | IPv4 address (4 bytes) |
 +-+
 | IPv4 address (continued) | Mask | Padding |
 +-+

 Type

 0x81 IPv4 address

 IPv4 address

 A 32-bit unicast, host address. Any network-reachable
 interface address is allowed here. Illegal addresses,
 such as loopback addresses, should not be used.

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The Length
 is always 8.

 Mask

 32

 Padding

 Zero on transmission. Ignored on receipt.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 31]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.4.1.2. Subobject 2: IPv6 address

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | IPv6 address (16 bytes) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) |
 +-+
 | IPv6 address (continued) | Mask | Padding |
 +-+

 Type

 0x82 IPv6 address

 Length

 The Length contains the total length of the subobject in
 bytes, including the Type and Length fields. The Length
 is always 20.

 IPv6 address

 A 128-bit unicast host address.

 Mask

 128

 Padding

 Zero on transmission. Ignored on receipt.

4.4.2. Applicability

 Only the procedures for use in unicast sessions are defined here.

 There are three possible uses of RRO in RSVP. First, an RRO can
 function as a loop detection mechanism to discover L3 routing loops,
 or loops inherent in the explicit route. The exact procedure for
 doing so is described later in this document.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 32]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 Second, an RRO collects up-to-date detailed path information hop-by-
 hop about RSVP sessions, providing valuable information to the sender
 or receiver. Any path change (due to network topology changes) is
 quickly reported.

 Third, RRO syntax is designed so that, with minor changes, the whole
 object can be used as input to the EXPLICIT_ROUTE object. This is
 useful if the sender receives RRO from the receiver in a Resv
 message, applies it to EXPLICIT_ROUTE object in the next Path message
 in order to "pin down session path".

4.4.3. Handling RRO

 Typically, a node initiates an RSVP session by adding the RRO to the
 Path message. The initial RRO contains only one subobject - the
 sender's IP addresses.

 When a Path message containing an RRO is received by an intermediate
 router, the router stores a copy of it in the Path State Block. The
 RRO is then used in the next Path refresh event for formatting Path
 messages. When a new Path message is to be sent, the router adds a
 new subobject to the RRO and appends the resulting RRO to the Path
 message before transmission.

 The newly added subobject must be this router's IP address. The
 address to be added should be the interface address of the outgoing
 Path messages. If there are multiple addresses to choose from, the
 decision is a local matter. However, it is recommended that the same
 address be chosen consistently. If the newly added subobject causes
 the RRO to be too big to fit in a Path message, the Path message
 shall be dropped and a PathErr message should be sent back to the
 sender.

 An RSVP router can decide to send Path messages before its refresh
 time if the RRO in the next Path message is different from the
 previous one. This can happen if the contents of the RRO received
 from the previous hop router changes or if this RRO is newly added to
 (or deleted from) the Path message.

 When the destination node of an RSVP session receives a Path message
 with an RRO, this indicates that the sender node needs route
 recording. The destination node initiates the RRO process by adding
 an RRO to Resv messages. The processing mirrors that of the Path
 messages. The only difference is that the RRO in a Resv message
 records the path information in the reverse direction.

 Note that each node along the path will now have the complete route

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 33]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 from source to destination. The Path RRO will have the route from
 the source to this node; the Resv RRO will have the route from this
 node to the destination. This is useful for network management.

 A received Path message without an RRO indicates that the sender node
 no longer needs route recording. Subsequent Path messages and Resv
 messages shall not contain an RRO.

4.4.4. Loop Detection

 As part of processing an incoming RRO, an intermediate router looks
 into all subobjects contained within the RRO. If the router
 determines that it is already in the list, a forwarding loop exists.

 An RSVP session is loop-free if downstream nodes receive Path
 messages or upstream nodes receive Resv messages with no routing
 loops detected in the contained RRO.

 There are two broad classifications of forwarding loops. The first
 class is the transient loop, which occurs as a normal part of
 operations as L3 routing tries to converge on a consistent forwarding
 path for all destinations. The second class of forwarding loop is
 the permanent loop, which normally results from network mis-
 configuration.

 The action performed by a node on receipt of an RRO depends on the
 message type in which the RRO is received.

 For Path messages containing a forwarding loop, the router builds and
 sends a "Routing problem" PathErr message, with the subcode "loop
 detected," and drops the Path message. Until the loop is eliminated,
 this session is not suitable for forwarding data packets. How the
 loop eliminated is beyond the scope of this document.

 For Resv messages containing a forwarding loop, the router simply
 drops the message. Resv messages should not loop if Path messages do
 not loop.

4.4.5. Non-support of RRO

 An RSVP router that does not recognize the RRO forwards it unchanged.
 This has no impact on the reservation. The presence of non-RSVP
 routers anywhere between senders and receivers has no impact on the
 object either. The worst result is that the RRO does not reflect the
 full path information.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 34]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.5. Error Subcodes for ERO and RRO

 In the processing described above, certain errors must be reported as
 part of a "Routing Problem" PathErr message. The value of the
 "Routing Problem" error code is 24 (TBD).

