
NAT Working Group P. Srisuresh
INTERNET-DRAFT Lucent Technologies
Category: Informational November, 1998
Expire in six months

 IP Network Address Translator Application Programming Interface
 <draft-ietf-nat-api-00.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
 (Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
 (Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu
 (US West Coast).

Abstract

 NAT provides routing transparency for hosts in disparate routing
 realms to communicate with each other. However, external agents
 such as Application Level Gateways (ALGs), Host-NAT-clients and
 Management applications need to interact with NAT and influence
 its operations. The document identifies the resources and other
 elements controlled by a NAT device, with specific focus on areas
 subject to influence from external agents. An Application
 Programming Interface (API) framework by which external agents
 could interact with NAT is presented. The intent of this document
 is to leverage the API specification as a base to identify
 requirements for the development of one or more protocols by which
 external agents could interact with NAT.

Srisuresh & Rekhter [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nat-api-00.txt

Internet Draft NAT Application Programming Interface November 1998

1. Introduction

 NAT provides routing transparency for hosts in disparate routing
 realms to communicate with each other. [Ref 1] details the various
 flavors of NAT that abound. Many of the internet applications use
 IP address as host identifier rather than just as a way to locate a
 host. For this reason, routing transparency by NAT alone is not
 sufficient to provide end-to-end transparency for applications
 operating across realms. Application specific ALGs are required
 in conjunction with NAT to provide end-to-end transparency for
 some applications.

 In addition to ALGs, there are other kinds of external agents that
 may like to influence NAT operation. Section 2 below is devoted to
 describing the resources and other elements controlled by NAT.

Section 3 below outlines a selected list of external agents that
 may likely interface with NAT. Together, the requirements by a
 selected set of external agents and the nature of NAT resources
 are used as the basis to derive an API framework, described in

section 4.

 The intent of the document is two-fold. First, the document
 suggests an Application programming Interface (API) by which
 external agents could programmatically interface with NAT.
 This does not assume or require external agents to reside on the
 same physical device as NAT, even though assuming they reside on
 the same physical device does help in understanding. In reality,
 it is likely to be a combination of both. Some agents are
 co-located with NAT on the same device and others reside on
 external devices. The API is merely a suggestion and may vary from
 vendor to vendor.

 Second, the API provides a framework to identify requirements for
 the development of one or more protocols by which external agents
 (specified in section 3 below) could communicate with NAT. Such
 a protocol would need to authenticate clients, locate NAT devices
 and exchange data elements. The API specified in the document
 assumes a trusted environment and does not address the first two
 issues, namely authentication and Service location. The document
 also does not cover any communication protocol that may be used by
 external agents to interface with NAT using the API described here.
 These issues will need to be addressed independently outside the
 purview of this document.

2. Elements of NAT operation

 In order to identify an API for use by external agents, it is

Srisuresh & Rekhter [Page 2]

Internet Draft NAT Application Programming Interface November 1998

 important to understand the resources and other elments managed
 by NAT. This would help identify the extent to which an external
 agent may influence NAT operation. This section describes objects
 within NAT, that could be externalized via Management Information
 Base (MIB).

2.1. NAT Descriptor

 All flavors of NAT are designed to provide routing transparency
 to hosts in disparate routing realms. A physical device may have
 multiple NAT instances or there may be multiple NAT devices
 associated with a specific realm. The following list of attributes
 identify a specific instance of NAT.

 a. NAT IDentifier:

 A NAT Identifier uniquely identifies a NAT instantiation.
 The External interface address may be one way to specify
 NAT Identifier.

 b. Private and External realm types:

 Every NAT device will have a minimum of two routing
 interfaces, one connecting to a private realm and one
 connecting to external realm. An IPv4 NAT device will
 have both its realm types set to IPv4.

 c. NAT type

 NAT type could be one of Basic-NAT, NAPT, Bi-directional-NAT,
 Twice-NAT, Host-NAT server, Host-NAPT-server or a combination
 of the above. NAT type is an indication of the direction in
 which NAT sessions are allowed and the extent of translation
 within the IP and transport headers. [Ref 1] has a discussion
 on the nature of various NAT flavors and the extent of their
 translations.

