
Internet Engineering Task Force M. Scharf
Internet-Draft Alcatel-Lucent Bell Labs
Intended status: Informational A. Ford
Expires: October 19, 2012 Cisco
 April 17, 2012

MPTCP Application Interface Considerations
draft-ietf-mptcp-api-05

Abstract

 Multipath TCP (MPTCP) adds the capability of using multiple paths to
 a regular TCP session. Even though it is designed to be totally
 backward compatible to applications, the data transport differs
 compared to regular TCP, and there are several additional degrees of
 freedom that applications may wish to exploit. This document
 summarizes the impact that MPTCP may have on applications, such as
 changes in performance. Furthermore, it discusses compatibility
 issues of MPTCP in combination with non-MPTCP-aware applications.
 Finally, the document describes a basic application interface which
 is a simple extension of TCP's interface for MPTCP-aware
 applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 19, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Scharf & Ford Expires October 19, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft MPTCP API April 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Comparison of MPTCP and Regular TCP 5
3.1. Performance Impact . 5
3.1.1. Throughput . 6
3.1.2. Delay . 6
3.1.3. Resilience . 7

3.2. Potential Problems . 7
3.2.1. Impact of Middleboxes 7
3.2.2. Impact on Implicit Assumptions 8
3.2.3. Security Implications 8

4. Operation of MPTCP with Legacy Applications 9
4.1. Overview of the MPTCP Network Stack 9
4.2. Address Issues . 10
4.2.1. Specification of Addresses by Applications 10
4.2.2. Querying of Addresses by Applications 10

4.3. MPTCP Connection Management 11
4.3.1. Reaction to Close Call by Application 11
4.3.2. Other Connection Management Functions 11

4.4. Socket Option Issues 12
4.4.1. General Guideline 12
4.4.2. Disabling of the Nagle Algorithm 12
4.4.3. Buffer Sizing . 12
4.4.4. Other Socket Options 13

4.5. Default Enabling of MPTCP 13
4.6. Summary of Advices to Application Developers 13

5. Basic API for MPTCP-aware Applications 14
5.1. Design Considerations 14
5.2. Requirements on the Basic MPTCP API 14
5.3. Sockets Interface Extensions by the Basic MPTCP API . . . 16
5.3.1. Overview . 16
5.3.2. Enabling and Disabling of MPTCP 17
5.3.3. Binding MPTCP to Specified Addresses 18
5.3.4. Querying the MPTCP Subflow Addresses 18
5.3.5. Getting a Unique Connection Identifier 19

6. Other Compatibility Issues 19
6.1. Usage of the SCTP Socket API 19
6.2. Incompatibilities with other Multihoming Solutions 19

http://trustee.ietf.org/license-info

Scharf & Ford Expires October 19, 2012 [Page 2]

Internet-Draft MPTCP API April 2012

6.3. Interactions with DNS 20
7. Security Considerations 20
8. IANA Considerations . 21
9. Conclusion . 21
10. Acknowledgments . 21
11. References . 22
11.1. Normative References 22
11.2. Informative References 22

Appendix A. Requirements on a Future Advanced MPTCP API 23
A.1. Design Considerations 23
A.2. MPTCP Usage Scenarios and Application Requirements 24
A.3. Potential Requirements on an Advanced MPTCP API 26
A.4. Integration with the SCTP Socket API 27

Appendix B. Change History of the Document 28

Scharf & Ford Expires October 19, 2012 [Page 3]

Internet-Draft MPTCP API April 2012

1. Introduction

 Multipath TCP adds the capability of using multiple paths to a
 regular TCP session [1]. The motivations for this extension include
 increasing throughput, overall resource utilisation, and resilience
 to network failure, and these motivations are discussed, along with
 high-level design decisions, as part of the Multipath TCP
 architecture [4]. The MPTCP protocol [5] offers the same reliable,
 in-order, byte-stream transport as TCP, and is designed to be
 backward compatible with both applications and the network layer. It
 requires support inside the network stack of both endpoints.

 This document first presents the impacts that MPTCP may have on
 applications, such as performance changes compared to regular TCP.
 Second, it defines the interoperation of MPTCP and applications that
 are unaware of the multipath transport. MPTCP is designed to be
 usable without any application changes, but some compatibility issues
 have to be taken into account. Third, this memo specifies a basic
 Application Programming Interface (API) for MPTCP-aware applications.
 The API presented here is an extension to the regular TCP API to
 allow an MPTCP-aware application the equivalent level of control and
 access to information of an MPTCP connection that would be possible
 with the standard TCP API on a regular TCP connection.

 The de facto standard API for TCP/IP applications is the "sockets"
 interface. This document provides an abstract definition of MPTCP-
 specific extensions to this interface. These are operations that can
 be used by an application to get or set additional MPTCP-specific
 information on a socket, in order to provide an equivalent level of
 information and control over MPTCP as exists for an application using
 regular TCP. It is up to the applications, high-level programming
 languages, or libraries to decide whether to use these optional
 extensions. For instance, an application may want to turn on or off
 the MPTCP mechanism for certain data transfers, or limit its use to
 certain interfaces. The abstract specification is in line with the
 Posix standard [17] as much as possible.

 An advanced API for MPTCP is outside the scope of this document.
 Such an advanced API could offer a more fine-grained control over
 multipath transport functions and policies. The appendix includes a
 brief, non-compulsory list of potential features of such an advanced
 API.

 There can be interactions or incompatibilities of MPTCP with other
 APIs or socket interface extensions, which are discussed later in
 this document. Some network stack implementations, specially on
 mobile devices, have centralized connection managers or other higher-
 level APIs to solve multi-interface issues, as surveyed in [15].

Scharf & Ford Expires October 19, 2012 [Page 4]

Internet-Draft MPTCP API April 2012

 Their interaction with MPTCP is outside the scope of this note.

 The target readers of this document are application developers whose
 software may benefit significantly from MPTCP. This document also
 provides the necessary information for developers of MPTCP to
 implement the API in a TCP/IP network stack.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [3].

 This document uses the MPTCP terminology introduced in [5].

 Concerning the API towards applications, the following terms are
 distinguished:

 o Legacy API: The interface towards TCP that is currently used by
 applications. This document explains the impact of MPTCP for such
 applications, as well as resulting issues.

 o Basic API: A simple extension of TCP's interface for applications
 that are aware of MPTCP. This document abstractly describes this
 interface, which provides access to multipath address information
 and a level of control equivalent to regular TCP.

 o Advanced API: An API that offers more fine-grained control over
 the MPTCP behavior. Its specification is outside scope of this
 document.

3. Comparison of MPTCP and Regular TCP

 This section discusses the impact that the use of MPTCP will have on
 applications, in comparison to what may be expected from the use of
 regular TCP.

3.1. Performance Impact

 One of the key goals of adding multipath capability to TCP is to
 improve the performance of a transport connection by load
 distribution over separate subflows across potentially disjoint
 paths. Furthermore, it is an explicit goal of MPTCP that it should
 not provide a worse performing connection than would have existed
 through the use of single-path TCP. A corresponding congestion
 control algorithm is described in [7]. The following sections
 summarize the performance impact of MPTCP as seen by an application.

