
Internet Engineering Task Force C. Raiciu

Internet-Draft
University Politehnica of

Bucharest

Intended status: Experimental

Protocol
M. Handley

Expires: January 30, 2012 D. Wischik

University College London

July 29, 2011

Coupled Congestion Control for Multipath Transport Protocols

draft-ietf-mptcp-congestion-07

Abstract

Often endpoints are connected by multiple paths, but communications are

usually restricted to a single path per connection. Resource usage

within the network would be more efficient were it possible for these

multiple paths to be used concurrently. Multipath TCP is a proposal to

achieve multipath transport in TCP.

New congestion control algorithms are needed for multipath transport

protocols such as Multipath TCP, as single path algorithms have a

series of issues in the multipath context. One of the prominent

problems is that running existing algorithms such as standard TCP

independently on each path would give the multipath flow more than its

fair share at a bottleneck link traversed by more than one of its

subflows. Further, it is desirable that a source with multiple paths

available will transfer more traffic using the least congested of the

paths, achieving a property called resource pooling where a bundle of

links effectively behaves like one shared link with bigger-capacity.

This would increase the overall efficiency of the network and also its

robustness to failure.

This document presents a congestion control algorithm which couples the

congestion control algorithms running on different subflows by linking

their increase functions, and dynamically controls the overall

aggressiveness of the multipath flow. The result is a practical

algorithm that is fair to TCP at bottlenecks while moving traffic away

from congested links.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 30, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Requirements Language

2. Introduction

3. Coupled Congestion Control Algorithm

4. Implementation Considerations

4.1. Computing alpha in Practice

4.2. Implementation Considerations when CWND is Expressed in

Packets

5. Discussion

6. Security Considerations

7. Acknowledgements

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119] .

2. Introduction

Multipath TCP (MPTCP, [I-D.ietf-mptcp-multiaddressed]) is a set of

extensions to regular TCP [RFC0793] that allows one TCP connection to

be spread across multiple paths. MPTCP distributes load through the

creation of separate "subflows" across potentially disjoint paths.

How should congestion control be performed for multipath TCP? First,

each subflow must have its own congestion control state (i.e. cwnd) so

that capacity on that path is matched by offered load. The simplest way

to achieve this goal is to simply run standard TCP congestion control

on each subflow. However this solution is unsatisfactory as it gives

the multipath flow an unfair share when the paths taken by its

different subflows share a common bottleneck.

Bottleneck fairness is just one requirement multipath congestion

control should meet. The following three goals capture the desirable

properties of a practical multipath congestion control algorithm:

Goal 1 (Improve Throughput) A multipath flow should perform at

least as well as a single path flow would on the best of the

paths available to it.

Goal 2 (Do no harm) A multipath flow should not take up more

capacity from any of the resources shared by its different paths,

than if it was a single flow using only one of these paths. This

guarantees it will not unduly harm other flows.

Goal 3 (Balance congestion) A multipath flow should move as much

traffic as possible off its most congested paths, subject to

meeting the first two goals.

Goals 1 and 2 together ensure fairness at the bottleneck. Goal 3

captures the concept of resource pooling [WISCHIK]: if each multipath

flow sends more data through its least congested path, the traffic in

the network will move away from congested areas. This improves

robustness and overall throughput, among other things. The way to

achieve resource pooling is to effectively "couple" the congestion

control loops for the different subflows.

We propose an algorithm that couples the additive increase function of

the subflows, and uses unmodified TCP behavior in case of a drop. The

algorithm relies on the traditional TCP mechanisms to detect drops, to

retransmit data, etc.

Detecting shared bottlenecks reliably is quite difficult, but is just

one part of a bigger question. This bigger question is how much

*

*

*

bandwidth a multipath user should use in total, even if there is no

shared bottleneck.

The congestion controller aims to set the multipath flow's aggregate

bandwidth to be the same as a regular TCP flow would get on the best

path available to the multipath flow. To estimate the bandwidth of a

regular TCP flow, the multipath flow estimates loss rates and round

trip times and computes the target rate. Then it adjusts the overall

aggresiveness (parameter alpha) to achieve the desired rate.