 d. Address(and transport ID) maps

 Address map on a NAT device could consist of one or more of
 static and dynamic Address maps. Likewise, Transport ID mapping
 could consists of one or more of static and dynamic Transport
 ID maps. Transport ID mapping is more specific than address
 mapping in that a specific TCP/UDP port (or port range)
 pertaining to an address in external realm is mapped to a
 specific TCP/UDP port (or port range) in private realm or vice
 versa. Address (and Transport ID) maps may be defined for both
 inbound and outbound directions. Outbound address map refers

Srisuresh & Rekhter [Page 3]

Internet Draft NAT Application Programming Interface November 1998

 to mapping a selected set of addresses from private realm to a
 selected set of addresses in external realm; whereas inbound
 address map refers to mapping a set of addresses from the
 external realm to private realm.

 e. Miscellaneous parameters

 NAT may optionally provide TCP, UDP and other types of session
 Idle-times used to terminate sessions. It may also provide the
 current range (and, the maximum range) of session IDs and
 Bind IDs (to be covered in the follow on sub-sections); and
 the actual count of session IDs and BIND IDs. Specifically,
 this information will be of relevance to another NAT (backup
 NAT) that intends to emulate this NAT, in case of failure.
 Lastly, NAT may choose to supply any other vendor specific
 parameters such as log options, session direction failure
 actions and so forth.

 f. Host-NAT (and Host-NAPT) specific parameters

 If the NAT device were to provide Host-NAT-Server capability;
 optionally, the NAT device could specify the Host-NAT
 tunneling type it supports.

2.2. Address (and Transport-ID) BINDing Descriptor

 These bindings can be static or dynamic. Hereafter, the term BIND
 will be referred in place of BINDing, for ease of use. When external
 agents do not intervene, dynamic address(and transport-ID) binding
 is determined by NAT based on the first packet of a session, as
 described in [Ref 1]. Address binding is between an address in
 private realm and an address from external realm. Transport-ID BIND
 is extension of the same concept to the tuple of Address and
 transport ID (such as TCP/UDP port no.). The following list of
 attributes identify a BIND within a NAT.

 a. Bind ID

 A number (say, in the range of 1 through 0xFFFFFFFF) assigned
 to BIND to uniquely identify this BIND from a different BIND
 on the same NAT.

 b. Direction of Bind

 A bind can be uni-directional or bi-directional, same as the
 orientation of address map based on which this BIND is formed.
 As before, the direction is with reference to private realm.

Srisuresh & Rekhter [Page 4]

Internet Draft NAT Application Programming Interface November 1998

 c. Bind type

 Indicates whether the BIND is Address-BIND (between a pair of
 addresses) or Transport-ID-Bind (between a pair of Address,
 transport ID tuples). Note, a transport-ID bind intrinsically
 assumes an address bind between the addresses specified in
 the tuples. This also indicates if the Bind is static or
 dynamic.

 d. Private and External addresses (and Transport IDs)

 The pair described here essentially identify the BINDing
 items between private and external realms.

 e. Maximum leased time

 The validity of a BIND may be limited by the maximum length of
 leased time it is allowed. Unless the leased time is renewed,
 the BIND will no longer be valid past this time. As a special
 case, a value of 0 may be assumed to indicate no lease time
 limit. Typically, this attribute is of relevance in conjunction
 with Host-NAT operation.

 f. Available leased time

 This parameter is of relevance only when Maximum Leased time is
 set to a non-zero value. At any given instance of time, this
 parameter indicates the real-time left for the BIND to remain
 valid. Typically, this attribute is of relevance in conjunction
 with Host-NAT operation.

 g. Maximum Idle time

 This parameter indicates maximum amount of time a dynamic BIND
 is allowed to remain valid, with no NAT session hanging off this
 BIND. Typically, a dynamic Bind is established when NAT notices
 the first session that needs such a binding. Subsequent to
 this, multiple NAT sessions can be maintained using the same
 binding. When the last of these sessions is terminated, the
 bind is also terminated. In other words, Maximum Idle time is 0,
 by default, for native NAT. External agents could control this
 parameter differently. Static Binds and lease time limited BINDs
 are not effected by this parameter.

