
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-crypto-types-25

Published: 19 October 2022

Intended Status: Standards Track

Expires: 22 April 2023

Authors: K. Watsen

Watsen Networks

YANG Data Types and Groupings for Cryptography

Abstract

This document presents a YANG 1.1 (RFC 7950) module defining

identities, typedefs, and groupings useful to cryptographic

applications.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2022-10-19 --> the publication date of this draft

The "Relation to other RFCs" section Section 1.1 contains the text

"one or more YANG modules" and, later, "modules". This text is

sourced from a file in a context where it is unknown how many

modules a draft defines. The text is not wrong as is, but it may be

improved by stating more directly how many modules are defined.

The "Relation to other RFCs" section Section 1.1 contains a self-

reference to this draft, along with a corresponding Informative

Reference in the Appendix.

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

¶

¶

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

1.3. Adherence to the NMDA

1.4. Conventions

2. The "ietf-crypto-types" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Security Considerations

3.1. No Support for CRMF

3.2. No Support for Key Generation

3.3. Unconstrained Public Key Usage

3.4. Unconstrained Private Key Usage

3.5. Strength of Keys Conveyed

3.6. Encrypting Passwords

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

3.7. Deletion of Cleartext Key Values

3.8. The "ietf-crypto-types" YANG Module

4. IANA Considerations

4.1. The "IETF XML" Registry

4.2. The "YANG Module Names" Registry

5. References

5.1. Normative References

5.2. Informative References

Appendix A. Change Log

A.1. I-D to 00

A.2. 00 to 01

A.3. 01 to 02

A.4. 02 to 03

A.5. 03 to 04

A.6. 04 to 05

A.7. 05 to 06

A.8. 06 to 07

A.9. 07 to 08

A.10. 08 to 09

A.11. 09 to 10

A.12. 10 to 11

A.13. 11 to 12

A.14. 12 to 13

A.15. 13 to 14

A.16. 14 to 15

A.17. 15 to 16

A.18. 16 to 17

A.19. 17 to 18

A.20. 18 to 19

A.21. 19 to 20

A.22. 20 to 21

A.23. 21 to 22

A.24. 22 to 23

A.25. 23 to 24

A.26. 24 to 25

Acknowledgements

Author's Address

1. Introduction

This document presents a YANG 1.1 [RFC7950] module defining

identities, typedefs, and groupings useful to cryptographic

applications.

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to, ultimately,

¶

enable the configuration of the clients and servers of both the

NETCONF [RFC6241] and RESTCONF [RFC8040] protocols.

These modules have been defined in a modular fashion to enable their

use by other efforts, some of which are known to be in progress at

the time of this writing, with many more expected to be defined in

time.

The normative dependency relationship between the various RFCs in

the collection is presented in the below diagram. The labels in the

diagram represent the primary purpose provided by each RFC.

Hyperlinks to each RFC are provided below the diagram.

Label in Diagram Originating RFC

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label to RFC Mapping

¶

¶

¶

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Adherence to the NMDA

This document is compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. It does not define any protocol

accessible nodes that are "config false".

1.4. Conventions

Various examples used in this document use a placeholder value for

binary data that has been base64 encoded (e.g., "BASE64VALUE=").

This placeholder value is used as real base64 encoded structures are

often many lines long and hence distracting to the example being

presented.

2. The "ietf-crypto-types" Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-

crypto-types". A high-level overview of the module is provided in

Section 2.1. Examples illustrating the module's use are provided in

Examples (Section 2.2). The YANG module itself is defined in

Section 2.3.

2.1. Data Model Overview

This section provides an overview of the "ietf-crypto-types" module

in terms of its features, identities, typedefs, and groupings.

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-crypto-types" module:

¶

¶

¶

¶

¶

¶

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

2.1.2. Identities

The following diagram illustrates the relationship amongst the

"identity" statements defined in the "ietf-crypto-types" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Features:

 +-- hidden-keys

 +-- password-encryption

 +-- private-key-encryption

 +-- symmetric-key-encryption

 +-- one-symmetric-key-format

 +-- one-asymmetric-key-format

 +-- cms-encrypted-data-format

 +-- cms-enveloped-data-format

 +-- certificate-expiration-notification

 +-- symmetrically-encrypted-value-format

 +-- asymmetrically-encrypted-value-format

 +-- certificate-signing-request-generation

¶

¶

¶

Identities:

 +-- public-key-format

 | +-- subject-public-key-info-format

 | +-- ssh-public-key-format

 +-- private-key-format

 | +-- rsa-private-key-format

 | +-- ec-private-key-format

 | +-- one-asymmetric-key-format

 | {one-asymmetric-key-format}?