 The following defines the subcodes for the routing problem PathErr
 message:

 Value Error:

 1 Bad EXPLICIT_ROUTE object

 2 Bad strict node

 3 Bad loose node

 4 Bad initial subobject

 5 No route available toward destination

 6 RRO syntax error detected

 7 RRO indicated routing loops

 8 MPLS being negotiated, but a non-RSVP-capable router
 stands in the path

 9 MPLS label allocation failure

 10 Unsupported L3PID

4.6. Session, Sender Template, and Filter Spec Objects

 New C-Types are defined for the SESSION, SENDER_TEMPLATE and
 FILTER_SPEC objects. The LSP_TUNNEL_IPv4 objects have the following
 format:

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 35]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

4.6.1. Session Object

 Class = SESSION, C-Type = LSP_TUNNEL_IPv4 (7)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | IPv4 tunnel end point address |
 +-+
 | Must be zero | Tunnel ID |
 +-+
 | Extended Tunnel ID |
 +-+

 IPv4 tunnel end point address

 IPv4 address of the destination node for the tunnel.

 Tunnel ID

 A 16-bit identifier used in the SESSION that remains constant
 over the life of the tunnel.

 Extended Tunnel ID

 A 32-bit identifier used in the SESSION that remains constant
 over the life of the tunnel. Normally set to all zeros.
 Source nodes that wish to narrow the scope of a SESSION to the
 source-destination pair may place their IPv4 address here as a
 globally unique identifier.

4.6.2. Sender Template Object

 Class = SENDER_TEMPLATE, C-Type = LSP_TUNNEL_IPv4 (7)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | IPv4 tunnel sender address |
 +-+
 | Must be zero | LSP ID |
 +-+

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 36]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 IPv4 tunnel sender address

 IPv4 address for a sender node

 LSP ID

 A 16-bit identifier used in the SENDER_TEMPLATE and the
 FILTER_SPEC that can be changed to allow a sender to share
 resources with itself.

4.6.3. Filter Specification Object

 Class = FILTER SPECIFICATION, C-Type = LSP_TUNNEL_IPv4 (7)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | IPv4 tunnel sender address |
 +-+
 | Must be zero | LSP ID |
 +-+

 IPv4 tunnel sender address

 IPv4 address for a sender node

 LSP ID

 A 16-bit identifier used in the SENDER_TEMPLATE and the
 FILTER_SPEC that can be changed to allow a sender to share
 resources with itself.

4.6.4. Reroute Procedure

 This section describes how to setup a tunnel that is capable of
 maintaining resource reservations (without double counting) while it
 is being rerouted or while it is attempting to increase its
 bandwidth. In the initial Path message, the source node forms a
 SESSION object, assigns a Tunnel_ID, and places its IPv4 address in
 the Extended_Tunnel_ID. It also forms a SENDER_TEMPLATE and assigns
 a Tunnel_Path_ID. Tunnel setup then proceeds according to the normal
 procedure.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 37]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 On receipt of the Path message, the destination node sends a Resv
 message with the STYLE Shared Explicit to the source.

 [Note: I think we should add a flag to the SESSION_ATTRIBUTE for the
 source to indicate that it wishes the SE style.]

 When a source node with an established path wants to change that
 path, it forms a new Path message as follows. The existing SESSION
 object is used. In particular the Tunnel_ID and Extended_Tunnel_ID
 are unchanged. The source node picks a new Tunnel_Path_ID to form a
 new SENDER_TEMPLATE. It creates an EXPLICIT_ROUTE object for the new
 route. The new Path message is sent. The source node refreshes both
 the old and new path messages

 The destination node responds with a Resv message with an SE flow
 descriptor formatted as:

 <FLOW_SPEC><old_FILTER_SPEC><old_LABEL_OBJECT><new_FILTER_SPEC>
 <new_LABEL_OBJECT>

 (Note that if the PHOPs are different, then two messages are sent
 each with the appropriate FILTER_SPEC and LABEL_OBJECT.)

 When the Source node receives the Resv Message(s), it may begin using
 the new route. It should send a PathTear message for the old route.

4.7. Session Attribute Object

 The format of the SESSION_ATTRIBUTE object is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (bytes) | Class-Num | C-Type |
 +-+
 | Setup Prio | Holding Prio | Flags | Name Length |
 +-+
 | |
 // Session Name (NULL padded display string) //
 | |
 +-+

 Class-Num

 The Class-Num indicates that the object is 207. (TBD)

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 38]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 C-Type

 The C-Type is 7.

 Flags

 0x01 = Fast-reroute
 This flag permits transit routers to pre-compute and
 pre-establish detour paths for this session. When a
 fault is detected on an adjacent downstream link or node,
 a transit router can reroute traffic onto the
 detour path for fast service restoration.

 0x02 = Merging permitted
 This flag permits transit routers to merge this session
 with other RSVP sessions for the purpose of reducing
 resource overhead on downstream transit routers, thereby
 providing better network scalability.

 0x04 = Tunnel head may reroute
 This flag indicates that the head end of the tunnel may
 choose
 to reroute this tunnel without tearing it down. A tunnel
 tail
 SHOULD use the SE Style when responding with a Resv message.

 Setup Priority
 The priority of the session with respect to taking resources,
 in the range of 0 to 7. The value 0 is the highest priority.
 The Setup Priority is used in deciding whether this session can
 preempt another session.