Scharf & Ford Expires October 19, 2012 [Page 5]

Internet-Draft MPTCP API April 2012

3.1.1. Throughput

 The most obvious performance improvement that will be gained with the
 use of MPTCP is an increase in throughput, since MPTCP will pool more
 than one path (where available) between two endpoints. This will
 provide greater bandwidth for an application. If there are shared
 bottlenecks between the flows, then the congestion control algorithms
 will ensure that load is evenly spread amongst regular and multipath
 TCP sessions, so that no end user receives worse performance than if
 all were using single-path TCP.

 This performance increase additionally means that an MPTCP session
 could achieve throughput that is greater than the capacity of a
 single interface on the device. If any applications make assumptions
 about interfaces due to throughput (or vice versa), they must take
 this into account (although an MPTCP implementation must always
 respect an application's request for a particular interface).

 Furthermore, the flexibility of MPTCP to add and remove subflows as
 paths change availability could lead to a greater variation, and more
 frequent change, in connection bandwidth. Applications that adapt to
 available bandwidth (such as video and audio streaming) may need to
 adjust some of their assumptions to most effectively take this into
 account.

 The transport of MPTCP signalling information results in a small
 overhead. If multiple subflows share a same bottleneck, this
 overhead slightly reduces the capacity that is available for data
 transport. Yet, this potential reduction of throughput will be
 negligible in many usage scenarios, and the protocol contains
 optimisations in its design so that this overhead is minimal.

3.1.2. Delay

 If the delays on the constituent subflows of an MPTCP connection
 differ, the jitter perceivable to an application may appear higher as
 the data is spread across the subflows. Although MPTCP will ensure
 in-order delivery to the application, the application must be able to
 cope with the data delivery being burstier than may be usual with
 single-path TCP. Since burstiness is commonplace on the Internet
 today, it is unlikely that applications will suffer from such an
 impact on the traffic profile, but application authors may wish to
 consider this in future development.

 In addition, applications that make round trip time (RTT) estimates
 at the application level may have some issues. Whilst the average
 delay calculated will be accurate, whether this is useful for an
 application will depend on what it requires this information for. If

Scharf & Ford Expires October 19, 2012 [Page 6]

Internet-Draft MPTCP API April 2012

 a new application wishes to derive such information, it should
 consider how multiple subflows may affect its measurements, and thus
 how it may wish to respond. In such a case, an application may wish
 to express its scheduling preferences, as described later in this
 document.

3.1.3. Resilience

 Another performance improvement through the use of MPTCP is better
 resilience. The use of multiple subflows simultaneously means that,
 if one should fail, all traffic will move to the remaining
 subflow(s), and additionally any lost packets can be retransmitted on
 these subflows.

 As one special case, the MPTCP protocol can be used with only one
 active subflow at a given point in time. In that case, resilience
 compared to single-path TCP is improved, too. MPTCP also supports
 make-before-break and break-before-make handovers between subflows.
 In both cases, the MPTCP connection can survive an unavailability or
 change of an IP address (e.g., due to shutdown of an interface or
 handover). MPTCP close or resets the MPTCP connection separately
 from the individual subflows, as described in [5].

 Subflow failure may be caused by issues within the network, which an
 application would be unaware of, or interface failure on the node.
 An application may, under certain circumstances, be in a position to
 be aware of such failure (e.g. by radio signal strength, or simply an
 interface enabled flag), and so must not make assumptions of an MPTCP
 flow's stablity based on this. An MPTCP implementation must never
 override an application's request for a given interface, however, so
 the cases where this issue may be applicable are limited.

3.2. Potential Problems

3.2.1. Impact of Middleboxes

 MPTCP has been designed in order to pass through the majority of
 middleboxes. Empirical evidence suggests that new TCP options can
 successfully be used on most paths in the Internet [18].
 Nevertheless some middleboxes may still refuse to pass MPTCP messages
 due to the presence of TCP options, or they may strip TCP options.
 If this is the case, MPTCP falls back to regular TCP. Although this
 will not create a problem for the application (its communication will
 be set up either way), there may be additional (and indeed, user-
 perceivable) delay while the first handshake fails. Therefore, an
 alternative approach could be to try both MPTCP and regular TCP
 connection attempts at the same time, and respond to whichever
 replies first (or apply a timeout on the MPTCP attempt, while having

Scharf & Ford Expires October 19, 2012 [Page 7]

Internet-Draft MPTCP API April 2012

 TCP SYN/ACK ready to reply to, thus reducing the setup delay by a
 RTT) in a similar fashion to the "Happy Eyeballs" mechanism for IPv6
 [16].

 An MPTCP implementation can learn the rate of MPTCP connection
 attempt successes or failures to particular hosts or networks, and on
 particular interfaces, and could therefore learn heuristics of when
 and when not to use MPTCP. A detailed discussion of the various
 fallback mechanisms, for failures occurring at different points in
 the connection, is presented in [5].

 There may also be middleboxes that transparently change the length of
 content. If such middleboxes are present, MPTCP's reassembly of the
 byte stream in the receiver is difficult. Still, MPTCP can detect
 such middleboxes and then fall back to regular TCP. An overview of
 the impact of middleboxes is presented in [4] and MPTCP's mechanisms
 to work around these are presented and discussed in [5].

 MPTCP can also have other unexpected implications. For instance,
 intrusion detection systems could be triggered. A full analysis of
 MPTCP's impact on such middleboxes is for further study after
 deployment experiments.

3.2.2. Impact on Implicit Assumptions

 In regular TCP, there is a one-to-one mapping of the socket interface
 to a flow through a network. Since MPTCP can make use of multiple
 subflows, applications cannot implicitly rely on this one-to-one
 mapping any more. Whilst this doesn't matter for most applications,
 a few applications require the transport along a single path; they
 can disable the use of MPTCP as described later in this document.
 Examples include monitoring tools that want to measure the available
 bandwidth on a path, or routing protocols such as BGP that require
 the use of a specific link.

 Furthermore, an implementation may choose to persist an MPTCP
 connection even if an IP address is not allocated any more to a host,
 depending on the policy concerning the first subflow (fate-sharing,
 see Section 4.2.2). In this case, the IP address exposed to an
 MPTCP-unaware application can differ to the addresses actually being
 used by MPTCP. It is even possible that an IP address gets assigned
 to another host during the lifetime of an MPTCP connection.

3.2.3. Security Implications

 The support for multiple IP addresses within one MPTCP connection can
 result in additional security vulnerabilities, such as possibilities
 for attackers to hijack connections. The protocol design of MPTCP

Scharf & Ford Expires October 19, 2012 [Page 8]

Internet-Draft MPTCP API April 2012

 minimizes this risk. An attacker on one of the paths can cause harm,
 but this is hardly an additional security risk compared to single-
 path TCP, which is vulnerable to man-in-the-middle attacks, too. A
 detailed threat analysis of MPTCP is published in [6].

4. Operation of MPTCP with Legacy Applications

4.1. Overview of the MPTCP Network Stack

 MPTCP is an extension of TCP, but it is designed to be backward
 compatible for legacy (MPTCP-unaware) applications. TCP interacts
 with other parts of the network stack by different interfaces. The
 de facto standard API between TCP and applications is the sockets
 interface. The position of MPTCP in the protocol stack is
 illustrated in Figure 1.