 +-- symmetric-key-format

 | +-- octet-string-key-format

 | +-- one-symmetric-key-format

 | {one-symmetric-key-format}?

 +-- encrypted-value-format

 +-- symmetrically-encrypted-value-format

 | | {symmetrically-encrypted-value-format}?

 | +-- cms-encrypted-data-format

 | {cms-encrypted-data-format}?

 +-- asymmetrically-encrypted-value-format

 | {asymmetrically-encrypted-value-format}?

 +-- cms-enveloped-data-format

 {cms-enveloped-data-format}?

¶

¶

Comments:

The diagram shows that there are four base identities. The first

three identities are used to indicate the format that key data,

while the fourth identity is used to indicate the format for

encrypted values. The base identities are "abstract", in the

object oriented programming sense, in that they only define a

"class" of formats, rather than a specific format.

The various "leaf" identities define specific encoding formats.

The derived identities defined in this document are sufficient

for the effort described in Section 1.1 but, by nature of them

being identities, additional derived identities MAY be defined by

future efforts.

Identities used to specify uncommon formats are enabled by

"feature" statements, allowing applications to support them when

needed.

2.1.3. Typedefs

The following diagram illustrates the relationship amongst the

"typedef" statements defined in the "ietf-crypto-types" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

¶

*

¶

*

¶

*

¶

¶

Typedefs:

 binary

 +-- csr-info

 +-- csr

 +-- x509

 | +-- trust-anchor-cert-x509

 | +-- end-entity-cert-x509

 +-- crl

 +-- ocsp-request

 +-- ocsp-response

 +-- cms

 +-- data-content-cms

 +-- signed-data-cms

 | +-- trust-anchor-cert-cms

 | +-- end-entity-cert-cms

 +-- enveloped-data-cms

 +-- digested-data-cms

 +-- encrypted-data-cms

 +-- authenticated-data-cms

¶

¶

Comments:

All the typedefs defined in the "ietf-crypto-types" module extend

the "binary" type defined in [RFC7950].

Additionally, all the typedefs define a type for encoding an ASN.

1 [ITU.X680.2015] structure using DER [ITU.X690.2015].

The "trust-anchor-*" and "end-entity-*" typedefs are

syntactically identical to their base typedefs and only

distinguish themselves by the expected nature of their content.

These typedefs are defined to facilitate common modeling needs.

2.1.4. Groupings

The "ietf-crypto-types" module defines the following "grouping"

statements:

encrypted-value-grouping

password-grouping

symmetric-key-grouping

public-key-grouping

asymmetric-key-pair-grouping

trust-anchor-cert-grouping

end-entity-cert-grouping

generate-csr-grouping

asymmetric-key-pair-with-cert-grouping

asymmetric-key-pair-with-certs-grouping

Each of these groupings are presented in the following subsections.

2.1.4.1. The "encrypted-value-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "encrypted-

value-grouping" grouping:

Comments:

The "encrypted-by" node is an empty container (difficult to see

in the diagram) that a consuming module MUST augment key

references into. The "ietf-crypto-types" module is unable to

populate this container as the module only defines groupings.

Section 2.2.1 presents an example illustrating a consuming module

populating the "encrypted-by" container.

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

 grouping encrypted-value-grouping:

 +-- encrypted-by

 +-- encrypted-value-format identityref

 +-- encrypted-value binary

¶

¶

*

¶

The "encrypted-value" node is the value, encrypted by the key

referenced by the "encrypted-by" node, and encoded in the format

appropriate for the kind of key it was encrypted by.

If the value is encrypted by a symmetric key, then the

encrypted value is encoded using the format associated with

the "symmetrically-encrypted-value-format" identity.

If the value is encrypted by an asymmetric key, then the

encrypted value is encoded using the format associated with

the "asymmetrically-encrypted-value-format" identity.

See Section 2.1.2 for information about the "format" identities.

2.1.4.2. The "password-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"password-grouping" grouping. The first tree diagram does not expand

the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

Comments:

For the referenced grouping statement(s):

The "encrypted-value-grouping" grouping is discussed in

Section 2.1.4.1.

*

¶

-

¶

-

¶

¶

¶

 grouping password-grouping:

 +-- (password-type)

 +--:(cleartext-password)

 | +-- cleartext-password? string

 +--:(encrypted-password) {password-encryption}?

 +-- encrypted-password

 +---u encrypted-value-grouping

¶

¶

 grouping password-grouping:

 +-- (password-type)

 +--:(cleartext-password)

 | +-- cleartext-password? string

 +--:(encrypted-password) {password-encryption}?