 h. Current Idle time

 This parameter is of relevance only when Maximum Idle time is

Srisuresh & Rekhter [Page 5]

Internet Draft NAT Application Programming Interface November 1998

 set to a non-zero value. At any given instance of time, this
 parameter indicates the real-time the BIND has been idle with
 no sessions attached to it.

 i. Controlling Agent IDentification

 This indicates the last external Agent who has tried to
 control (i.e., set) parameters for this BIND. A value of 0
 indicates that native NAT is the responsible agent.

2.3. Session State descriptor

 NAT maintains soft state for the sessions it tracks. These states
 are created dynamically during NAT operation and are responsible
 for translation of packets pertaining to the session. The translation
 element of a state is based on address (or Transport ID) bind (two
 binds in case of twice-nat). The following list of attributes
 identify a session (or session State) within NAT.

 a. Session IDentifier

 A number (say, in the range of 1 through 0xFFFFFFFF) assigned
 to session to uniquely identify this from other sessions on
 the same NAT.

 b. Direction of Session.

 Direction of first packet of the session. As specified
 earlier, direction is with reference to private realm.

 c. Bind IDentifier

 Identifies the Bind based on which this session is created.
 The Direction of BIND must be same as that of the session,
 if the BIND is uni-directional. Typically, if a Bind supporting
 the session translation does not already exist, a Bind is
 created prior to creating new session state. However, this
 Identifier may be set to 0, when BIND creation is unnecessary
 for the session. For example, there can be no more than one
 ICMP Query session using am ICMP Query based transport-ID-bind.
 In such a case, it suffices to do away with BIND and keep all
 requisite information within the session state itself.

 d. Second Bind IDentifier

 This is of relevance only to Twice-NAT. For all other flavors
 of NAT, this parameter may be set to zero. If the session is
 outbound, this parameter refers to binding of the target

Srisuresh & Rekhter [Page 6]

Internet Draft NAT Application Programming Interface November 1998

 destination address from private realm to external realm.

 e. Original Session parameters

 These parameters identify the session level parameters as
 they appear in the first packet of session. These parameters
 include src and dest IP addresses, IP protocol and transport
 IDentifier info (such as TCP/UDP port numbers or ICMP Query
 Identifier).

 f. Translated Session parameters

 These parameters identify the session level parameters as
 the first packet of session is translated. These parameters
 are derived from the BIND ID(s) off which this session hangs.

 g. Session tag

 NAT managed sessions are assigned a session tag, so that
 sessions bearing the same tag are handled the same way.
 The tag value is of significance only to the processing
 agent. Native NAT maintains four types of session tags for
 TCP, UDP, ICMP QUERY and all other sessions. So, tag
 numbers selected by the agents will need to be different
 from the native tags, if the processing were to be done
 differently.

 h. Session Termination heuristic

 Session-Idle-time is typically used as a heuristic means by NAT
 to determine if the session has ended. There may other heuristic
 approaches. A value of zero is an indication that NAT would not
 use any heuristic to session termination, unless it is a TCP
 session and the session has noticeable ended with FIN or RST
 options. The agent may take the responsibility for terminating
 the session.

 i. Maximum Idle time

 This parameter indicates maximum amount of time this session
 is allowed to remain valid, even as there is no activity.
 Idle time is typically used as a heuristic means to determine
 session termination. There may be other heuristic approaches.
 As a special case, a value of 0 implies that NAT should run
 the same timer as used for native sessions.

 j. Current Idle Time

Srisuresh & Rekhter [Page 7]

Internet Draft NAT Application Programming Interface November 1998

 This parameter is of relevance only when session termination
 heuristic is set to session-idle-time. Typically, NAT would
 examine the idle time on the sessions it manages periodically
 and updates this variable. When the idle time exceeds the
 maximum allowed idle time, the session is terminated.