 Holding Priority
 The priority of the session with respect to holding resources,
 in the range of 0 to 7. The value 0 is the highest priority.
 Holding Priority is used in deciding whether this session can
 be preempted by another session.

 Name Length

 The length of the display string before padding, in bytes.

 Session Name

 A null padded string of characters.

 The support of setup and holding priorities is optional. A node can

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 39]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 recognize this information but be unable to perform the requested
 operation. The node should pass the information downstream
 unchanged.

 As noted above, preemption is implemented by two priorities. The
 Setup Priority is the priority for taking resources. The Holding
 Priority is the priority for holding a resource. Specifically, the
 Holding Priority is the priority at which resources assigned to this
 session will be reserved. The Setup Priority should never be higher
 than the Holding Priority for a given session.

 When a new reservation is considered for admission, the bandwidth
 requested is compared with the bandwidth available at the priority
 specified in the Setup Priority. The bandwidth available at a
 particular Setup Priority is the unused bandwidth plus the bandwidth
 reserved at all Holding Priorities lower than the Setup Priority.

 If the requested bandwidth is not available a PathErr message is
 returned with an Error Code of 01, Admission Control Failure, and an
 Error Value of 0x0002. The first 0 in the Error Value indicates a
 globally defined subcode and is not informational. The 002 indicates
 "requested bandwidth unavailable".

 If the requested bandwidth is less than the unused bandwidth then
 processing is complete. If the requested bandwidth is available, but
 is in use by lower priority sessions, then lower priority sessions
 (beginning with the lowest priority) can be pre-empted to free the
 necessary bandwidth.

 When pre-emption is supported, each pre-empted reservation triggers a
 TC_Preempt() upcall to local clients, passing a subcode that
 indicates the reason. A ResvErr and/or PathErr with the code "Policy
 Control failure" should be sent toward the downstream receivers and
 upstream senders.

 The support of fast-reroute is optional. A node may recognize the
 fast-reroute Flag but may be unable to perform the requested
 operation. In this case, the node should pass the information
 downstream unchanged.

 The support of merging is optional. A node may recognize the Merge
 Flag but may be unable to perform the requested operation. In this
 case, the node should pass the information downstream unchanged.

 If a Path message contains multiple SESSION_ATTRIBUTE objects, only
 the first SESSION_ATTRIBUTE object is meaningful. Subsequent
 SESSION_ATTRIBUTE objects can be ignored and need not be forwarded.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 40]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 The contents of the Session Name field are a string, typically of
 displayable characters. The Length must always be a multiple of 4
 and must be at least 8. For an object length that is not a multiple
 of 4, the object is padded with trailing NULL characters. The Name
 Length field contains the actual string length.

 All RSVP routers, whether they support the SESSION_ATTRIBUTE object
 or not, shall forward the object unmodified. The presence of non-
 RSVP routers anywhere between senders and receivers has no impact on
 this object.

5. Refresh Related Extensions

 The resource requirement (in terms of cpu processing and memory) for
 running RSVP on a router increases proportionally with the number of
 sessions. Supporting a large number of sessions can present scaling
 problems.

 This section describes an approach to help alleviate one of the
 scaling issues. RSVP Path and Resv messages must be periodically
 refreshed to maintain state. The approach described here simply
 reduces the volume of messages which must be periodically sent and
 received.

 One way to address the refresh volume problem is to increase the
 refresh timer R. Increasing the value of R provides linear
 improvement on transmission overhead, but at the cost of increasing
 refresh timeout.

 An aggregate message is proposed which can reduce R for faster
 detection of connectivity problems and still reduce overhead by an
 order of magnitude.

 A Message_ID object is defined to reduce refresh message processing
 by allowing the receiver to immediately identify an unchanged
 message. A Message_ACK object is defined which used in combination
 with the Message_ID object may suppress refreshes altogether.

 Finally, a hello protocol is defined to allow detection of the loss
 of a neighbor.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 41]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.1. RSVP Aggregate Message

 An RSVP aggregate message consists of an aggregate header followed by
 a body consisting of a variable number of standard RSVP messages.
 The following subsections define the formats of the aggregate header
 and the rules for including standard RSVP messages as part of the
 message.

5.1.1. Aggregate Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | Msg type | RSVP checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP length |
 +-+

 The format of the aggregate header is identical to the format of the
 RSVP common header [1]. The fields in the header are as follows:

 Vers: 4 bits

 Protocol version number. This is version 1.

 Flags: 4 bits

 0x01: Aggregate capable

 If set, indicates to RSVP neighbors that this node is willing
 and capable of receiving aggregate messages. This bit is
 meaningful only between adjacent RSVP neighbors.

 0x02-0x08: Reserved

 Msg type: 8 bits

 12 = Aggregate

 RSVP checksum: 16 bits

 The one's complement of the one's complement sum of the entire
 message, with the checksum field replaced by zero for the pur-
 pose of computing the checksum. An all-zero value means that
 no checksum was transmitted. Because individual submessages
 carry their own checksum as well as the INTEGRITY object for
 authentication, this field MAY be set to zero.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 42]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 Send_TTL: 8 bits

 The IP TTL value with which the message was sent. This is used
 by RSVP to detect a non-RSVP hop by comparing the IP TTL that
 an Aggregate message sent to the TTL in the received message.