 +-- encrypted-password

 +-- encrypted-by

 +-- encrypted-value-format identityref

 +-- encrypted-value binary

¶

¶

* ¶

-

¶

The "choice" statement enables the password data to be cleartext

or encrypted, as follows:

The "cleartext-password" node can encode any cleartext value.

The "encrypted-password" node's structure is discussed in

Section 2.1.4.1.

2.1.4.3. The "symmetric-key-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"symmetric-key-grouping" grouping. The first tree diagram does not

expand the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

Comments:

For the referenced grouping statement(s):

The "encrypted-value-grouping" grouping is discussed in

Section 2.1.4.1.

The "key-format" node is an identity-reference to the "symmetric-

key-format" abstract base identity discussed in Section 2.1.2,

*

¶

- ¶

-

¶

¶

 grouping symmetric-key-grouping:

 +-- key-format? identityref

 +-- (key-type)

 +--:(cleartext-key)

 | +-- cleartext-key? binary

 +--:(hidden-key) {hidden-keys}?

 | +-- hidden-key? empty

 +--:(encrypted-key) {symmetric-key-encryption}?

 +-- encrypted-key

 +---u encrypted-value-grouping

¶

¶

 grouping symmetric-key-grouping:

 +-- key-format? identityref

 +-- (key-type)

 +--:(cleartext-key)

 | +-- cleartext-key? binary

 +--:(hidden-key) {hidden-keys}?

 | +-- hidden-key? empty

 +--:(encrypted-key) {symmetric-key-encryption}?

 +-- encrypted-key

 +-- encrypted-by

 +-- encrypted-value-format identityref

 +-- encrypted-value binary

¶

¶

* ¶

-

¶

*

enabling the symmetric key to be encoded using the format defined

by any of the derived identities.

The "choice" statement enables the private key data to be

cleartext, encrypted, or hidden, as follows:

The "cleartext-key" node can encode any cleartext key value.

The "hidden-key" node is of type "empty" as the real value

cannot be presented via the management interface.

The "encrypted-key" node's structure is discussed in

Section 2.1.4.1.

2.1.4.4. The "public-key-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "public-key-

grouping" grouping:

Comments:

The "public-key-format" node is an identity-reference to the

"public-key-format" abstract base identity discussed in

Section 2.1.2, enabling the public key to be encoded using the

format defined by any of the derived identities.

The "public-key" node is the public key data in the selected

format. No "choice" statement is used to hide or encrypt the

public key data because it is unnecessary to do so for public

keys.

2.1.4.5. The "asymmetric-key-pair-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"asymmetric-key-pair-grouping" grouping. The first tree diagram does

not expand the internally used grouping statement(s):

¶

*

¶

- ¶

-

¶

-

¶

¶

 grouping public-key-grouping:

 +-- public-key-format identityref

 +-- public-key binary

¶

¶

*

¶

*

¶

¶

 grouping asymmetric-key-pair-grouping:

 +---u public-key-grouping

 +-- private-key-format? identityref

 +-- (private-key-type)

 +--:(cleartext-private-key)

 | +-- cleartext-private-key? binary

 +--:(hidden-private-key) {hidden-keys}?

 | +-- hidden-private-key? empty

 +--:(encrypted-private-key) {private-key-encryption}?

 +-- encrypted-private-key

 +---u encrypted-value-grouping

¶

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

Comments:

For the referenced grouping statement(s):

The "public-key-grouping" grouping is discussed in

Section 2.1.4.4.

The "encrypted-value-grouping" grouping is discussed in

Section 2.1.4.1.

The "private-key-format" node is an identity-reference to the

"private-key-format" abstract base identity discussed in

Section 2.1.2, enabling the private key to be encoded using the

format defined by any of the derived identities.

The "choice" statement enables the private key data to be

cleartext, encrypted, or hidden, as follows:

The "cleartext-private-key" node can encode any cleartext key

value.

The "hidden-private-key" node is of type "empty" as the real

value cannot be presented via the management interface.

The "encrypted-private-key" node's structure is discussed in

Section 2.1.4.1.

2.1.4.6. The "certificate-expiration-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "certificate-

expiration-grouping" grouping:

¶

 grouping asymmetric-key-pair-grouping:

 +-- public-key-format identityref

 +-- public-key binary

 +-- private-key-format? identityref

 +-- (private-key-type)

 +--:(cleartext-private-key)

 | +-- cleartext-private-key? binary

 +--:(hidden-private-key) {hidden-keys}?

 | +-- hidden-private-key? empty

 +--:(encrypted-private-key) {private-key-encryption}?