 k. Packet modifier functions

 Typically, NAT modifies IP header and optionally, the
 transport header. External agents could choose to assume
 responsibility for payload modification alone, or the entire
 packet modification. In the case an external agent assumes
 responsibility for the entire packet modification, NAT will
 simply redirect the original packet as is to external agent
 modifier.

 l. Bundle ID

 Applications that deal with a bundle of sessions may cause
 multiple sessions to be managed by NAT. Even though these
 sessions constitute a single session from application stand
 point, NAT is not congnizant of the relation. In such cases,
 it is not uncommon for external agents to store a unique
 application ID (say, the session ID of the first NAT session
 the application originated) in all sessions it spawns in its
 incarnation.

 m. Controlling Agent IDentification

 This indicates the last external Agent who has tried to
 control parameters for this session. A value of 0 indicates
 that native NAT is the responsible agent.

3. External agents interfacing with NAT

 Many network applications assume the IP address of their host to be
 host Identifier and embed the Identifier information in application
 specific payload. When packets from such an application traverse
 NAT, the IP address of private host remains uncorrected in the
 payload, as the packet is delivered to hosts in external realm. An
 Application Level Gateway (ALG) is required to re-interpret such a
 payload as the payload traverses realms.

 In addition, there are applications such as H.323 that use
 out-of-band signaling to dynamically create newer sessions. While
 a signaling session itself may be directed to a well-known port,
 sessions created by it need not be that way. Once again, an ALG may

Srisuresh & Rekhter [Page 8]

Internet Draft NAT Application Programming Interface November 1998

 be required to process payload in the signaling sessions and notify
 NAT to recognize the newly created sessions.

 There may be other instances where an ALG may be required to
 provide application level transparency. Clearly, there is a need
 for a variety of ALGs to interface with NAT. The ALGs may reside
 on the same NAT device or an external device. Independent of this,
 the NAT interface requirement will remain the same.

 In a multi-homed NAT configuration, there is a need for a backup NAT
 to communicate with the primary and keep in sync, so that when the
 primary goes away, the backup NAT could instantly assume support for
 the sessions that primary NAT was responsible for. This is yet
 another case where an external agent (i.e., backup NAT) has a need
 to interface with NAT.

 A NAT device is uniquely qualified to serve as host-NAT-Server
 (or host-NAPT-Server) for host-NAT-clients (or host-NAPT-clients).
 [Ref 1] has a description of Host-NAT terminology. Host-NAT
 (and Host-NAPT) clients need to interface with the server node to
 obtain an external address (or a tuple of address and TCP/UDP port)
 while communicating with hosts in external realms. In addition,
 if NAT were to act as tunnel end-point, host-NAT clients will
 need to interface with NAT to setup tunnel state for the lifetime
 of Host-NAT-client address assignment. So, once again, there is a
 need for an API for use by an external agent(i.e., host-NAT-client)
 to communicate with NAT, acting as host-NAT-server.

 Lastly, a mangement utility would be useful to interface with NAT
 for configuration and monitor purposes and to enforce NAT policies.
 For example, reconfigure a NAT device to switch over from NAPT to
 Basic-NAT configuration or vice versa. Or, add, terminate and
 monitor ALGs and other external agents on a NAT box. Such a program
 would also be useful to notify NAT about the status and setup
 information concerning ALGs, backup NATs and Host-NAT clients.

 Clearly, agents such as Host-NAT-clients and Backup-NATs are likely
 to reside on a different physical device than the NAT device. Some
 of the ALG agents may also reside on an external device. The API
 presented in the follow-on section will provide a base to identify
 requirements for the development of one or more protocols by which
 each of these external agents could communicate with NAT. It may be
 a single protocol applicable to all external agents (or) multiple
 protocols, specific to each agent type.

 The following diagram identifies a selected list of external agents
 that might interact with NAT using its API.