While the mechanism above applies always, its effect depends on whether

the multipath TCP flow influences or does not influence the link loss

rates (low vs. high statistical multiplexing). If MPTCP does not

influence link loss rates, MPTCP will get the same throughput as TCP on

the best path. In cases with low statistical multiplexing, where the

multipath flow influences the loss rates on the path, the multipath

throughput will be strictly higher than a single TCP would get on any

of the paths. In particular, if using two idle paths, multipath

throughput will be sum of the two paths' throughput.

This algorithm ensures bottleneck fairness and fairness in the broader,

network sense. We acknowledge that current TCP fairness criteria are

far from ideal, but a multipath TCP needs to be deployable in the

current Internet. If needed, new fairness criteria can be implemented

by the same algorithm we propose by appropriately scaling the overall

aggressiveness.

It is intended that the algorithm presented here can be applied to

other multipath transport protocols, such as alternative multipath

extensions to TCP, or indeed any other congestion-aware transport

protocols. However, for the purposes of example this document will,

where appropriate, refer to the MPTCP protocol.

The design decisions and evaluation of the congestion control algorithm

are published in [NSDI].

The algorithm presented here only extends standard TCP congestion

control for multipath operation. It is foreseeable that other

congestion controllers will be implemented for multipath transport to

achieve the bandwidth-scaling properties of the newer congestion

control algorithms for regular TCP (such as Compound TCP and Cubic).

3. Coupled Congestion Control Algorithm

The algorithm we present only applies to the increase phase of the

congestion avoidance state specifying how the window inflates upon

receiving an ack. The slow start, fast retransmit, and fast recovery

algorithms, as well as the multiplicative decrease of the congestion

avoidance state are the same as in standard TCP[RFC5681].

Let cwnd_i be the congestion window on the subflow i. Let tot_cwnd be

the sum of the congestion windows of all subflows in the connection.

Let p_i, rtt_i and mss_i be the loss rate, round trip time (i.e.

smoothed round trip time estimate used by TCP) and maximum segment size

on subflow i.

We assume throughout this document that the congestion window is

maintained in bytes, unless otherwise specified. We briefly describe

the algorithm for packet-based implementations of cwnd in section

Section 4.2.

 alpha * bytes_acked * mss_i bytes_acked * mss_i

 min (--------------------------- , -------------------) (1)

 tot_cwnd cwnd_i

Our proposed "Linked Increases" algorithm MUST:

For each ack received on subflow i, increase cwnd_i by

The increase formula (1) takes the minimum between the computed

increase for the multipath subflow (first argument to min), and the

increase TCP would get in the same scenario (the second argument). In

this way, we ensure that any multipath subflow cannot be more

aggressive than a TCP flow in the same circumstances, hence achieving

goal 2 (do no harm).

"alpha" is a parameter of the algorithm that describes the

aggresiveness of the multipath flow. To meet Goal 1 (improve

throughput), the value of alpha is chosen such that the aggregate

throughput of the multipath flow is equal to the throughput a TCP flow

would get if it ran on the best path.

To get an intuition of what the algorithm is trying to do, let's take

the case where all the subflows have the same round trip time and MSS.

In this case the algorithm will grow the total window by approximately

alpha*MSS per RTT. This increase is distributed to the individual flows

according to their instantaneous window size. Subflow i will increase

by alpha*cwnd_i/tot_cwnd segments per RTT.

Note that, as in standard TCP, when tot_cwnd is large the increase may

be 0. In this case the increase MUST be set to 1. We discuss how to

implement this formula in practice in the next section.

We assume implementations use an approach similar to appropriate byte

counting (ABC, [RFC3465]), where the bytes_acked variable records the

number of bytes newly acknowledged. If this is not the case,

bytes_acked SHOULD be set to mss_i.

To compute tot_cwnd, it is an easy mistake to sum up cwnd_i across all

subflows: when a flow is in fast retransmit, its cwnd is typically

inflated and no longer represents the real congestion window. The

correct behavior is to use the ssthresh value for flows in fast

retransmit when computing tot_cwnd. To cater for connections that are

app limited, the computation should consider the minimum between

flight_size_i and cwnd_i, and flight_size_i and ssthresh_i where

appropriate.