 RSVP length: 16 bits

 The total length of this RSVP aggregate message in bytes, in-
 cluding the aggregate header and the submessages that follow.

5.1.2. Message Formats

 An RSVP aggregate message must contain at least one submessage. A
 submessage is one of the RSVP Path, PathTear, PathErr, Resv,
 ResvTear, ResvErr, or ResvConf messages.

 Empty RSVP aggregate messages should not be sent. It is illegal to
 include another RSVP aggregate message as a submessage.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | 12 | RSVP checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP length |
 +-+
 | |
 // First submessage //
 | |
 +-+
 | |
 // More submessage... //
 | |
 +-+

5.1.3. Sending RSVP Aggregate Messages

 RSVP Aggregate messages are sent hop by hop between RSVP-capable
 neighbors as "raw" IP datagrams with protocol number 46. Raw IP
 datagrams are also intended to be used between an end system and the
 first/last hop router, although it is also possible to encapsulate
 RSVP messages as UDP datagrams for end-system communication that
 cannot perform raw network I/O.

 RSVP Aggregate messages should not be used if the next-hop RSVP

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 43]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 neighbor does not support RSVP Aggregate messages. Methods for
 discovering such information include: (1) manual configuration and
 (2) observing the Aggregate-capable bit (see the description that
 follows) in the received RSVP messages.

 Support for RSVP Aggregate messages is optional. While message
 aggregation might help in scaling RSVP, and in reducing processing
 overhead and bandwidth consumption, a node is not required to
 transmit every standard RSVP message in an Aggregate message. A node
 must always be ready to receive standard RSVP messages.

 The IP source address is local to the system that originated the
 Aggregate message. The IP destination address is the next-hop node
 for which the submessages are intended. These addresses need not be
 identical to those used if the submessages were sent as standard RSVP
 messages.

 For example, the IP source address of Path and PathTear messages is
 the address of the sender it describes, while the IP destination
 address is the DestAddress for the session. These end-to-end
 addresses are overridden by hop-by-hop addresses while encapsulated
 in an Aggregate message. These addresses can easily be restored from
 the SENDER_TEMPLATE and SESSION objects within Path and PathTear
 messages. For Path and PathTear messages, the next-hop node can be
 learned by looking up DestAddress in the forwarding table.

 RSVP Aggregate messages do not require the Router Alert IP option
 [RFC 2113] in their IP headers. This is because Aggregate messages
 are addressed directly to RSVP neighbors.

 Each RSVP Aggregate message must occupy exactly one IP datagram. If
 it exceeds the MTU, the datagram is fragmented by IP and reassembled
 at the recipient node. A single RSVP Aggregate message cannot exceed
 the maximum IP datagram size, which is approximately 64K bytes.

5.1.4. Receiving RSVP Aggregate Messages

 If the local system does not recognize or does not wish to accept an
 Aggregate message, the received messages shall be discarded without
 further analysis.

 The receiver next compares the IP TTL with which an Aggregate message
 is sent to the TTL with which it is received. If a non-RSVP hop is
 detected, the number of non-RSVP hops is recorded. It is used later
 in processing of sub-messages.

 Next, the receiver verifies the version number and checksum of the

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt
https://datatracker.ietf.org/doc/html/rfc2113

Swallow, et al. [Page 44]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 RSVP aggregate message and discards the message if any mismatch is
 found.

 The receiver then starts decapsulating individual sub-messages. Each
 sub-message has its own complete message length and authentication
 information. Each sub-message is processed according to procedures
 specified in RFC 2209.

5.1.5. Forwarding RSVP Aggregate Messages

 When an RSVP router receives an Aggregate messages which is not
 addressed to one of it's IP addresses, it SHALL forward the message.
 Non-RSVP routers should treat RSVP Aggregate messages as any other IP
 datagram.

 When individual submessages are being forwarded, they can be
 encapsulated in another aggregate message before sending to the
 next-hop neighbor. The Send_TTL field in the submessages should be
 decremented properly before transmission.

5.1.6. Aggregate-Capable Bit

 To support message aggregation, an additional capability bit is added
 to the common RSVP header, which is defined in RFC2205 [1].

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vers | Flags | Msg Type | RSVP Checksum |
 +-+
 | Send_TTL | (Reserved) | RSVP Length |
 +-+

 Flags: 4 bits

 0x01: Aggregate capable

 If set, indicates to RSVP neighbors that this node is willing
 and capable of receiving aggregate messages. This bit is
 meaningful only between adjacent RSVP neighbors.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt
https://datatracker.ietf.org/doc/html/rfc2209
https://datatracker.ietf.org/doc/html/rfc2205

Swallow, et al. [Page 45]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.2. MESSAGE_ID Extension

 Within the MESSAGE_ID Class there are two object types defined. The
 two object types are the MESSAGE_ID object and the MESSAGE_ID ACK
 object. The MESSAGE_ID Class is used to support acknowledgments and
 to indicate when refresh messages are not needed after an
 acknowledgment. When refreshes are normally generated, the
 MESSAGE_ID object can also be used to simply provide a shorthand
 indication of when a message represents new state. Such information
 can be used on the receiving node to reduce refresh processing
 requirements.