Srisuresh & Rekhter [Page 9]

Internet Draft NAT Application Programming Interface November 1998

 +------------------+ +------+ +-------------+ +------------------+
 | Host-NAT-Clients | | ALGs | | Pri/Sec NAT | | Management Appl. |
 +-----+------------+ +------+ +-------------+ +------------------+
 ^ ^ ^ ^
 | | | |
 | | | |
 v v v v
 +---+
 | NAT Application Program Interface (NAT-API) |
 +---+
 | N A T |
 +---+

 figure 1. External agents interfacing with NAT using NAT-API.

 The following list of attributes uniquely identify an external
 agent with reference to a NAT.

 a. Agent IDentifier

 A number (say, in the range of 1 through 0xFFFFFFFF) assigned
 to the agent by the NAT device to distinguish from other
 agents. Typically, this handle may be assigned when the
 agent registers with NAT.

 b. Agent type

 Based on the categories of external agents described thus far,
 it is clear that the API requirements differ considerably
 amongst them. A native NAT API may or may not be able to
 support the requirements of all these agents. It is beneficial
 for NAT to know the agent type to be one of ALG or
 Host-NAT-Client or Backup-NAT or Management Application or
 something else, so it can accept or deny registration.

 c. Agent call-back requirements

 The agents will typically require NAT to invoke a call-back
 function within the agent when NAT notices the occurrence of
 an external event. But, the call-back requirements across
 the agents vary. For example, an ALG might require NAT to
 call back when a data packet is received on a session with
 a certain session-tag. But, other agents do not have such
 a requirement. There may , however, be some common
 requirements for call-back upon events such as termination
 of a session, termination of a Bind and termination of NAT
 itself. In addition, management applications and Backup-NAT

Srisuresh & Rekhter [Page 10]

Internet Draft NAT Application Programming Interface November 1998

 may have a requirement to have NAT periodically invoke a
 call-back function.

 d. Agent call-back functions

 Depending upon call-back requirements, the agent will be
 required to register one or more call-back function entry
 points with NAT. Below are three different call-back
 function prototypes.

 Event notification - void agent_callback_event(nat_id,
 agent_id, event_type, event_status)

 Periodic notification - void agent_callback_periodic(nat_id,
 agent_id, info_type, info_length,
 information)

 Packet notification - void agent_callback_packet(nat_id,
 agent_id, session_id,
 pkt_direction, packet)

 e. Periodic Notification interval

 This parameter would be required only when the agent calls
 for periodic notification. This may be specified in units of
 seconds.

 f. Host-NAT-Server tunnel type requirement

 A Host-NAT-client may have a requirement for NAT, acting as
 Host-NAT-server to support a certain type of tunneling. In
 such a case, the agent will specify the tunneling
 requirement through this parameter.

 g. Agent access information

 In the case the agent is resident on a different physical
 device than NAT, this parameter is used by the agent to
 specify a means by which NAT can access the agent. This
 will include a combination of Agent's IP address,
 IP protocol (e.g., TCP or UDP), well-known port etc.
 As a special case, a value of 0 to agent_ip_address would
 indicate that the agent is on the same device as NAT.

4. NAT Application Programming Interface (NAT API)

 The following API is specified in pseudo C language and is by no

Srisuresh & Rekhter [Page 11]

Internet Draft NAT Application Programming Interface November 1998

 means exhaustive in coverage. The API may vary from vendor to
 vendor. The intent is to provide a framework that could be
 expanded upon as required in the future. This section is divided
 into two sub-sections. The first sub-section lists function
 calls available to external agents. These calls are synchronous
 and require NAT to return back a value. The second sub-section
 lists functions that are expected to be provided by external
 agents in order for NAT to call-back upon some events.

4.1. NAT API functions

4.1.1. int nat_enquire_IDentity(nat_type, &natid_info)

 Purpose:

 This function is used by external agents to obtain NAT-ID
 and its characteristics, as described in section 2.1

 Input parameters:

 nat_type - This parameter is specified to verify if NAT
 device supports a certain flavor of NAT.

 Output Parameters:

 natid_info - NAT will fill up the natid_info data structure
 with its characteristics, as described in

section 2.1. Also returned in this block would be
 an Identifier (nat_id) to uniquely identify this NAT.