 +-------------------------------+
 | Application |
 +-------------------------------+
 ^ |
                  ~~~~~~~~~~~|~Socket Interface|~~~~~~~~~~~
                             |                 v
                     +-------------------------------+
                     |             MPTCP             |
                     + - - - - - - - + - - - - - - - +
                     | Subflow (TCP) | Subflow (TCP) |
                     +-------------------------------+
                     |       IP      |      IP       |
                     +-------------------------------+

                      Figure 1: MPTCP protocol stack

   In general, MPTCP can affect all interfaces that make assumptions
   about the coupling of a TCP connection to a single IP address and TCP
   port pair, to one sockets endpoint, to one network interface, or to a
   given path through the network.

   This means that there are two classes of applications:

   o  Legacy applications: These applications are unaware of MPTCP and
      use the existing API towards TCP without any changes.  This is the
      default case.

   o  MPTCP-aware applications: These applications indicate support for
      an enhanced MPTCP interface.  This document specifies a minimum
      set of API extensions for such applications.

   In the following, it is discussed to what extent MPTCP affects legacy



Scharf & Ford           Expires October 19, 2012                [Page 9]



Internet-Draft                  MPTCP API                     April 2012

   applications using the existing sockets API.  The existing sockets
   API implies that applications deal with data structures that store,
   amongst others, the IP addresses and TCP port numbers of a TCP
   connection.  A design objective of MPTCP is that legacy applications
   can continue to use the established sockets API without any changes.
   However, in MPTCP there is a one-to-many mapping between the socket
   endpoint and the subflows.  This has several subtle implications for
   legacy applications using sockets API functions.

4.2.  Address Issues

4.2.1.  Specification of Addresses by Applications

   During binding, an application can either select a specific address,
   or bind to INADDR_ANY.  Furthermore, on some systems other socket
   options (e.g., SO_BINDTODEVICE) can be used to bind to a specific
   interface.  If an application uses a specific address or binds to a
   specific interface, then MPTCP MUST respect this and not interfere in
   the application's choices.  The binding to a specific address or
   interface implies that the application is not aware of MPTCP and will
   disable the use of MPTCP on this connection.  An application that
   wishes to bind to a specific set of addresses with MPTCP must use
   multipath-aware calls to achieve this (as described in

Section 5.3.3).

   If an application binds to INADDR_ANY, it is assumed that the
   application does not care which addresses to use locally.  In this
   case, a local policy MAY allow MPTCP to automatically set up multiple
   subflows on such a connection.

   The basic sockets API of MPTCP-aware applications allows to express
   further preferences in an MPTCP-compatible way (e.g. bind to a subset
   of interfaces only).

4.2.2.  Querying of Addresses by Applications

   Applications can use the getpeername() or getsockname() functions in
   order to retrieve the IP address of the peer or of the local socket.
   These functions can be used for various purposes, including security
   mechanisms, geo-location, or interface checks.  The socket API was
   designed with an assumption that a socket is using just one address,
   and since this address is visible to the application, the application
   may assume that the information provided by the functions is the same
   during the lifetime of a connection.  However, in MPTCP, unlike in
   TCP, there is a one-to-many mapping of a connection to subflows, and
   subflows can be added and removed while the connections continues to
   exist.  Since the subflow addresses can change, MPTCP cannot expose
   addresses by getpeername() or getsockname() that are both valid and



Scharf & Ford           Expires October 19, 2012               [Page 10]



Internet-Draft                  MPTCP API                     April 2012

   constant during the connection's lifetime.

   This problem is addressed as follows: If used by a legacy
   application, the MPTCP stack MUST always return the addresses of the
   first subflow of an MPTCP connection, in all circumstances, even if
   that particular subflow is no longer in use.

   As this address may not be valid any more if the first subflow is
   closed, the MPTCP stack MAY close the whole MPTCP connection if the
   first subflow is closed (i.e. fate sharing between the initial
   subflow and the MPTCP connection as a whole).  Whether to close the
   whole MPTCP connection by default SHOULD be controlled by a local
   policy.  Further experiments are needed to investigate its
   implications.

   The functions getpeername() and getsockname() SHOULD also always
   return the addresses of the first subflow if the socket is used by an
   MPTCP-aware application, in order to be consistent with MPTCP-unaware
   applications, and, e. g., also with SCTP.  Instead of getpeername()
   or getsockname(), MPTCP-aware applications can use new API calls,
   documented later, in order to retrieve the full list of address pairs
   for the subflows in use.

4.3.  MPTCP Connection Management

4.3.1.  Reaction to Close Call by Application

   As described in [5], MPTCP distinguishes between the closing of
   subflows (by TCP FIN) and closing the whole MPTCP conncetion (by DATA
   FIN).

   When an application closes a socket, e.g., by calling the close()
   function, this indicates that the application has no more data to
   send, like for single-path TCP.  MPTCP will then close the MPTCP
   connection by DATA FIN messages.  This is completely transparent for
   an application.

   In summary, the semantics of the close() interface for applications
   are not changed compared to TCP.

4.3.2.  Other Connection Management Functions

   In general, an MPTCP connection is maintained separately from
   individual subflows.  The MPTCP protocol therefore has internal
   mechanisms to establish, close, or reset the MPTCP connection [5].
   They provide equivalent functions like single-path TCP and can be
   mapped accordingly.  Therefore, these MPTCP internals do not affect
   the application interface.



Scharf & Ford           Expires October 19, 2012               [Page 11]



Internet-Draft                  MPTCP API                     April 2012

4.4.  Socket Option Issues

4.4.1.  General Guideline

   The existing sockets API includes options that modify the behavior of
   sockets and their underlying communications protocols.  Various
   socket options exist on socket, TCP, and IP level.  The value of an
   option can usually be set by the setsockopt() system function.  The
   getsockopt() function gets information.  In general, the existing
   sockets interface functions cannot configure each MPTCP subflow
   individually.  In order to be backward compatible, existing APIs
   therefore SHOULD apply to all subflows within one connection, as far
   as possible.

4.4.2.  Disabling of the Nagle Algorithm

   One commonly used TCP socket option (TCP_NODELAY) disables the Nagle
   algorithm as described in [2].  This option is also specified in the
   Posix standard [17].  Applications can use this option in combination
   with MPTCP exactly in the same way.  It then SHOULD disable the Nagle
   algorithm for the MPTCP connection, i.e., all subflows.

   In addition, the MPTCP protocol instance MAY use a different path
   scheduler algorithm if TCP_NODELAY is present.  For instance, it
   could use an algorithm that is optimized for latency-sensitive
   traffic (for instance only transmitting on one path).  Specific
   algorithms are outside the scope of this document.

4.4.3.  Buffer Sizing

   Applications can explicitly configure send and receive buffer sizes
   by the sockets API (SO_SNDBUF, SO_RCVBUF).  These socket options can
   also be used in combination with MPTCP and then affect the buffer
   size of the MPTCP connection.  However, when defining buffer sizes,
   application programmers should take into account that the transport
   over several subflows requires a certain amount of buffer for
   resequencing in the receiver.  MPTCP may also require more storage
   space in the sender, in particular, if retransmissions are sent over
   more than one path.  In addition, very small send buffers may prevent
   MPTCP from efficiently scheduling data over different subflows.
   Therefore, it does not make sense to use MPTCP in combination with
   small send or receive buffers.