 Message identification and acknowledgment is done on a hop-by-hop
 basis. Acknowledgment is handled independent of SESSION or message
 type. Both types of MESSAGE_ID objects contain a message identifier.
 The identifier MUST be unique on a per source IP address basis across
 messages sent by an RSVP node and received by a particular node. No
 more than one MESSAGE_ID object may be included in an RSVP message.
 Each message containing an MESSAGE_ID object may be acknowledged via
 a MESSAGE_ID ACK object. MESSAGE_ID ACK objects may be sent
 piggybacked in unrelated RSVP messages or in RSVP ACK messages

 Either type of MESSAGE_ID object contained in an aggregate sub-
 message. When so included the object is treated as if it were
 contained in a standard, unaggregated, RSVP message. Only one
 MESSAGE_ID object MAY be included in a (sub)message and it MUST
 follow any present MESSAGE_ID ACK objects. When no MESSAGE_ID ACK
 objects are present, the MESSAGE_ID object MUST immediately follow
 the INTEGRITY object. When no INTEGRITY object is present, the
 MESSAGE_ID object MUST immediately follow the the (sub)message
 header.

 When present, one or more MESSAGE_ID ACK objects MUST immediately
 follow the INTEGRITY object. When no INTEGRITY object is present,
 the MESSAGE_ID ACK objects MUST immediately follow the the
 (sub)message header. An MESSAGE_ID ACK object may only be included
 in a message when the message's IP destination address matches the
 unicast address of the node that generated the message(s) being
 acknowledged.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 46]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.2.1. MESSAGE_ID Object

 MESSAGE_ID Class = TBD. (Value TBD of form 10bbbbbb)

 MESSAGE_ID object

 Class = MESSAGE_ID Class, C_Type = 1

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags | Message ID |
 +-+

 Flags: 8 bits

 0x08 = ACK_Desired flag

 Indicates that the sender is willing to accept a message
 acknowledgment. Acknowledgments MUST be silently ignored
 when they are sent in response to messages whose
 ACK_Desired flag is not set. This flag MUST be set when
 the Last_Refresh flag is set.

 0x04 = Last_Refresh flag

 Used in Resv and Path refresh messages to indicate that the
 sender has received a previously sent ACK and will not be
 sending further refreshes. When set, the ACK_Desired flag
 MUST also be set. This flag MUST NOT be set when the
 message has not been previously acknowledged.

 Message ID: 24 bits

 a 24-bit identifier. When combined with the message
 generator's IP address, uniquely identifies a message.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 47]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 MESSAGE_ID ACK object

 Class = MESSAGE_ID Class, C_Type = 2

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ACK Flags | Message ID |
 +-+

 ACK Flags: 8 bits

 0x08 = No_Refresh flag

 Indicates that refreshes are not required and SHOULD NOT be
 sent for the associated message. The associated message is
 indicated by the Message ID.

 Message ID: 24 bits

 a 24-bit identifier. When combined with the message
 generator's IP address, uniquely identifies a message.

5.2.2. Ack Message Format

 Ack messages carry one or more MESSAGE_ID ACK objects. They MUST NOT
 contain any MESSAGE_ID objects. Ack messages are sent hop-by-hop
 between RSVP nodes. The IP destination address of an Ack message is
 the unicast address of the node, that generated the message(s) being
 acknowledged. For Path, PathTear, Resv, and RervErr messages this is
 taken from the RSVP_HOP Object. For PathErr and ResvErr messages
 this is taken from the message's source address. The IP source
 address is an address of the node that sends the Ack message.

 The Ack message format is as follows:
 <ACK Message> ::= <Common Header> [<INTEGRITY>]
 <MESSAGE_ID ACK>
 [<MESSAGE_ID ACK> ...]

 For Ack messages, the Msg Type field of the Common Header MUST be set
 to <TO_BE_ASSIGNED>.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 48]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.2.3. MESSAGE_ID Object Usage

 The MESSAGE_ID object may be included in any RSVP message other than
 the Ack message. The MESSAGE_ID object is always generated and
 processed hop-by-hop. The IP address of the object generator is
 represented in a per RSVP message type specific fashion. For Path
 and PathTear messages the generator's IP address is contained in the
 RSVP_HOP. For Resv, ResvTear, PathErr, ResvErr, ResvConf and
 Aggregate messages the generator's IP address is the source address
 in the IP header.

 The Message ID field contains a generator selected value. This
 value, when combined with the generator's IP address, identifies a
 particular RSVP message and the specific state information it
 represents. When a node is sending a refresh message with a
 MESSAGE_ID object, it SHOULD use the same Message ID value that was
 used in the RSVP message that first advertised the state being
 refreshed. When a node is sending a message that represents new or
 changed state, the Message ID value MUST have a value that is not
 otherwise in use. A value is considered to be in use when it has
 been used in the most recent advertisement or refresh of any state
 using the associated IP address. Care must also be taken to avoid
 reuse of a previously used value during times of network loss. At
 such times, the use of new values may not be noticed by receivers.
 There is no requirement for Message ID values to be increasing or
 ordered.