 Multiple pieces of this information may be returned,
 if NAT supports multiple instances of the same NAT
 type.

 Return Value:

 No-Error(0) - A return value of 0 implies success
 and that natid_info may be examined
 for NAT description.

 NAT-TYPE-NOT-SUPPORTED - Notify the client that the
 requested NAT device does not
 support the specified NAT type.

4.1.2. int nat_enquire_address_bind (nat_id, pvt_address,
 ext_address, &bind_info)

 Purpose:

Srisuresh & Rekhter [Page 12]

Internet Draft NAT Application Programming Interface November 1998

 This function is used by external agents to obtain
 Address BIND information.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT instance.

 pvt_address, ext_address - The caller might specify both or just
 one of either private address or external address and
 set the other to zero.

 Output Parameters:

 bind_info - NAT will fill up the bind_info data structure
 with info as described in section 2.2, if NAT were
 to find a match for the addresses specified.

 Return Value:

 No-Error(0) - A return value of 0 implies success
 in finding a match.

 NO-MATCHING_BIND - Notify the client that there isn't a BIND
 matching the specified addresses.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

4.1.3. int nat_enquire_transport_bind(nat_id, pvt_address, pvt_port,
 transport_protocol, ext_address, ext_port, &bind_info)

 Purpose:

 This function is used by external agents to obtain
 Transport ID BIND information.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT instance.

 pvt_address, pvt_port,
 ext_address, ext_port - The caller might specify both or just
 one of either (private address and the port no.) or
 external address and the port number.

 transport_protocol - This must be one of TCP, UDP or ICMP Query

Srisuresh & Rekhter [Page 13]

Internet Draft NAT Application Programming Interface November 1998

 Output Parameters:

 bind_info - NAT will fill up the bind_info data structure
 with info as described in section 2.2, if NAT were
 to find a match for the addresses specified.

 Return Value:

 No-Error(0) - A return value of 0 implies success
 in finding a match.

 NO-MATCHING_BIND - Notify the client that there isn't a BIND
 matching the specified addresses.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

4.1.4. int nat_enquire_sess_range(nat_id, agent_id, sessid_min,
 sessid_max, &sess_count, &sess_info)

 Purpose:

 This function is used by external agents to request NAT to
 send all valid session information for sessions with an
 ID in the range of sessid_min through sessid_max.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 sessid_min,
 sessid_max - The range of session IDs that the agent is
 interested in knowing about.

 Output Parameters:

 sess_count - Number of sessions being returned through
 sess_info pointer.

 sess_info - Return one or more sessions maintained by NAT,
 with an ID in the given range.

 Return Value:

Srisuresh & Rekhter [Page 14]

Internet Draft NAT Application Programming Interface November 1998

 No-Error(0) - A return value of 0 implies successful
 session termination.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently
 registered with NAT.

4.1.5. int nat_register_agent (nat_id, &agent_info)

 Purpose:

 This function is used by external agents to register
 with NAT.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_info - The agent is required to provide all the requisite
 information (with the exception of agent_id) as
 described in section 3.0. This ID may be used by
 the caller to control and influence NAT operation.

 Output Parameters:

 agent_info - NAT will return the agent_id in agent_info structure
 when registration is successful.

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 registration.

 AGENT-TYPE-NOT-SUPPORTED - Notify the caller that NAT does not
 support API requirements of the agent.

 TUNNEL-TYPE-NOT-SUPPORTED - Notify the caller that NAT does not
 support Host-NAT tunnel type
 requested.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

4.1.6. int nat_set_bind (nat_id, agent_id, &bind_info)

Srisuresh & Rekhter [Page 15]

Internet Draft NAT Application Programming Interface November 1998

 Purpose:

 This function is used by external agents to create a new Address
 Bind or set certain parameters of an existing Bind.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 bind_info - The caller supplies the specifics of a new BIND or
 sets a selected number of parameters of an existing
 BIND to influence NAT operation. The BIND can be
 an address BIND or transport BIND. A new BIND
 request is made by setting the BIND ID within
 bind_info structure to 0. A non-Zero Bind-ID would
 be interpreted by NAT to mean that the agent is
 attempting to set some BIND parameters.