   An MPTCP implementation MAY set a lower bound for send and receive
   buffers and treat a small buffer size request as an implicit request
   not to use MPTCP.



Scharf & Ford           Expires October 19, 2012               [Page 12]



Internet-Draft                  MPTCP API                     April 2012

4.4.4.  Other Socket Options

   Some network stacks also provide other implementation-specific socket
   options or interfaces that affect TCP's behavior.  If a network stack
   supports MPTCP, it must be ensured that these options do not
   interfere.

4.5.  Default Enabling of MPTCP

   It is up to a local policy at the end system whether a network stack
   should automatically enable MPTCP for sockets even if there is no
   explicit sign of MPTCP awareness of the corresponding application.
   Such a choice may be under the control of the user through system
   preferences.

   The enabling of MPTCP, either by application or by system defaults,
   does not necessarily mean that MPTCP will always be used.  Both
   endpoints must support MPTCP, and there must be multiple addresses at
   at least one endpoint, for MPTCP to be used.  Even if those
   requirements are met, however, MPTCP may not be immediately used on a
   connection.  It may make sense for multiple paths to be brought into
   operation only after a given period of time, or if the connection is
   saturated.

4.6.  Summary of Advices to Application Developers

   o  Using the default MPTCP configuration: Like TCP, MPTCP is designed
      to be efficient and robust in the default configuration.
      Application developers should not explicitly configure TCP (or
      MPTCP) features unless this is really needed.

   o  Socket buffet dimensioning: Multipath transport requires larger
      buffers in the receiver for resequencing, as already explained.
      Applications should use reasonable buffer sizes (such as the
      operating system default values) in order to fully benefit from
      MPTCP.  A full discussion of buffer sizing issues is given in [5].

   o  Facilitating stack-internal heuristics: The path management and
      data scheduling by MPTCP is realized by stack-internal algorithms
      that may implicitly try to self-optimize their behavior according
      to assumed application needs.  For instance, an MPTCP
      implementation may use heuristics to determine whether an
      application requires delay-sensitive or bulk data transport, using
      for instance port numbers, the TCP_NODELAY socket options, or the
      application's read/write patterns as input parameters.  An
      application developer can facilitate the operation of such
      heuristics by avoiding atypical interface use cases.  For
      instance, for long bulk data transfers, it does neither make sense



Scharf & Ford           Expires October 19, 2012               [Page 13]



Internet-Draft                  MPTCP API                     April 2012

      to enable the TCP_NODELAY socket option, nor is it reasonable to
      use many small socket "send()" calls each with small amounts of
      data only.

5.  Basic API for MPTCP-aware Applications

5.1.  Design Considerations

   While applications can use MPTCP with the unmodified sockets API,
   multipath transport results in many degrees of freedom.  MPTCP
   manages the data transport over different subflows automatically.  By
   default, this is transparent to the application, but an application
   could use an additional API to interface with the MPTCP layer and to
   control important aspects of the MPTCP implementation's behavior.

   This document describes a basic MPTCP API.  The API contains a
   minimum set of functions that provide an equivalent level of control
   and information as exists for regular TCP.  It maintains backward
   compatibility with legacy applications.

   An advanced MPTCP API is outside the scope of this document.  The
   basic API does not allow a sender or a receiver to express
   preferences about the management of paths or the scheduling of data,
   even if this can have a significant performance impact and if an
   MPTCP implementation could benefit from additional guidance by
   applications.  A list of potential further API extensions is provided
   in the appendix.  The specification of such an advanced API is for
   further study and may partly be implementation-specific.

   MPTCP mainly affects the sending of data.  But a receiver may also
   have preferences about data transfer choices, and it may have
   performance requirements, too.  A receiver may also have preferences
   about data transfer choices, and it may have performance
   requirements, too.  Yet, the configuration of such preferences is
   outside of the scope of the basic API.

5.2.  Requirements on the Basic MPTCP API

   Because of the importance of the sockets interface there are several
   fundamental design objectives for the basic interface between MPTCP
   and applications:

   o  Consistency with existing sockets APIs must be maintained as far
      as possible.  In order to support the large base of applications
      using the original API, a legacy application must be able to
      continue to use standard socket interface functions when run on a
      system supporting MPTCP.  Also, MPTCP-aware applications should be
      able to access the socket without any major changes.



Scharf & Ford           Expires October 19, 2012               [Page 14]



Internet-Draft                  MPTCP API                     April 2012

   o  Sockets API extensions must be minimized and independent of an
      implementation.

   o  The interface should handle both IPv4 and IPv6.

   The following is a list of the core requirements for the basic API:

   REQ1:  Turn on/off MPTCP: An application should be able to request to
          turn on or turn off the usage of MPTCP.  This means that an
          application should be able to explicitly request the use of
          MPTCP if this is possible.  Applications should also be able
          to request not to enable MPTCP and to use regular TCP
          transport instead.  This can be implicit in many cases, since
          MPTCP must disabled by the use of binding to a specific
          address.  MPTCP may also be enabled if an application uses a
          dedicated multipath address family (such as AF_MULTIPATH,
          [8]).

   REQ2:  An application should be able to restrict MPTCP to binding to
          a given set of addresses.

   REQ3:  An application should be able obtain information on the pairs
          of addresses used by the MPTCP subflows.

   REQ4:  An application should be able to extract a unique identifier
          for the connection (per endpoint).

   The first requirement is the most important one, since some
   applications could benefit a lot from MPTCP, but there are also cases
   in which it hardly makes sense.  The existing sockets API provides
   similar mechanisms to enable or disable advanced TCP features.  The
   second requirement corresponds to the binding of addresses with the
   bind() socket call, or, e.g., explicit device bindings with a
   SO_BINDTODEVICE option.  The third requirement ensures that there is
   an equivalent to getpeername() or getsockname() that is able to deal
   with more than one subflow.  Finally, it should be possible for the
   application to retrieve a unique connection identifier (local to the
   endpoint on which it is running) for the MPTCP connection.  This
   replaces the (address, port) pair for a connection identifier in
   single-path TCP, which is no longer static in MPTCP.

   An application can continue to use getpeername() or getsockname() in
   addition to the basic MPTCP API.  Both functions return the
   corresponding addresses of the first subflow, as already explained.