 The ACK_Desired flag is set when the MESSAGE_ID object generator is
 capable of accepting MESSAGE_ID ACK objects. Such information can be
 used to ensure reliable delivery of error and confirm messages and to
 support fast refreshes in the face of network loss. Nodes setting
 the ACK_Desired flag SHOULD retransmit unacknowledged messages at a
 faster interval than the standard refresh time until the message is
 acknowledged or a "fast" retry limit is reached.

 Nodes receiving messages containing MESSAGE_ID objects SHOULD use the
 information in the objects to aid in determining if an message
 represents new state or a state refresh. Note that state is only
 refreshed in Path and Resv messages. If a Path or Resv message
 contains the same Message ID value that was used in the most recently
 received message for the same session and, for path messages,
 SENDER_TEMPLATE then the receiver SHOULD treat the message as a state
 refresh. If the Message ID value differs from the most recently
 received value, the receiver MUST fully processes the message.

 Nodes receiving a message containing a MESSAGE_ID object with the
 ACK_Desired flag set, SHOULD respond with a MESSAGE_ID ACK object.
 If a node has ever responded with a MESSAGE_ID ACK object, it MUST

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 49]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 also check the Last_Refresh flag of received Resv and Path messages.
 If the flag is set, the receiver MUST NOT timeout state associated
 with associated message. The receiver MUST also be prepared to
 properly process refresh messages.

5.2.4. MESSAGE_ID ACK Object Usage

 The MESSAGE_ID ACK object is used to acknowledge receipt of messages
 containing MESSAGE_ID objects that were sent with the ACK_Desired
 flag set. The Message ID field of a MESSAGE_ID ACK object MUST have
 the same value as was received. A MESSAGE_ID ACK object MUST NOT be
 generated in response to a received MESSAGE_ID object when the
 ACK_Desired flag is not set.

 A MESSAGE_ID ACK object may be sent in any RSVP message that has an
 IP destination address matching the generator of the associated
 MESSAGE_ID object. The MESSAGE_ID ACK object will not typically be
 included in the non hop-by-hop Path, PathTear and ResvConf messages.
 When no appropriate message is available, one or more MESSAGE_ID ACK
 objects SHOULD be sent in an Ack message. Implementations SHOULD
 include MESSAGE_ID ACK objects in standard RSVP messages when
 possible.

 The No_Refresh flag is set to indicate that the receiver does not
 desire refreshes for the message being acknowledged. (Note that
 state is only refreshed in Path and Resv messages.) Receivers SHOULD
 set this flag when acknowledging receipt of Path or Resv messages and
 when the receiver has some mechanism to determine when the generator
 looses it's state, e.g. the mechanism described in Section 5.4. When
 a receiver sets this flag, the receiver MUST continue to timeout
 state associated with acknowledged message. The receiver may only
 stop timing out state after it receives a refresh message with the
 Last_Refresh flag set, see Section 5.2.3.

 Upon receiving a MESSAGE_ID ACK object with the No_Refresh flag set,
 a refresh message with the Last_Refresh flag set SHOULD be generated.
 If a refresh message with the Last_Refresh flag set is generate, then
 normal refresh generation MUST continue until the message containing
 the Last_Refresh flag is acknowledged. Once an acknowledgment is
 received, normal refresh generation SHOULD be disabled for the
 associated state.

 When normal refresh generation is suppressed for Path and Resv state,
 special care must be taken to remove such state. Particularly in the
 case of possible packet loss. To ensure such state is removed, once
 a node generates a Path or Resv refresh message containing a
 MESSAGE_ID object with the Last_Refresh flag set, the node MUST

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 50]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 retransmit until acknowledged all messages removing such state.
 Messages removing state include PathTear and ResvTear.

5.2.5. Multicast Considerations

 Path and PathTear messages may be sent to IP multicast destination
 addresses. When the destination is multicast, it is possible that a
 single message containing a single MESSAGE_ID object will be received
 by multiple RSVP next-hops. When the ACK_Desired flag is set in this
 case, acknowledgment processing is more complex. There are a number
 of issues, ACK implosion, number acknowledgments to be expected and
 handling new receivers.

 ACK implosion occurs when each receiver responds to the MESSAGE_ID
 object at approximately the same time. This can lead to a
 potentially large number of MESSAGE_ID ACK objects simultaneously
 delivered to the message generator. To address this case, the
 receiver MUST wait a random interval prior to acknowledging a
 MESSAGE_ID object received in a message destined to a multicast
 address. The random interval SHOULD be between zero (0) and a
 configured maximum time. The configured maximum SHOULD be set in
 proportion to the refresh and "fast" retransmission interval.

 A more fundamental issue is the number of acknowledgments that the
 upstream node, the message generator, should expect. The number of
 acknowledgments that should be expected is the same as the number of
 RSVP next-hops. In the router-to-router case, the number of next-
 hops can usually be obtained from routing. When hosts are either the
 upstream node or the next-hops, the number of next-hops will
 typically not be readily available. When the number of next-hops is
 not known, the message generator SHOULD only expect a single response
 and MUST ignore the No_Refresh flag of MESSAGE_ID Ack objects. The
 result of this behavior will be special retransmission handling until
 the message is delivered to at least one next-hop, then followed by
 standard RSVP refreshes. Standard refresh messages will synchronize
 state with any next-hops that don't receive the original message.