 Output Parameters:

 bind_info - If the caller requested for a BIND creation and NAT
 was successful in creating a new BIND, NAT will
 fill the structure with the assigned BIND ID and
 any other NAT assigned parameter values. If the
 caller requested to set some BIND parameters and
 NAT succeeded in doing so, the bind_info would
 be filled with the values that NAT holds.

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 BIND creation or parameter setting.

 BIND-MAKE-FAILED - When NAT was unable to create BIND
 or was unable to set the requested
 parameter(s).

 INVALID-BIND-INFO - When NAT finds that one or all of the
 parameters specified is not valid.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently

Srisuresh & Rekhter [Page 16]

Internet Draft NAT Application Programming Interface November 1998

 registered with NAT.

4.1.7. int nat_set_sess(nat_id, agent_id, &sess_info)

 Purpose:

 This function is used by external agents to create a new session
 state or set certain parameters of an existing session.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 sess_info - The caller supplies the specifics of a new session
 parameters or sets a selected number of parameters
 of an existing session to influence NAT operation.
 A new session request is made by setting the
 session-ID within sess_info structure to 0. A
 non-Zero session-ID would be interpreted by NAT to
 mean that the agent is attempting to set some
 session specific parameters.

 Output Parameters:

 sess_info - If the caller requested for a session creation and
 NAT was successful in creating a new session, NAT
 will fill the structure with the assigned session-ID
 and any other NAT assigned parameter values. If the
 caller requested to set some session parameters and
 NAT succeeded in doing so, the sess_info would
 be filled with the values that NAT holds.

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 session creation or parameter setting.

 SESS-MAKE-FAILED - When NAT was unable to create session
 or was unable to set the requested
 parameter(s).

 INVALID-SESS-INFO - When NAT finds that one or all of the
 parameters specified is not valid.

Srisuresh & Rekhter [Page 17]

Internet Draft NAT Application Programming Interface November 1998

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently
 registered with NAT.

4.1.8. int nat_free_bind(nat_id, agent_id, bind_id)

 Purpose:

 This function is used by external agents to terminate
 the specified BIND and any sessions that are based on
 this BIND.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 bind_id - The ID of the BIND that needs to be terminated.

 Output Parameters:

 none.

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 BIND termination.

 INVALID-BIND-ID - The specified BIND ID does not exist.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently
 registered with NAT.

4.1.9. int nat_free_sess(nat_id, agent_id, sess_id)

 Purpose:

 This function is used by external agents to terminate
 the specified session.

Srisuresh & Rekhter [Page 18]

Internet Draft NAT Application Programming Interface November 1998

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 sess_id - The ID of the session that needs to be terminated.

 Output Parameters:

 none.

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 session termination.

 INVALID-SESS-ID - The specified session ID does not exist.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently
 registered with NAT.

4.1.10. int nat_free_sess_bundle(nat_id, agent_id, bundle_id)

 Purpose:

 This function is used by external agents to terminate
 a bundle of sessions identified by the same bundle ID.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 bundle_id - The ID of the session bundle (group of sessions)
 that needs to be terminated.

 Output Parameters:

 none.

Srisuresh & Rekhter [Page 19]

Internet Draft NAT Application Programming Interface November 1998

 Return Value:

 No-Error(0) - A return value of 0 implies successful
 session termination.

 INVALID-BUNDLE-ID - The specified bundle ID does not exist.

 INVALID-NAT-ID - The specified NAT-ID is not operational
 or is incorrect.

 INVALID-AGENT-ID - The specified Agent-ID is not currently
 registered with NAT.

4.2. Call-back functions within an external agent

4.2.1. void agent_callback_event(nat_id, agent_id, event_type,
 &event_info)

 Purpose:

 This function is used by NAT to notify an agent of an
 event status.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 event_type - The event can be one of BIND creation, BIND
 termination, session Creation, and session
 termination.

 event_info - This will return the BIND or session description
 structure that contains the specific instance
 identifier and other pertinent information.