The total throughput of a multipath flow depends on the value of alpha

and the loss rates, maximum segment sizes and round trip times of its

*

paths. Since we require that the total throughput is no worse than the

throughput a single TCP would get on the best path, it is impossible to

choose a-priori a single value of alpha that achieves the desired

throughput in every occasion. Hence, alpha must be computed based on

the observed properties of the paths.

The formula to compute alpha is:

 cwnd_i

 max --------

 i 2

 rtt_i

 alpha = tot_cwnd * ---------------- (2)

 / cwnd_i \ 2

 | sum ---------|

 \ i rtt_i /

The formula (2) is derived by equalizing the rate of the multipath flow

with the rate of a TCP running on the best path, and solving for alpha.

4. Implementation Considerations

Equation (2) implies that alpha is a floating point value. This would

require performing costly floating point operations whenever an ACK is

received, Further, in many kernels floating point operations are

disabled. There is an easy way to approximate the above calculations

using integer arithmetic.

4.1. Computing alpha in Practice

Let alpha_scale be an integer. When computing alpha, use alpha_scale *

tot_cwnd instead of tot_cwnd, and do all the operations in integer

arithmetic.

 alpha * bytes_acked * mss_i bytes_acked * mss_i

 min (--------------------------- , -------------------) (3)

 alpha_scale * tot_cwnd cwnd_i

Then, scale down the increase per ack by alpha_scale. The resulting

algorithm is a simple change from Equation (1):

For each ack received on subflow i, increase cwnd_i by

The alpha_scale parameter denotes the precision we want for computing

alpha. Observe that the errors in computing the numerator or the

*

denominator in the formula for alpha are quite small, as the cwnd in

bytes is typically much larger than the RTT (measured in ms).

With these changes, all the operations can be done using integer

arithmetic. We propose alpha_scale be a small power of two, to allow

using faster shift operations instead of multiplication and division.

Our experiments show that using alpha_scale=512 works well in a wide

range of scenarios. Increasing alpha_scale increases precision, but

also increases the risk of overflow when computing alpha. Using 64bit

operations would solve this issue. Another option is to dynamically

adjust alpha_scale when computing alpha; in this way we avoid overflow

and obtain maximum precision.

It is possible to implement the algorithm by calculating tot_cwnd on

each ack, however this would be costly especially when the number of

subflows is large. To avoid this overhead the implementation MAY choose

to maintain a new per connection state variable called tot_cwnd. If it

does so, the implementation will update tot_cwnd value whenever the

individual subflows' windows are updated. Updating only requires one

more addition or subtraction operation compared to the regular, per

subflow congestion control code, so its performance impact should be

minimal.

Computing alpha per ack is also costly. We propose alpha to be a per

connection variable, computed whenever there is a drop and once per RTT

otherwise. More specifically, let cwnd_new be the new value of the

congestion window after it is inflated or after a drop. Update alpha

only if the quotient of cwnd_i/mss_i differs from the quotient of

cwnd_new_i/mss_i.

In certain cases with small RTTs, computing alpha can still be

expensive. We observe that if RTTs were constant, it is sufficient to

compute alpha once per drop, as alpha does not change between drops

(the insight here is that cwnd_i/cwnd_j = constant as long as both

windows increase). Experimental results show that even if round trip

times are not constant, using average round trip time per sawtooth

instead of instantaneous round trip time (i.e. TCP's smoothed RTT

estimator) gives good precision for computing alpha. Hence, it is

possible to compute alpha only once per drop using a modified version

of equation (2) where rtt_i is replaced with rtt_avg_i.

If using average round trip time, rtt_avg_i will be computed by

sampling the rtt_i whenever the window can accommodate one more packet,

i.e. when cwnd / mss < (cwnd+increase)/mss. The samples are averaged

once per sawtooth into rtt_avg_i. This sampling ensures that there is

no sampling bias for larger windows.