 Another issue is handling new (host or router) receivers. It is
 possible that after sending a Path message and handling of expected
 number of acknowledgments that a new receiver joins the group. In
 this case a new Path message must be sent to the new receiver. When
 normal refresh processing is occurring, there is no issue. When
 normal refresh processing is suppressed, a path message must still be
 generated. In the router-to-router case, the identification of new
 next-hops can usually be obtained from routing. When hosts are
 either the upstream node or the next-hops, the identification of new
 next-hops will typically not be possible. When identification of new

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 51]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 next-hops is not possible, the message generator SHOULD only expect a
 single response and MUST ignore the No_Refresh flag of MESSAGE_ID Ack
 objects. The result of this behavior will be special retransmission
 handling until the message is delivered to at least one next-hop,
 then followed by standard RSVP refreshes. Standard refresh messages
 will synchronize state with any next-hops that don't receive the
 original message.

 There is one additional minor issue with multiple next-hops. The
 issue is handling a combination of standard-refresh and non-refresh
 next-hops. In the case some MESSAGE_ID Ack objects for the same
 message are received with the No_Refresh flag set and other objects
 are received with the No_Refresh flag clear. When this case occurs,
 refreshes MUST be generated per standard RSVP.

5.2.6. Compatibility

 There are no backward compatibility issues raised by the MESSAGE_ID
 Class. The MESSAGE_ID Class has an assigned value whose form is
 10bbbbbb. Per RSVP [1], classes with values of this form must be
 ignored and not forwarded by nodes not supporting the class. When
 the receiver of a MESSAGE_ID object does not support the class, the
 object will be silently ignored. The generator of the MESSAGE_ID
 object will not see any acknowledgments and therefore refresh
 messages per standard RSVP. Lastly, since the MESSAGE_ID ACK object
 can only be issued in response to the MESSAGE_ID object, there are no
 possible issues with this object or Ack messages.

5.3. Hello Extension

 The RSVP Hello extension enables RSVP nodes to detect a loss of a
 neighboring node's state information. In standard RSVP, such
 detection occurs as a consequence of RSVP's soft state model. When
 refresh message generation is disabled via the previously discussed
 No_Refresh flag processing, some other mechanism is needed to address
 this failure case. In many configurations, it may be possible to
 leverage existing neighbor-to-neighbor failure detection mechanisms.
 One example mechanism is routing protocol peering state.

 The extension described in this section supports cases where there is
 no other neighbor-to-neighbor failure detection mechanism available.
 The extension is specifically designed so that one side can use the
 mechanism while the other side does not. Neighbor RSVP state
 tracking may be initiated at any time. This includes when neighbors
 first learn about each other, or just when neighbors are sharing Resv
 or Path state. All implementations supporting the MESSAGE_ID ACK

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 52]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

 object MUST also support the Hello Extension. Such implementations
 are not required to initiate Hello processing but they MUST be able
 to respond to Hello messages.

 The Hello extension is composed of a Hello message, a Hello ACK
 message and a STATE_SET object. The Hello and Hello ACK messages
 have identical format and only differ in that a Hello ACK message is
 generate in response to a Hello message. Multiple STATE_SET objects
 may appear in a Hello or Hello ACK message. These objects are used
 to indicate what set of state is being refreshed.

 For Path State, a set consists of all the state with the same PHOP
 object. For Reservations State, a consists of all the state for which
 the associated Path messages have the same PHOP. These PHOP values
 are the values used in the STATE_SET objects. Thus sending a
 STATE_SET object with a locally generated PHOP refreshes all Path
 State sent with that PHOP object. Sending a STATE_SET object with a
 received PHOP refreshes all Reservation State associated with Path
 messages sent by a neighbor node with that PHOP.

 Hello processing between two neighbors supports independent selection
 of, typically configured, failure detection intervals. Each neighbor
 can autonomously issue HELLO messages. Each HELLO messages is
 answered by an acknowledgment. Hellos also contain enough
 information so that one neighbor can suppress issuing hello
 generation and still perform neighbor failure detection.

 Neighbor state tracking is accomplished by collecting and storing a
 state "instance" value per State Set. If a change in value is seen,
 then the neighbor is presumed to have reset that portion of it's RSVP
 state. HELLO messages provide a mechanism for polling for and
 providing one or more RSVP state instance values. A poll request
 also includes the sender's instance value(s). This allows the
 receiver of a poll to optionally treat the poll as an implicit poll
 response. This optional handling is an optimization that can reduce
 the total number of polls and responses processed by a pair of
 neighbors. In all cases, when both sides support the optimization
 the result will be only one set of polls and responses per failure
 detection interval. Depending on selected intervals, the same
 benefit can occur even when only one neighbor supports the
 optimization.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 53]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.3.1. Hello and Hello Ack Message Formats

 Hello and Hello Ack Messages are always sent between two RSVP
 neighbors. The IP source address is the IP address of the sending
 node. The IP destination address is the IP address of the neighbor
 node.

