
 Internet Draft Puneet Agarwal
 Pluris
 Bora A. Akyol
 Document: draft-ietf-mpls-ttl-00.txt Cisco Systems
 Category: Informational
 Expires: August 2002 February 2002

TTL Processing in MPLS Networks

 Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document describes TTL processing in hierarchical MPLS
 networks.

 Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC-2119].

1. Introduction and Motivation

 This document describes TTL processing in hierarchical MPLS
 networks. We believe that this document adds details that have not
 been addressed in [MPLS-ARCH, MPLS-ENCAPS], and that the methods

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

 presented in this document complement [MPLS-DS].

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 1
 TTL Processing in MPLS Networks January 2002

2. TTL Processing in MPLS Networks
 2.1. Changes to RFC 3032 [MPLS-ENCAPS]
 a) [MPLS-ENCAPS] only covers the Uniform Model and does NOT
 address the Pipe Model or the Short Pipe Model. This draft
 will address these 2 models and for completeness will also
 address the Uniform Model.
 b) [MPLS-ENCAPS] does not cover hierarchical LSPs. This draft
 will address this issue.
 c) [MPLS-ENCAPS] does not define TTL processing in the presence
 of Penultimate Hop Popping (PHP). This draft will address
 this issue.

 2.2. Terminology and Background

 As defined in [MPLS-ENCAPS], MPLS packets use a MPLS shim header
 that indicates the following information about a packet:

 a. MPLS Label (20 bits)
 b. TTL (8 bits)
 c. Bottom of stack (1 bit)
 d. Experimental bits (3 bits)

 The experimental bits were later redefined in [MPLS-DS] to indicate
 the scheduling and shaping behavior that could be associated with a
 MPLS packet.

 [MPLS-DS] also defined two models for MPLS tunnel operation: Pipe
 and Uniform models. In the Pipe model, a MPLS network acts like a
 conduit when MPLS packets traverse the network such that only the
 LSP ingress and egress points are visible to nodes that are outside
 the tunnel. A Short variation of the Pipe Model is also defined in
 [MPLS-DS] to differentiate between different egress forwarding and
 QoS treatments. On the other hand, the Uniform model makes all the
 nodes that a LSP traverses visible to nodes outside the tunnel. We
 will extend the Pipe and Uniform models to include TTL processing in
 the following sections. Furthermore, TTL processing when performing
 Penultimate Hop Pop (PHP) is also described in this document. For a
 detailed description of Pipe and Uniform models, please see [MPLS-
 DS].

 TTL processing in MPLS networks can be broken down into two logical
 blocks: (i) the incoming TTL determination to take into account any

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt
https://datatracker.ietf.org/doc/html/rfc3032

 tunnel egress due to MPLS Pop operations; (ii) packet processing of
 (possibly) exposed packet & outgoing TTL.

 We also note here that signaling treatment for TTL behavior using
 either RSVP-TE or LDP is out of the scope of this document.

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 2
 TTL Processing in MPLS Networks January 2002

 2.3. New Terminology

 iTTL: The TTL value to use as the incoming TTL. No checks are
 performed on the iTTL.

 oTTL: This is the TTL value used as the outgoing TTL value (see
section 3.5 for exception). It is always (iTTL - 1) unless otherwise

 stated.

 oTTL Check: Check if oTTL is greater than 0. If the oTTL Check is
 false, then the packet is not forwarded. Note that the oTTL check is
 performed only if any outgoing TTL (either IP or MPLS) is set to
 oTTL (see section 3.5 for exception).

3. TTL Processing in different Models

 This sections describes the TTL processing for LSPs conforming to
 each of the 3 models (Uniform, Short Pipe and Pipe) in the
 presence/absence of PHP (where applicable).

 3.1. TTL Processing for Uniform Model LSPs (with or without PHP)

 (consistent with [MPLS-ENCAPS]):

 ========== LSP =============================>

 +--Swap--(n-2)-...-swap--(n-i)---+
 / (outer header) \
 (n-1) (n-i)
 / \
 >--(n)--Push...............(x).....................Pop--(n-i-1)->
 (I) (inner header) (E or P)

 (n) represents the TTL value in the corresponding header
 (x) represents non-meaningful TLL information
 (I) represents the LSP ingress node
 (P) represents the LSP penultimate node

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt

 (E) represents the LSP Egress node

 This picture shows TTL processing for a uniform model MPLS LSP. Note
 that the inner and outer TTLs of the packets are synchronized at
 tunnel ingress and egress.

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 3
 TTL Processing in MPLS Networks January 2002

 3.2. TTL Processing for Short Pipe Model LSPs

 3.2.1. TTL Processing for Short Pipe Model LSPs without PHP

 ========== LSP =============================>

 +--Swap--(N-1)-...-swap--(N-i)-----+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push...............(n-1).....................Pop--(n-2)->
 (I) (inner header) (E)

 (N) represents the TTL value (may have no relationship to n)
 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (E) represents the LSP Egress node

 Short Pipe Model was introduced in [MPLS-DS]. In the short pipe
 model, the forwarding treatment at the egress LSR is based on the
 tunneled packet as opposed to the encapsulating packet.

 3.2.2. TTL Processing for Short Pipe Model with PHP:
 ========== LSP =====================================>
 +-Swap--(N-1)-..-swap--(N-i)-+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push.............(n-1)..............Pop-(n-1)-(E)-(n-2)->
 (I) (inner header) (P)

 (N) represents the TTL value (may have no relationship to n)

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt

 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (P) represents the LSP penultimate node
 (E) represents the LSP Egress node

 Note that at the end of short pipe model LSP the TTL of the tunneled
 packet has been decremented by two either with or without PHP.