Given tot_cwnd and alpha, the congestion control algorithm is run for

each subflow independently, with similar complexity to the standard TCP

increase code [RFC5681].

4.2. Implementation Considerations when CWND is Expressed in Packets

When the congestion control algorithm maintains cwnd in packets rather

than bytes, the algorithms above must change to take into account path

mss.

To compute the increase when an ack is received, the implementation for

multipath congestion control is a simple extension of the standard TCP

code. In standard TCP cwnd_cnt is an additional state variable that

tracks the number of segments acked since the last cwnd increment; cwnd

is incremented only when cwnd_cnt > cwnd; then cwnd_cnt is set to 0.

In the multipath case, cwnd_cnt_i is maintained for each subflow as

above, and cwnd_i is increased by 1 when cwnd_cnt_i > max(alpha_scale *

tot_cwnd / alpha, cwnd_i).

When computing alpha for packet-based stacks, the errors in computing

the terms in the denominator are larger (this is because cwnd is much

smaller and rtt may be comparatively large). Let max be the index of

the subflow used in the numerator. To reduce errors, it is easiest to

move rtt_max (once calculated) from the numerator to the denominator,

changing equation (2) to obtain the equivalent formula below.

 cwnd_max

 alpha = alpha_scale * tot_cwnd * ----------------------- (4)

 / rtt_max * cwnd_i \ 2

 | sum -----------------|

 \ i rtt_i /

Note that the calculation of alpha does not take into account path mss,

and is the same for stacks that keep cwnd in bytes or packets. With

this formula, the algorithm for computing alpha will match the rate of

TCP on the best path in B/s for byte-oriented stacks, and in packets/s

in packet-based stacks. In practice, mss rarely changes between paths

so this shouldn't be a problem.

However, it is simple to derive formulae allowing packet-based stacks

to achieve byte rate fairness (and viceversa) if needed. In particular,

for packet-based stacks wanting byte-rate fairness, equation (4) above

changes as follows: cwnd_max is replaced by cwnd_max * mss_max *

mss_max, while cwnd_i is replaced with cwnd_i * mss_i.

5. Discussion

The algorithm we've presented fully achieves Goals 1 and 2, but does

not achieve full resource pooling (Goal 3). Resource pooling requires

that no traffic should be transferred on links with higher loss rates.

To achieve perfect resource pooling, one must couple both increase and

decrease of congestion windows across subflows, as in [KELLY].

There are a few problems with such a fully-coupled controller. First,

it will probe insufficiently paths with high loss rates, and will fail

to detect free capacity when it becomes available. Second, such

controllers tend to exhibit "flappiness": when the paths have similar

levels of congestion, the congestion controller will tend to allocate

all the window to one random subflow, and allocate zero window to the

other subflows. The controller will perform random flips between these

stable points. This doesn't seem desirable in general, and is

particularly bad when the achieved rates depend on the RTT (as in the

current Internet): in such a case, the resulting rate with fluctuate

unpredictably depending on which state the controller is in, hence

violating Goal 1.

By only coupling increases our proposal probes high-loss paths,

detecting free capacity quicker. Our proposal does not suffer from

flappiness but also achieves less resource pooling. The algorithm will

allocate window to the subflows such that p_i * cwnd_i = constant, for

all i. Thus, when the loss rates of the subflows are equal, each

subflow will get an equal window, removing flappiness. When the loss

rates differ, progressively more window will be allocated to the flow

with the lower loss rate. In contrast, perfect resource pooling

requires that all the window should be allocated on the path with the

lowest loss rate. Further details can be found in [NSDI].

6. Security Considerations

One security concern relates to what we call the traffic-shifting

attack: on-path attackers can drop packets belonging to a multipath

subflow, which in turn makes the path seem congested and will force the

sender's congestion controller to avoid that path and push more data

over alternate subflows.

The attacker's goal is to create congestion on the corresponding

alternative paths. This behaviour is entirely feasible, but will only

have minor effects: by design, the coupled congestion controller is

less (or similarly) aggressive on any of its paths than a single TCP

flow. Thus, the biggest effect this attack can have is to make a

multipath subflow be as aggressive as a single TCP flow.