 +-- encrypted-private-key

 +-- encrypted-by

 +-- encrypted-value-format identityref

 +-- encrypted-value binary

¶

¶

* ¶

-

¶

-

¶

*

¶

*

¶

-

¶

-

¶

-

¶

¶

Comments:

This grouping's only purpose is to define the "certificate-

expiration" notification statement, used by the groupings defined

in Section 2.1.4.7 and Section 2.1.4.8.

The "certificate-expiration" notification enables servers to

notify clients when certificates are nearing expiration.

The "expiration-date" node indicates when the designated

certificate will (or did) expire.

Identification of the certificate that is expiring is built into

the notification itself. For an example, please see

Section 2.2.3.

2.1.4.7. The "trust-anchor-cert-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"trust-anchor-cert-grouping" grouping. The first tree diagram does

not expand the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

Comments:

For the referenced grouping statement(s):

The "certificate-expiration-grouping" grouping is discussed in

Section 2.1.4.6.

The "cert-data" node contains a chain of one or more certificates

encoded using a "signed-data-cms" typedef discussed in

Section 2.1.3.

 grouping certificate-expiration-grouping:

 +---n certificate-expiration

 {certificate-expiration-notification}?

 +-- expiration-date yang:date-and-time

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

 grouping trust-anchor-cert-grouping:

 +-- cert-data? trust-anchor-cert-cms

 +---u certificate-expiration-grouping

¶

¶

 grouping trust-anchor-cert-grouping:

 +-- cert-data? trust-anchor-cert-cms

 +---n certificate-expiration

 {certificate-expiration-notification}?

 +-- expiration-date yang:date-and-time

¶

¶

* ¶

-

¶

*

¶

2.1.4.8. The "end-entity-cert-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"end-entity-cert-grouping" grouping. The first tree diagram does not

expand the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

Comments:

For the referenced grouping statement(s):

The "certificate-expiration-grouping" grouping is discussed in

Section 2.1.4.6.

The "cert-data" node contains a chain of one or more certificates

encoded using a "signed-data-cms" typedef discussed in

Section 2.1.3.

2.1.4.9. The "generate-csr-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "generate-csr-

grouping" grouping:

Comments:

This grouping's only purpose is to define the "generate-

certificate-signing-request" action statement, used by the

groupings defined in Section 2.1.4.10 and Section 2.1.4.11.

¶

 grouping end-entity-cert-grouping:

 +-- cert-data? end-entity-cert-cms

 +---u certificate-expiration-grouping

¶

¶

 grouping end-entity-cert-grouping:

 +-- cert-data? end-entity-cert-cms

 +---n certificate-expiration

 {certificate-expiration-notification}?

 +-- expiration-date yang:date-and-time

¶

¶

* ¶

-

¶

*

¶

¶

 grouping generate-csr-grouping:

 +---x generate-csr {csr-generation}?

 +---w input

 | +---w csr-format identityref

 | +---w csr-info csr-info

 +--ro output

 +--ro (csr-type)

 +--:(p10-csr)

 +--ro p10-csr? p10-csr

¶

¶

*

¶

This action takes as input a "csr-info" type and returns a "csr"

type, both of which are discussed in Section 2.1.3.

For an example, please see Section 2.2.2.

2.1.4.10. The "asymmetric-key-pair-with-cert-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"asymmetric-key-pair-with-cert-grouping" grouping. The first tree

diagram does not expand the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

*

¶

* ¶

¶

 grouping asymmetric-key-pair-with-cert-grouping:

 +---u asymmetric-key-pair-grouping

 +---u end-entity-cert-grouping

 +---u generate-csr-grouping

¶

¶

 grouping asymmetric-key-pair-with-cert-grouping:

 +-- public-key-format identityref

 +-- public-key binary

 +-- private-key-format? identityref

 +-- (private-key-type)

 | +--:(cleartext-private-key)

 | | +-- cleartext-private-key? binary

 | +--:(hidden-private-key) {hidden-keys}?

 | | +-- hidden-private-key? empty

 | +--:(encrypted-private-key) {private-key-encryption}?

 | +-- encrypted-private-key

 | +-- encrypted-by

 | +-- encrypted-value-format identityref

 | +-- encrypted-value binary

 +-- cert-data? end-entity-cert-cms

 +---n certificate-expiration

 | {certificate-expiration-notification}?

 | +-- expiration-date yang:date-and-time

 +---x generate-csr {csr-generation}?

 +---w input

 | +---w csr-format identityref

 | +---w csr-info csr-info

 +--ro output

 +--ro (csr-type)

 +--:(p10-csr)

 +--ro p10-csr? p10-csr

¶

Comments:

This grouping defines an asymmetric key with at most one

associated certificate, a commonly needed combination in protocol

models.