 The Hello and Hello Ack message formats are as follows:

 <Hello Message> ::= <Common Header> [<INTEGRITY>]
 <STATE_SET List>

 <STATE_SET List> ::= <STATE_SET> [<STATE_SET List>]

 For Hello messages, the Msg Type field of the Common Header MUST be
 set to <TO_BE_ASSIGNED>.

 For Hello Ack messages, the Msg Type field of the Common Header MUST
 be set to <TO_BE_ASSIGNED>.

5.3.2. STATE_SET Object

 Class = TBD, C_Type = 1 (Class of form 0bbbbbbb)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | IPv4 Previous Hop Address |
 +-+
 | Logical Interface Handle |
 +-+
 | Instance |
 +-+

 Instance: 32 bits

 a 32 bit value that represents the sender's RSVP agent's state.
 This value must change when the agent is reset or the node
 reboots and otherwise remain the same. This field MUST NOT be
 set to zero (0).

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 54]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

5.3.3. Hello Message Usage

 A Hello message MUST be generated for each neighbor who's state is
 being tracked. When generating a Hello message, the sender fills in
 the Instance field with a value representing it's RSVP agent state
 for each state set. Each instance value MUST NOT change while the
 agent is maintaining any RSVP state. The generation of a message
 SHOULD be skipped when a Hello message is received from the
 destination node within the failure detection interval.

 On receipt of a Hello message, the receiver MUST generate a Hello Ack
 message. The receiver SHOULD also verify that each of the neighbor's
 state set list has not changed. This is done by comparing the
 received state set list with the previously received state set list.
 If any state set values differ or are omitted, than each state set
 omitted or with a different instance value has reset and all state in
 that state set MUST be "expired" and cleaned up per standard RSVP
 processing.

 On receipt of a Hello Ack message, the receiver MUST verify that the
 state set list has not changed. This is done by comparing the
 received state set list with the previously received state set list.
 If any state set values differ or are omitted, than each state set
 omitted or with a different instance value has reset and all state in
 that state set MUST be "expired" and cleaned up per standard RSVP
 processing.

5.3.4. Compatibility

 The Hello extension is fully backwards compatible. The Hello class
 is assigned a class value of the form 0bbbbbbb. Depending on the
 implementation, implementations that don't support the extension will
 either silently discard Hello messages or will respond with an
 "Unknown Object Class" error. In either case the sender will fail to
 see an acknowledgment for the issued Hello. When a Hello sender does
 not receive an acknowledgment, it MUST NOT send MESSAGE_ID ACK
 objects with the No_Refresh flag set to the corresponding RSVP
 neighbor. This restriction will preclude neighbors from getting out
 of RSVP state synchronization.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 55]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

6. Acknowledgments

 This document contains ideas as well as text that have appeared in
 previous Internet Drafts. The authors of the current draft wish to
 thank the authors of those drafts. They are Steven Blake, Bruce
 Davie, Roch Guerin, Sanjay Kamat, Yakov Rekhter, Eric Rosen, and Arun
 Viswanathan. We also wish to than Yoram Bernet for his comments on
 this draft.

7. References

[1] Braden, R. et al. Resource ReSerVation Protocol (RSVP) --
 Version 1, Functional Specification, RFC 2205, September 1997.

[2] Rosen, E. et al. A Proposed Architecture for MPLS, Internet
 Draft, draft-ietf-mpls-arch-02.txt, July 1998.

[3] Awduche, D. et al. Requirements for Traffic Engineering over MPLS,
 Internet Draft, draft-ietf-mpls-traffic-eng-00.txt, October 1998.

[4] Wroclawski, J. Specification of the Controlled-Load Network
 Element Service, RFC 2211, September 1997.

[5] Rosen, E. MPLS Label Stack Encoding. Internet Draft,
draft-ietf-mpls-label-encaps-03.txt, September 1998.

[6] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels," RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-arch-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-traffic-eng-00.txt
https://datatracker.ietf.org/doc/html/rfc2211
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-label-encaps-03.txt
https://datatracker.ietf.org/doc/html/rfc2119

Swallow, et al. [Page 56]

Internet Draft draft-ietf-mpls-rsvp-lsp-tunnel-00.txt November 1998

8. Authors' Addresses

 Daniel O. Awduche
 UUNET Worldcom
 3060 Williams Drive
 Fairfax, VA 22031
 Voice: +1 703 208 5277
 Email: awduche@uu.net

 Lou Berger
 FORE Systems
 1595 Spring Hill Road, Suite 500
 Vienna, VA 22182
 Voice: +1 703 245 4527
 Email: lberger@fore.com

 Der-Hwa Gan
 Juniper Networks, Inc.
 385 Ravendale Drive
 Mountain View, CA 94043
 Voice: +1 650 526
 Email: dhg@juniper.net

 Tony Li
 Juniper Networks, Inc.
 385 Ravendale Drive
 Mountain View, CA 94043
 Voice: +1 650 526 8006
 Email: tli@juniper.net

 Vijay Srinivasan
 Torrent Networking Technologies Corp.
 3000 Aerial Center Parkway, Suite 140
 Morrisville, NC 27560
 Voice: +1 919 468 8466 ext. 236
 Email: vijay@torrentnet.com

 George Swallow
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA 01824
 Voice: +1 978 244 8143
 Email: swallow@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

Swallow, et al. [Page 57]