Scharf & Ford           Expires October 19, 2012               [Page 15]



Internet-Draft                  MPTCP API                     April 2012

5.3.  Sockets Interface Extensions by the Basic MPTCP API

5.3.1.  Overview

   The abstract, basic MPTCP API consists of a set of new values that
   are associated with an MPTCP socket.  Such values may be used for
   changing properties of an MPTCP connection, or retrieving
   information.  These values could be accessed by new symbols on
   existing calls such as setsockopt() and getsockopt(), or could be
   implemented as entirely new function calls.  This implementation
   decision is out of scope for this document.  The following list
   presents symbolic names for these MPTCP socket settings.

   o  TCP_MULTIPATH_ENABLE: Enable/disable MPTCP

   o  TCP_MULTIPATH_ADD: Bind MPTCP to a set of given local addresses,
      or add a new local address to an existing MPTCP connection

   o  TCP_MULTIPATH_REMOVE: Remove a local address from an MPTCP
      connection

   o  TCP_MULTIPATH_SUBFLOWS: Get the pairs of addresses currently used
      by the MPTCP subflows

   o  TCP_MULTIPATH_CONNID: Get the local connection identifier for this
      MPTCP connection

   Table 1 shows a list of the abstract socket operations for the basic
   configuration of MPTCP.  The first column gives the symbolic name of
   the operation.  The second and third columns indicate whether the
   operation provides values to be read ("Get") or takes values to
   configure ("Set").  The fourth column lists the type of data
   associated with this operation.

    +------------------------+-----+-----+----------------------------+
    | Name                   | Get | Set |          Data type         |
    +------------------------+-----+-----+----------------------------+
    | TCP_MULTIPATH_ENABLE   |  o  |  o  |           boolean          |
    | TCP_MULTIPATH_ADD      |     |  o  |      list of addresses     |
    | TCP_MULTIPATH_REMOVE   |     |  o  |      list of addresses     |
    | TCP_MULTIPATH_SUBFLOWS |  o  |     | list of pairs of addresses |
    | TCP_MULTIPATH_CONNID   |  o  |     |       32-bit integer       |
    +------------------------+-----+-----+----------------------------+

                     Table 1: MPTCP Socket Operations

   There are restrictions when these new socket operations can be used:



Scharf & Ford           Expires October 19, 2012               [Page 16]



Internet-Draft                  MPTCP API                     April 2012

   o  TCP_MULTIPATH_ENABLE: This value SHOULD only be set before the
      establishment of a TCP connection.  Its value SHOULD only be read
      after the establishment of a connection.

   o  TCP_MULTIPATH_ADD: This operation can be both applied before
      connection setup or during a connection.  If used before, it
      controls the local addresses that an MPTCP connection can use.  In
      the latter case, it allows MPTCP to use an additional local
      address, if there has been a restriction before connection setup.

   o  TCP_MULTIPATH_REMOVE: This operation can be both applied before
      connection setup or during a connection.  In both cases, it
      removes an address from the list of local addresses that may be
      used by subflows.

   o  TCP_MULTIPATH_SUBFLOWS: This value is read-only and SHOULD only be
      used after connection setup.

   o  TCP_MULTIPATH_CONNID: This value is read-only and SHOULD only be
      used after connection setup.

5.3.2.  Enabling and Disabling of MPTCP

   An application can explicitly indicate multipath capability by
   setting TCP_MULTIPATH_ENABLE to a value larger than 0.  In this case,
   the MPTCP implementation SHOULD try to negotiate MPTCP for that
   connection.  Note that multipath transport will not necessarily be
   enabled, as it requires support at both end systems, no middleboxes
   on the path that would prevent any additional signalling, and at
   least one endpoint with multiple addresses.

   Building on the backwards-compatibility specified in Section 4.2.1,
   if an application enables MPTCP but binds to a specific address or
   interface, MPTCP MUST be enabled, but MPTCP MUST respect the
   application's choice and only use addresses that are explicitly
   provided by the application.  Note that it would be possible for an
   application to use the legacy bindings, and then expand on them by
   using TCP_MULTIPATH_ADD.  Note also that it is possible for more than
   one local address to be initially available to MPTCP in this case, if
   an application has bound to a specific interface with multiple
   addresses.

   An application can disable MPTCP setting TCP_MULTIPATH_ENABLE to a
   value of 0.  In that case, MPTCP MUST NOT be used on that connection.

   After connection establishment, an application can get the value of
   TCP_MULTIPATH_ENABLE.  A value of 0 then means lack of MPTCP support.
   Any value equal to or larger than 1 means that MPTCP is supported.



Scharf & Ford           Expires October 19, 2012               [Page 17]



Internet-Draft                  MPTCP API                     April 2012

5.3.3.  Binding MPTCP to Specified Addresses

   Before connection establishment, an application can use
   TCP_MULTIPATH_ADD function to indicate a set of local IP addresses
   that MPTCP may bind to.  The parameter of the function is a list of
   addresses in a corresponding data structure.  By extension, this
   operation will also control the list of addresses that can be
   advertised to the peer via MPTCP signalling.

   If an application binds to a specific address or interface, it is not
   required to use the TCP_MULTIPATH_ADD operation for that address.  As
   explained in Section 5.3.2, MPTCP MUST only use the explicitly
   specified addresses in that case.

   An application MAY also indicate a TCP port number that, if
   specified, MPTCP MUST attempt to bind to.  The port number MAY be
   different to the one used by existing subflows.  If no port number is
   provided by the application, the port number is automatically
   selected by the MPTCP implementation, and will usually be the same
   across all subflows.

   This operation can also be used to modify the address list in use
   during the lifetime of an MPTCP connection.  In this case, it is used
   to indicate a set of additional local addresses that the MPTCP
   connection can make use of, and which can be signalled to the peer.
   It should be noted that this signal is only a hint, and an MPTCP
   implementation MAY only use a subset of the addresses.

   The TCP_MULTIPATH_REMOVE operation can be used to remove a (set of)
   local addresses from an MPTCP connection.  MPTCP MUST close any
   corresponding subflows (i.e. those using the local address that is no
   longer present), and signal the removal of the address to the peer.
   If alternative paths are available using the supplied address list
   but MPTCP is not currently using them, an MPTCP implementation SHOULD
   establish alternative subflows before undertaking the address
   removal.

   It should be remembered that these operations SHOULD support both
   IPv4 and IPv6 addresses, potentially in the same call.

5.3.4.  Querying the MPTCP Subflow Addresses

   An application can get a list of the addresses used by the currently
   established subflows in an MPTCP connection by means of the read-only
   TCP_MULTIPATH_SUBFLOWS operation.

   The return value is a list of pairs of tuples of IP address and TCP
   port number.  In one pair, the first tuple refers to the local IP



Scharf & Ford           Expires October 19, 2012               [Page 18]



Internet-Draft                  MPTCP API                     April 2012

   address and the local TCP port, and the second one to the remote IP
   address and remote TCP port used by the subflow.  The list MUST only
   include established subflows.  Both addresses in each pair MUST be
   either IPv4 or IPv6.

5.3.5.  Getting a Unique Connection Identifier

   An application that wants a unique identifier for the connection,
   analogous to an (address, port) pair in regular TCP, can query the
   TCP_MULTIPATH_CONNID value to get a local connection identifier for
   the MPTCP connection.

   This SHOULD be a 32-bit number, and SHOULD be the locally unique (e.
   g., the MPTCP token).

6.  Other Compatibility Issues

6.1.  Usage of the SCTP Socket API

   For dealing with multi-homing, several socket API extensions have
   been defined for SCTP [13].  As MPTCP realizes multipath transport
   from and to multi-homed endsystems, some of these interface function
   calls are actually applicable to MPTCP in a similar way.