For the referenced grouping statement(s):

The "asymmetric-key-pair-grouping" grouping is discussed in

Section 2.1.4.5.

The "end-entity-cert-grouping" grouping is discussed in

Section 2.1.4.8.

The "generate-csr-grouping" grouping is discussed in

Section 2.1.4.9.

2.1.4.11. The "asymmetric-key-pair-with-certs-grouping" Grouping

This section presents two tree diagrams [RFC8340] illustrating the

"asymmetric-key-pair-with-certs-grouping" grouping. The first tree

diagram does not expand the internally used grouping statement(s):

The following tree diagram expands the internally used grouping

statement(s), enabling the grouping's full structure to be seen:

¶

*

¶

* ¶

-

¶

-

¶

-

¶

¶

 grouping asymmetric-key-pair-with-certs-grouping:

 +---u asymmetric-key-pair-grouping

 +-- certificates

 | +-- certificate* [name]

 | +-- name? string

 | +---u end-entity-cert-grouping

 +---u generate-csr-grouping

¶

¶

Comments:

This grouping defines an asymmetric key with one or more

associated certificates, a commonly needed combination in

configuration models.

For the referenced grouping statement(s):

The "asymmetric-key-pair-grouping" grouping is discussed in

Section 2.1.4.5.

The "end-entity-cert-grouping" grouping is discussed in

Section 2.1.4.8.

The "generate-csr-grouping" grouping is discussed in

Section 2.1.4.9.

2.1.5. Protocol-accessible Nodes

The "ietf-crypto-types" module does not contain any protocol-

accessible nodes, but the module needs to be "implemented", as

 grouping asymmetric-key-pair-with-certs-grouping:

 +-- public-key-format identityref

 +-- public-key binary

 +-- private-key-format? identityref

 +-- (private-key-type)

 | +--:(cleartext-private-key)

 | | +-- cleartext-private-key? binary

 | +--:(hidden-private-key) {hidden-keys}?

 | | +-- hidden-private-key? empty

 | +--:(encrypted-private-key) {private-key-encryption}?

 | +-- encrypted-private-key

 | +-- encrypted-by

 | +-- encrypted-value-format identityref

 | +-- encrypted-value binary

 +-- certificates

 | +-- certificate* [name]

 | +-- name? string

 | +-- cert-data end-entity-cert-cms

 | +---n certificate-expiration

 | {certificate-expiration-notification}?

 | +-- expiration-date yang:date-and-time

 +---x generate-csr {csr-generation}?

 +---w input

 | +---w csr-format identityref

 | +---w csr-info csr-info

 +--ro output

 +--ro (csr-type)

 +--:(p10-csr)

 +--ro p10-csr? p10-csr

¶

¶

*

¶

* ¶

-

¶

-

¶

-

¶

described in Section 5.6.5 of [RFC7950], in order for the identities

in Section 2.1.2 to be defined.

2.2. Example Usage

2.2.1. The "symmetric-key-grouping" and "asymmetric-key-pair-with-

certs-grouping" Grouping

The following non-normative module is constructed in order to

illustrate the use of the "symmetric-key-grouping"

(Section 2.1.4.3), the "asymmetric-key-pair-with-certs-grouping"

(Section 2.1.4.11), and the "password-grouping" (Section 2.1.4.2)

grouping statements.

Notably, this example illustrates a hidden asymmetric key (ex-

hidden-asymmetric-key) has been used to encrypt a symmetric key (ex-

encrypted-one-symmetric-based-symmetric-key) that has been used to

encrypt another asymmetric key (ex-encrypted-rsa-based-asymmetric-

key). Additionally, the symmetric key is also used to encrypt a

password (ex-encrypted-password).

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

module ex-crypto-types-usage {

 yang-version 1.1;

 namespace "http://example.com/ns/example-crypto-types-usage";

 prefix ectu;

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 organization

 "Example Corporation";

 contact

 "YANG Designer <mailto:yang.designer@example.com>";

 description

 "This module illustrates the 'symmetric-key-grouping'

 and 'asymmetric-key-grouping' groupings defined in

 the 'ietf-crypto-types' module defined in RFC AAAA.";

 revision 2022-10-19 {

 description

 "Initial version";

 reference

 "RFC AAAA: Common YANG Data Types for Cryptography";

 }

 container symmetric-keys {

 description

 "A container of symmetric keys.";

 list symmetric-key {

 key "name";

 description

 "A symmetric key";

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ct:symmetric-key-grouping {

 augment "key-type/encrypted-key/encrypted-key/"