Another effect of the traffic-shifting attack is that the new path can

monitor all the traffic, whereas before it could only see a subset of

traffic. We believe that if privacy is needed, splitting traffic across

multiple paths with MPTCP is not the right solution in the first place;

end-to-end encryption should be used instead.

Besides the traffic-shifting attack mentioned above, the coupled

congestion control algorithm defined in this draft adds no other

security considerations to those found in [I-D.ietf-mptcp-

multiaddressed] and [RFC6181]. Detailed security analysis for the

Multipath TCP protocol itself is included in [I-D.ietf-mptcp-

multiaddressed] and [RFC6181].

7. Acknowledgements

We thank Christoph Paasch for his suggestions for computing alpha in

packet-based stacks. The authors are supported by Trilogy (http://

www.trilogy-project.org), a research project (ICT-216372) partially

funded by the European Community under its Seventh Framework Program.

The views expressed here are those of the author(s) only. The European

Commission is not liable for any use that may be made of the

information in this document.

8. IANA Considerations

This document does not require any action from IANA.

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC0793]
Postel, J., "Transmission Control Protocol", STD 7, RFC

793, September 1981.

[RFC5681]
Allman, M., Paxson, V. and E. Blanton, "TCP Congestion

Control", RFC 5681, September 2009.

9.2. Informative References

[RFC3465]

Allman, M., "TCP Congestion Control with

Appropriate Byte Counting (ABC)", RFC 3465,

February 2003.

[RFC6181]

Bagnulo, M., "Threat Analysis for TCP

Extensions for Multipath Operation with

Multiple Addresses", RFC 6181, March 2011.

[I-D.ietf-mptcp-

multiaddressed]

Ford, A, Raiciu, C, Handley, M and O

Bonaventure, "TCP Extensions for Multipath

Operation with Multiple Addresses", Internet-

Draft draft-ietf-mptcp-multiaddressed-04, July

2011.

[WISCHIK]

Wischik, D., Handley, M. and M. Bagnulo Braun,

"The Resource Pooling Principle", ACM SIGCOMM

CCR vol. 38 num. 5, pp. 47-52, October 2008.

[NSDI]

Wischik, D., Raiciu, C., Greenhalgh, A. and M.

Handley, "Design, Implementation and

Evaluation of Congestion Control for Multipath

TCP", Usenix NSDI , March 2011.

[KELLY]

Kelly, F. and T. Voice, "Stability of end-to-

end algorithms for joint routing and rate

control", ACM SIGCOMM CCR vol. 35 num. 2, pp.

5-12, 2005.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc5681
http://tools.ietf.org/html/rfc3465
http://tools.ietf.org/html/rfc3465
http://tools.ietf.org/html/rfc6181
http://tools.ietf.org/html/rfc6181
http://tools.ietf.org/html/rfc6181
http://tools.ietf.org/html/draft-ietf-mptcp-multiaddressed-04
http://tools.ietf.org/html/draft-ietf-mptcp-multiaddressed-04

Authors' Addresses

Costin Raiciu Raiciu University Politehnica of Bucharest Splaiul

Independentei 313 Bucharest, Romania EMail: costin.raiciu@cs.pub.ro

Mark Handley Handley University College London Gower Street

London, WC1E 6BT UK EMail: m.handley@cs.ucl.ac.uk

Damon Wischik Wischik University College London Gower Street

London, WC1E 6BT UK EMail: d.wischik@cs.ucl.ac.uk

mailto:costin.raiciu@cs.pub.ro
mailto:m.handley@cs.ucl.ac.uk
mailto:d.wischik@cs.ucl.ac.uk

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Requirements Language
	2. Introduction
	3. Coupled Congestion Control Algorithm
	4. Implementation Considerations
	4.1. Computing alpha in Practice
	4.2. Implementation Considerations when CWND is Expressed in Packets
	5. Discussion
	6. Security Considerations
	7. Acknowledgements
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References
	Authors' Addresses