   API developers MAY wish to integrate SCTP and MPTCP calls to provide
   a consistent interface to the application.  Yet, it must be
   emphasized that the transport service provided by MPTCP is different
   to SCTP, and this is why not all SCTP API functions can be mapped
   directly to MPTCP.  Furthermore, a network stack implementing MPTCP
   does not necessarily support SCTP and its specific socket interface
   extensions.  This is why the basic API of MPTCP defines additional
   socket options only, which are a backward compatible extension of
   TCP's application interface.  An integration with the SCTP API is
   outside the scope of the basic API.

6.2.  Incompatibilities with other Multihoming Solutions

   The use of MPTCP can interact with various related sockets API
   extensions.  The use of a multihoming shim layer conflicts with
   multipath transport such as MPTCP or SCTP [11].  Care should be taken
   for the usage not to confuse with the overlapping features of other
   APIs:

   o  SHIM API [11]: This API specifies sockets API extensions for the
      multihoming shim layer.

   o  HIP API [12]: The Host Identity Protocol (HIP) also results in a
      new API.



Scharf & Ford           Expires October 19, 2012               [Page 19]



Internet-Draft                  MPTCP API                     April 2012

   o  API for Mobile IPv6 [10]: For Mobile IPv6, a significantly
      extended socket API exists as well (in addition to API extensions
      for IPv6 [9]).

   In order to avoid any conflict, multiaddressed MPTCP SHOULD NOT be
   enabled if a network stack uses SHIM6, HIP, or Mobile IPv6.
   Furthermore, applications should not try to use both the MPTCP API
   and another multihoming or mobility layer API.

   It is possible, however, that some of the MPTCP functionality, such
   as congestion control, could be used in a SHIM6 or HIP environment.
   Such operation is for further study.

6.3.  Interactions with DNS

   In multihomed or multiaddressed environments, there are various
   issues that are not specific to MPTCP, but have to be considered,
   too.  These problems are summarized in [14].

   Specifically, there can be interactions with DNS.  Whilst it is
   expected that an application will iterate over the list of addresses
   returned from a call such as getaddrinfo(), MPTCP itself MUST NOT
   make any assumptions about multiple A or AAAA records from the same
   DNS query referring to the same host, as it is possible that multiple
   addresses refer to multiple servers for load balancing purposes.

7.  Security Considerations

   This document first defines the behavior of the standard TCP/IP API
   for MPTCP-unaware applications.  In general, enabling MPTCP has some
   security implications for applications, which are introduced in

Section 5.3.3, and these threats are further detailed in [6].  The
   protocol specification of MPTCP [5] defines several mechanisms to
   protect MPTCP against those attacks.

   In addition, the basic MPTCP API for MPTCP-aware applications defines
   functions that provide an equivalent level of control and information
   as exists for regular TCP.  New functions enable adding and removing
   local addresses from an MPTCP connection (TCP_MULTIPATH_ADD and
   TCP_MULTIPATH_REMOVE).  These functions don't add security threats if
   the MPTCP stack verifies that the addresses provided by the
   application are indeed available as source addresses for subflows.

   However, applications should use the TCP_MULTIPATH_ADD function with
   care, as new subflows might get established to those addresses.
   Furthermore, it could result in some form of information leakage
   since MPTCP might advertise those addresses to the other connection
   endpoint, which could learn IP addresses of interfaces that are not



Scharf & Ford           Expires October 19, 2012               [Page 20]



Internet-Draft                  MPTCP API                     April 2012

   visible otherwise.

   Use of different addresses should not be assumed to lead to use of
   different paths, especially for security purposes.

   MPTCP-aware applications should also take care when querying and
   using information about the addresses used by subflows
   (TCP_MULTIPATH_SUBFLOWS).  As MPTCP can dynamically open and close
   subflows, a list of addresses queried once can get outdated during
   the lifetime of an MPTCP connection.  Then, the list may contain
   invalid entries, i.e. addresses that are not used any more, or that
   might not even be assigned to that host any more.  Applications that
   want to ensure that MPTCP only uses a certain set of addresses should
   explicitly bind to those addresses.

8.  IANA Considerations

   This document has no IANA actions.  This document only defines an
   abstract API and therefore does not request the reservation of
   identifiers or names.

9.  Conclusion

   This document discusses MPTCP's implications and its performance
   impact on applications.  In addition, it specifies a basic MPTCP API.
   For legacy applications, it is ensured that the existing sockets API
   continues to work.  MPTCP-aware applications can use the basic MPTCP
   API that provides some control over the transport layer equivalent to
   regular TCP.

10.  Acknowledgments

   Authors sincerely thank to the following people for their helpful
   comments and reviews of the document: Philip Eardley, Lavkesh
   Lahngir, John Leslie, Costin Raiciu, Michael Tuexen, and Javier
   Ubillos.

   Michael Scharf is supported by the German-Lab project
   (http://www.german-lab.de/) funded by the German Federal Ministry of
   Education and Research (BMBF).  Alan Ford was previously supported by
   Roke Manor Research and by Trilogy (http://www.trilogy-project.org/),
   a research project (ICT-216372) partially funded by the European
   Community under its Seventh Framework Program.  The views expressed
   here are those of the author(s) only.  The European Commission is not
   liable for any use that may be made of the information in this
   document.

11.  References

http://www.german-lab.de/
http://www.trilogy-project.org/


Scharf & Ford           Expires October 19, 2012               [Page 21]



Internet-Draft                  MPTCP API                     April 2012

11.1.  Normative References

   [1]   Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
         September 1981.

   [2]   Braden, R., "Requirements for Internet Hosts - Communication
         Layers", STD 3, RFC 1122, October 1989.

   [3]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

   [4]   Ford, A., Raiciu, C., Handley, M., Barre, S., and J. Iyengar,
         "Architectural Guidelines for Multipath TCP Development",

RFC 6182, March 2011.

   [5]   Ford, A., Raiciu, C., Handley, M., and O. Bonaventure, "TCP
         Extensions for Multipath Operation with Multiple Addresses",

draft-ietf-mptcp-multiaddressed-07 (work in progress),
         March 2012.

   [6]   Bagnulo, M., "Threat Analysis for TCP Extensions for Multipath
         Operation with Multiple Addresses", RFC 6181, March 2011.

   [7]   Raiciu, C., Handley, M., and D. Wischik, "Coupled Congestion
         Control for Multipath Transport Protocols", RFC 6356,
         October 2011.

11.2.  Informative References

   [8]   Sarolahti, P., "Multi-address Interface in the Socket API",
draft-sarolahti-mptcp-af-multipath-01 (work in progress),

         March 2010.

   [9]   Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei, "Advanced
         Sockets Application Program Interface (API) for IPv6",

RFC 3542, May 2003.

   [10]  Chakrabarti, S. and E. Nordmark, "Extension to Sockets API for
         Mobile IPv6", RFC 4584, July 2006.

   [11]  Komu, M., Bagnulo, M., Slavov, K., and S. Sugimoto, "Sockets
         Application Program Interface (API) for Multihoming Shim",

RFC 6316, July 2011.

   [12]  Komu, M. and T. Henderson, "Basic Socket Interface Extensions
         for the Host Identity Protocol (HIP)", RFC 6317, July 2011.