 + "encrypted-by" {

 description

 "Augments in a choice statement enabling the

 encrypting key to be any other symmetric or

 asymmetric key.";

 uses encrypted-by-choice-grouping;

 }

 }

 }

 }

 container asymmetric-keys {

 description

 "A container of asymmetric keys.";

 list asymmetric-key {

 key "name";

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ct:asymmetric-key-pair-with-certs-grouping {

 augment "private-key-type/encrypted-private-key/"

 + "encrypted-private-key/encrypted-by" {

 description

 "Augments in a choice statement enabling the

 encrypting key to be any other symmetric or

 asymmetric key.";

 uses encrypted-by-choice-grouping;

 }

 }

 description

 "An asymmetric key pair with associated certificates.";

 }

 }

 container passwords {

 description

 "A container of passwords.";

 list password {

 key "name";

 leaf name {

 type string;

 description

 "An arbitrary name for this password.";

 }

 uses ct:password-grouping {

 augment "password-type/encrypted-password/"

 + "encrypted-password/encrypted-by" {

 description

 "Augments in a choice statement enabling the

 encrypting key to be any symmetric or

 asymmetric key.";

 uses encrypted-by-choice-grouping;

 }

 }

 description

 "A password.";

 }

 }

 grouping encrypted-by-choice-grouping {

 description

 "A grouping that defines a choice enabling references

 to other keys.";

 choice encrypted-by-choice {

 mandatory true;

 description

 "A choice amongst other symmetric or asymmetric keys.";

 case symmetric-key-ref {

 leaf symmetric-key-ref {

 type leafref {

 path "/ectu:symmetric-keys/ectu:symmetric-key/"

 + "ectu:name";

 }

 description

 "Identifies the symmetric key that encrypts this key.";

 }

 }

 case asymmetric-key-ref {

 leaf asymmetric-key-ref {

 type leafref {

 path "/ectu:asymmetric-keys/ectu:asymmetric-key/"

 + "ectu:name";

 }

 description

 "Identifies the asymmetric key that encrypts this key.";

 }

 }

 }

 }

}

¶

The tree diagram [RFC8340] for this example module follows:¶

module: ex-crypto-types-usage

 +--rw symmetric-keys

 | +--rw symmetric-key* [name]

 | +--rw name string

 | +--rw key-format? identityref

 | +--rw (key-type)

 | +--:(cleartext-key)

 | | +--rw cleartext-key? binary

 | +--:(hidden-key) {hidden-keys}?

 | | +--rw hidden-key? empty

 | +--:(encrypted-key) {symmetric-key-encryption}?

 | +--rw encrypted-key

 | +--rw encrypted-by

 | | +--rw (encrypted-by-choice)

 | | +--:(symmetric-key-ref)

 | | | +--rw symmetric-key-ref? leafref

 | | +--:(asymmetric-key-ref)

 | | +--rw asymmetric-key-ref? leafref

 | +--rw encrypted-value-format identityref

 | +--rw encrypted-value binary

 +--rw asymmetric-keys

 | +--rw asymmetric-key* [name]

 | +--rw name string

 | +--rw public-key-format identityref

 | +--rw public-key binary

 | +--rw private-key-format? identityref

 | +--rw (private-key-type)

 | | +--:(cleartext-private-key)

 | | | +--rw cleartext-private-key? binary

 | | +--:(hidden-private-key) {hidden-keys}?

 | | | +--rw hidden-private-key? empty

 | | +--:(encrypted-private-key) {private-key-encryption}?

 | | +--rw encrypted-private-key

 | | +--rw encrypted-by

 | | | +--rw (encrypted-by-choice)

 | | | +--:(symmetric-key-ref)

 | | | | +--rw symmetric-key-ref? leafref

 | | | +--:(asymmetric-key-ref)

 | | | +--rw asymmetric-key-ref? leafref

 | | +--rw encrypted-value-format identityref

 | | +--rw encrypted-value binary

 | +--rw certificates

 | | +--rw certificate* [name]

 | | +--rw name string

 | | +--rw cert-data end-entity-cert-cms

 | | +---n certificate-expiration

 | | {certificate-expiration-notification}?

 | | +-- expiration-date yang:date-and-time

 | +---x generate-csr {csr-generation}?

 | +---w input

 | | +---w csr-format identityref

 | | +---w csr-info csr-info

 | +--ro output

 | +--ro (csr-type)

 | +--:(p10-csr)

 | +--ro p10-csr? p10-csr

 +--rw passwords

 +--rw password* [name]

 +--rw name string

 +--rw (password-type)

 +--:(cleartext-password)

 | +--rw cleartext-password? string

 +--:(encrypted-password) {password-encryption}?