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 4
 TTL Processing in MPLS Networks January 2002

 3.3. TTL Processing for Pipe Model LSPs (without PHP only):

 ========== LSP =============================>

 +--Swap--(N-1)-...-swap--(N-i)-----+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push...............(n-1)....................Pop--(n-2)->
 (I) (inner header) (E)

 (N) represents the TTL value (may have no relationship to n)
 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (E) represents the LSP Egress node

 From the TTL perspective, the treatment for a Pipe Model LSP is
 identical to the Short Pipe Model without PHP.

 3.4. Incoming TTL (iTTL) determination

 If the incoming packet is an IP packet, then the iTTL is the TTL
 value of the incoming IP packet.

 If the incoming packet is a MPLS packet and we are performing a
 Push/Swap/PHP, then the iTTL is the TTL of the topmost incoming

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt

 label.

 If the incoming packet is a MPLS packet and we are performing a Pop
 (tunnel termination), the iTTL is based on the tunnel type (Pipe or
 Uniform) of the LSP that was popped. If the popped label belonged to
 a Pipe model LSP, then the iTTL is the value of the TTL field of the
 header exposed after the label was popped (note that for the purpose
 of this draft, the exposed header may be either an IP header or an
 MPLS label). If the popped label belonged to a Uniform model LSP,
 then the iTTL is equal to the TTL of the popped label. If multiple
 Pop operations are performed sequentially, then the procedure given
 above is repeated with one exception: the iTTL computed during the
 previous Pop is used as the TTL of subsequent label being popped;
 i.e. the TTL contained in the subsequent label is essentially
 ignored and replaced with the iTTL computed during the previous pop.

 3.5. Outgoing TTL Determination and Packet Processing

 After the iTTL computation is performed, the oTTL check is performed.
 If the oTTL check succeeds, then the outgoing TTL of the
 (labeled/unlabeled) packet is calculated and packet headers are
 updated as defined below.

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 5
 TTL Processing in MPLS Networks January 2002

 If the packet was routed as an IP packet, the TTL value of the IP
 packet is set to oTTL (iTTL - 1). The TTL value(s) for any pushed
 label(s) are determined as described in section 3.6.

 For packets that are routed as MPLS, we have four cases:

 1) Swap-only: The routed label is swapped with another label
 and the TTL field of the outgoing label is set to oTTL.

 2) Swap followed by a Push: The swapped operation is performed
 as described in (1). The TTL value(s) of any pushed label(s)
 are determined as described in section 3.6.

 3) Penultimate Hop Pop (PHP): The routed label is popped. The
 oTTL check should be performed irrespective of whether the oTTL
 is used to update the TTL field of the outgoing header. If the
 PHPed label belonged to a short Pipe model LSP, then the TTL
 field of the PHP exposed header is neither checked nor
 updated. If the PHPed label was a Uniform model LSP, then the
 TTL field of the PHP exposed header is set to the oTTL. The TTL
 value(s) of additional labels are determined as described in

section 3.6

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt

 4) Pop: The pop operation happens before routing and hence it
 is not considered here.

 3.6. Tunnel Ingress Processing (Push)

 For each pushed Uniform model label, the TTL is copied from the
 label/IP-packet immediately underneath it.

 For each pushed Pipe model or Short Pipe model label, the TTL field
 is set to a value configured by the network operator. In most
 implementations, this value is set to 255 by default.

 3.7. Implementation Remarks

 1) Although iTTL can be decremented by a value larger
 than 1 while it is being updated or oTTL is being
 determined, this feature should be only used for
 compensating for network nodes that are not capable of
 decrementing TTL values.
 2) Whenever iTTL is decremented, the implementor must
 make sure that the value does not go negative.
 3) In the short pipe model with PHP enabled, the TTL of
 the tunneled packet is unchanged after the PHP
 operation.
4. Conclusion

 This Internet Draft describes how TTL field can be processed in a
 MPLS network. We clarified the various methods that are applied in
 the presence of hierarchical tunnels and completed the integration
 of Pipe and Uniform models with TTL processing.

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 6
 TTL Processing in MPLS Networks January 2002

5. Security Considerations

 This document does not add any new security issues other than the
 ones defined in [MPLS-ENCAPS, MPLS-DS].

6. References

 [MPLS-ARCH] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol
 Label Switching Architecture," RFC 3031.

 [MPLS-ENCAPS] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D.
 Farinacci, T. Li, A. Conta, "MPLS Label Stack Encoding," RFC3032.

 [MPLS-DS] F. Le Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen,
 R. Krishnan, P. Cheval, J. Heinanen, "MPLS Support of Differentiated

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3032

 Services," draft-ietf-mpls-diff-ext-09.txt. (Work in progress)

7. Author's Addresses

 Puneet Agarwal
 Pluris
 10455 Bandley Drive
 Cupertino, CA 95014
 Email: puneet@pluris.com

 Bora Akyol
 Cisco Systems
 170 W. Tasman Drive
 San Jose, CA 95134
 Email: bora@cisco.com

 Agarwal & Akyol draft-ietf-mpls-ttl-00.txt 7

https://datatracker.ietf.org/doc/html/draft-ietf-mpls-diff-ext-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ttl-00.txt