4.2.2. void agent_callback_periodic(nat_id, agent_id, info_type,
 info_length, &periodic_info)

 Purpose:

 This function is used by NAT to notify an agent of a
 certain piece of information periodically.

Srisuresh & Rekhter [Page 20]

Internet Draft NAT Application Programming Interface November 1998

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 info_type - NAT may have been requested to periodically
 notify the agent many types of information.
 Possible values for this parameter would be
 statistics update, Incremental BIND update
 Incremental session update, Incremental
 BIND termination, Incremental session
 termination etc..

 info_length- Number of bytes included in periodic info block.

 periodic_info - This point to the actual periodic information
 being sent to the agent.

4.2.3. void agent_callback_packet(nat_id, agent_id, sess_id,
 pkt_direction, packet)

 Purpose:

 This function is used by NAT to notify an agent of a
 data packet for processing. The agent is expected to
 process the packet and forward to the actual destination
 in the first-in-first-out (FIFO) order. The processing
 performed by the agent may be limited to just the payload
 or the entire packet, as set by the agent at session
 setup time.

 Input parameters:

 nat_id - The identifier that uniquely identifies the NAT
 instance.

 agent_id - The agent Identifier that uniquely identifies the
 agent to NAT.

 sess_id - The Identifier if NAT session to which the packet
 belongs.

 pkt_direction - This can be inbound or outbound.

Srisuresh & Rekhter [Page 21]

Internet Draft NAT Application Programming Interface November 1998

 packet - IP packet that needs to be processed by the agent.
 If NAT was required to perform header translation,
 this packet is post-NAT-translated version of
 the packet. In the case the agent selected to
 perform the entire translation, the original
 packet is sent as is to the agent, without any
 NAT transformation.

5. Acknowledgement

 The author would like to express sincere appreciation and thanks
 to Yakov Rekhter for his valuable advice and contribution in the
 presentation of this document.

6. Security considerations.

 The security considerations described in [Ref 1] for all variations
 of NATs are applicable here.

REFERENCES

 [1] P. Srisuresh, M. Holdrege, "IP Network Address Translator
 (NAT) Terminology and Considerations",
 <draft-ietf-nat-terminology-01.txt> - Work in progress.

 [2] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. de Groot, and,
 E. Lear, "Address Allocation for Private Internets", RFC 1918

 [3] J. Reynolds and J. Postel, "Assigned Numbers", RFC 1700

 [4] R. Braden, "Requirements for Internet Hosts -- Communication
 Layers", RFC 1122

 [5] R. Braden, "Requirements for Internet Hosts -- Application
 and Support", RFC 1123

 [6] F. Baker, "Requirements for IP Version 4 Routers", RFC 1812

 [7] J. Postel, J. Reynolds, "FILE TRANSFER PROTOCOL (FTP)",
RFC 959

 [8] "TRANSMISSION CONTROL PROTOCOL (TCP) SPECIFICATION", RFC 793

 [9] J. Postel, "INTERNET CONTROL MESSAGE (ICMP) SPECIFICATION",

https://datatracker.ietf.org/doc/html/draft-ietf-nat-terminology-01.txt
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc793

Srisuresh & Rekhter [Page 22]

Internet Draft NAT Application Programming Interface November 1998

RFC 792

 [10] J. Postel, "User Datagram Protocol (UDP)", RFC 768

 [11] J. Mogul, J. Postel, "Internet Standard Subnetting Procedure",
RFC 950

 [12] Brian carpenter, Jon Crowcroft, Yakov Rekhter, "IPv4 Address
 Behaviour Today", RFC 2101

Author's Address:

 Pyda Srisuresh
 Lucent technologies
 4464 Willow Road
 Pleasanton, CA 94588-8519
 U.S.A.

 Voice: (925) 737-2153
 Fax: (925) 737-2110
 EMail: suresh@ra.lucent.com

https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc950
https://datatracker.ietf.org/doc/html/rfc2101

Srisuresh & Rekhter [Page 23]