 +--rw encrypted-password

 +--rw encrypted-by

 | +--rw (encrypted-by-choice)

 | +--:(symmetric-key-ref)

 | | +--rw symmetric-key-ref? leafref

 | +--:(asymmetric-key-ref)

 | +--rw asymmetric-key-ref? leafref

 +--rw encrypted-value-format identityref

 +--rw encrypted-value binary

¶

Finally, the following example illustrates various symmetric and

asymmetric keys as they might appear in configuration:¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<symmetric-keys

 xmlns="http://example.com/ns/example-crypto-types-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <symmetric-key>

 <name>ex-hidden-symmetric-key</name>

 <hidden-key/>

 </symmetric-key>

 <symmetric-key>

 <name>ex-octet-string-based-symmetric-key</name>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>BASE64VALUE=</cleartext-key>

 </symmetric-key>

 <symmetric-key>

 <name>ex-one-symmetric-based-symmetric-key</name>

 <key-format>ct:one-symmetric-key-format</key-format>

 <cleartext-key>BASE64VALUE=</cleartext-key>

 </symmetric-key>

 <symmetric-key>

 <name>ex-encrypted-one-symmetric-based-symmetric-key</name>

 <key-format>ct:one-symmetric-key-format</key-format>

 <encrypted-key>

 <encrypted-by>

 <asymmetric-key-ref>ex-hidden-asymmetric-key</asymmetric-key\

-ref>

 </encrypted-by>

 <encrypted-value-format>ct:cms-enveloped-data-format</encrypte\

d-value-format>

 <encrypted-value>BASE64VALUE=</encrypted-value>

 </encrypted-key>

 </symmetric-key>

</symmetric-keys>

<asymmetric-keys

 xmlns="http://example.com/ns/example-crypto-types-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <asymmetric-key>

 <name>ex-hidden-asymmetric-key</name>

 <public-key-format>ct:subject-public-key-info-format</public-key\

-format>

 <public-key>BASE64VALUE=</public-key>

 <hidden-private-key/>

 <certificates>

 <certificate>

 <name>ex-hidden-asymmetric-key-cert</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>ex-rsa-based-asymmetric-key</name>

 <public-key-format>ct:subject-public-key-info-format</public-key\

-format>

 <public-key>BASE64VALUE=</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-forma\

t>

 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>

 <certificates>

 <certificate>

 <name>ex-cert</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>ex-one-asymmetric-based-asymmetric-key</name>

 <public-key-format>ct:subject-public-key-info-format</public-key\

-format>

 <public-key>BASE64VALUE=</public-key>

 <private-key-format>ct:one-asymmetric-key-format</private-key-fo\

rmat>

 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>

 </asymmetric-key>

 <asymmetric-key>

 <name>ex-encrypted-rsa-based-asymmetric-key</name>

 <public-key-format>ct:subject-public-key-info-format</public-key\

-format>

 <public-key>BASE64VALUE=</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-forma\

t>

 <encrypted-private-key>

 <encrypted-by>

 <symmetric-key-ref>ex-encrypted-one-symmetric-based-symmetri\

c-key</symmetric-key-ref>

 </encrypted-by>

 <encrypted-value-format>ct:cms-encrypted-data-format</encrypte\

d-value-format>

 <encrypted-value>BASE64VALUE=</encrypted-value>

 </encrypted-private-key>

 </asymmetric-key>

</asymmetric-keys>

<passwords

 xmlns="http://example.com/ns/example-crypto-types-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <password>

 <name>ex-cleartext-password</name>

 <cleartext-password>super-secret</cleartext-password>

 </password>

 <password>

 <name>ex-encrypted-password</name>

 <encrypted-password>

 <encrypted-by>

 <symmetric-key-ref>ex-encrypted-one-symmetric-based-symmetri\

c-key</symmetric-key-ref>

 </encrypted-by>

 <encrypted-value-format>ct:cms-encrypted-data-format</encrypte\

d-value-format>

 <encrypted-value>BASE64VALUE=</encrypted-value>

 </encrypted-password>

 </password>

</passwords>

¶

2.2.2. The "generate-certificate-signing-request" Action

The following example illustrates the "generate-certificate-signing-

request" action, discussed in Section 2.1.4.9, with the NETCONF

protocol.

REQUEST

RESPONSE

2.2.3. The "certificate-expiration" Notification

The following example illustrates the "certificate-expiration"

notification, discussed in Section 2.1.4.6, with the NETCONF

protocol.