   [13]  Stewart, R., Tuexen, M., Poon, K., Lei, P., and V. Yasevich,

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-multiaddressed-07
https://datatracker.ietf.org/doc/html/rfc6181
https://datatracker.ietf.org/doc/html/rfc6356
https://datatracker.ietf.org/doc/html/draft-sarolahti-mptcp-af-multipath-01
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc4584
https://datatracker.ietf.org/doc/html/rfc6316
https://datatracker.ietf.org/doc/html/rfc6317


Scharf & Ford           Expires October 19, 2012               [Page 22]



Internet-Draft                  MPTCP API                     April 2012

         "Sockets API Extensions for the Stream Control Transmission
         Protocol (SCTP)", RFC 6458, December 2011.

   [14]  Blanchet, M. and P. Seite, "Multiple Interfaces and
         Provisioning Domains Problem Statement", RFC 6418,
         November 2011.

   [15]  Wasserman, M. and P. Seite, "Current Practices for Multiple-
         Interface Hosts", RFC 6419, November 2011.

   [16]  Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with
         Dual-Stack Hosts", RFC 6555, April 2012.

   [17]  "IEEE Std. 1003.1-2008 Standard for Information Technology --
         Portable Operating System Interface (POSIX). Open Group
         Technical Standard: Base Specifications, Issue 7, 2008.".

   [18]  Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley,
         M., and H. Tokuda, "Is it Still Possible to Extend TCP?",
         November 2011.

Appendix A.  Requirements on a Future Advanced MPTCP API

A.1.  Design Considerations

   Multipath transport results in many degrees of freedom.  The basic
   MPTCP API only defines a minimum set of the API extensions for the
   interface between the MPTCP layer and applications, which does not
   offer much control of the MPTCP implementation's behavior.  A future,
   advanced API could address further features of MPTCP and provide more
   control.

   Applications that use TCP may have different requirements on the
   transport layer.  While developers have become used to the
   characteristics of regular TCP, new opportunities created by MPTCP
   could allow the service provided to be optimised further.  An
   advanced API could enable MPTCP-aware applications to specify
   preferences and control certain aspects of the behavior, in addition
   to the simple control provided by the basic interface.  An advanced
   API could also address aspects that are completely out-of-scope of
   the basic API, for example, the question whether a receiving
   application could influence the sending policy.

   Furthermore, an advanced MPTCP API could be part of a new overall
   interface between the network stack and applications that addresses
   other issues as well, such as the split between identifiers and
   locators.  An API that does not use IP addresses (but, instead e.g. a
   connectbyname() function) would be useful for numerous purposes,

https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6418
https://datatracker.ietf.org/doc/html/rfc6419
https://datatracker.ietf.org/doc/html/rfc6555


Scharf & Ford           Expires October 19, 2012               [Page 23]



Internet-Draft                  MPTCP API                     April 2012

   independent of MPTCP.

   It has also been suggested to use a separate address family called
   AF_MULTIPATH [8].  This separate address family could be used to
   exchange multiple addresses between an application and the standard
   sockets API, but it would be a more fundamental change compared to
   the basic API described in this document.

   This appendix documents a list of potential usage scenarios and
   requirements for the advanced API.  The specification and
   implementation of a corresponding API is outside the scope of this
   document.

A.2.  MPTCP Usage Scenarios and Application Requirements

   There are different MPTCP usage scenarios.  An application that
   wishes to transmit bulk data will want MPTCP to provide a high
   throughput service immediately, through creating and maximising
   utilisation of all available subflows.  This is the default MPTCP use
   case.

   But at the other extreme, there are applications that are highly
   interactive, but require only a small amount of throughput, and these
   are optimally served by low latency and jitter stability.  In such a
   situation, it would be preferable for the traffic to use only the
   lowest latency subflow (assuming it has sufficient capacity), maybe
   with one or two additional subflows for resilience and recovery
   purposes.  The key challenge for such a strategy is that the delay on
   a path may fluctuate significantly and that just always selecting the
   path with the smallest delay might result in instability.

   The choice between bulk data transport and latency-sensitive
   transport affects the scheduler in terms of whether traffic should
   be, by default, sent on one subflow or across several ones.  Even if
   the total bandwidth required is less than that available on an
   individual path, it is desirable to spread this load to reduce stress
   on potential bottlenecks, and this is why this method should be the
   default for bulk data transport.  However, that may not be optimal
   for applications that require latency/jitter stability.

   In the case of the latter option, a further question arises: Should
   additional subflows be used whenever the primary subflow is
   overloaded, or only when the primary path fails (hot-standby)?  In
   other words, is latency stability or bandwidth more important to the
   application?  This results in two different options: Firstly, there
   is the single path which can overflow into an additional subflow; and
   secondly there is single-path with hot-standby, whereby an
   application may want an alternative backup subflow in order to



Scharf & Ford           Expires October 19, 2012               [Page 24]



Internet-Draft                  MPTCP API                     April 2012

   improve resilience.  In case that data delivery on the first subflow
   fails, the data transport could immediately be continued on the
   second subflow, which is idle otherwise.

   Yet another complication is introduced with the potential that MPTCP
   introduces for changes in available bandwidth as the number of
   available subflows changes.  Such jitter in bandwidth may prove
   confusing for some applications such as video or audio streaming that
   dynamically adapt codecs based on available bandwidth.  Such
   applications may prefer MPTCP to attempt to provide a consistent
   bandwidth as far as is possible, and avoid maximising the use of all
   subflows.

   A further, mostly orthogonal question is whether data should be
   duplicated over the different subflows, in particular if there is
   spare capacity.  This could improve both the timeliness and
   reliability of data delivery.

   In summary, there are at least three possible performance objectives
   for multipath transport (not necessarily disjoint):

   1.  High bandwidth

   2.  Low latency and jitter stability

   3.  High reliability

   In an advanced API, applications could provide high-level guidance to
   the MPTCP implementation concerning these performance requirements,
   for instance, which is considered to be the most important one.  The
   MPTCP stack would then use internal mechanisms to fulfill this
   abstract indication of a desired service, as far as possible.  This
   would both affect the assignment of data (including retransmissions)
   to existing subflows (e.g., 'use all in parallel', 'use as overflow',
   'hot standby', 'duplicate traffic') as well as the decisions when to
   set up additional subflows to which addresses.  In both cases
   different policies can exist, which can be expected to be
   implementation-specific.

   Therefore, an advanced API could provide a mechanism how applications
   can specify their high-level requirements in an implementation-
   independent way.  One possibility would be to select one "application
   profile" out of a number of choices that characterize typical
   applications.  Yet, as applications today do not have to inform TCP
   about their communication requirements, it requires further studies
   whether such an approach would be realistic.

   Of course, independent of an advanced API, such functionality could



Scharf & Ford           Expires October 19, 2012               [Page 25]



Internet-Draft                  MPTCP API                     April 2012

   also partly be achieved by MPTCP-internal heuristics that infer some
   application preferences e.g. from existing socket options, such as
   TCP_NODELAY.  Whether this would be reliable, and indeed appropriate,
   is for further study, too.

A.3.  Potential Requirements on an Advanced MPTCP API

   The following is a list of potential requirements for an advanced
   MPTCP API beyond the features of the basic API.  It is included here
   for information only:

   REQ5:   An application should be able to establish MPTCP connections
           without using IP addresses as locators.

   REQ6:   An application should be able obtain usage information and
           statistics about all subflows (e.g., ratio of traffic sent
           via this subflow).

   REQ7:   An application should be able to request a change in the
           number of subflows in use, thus triggering removal or
           addition of subflows.  An even finer control granularity
           would be a request for the establishment of a specific
           subflow to a provided destination, or a request for the
           termination of a specified, existing subflow.

   REQ8:   An application should be able to inform the MPTCP
           implementation about its high-level performance requirements,
           e.g., in the form of a profile.

   REQ9:   An application should be able to indicate communication
           characteristics, e. g., the expected amount of data to be
           sent, the expected duration of the connection, or the
           expected rate at which data is provided.  Applications may in
           some cases be able to forecast such properties.  If so, such
           information could be an additional input parameter for
           heuristics inside the MPTCP implementation, which could be
           useful for example to decide when to set up additional
           subflows.

   REQ10:  An application should be able to control the automatic
           establishment/termination of subflows.  This would imply a
           selection among different heuristics of the path manager,
           e.g., 'try as soon as possible', 'wait until there is a bunch
           of data', etc.



Scharf & Ford           Expires October 19, 2012               [Page 26]



Internet-Draft                  MPTCP API                     April 2012

   REQ11:  An application should be able to set preferred subflows or
           subflow usage policies.  This would result in a selection
           among different configurations of the multipath scheduler.
           For instance, an application might want to use certain
           subflows as backup only.

   REQ12:  An application should be able to control the level of
           redundancy by telling whether segments should be sent on more
           than one path in parallel.

   An advanced API fulfilling these requirements would allow application
   developers to more specifically configure MPTCP.  It could avoid
   suboptimal decisions of internal, implicit heuristics.  However, it
   is unclear whether all of these requirements would have a significant
   benefit to applications, since they are going above and beyond what
   the existing API to regular TCP provides.

   A subset of this functions might also be implemented system wide or
   by other configuration mechanisms.  These implementation details are
   left for further study.

A.4.  Integration with the SCTP Socket API

   The advanced API may also integrate or use the SCTP Socket API.  The
   following functions that are defined for SCTP have a similar
   functionality like the basic MPTCP API:

   o  sctp_bindx()

   o  sctp_connectx()

   o  sctp_getladdrs()

   o  sctp_getpaddrs()

   o  sctp_freeladdrs()

   o  sctp_freepaddrs()

   The syntax and semantics of these functions are described in [13].

   A potential objective for the advanced API is to provide a consistent
   MPTCP and SCTP interface to the application.  This is left for
   further study.



Scharf & Ford           Expires October 19, 2012               [Page 27]



Internet-Draft                  MPTCP API                     April 2012

Appendix B.  Change History of the Document

   Note to RFC Editor: Remove this section before publication

   Changes compared to version draft-ietf-mptcp-api-04:

   o  Slightly changed abstract (comment by Philip Eardley)

   o  Removel of redundant text from intro (comment by Philip Eardley)

   o  New text on the lack of interface differences to regular TCP
      regarding closing the connection, also in the resilience
      discussion (comment by Philip Eardley)

   o  Moved AF_MULTIPATH to appendix (comment by Philip Eardley)

   o  Update of text on connection identifier to align with latest
      protocol specification (comment by Lavkesh Lahngir)

   o  Numerous small editorial changes

   Changes compared to version draft-ietf-mptcp-api-03:

   o  Security consideration section

   o  Better explanation of the implications of explicitly specified
      addresses, most notably during the bind call

   o  Editorial changes

   Changes compared to version draft-ietf-mptcp-api-02:

   o  Updated references

   o  Editorial changes

   Changes compared to version draft-ietf-mptcp-api-01:

   o  Additional text on outdated assumptions if an MPTCP application
      does not use fate sharing.

   o  The appendix explicitly mentions an integration of the advanced
      MPTCP API and the SCTP API as a potential objective, which is left
      for further study for the basic API.

   o  A short additional explanation of the parameters of the abstract
      functions TCP_MULTIPATH_ADD and TCP_MULTIPATH_REMOVE.

https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-api-04
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-api-03
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-api-02
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-api-01


Scharf & Ford           Expires October 19, 2012               [Page 28]



Internet-Draft                  MPTCP API                     April 2012

   o  Better explanation when TCP_MULTIPATH_REMOVE may be used.

   Changes compared to version draft-ietf-mptcp-api-00:

   o  Explicitly specify that the TCP_MULTIPATH_SUBFLOWS function
      returns port numbers, too.  Furthermore, add a new comment that
      TCP_MULTIPATH_ADD permits the specification of a port number.

   o  Mention possible additional extended API functions for the
      indication of application characterstics and for backup paths,
      based on comments received from the community.

   o  Mentions alternative approaches for avoiding non-MPTCP-capable
      paths to reduce impact on applications.

   Changes compared to version draft-scharf-mptcp-api-03:

   o  Removal of explicit references to "socket options" and getsockopt/
      setsockopt.

   o  Change of TCP_MULTIPATH_BIND to TCP_MULTIPATH_ADD and
      TCP_MULTIPATH_REMOVE.

   o  Mention of stability of bandwidth as another potential QoS
      parameter for the advanced API.

   o  Address comments received from Philip Eardley: Explanation of the
      API terminology, more explicit statement concerning applications
      that bind to a specific address, and some smaller editorial fixes

   Changes compared to version draft-scharf-mptcp-api-02:

   o  Definition of the behavior of getpeername() and getsockname() when
      being called by an MPTCP-aware application.

   o  Discussion of the possiblity that an MPTCP implementation could
      support the SCTP API, as far as it is applicable to MPTCP.

   o  Various editorial fixes.

   Changes compared to version draft-scharf-mptcp-api-01:

   o  Second half of the document completely restructured

   o  Separation between a basic API and an advanced API: The focus of
      the document is the basic API only; all text concerning a
      potential extended API is moved to the appendix

https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-api-00
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-03
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-02
https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-01


Scharf & Ford           Expires October 19, 2012               [Page 29]



Internet-Draft                  MPTCP API                     April 2012

   o  Several clarifications, e. g., concerning buffer sizeing and the
      use of different scheduling strategies triggered by TCP_NODELAY

   o  Additional references

   Changes compared to version draft-scharf-mptcp-api-00:

   o  Distinction between legacy and MPTCP-aware applications

   o  Guidance concerning default enabling, reaction to the shutdown of
      the first subflow, etc.

   o  Reference to a potential use of AF_MULTIPATH

   o  Additional references to related work

Authors' Addresses

   Michael Scharf
   Alcatel-Lucent Bell Labs
   Lorenzstrasse 10
   70435 Stuttgart
   Germany

   EMail: michael.scharf@alcatel-lucent.com

   Alan Ford
   Cisco
   Ruscombe Business Park
   Ruscombe, Berkshire  RG10 9NN
   UK

   EMail: alanford@cisco.com

https://datatracker.ietf.org/doc/html/draft-scharf-mptcp-api-00


Scharf & Ford           Expires October 19, 2012               [Page 30]