¶

¶

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <action xmlns="urn:ietf:params:xml:ns:yang:1">

 <asymmetric-keys

 xmlns="http://example.com/ns/example-crypto-types-usage">

 <asymmetric-key>

 <name>ex-hidden-asymmetric-key</name>

 <generate-csr>

 <csr-format>ct:p10-csr</csr-format>

 <csr-info>BASE64VALUE=</csr-info>

 </generate-csr>

 </asymmetric-key>

 </asymmetric-keys>

 </action>

</rpc>

¶

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <p10-csr xmlns="http://example.com/ns/example-crypto-types-usage">\

BASE64VALUE=</p10-csr>

</rpc-reply>

¶

¶

2.3. YANG Module

This module has normative references to [RFC2119], [RFC2986],

[RFC3447], [RFC4253], [RFC5280], [RFC5652], [RFC5915], [RFC5958],

[RFC6031], [RFC6125], [RFC6991], [RFC7093], [RFC8174], [RFC8341],

and [ITU.X690.2015].

<CODE BEGINS> file "ietf-crypto-types@2022-10-19.yang"

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification

 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2018-05-25T00:01:00Z</eventTime>

 <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types\

-usage">

 <asymmetric-key>

 <name>ex-hidden-asymmetric-key</name>

 <certificates>

 <certificate>

 <name>ex-hidden-asymmetric-key-cert</name>

 <certificate-expiration>

 <expiration-date>2018-08-05T14:18:53-05:00</expiration-d\

ate>

 </certificate-expiration>

 </certificate>

 </certificates>

 </asymmetric-key>

 </asymmetric-keys>

</notification>

¶

¶

¶

module ietf-crypto-types {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-crypto-types";

 prefix ct;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: https://datatracker.ietf.org/wg/netconf

 WG List: NETCONF WG list <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description

 "This module defines common YANG types for cryptographic

 applications.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC AAAA

 (https://www.rfc-editor.org/info/rfcAAAA); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-10-19 {

 description

 "Initial version";

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 /****************/

 /* Features */

 /****************/

 feature one-symmetric-key-format {

 description

 "Indicates that the server supports the

 'one-symmetric-key-format' identity.";

 }

 feature one-asymmetric-key-format {

 description

 "Indicates that the server supports the

 'one-asymmetric-key-format' identity.";

 }

 feature symmetrically-encrypted-value-format {

 description

 "Indicates that the server supports the

 'symmetrically-encrypted-value-format' identity.";

 }

 feature asymmetrically-encrypted-value-format {

 description

 "Indicates that the server supports the

 'asymmetrically-encrypted-value-format' identity.";

 }

 feature cms-enveloped-data-format {

 description

 "Indicates that the server supports the

 'cms-enveloped-data-format' identity.";

 }

 feature cms-encrypted-data-format {

 description

 "Indicates that the server supports the

 'cms-encrypted-data-format' identity.";

 }

 feature csr-generation {

 description

 "Indicates that the server implements the

 'generate-csr' action.";

 }

 feature p10-based-csrs {

 description

 "Indicates that the erver implements support

 for generating P10-based CSRs, as defined

 in RFC 2986.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7";

 }

 feature certificate-expiration-notification {

 description

 "Indicates that the server implements the

 'certificate-expiration' notification.";

 }

 feature hidden-keys {

 description

 "Indicates that the server supports hidden keys.";

 }

 feature password-encryption {

 description

 "Indicates that the server supports password

 encryption.";

 }

 feature symmetric-key-encryption {

 description

 "Indicates that the server supports encryption

 of symmetric keys.";

 }

 feature private-key-encryption {

 description

 "Indicates that the server supports encryption

 of private keys.";

 }

 /***/

 /* Base Identities for Key Format Structures */

 /***/

 identity symmetric-key-format {

 description

 "Base key-format identity for symmetric keys.";

 }

 identity public-key-format {

 description

 "Base key-format identity for public keys.";

 }

 identity private-key-format {

 description

 "Base key-format identity for private keys.";

 }

 /**/

 /* Identities for Private Key Format Structures */

 /**/

 identity rsa-private-key-format {

 base private-key-format;

 description

 "Indicates that the private key value is encoded

 as an RSAPrivateKey (from RFC 3447).";

 reference

 "RFC 3447: PKCS #1: RSA Cryptography

 Specifications Version 2.2";

 }

 identity ec-private-key-format {

 base private-key-format;

 description

 "Indicates that the private key value is encoded

 as an ECPrivateKey (from RFC 5915)";

 reference

 "RFC 5915: Elliptic Curve Private Key Structure";

 }

 identity one-asymmetric-key-format {

 if-feature "one-asymmetric-key-format";

 base private-key-format;

 description

 "Indicates that the private key value is a CMS

 OneAsymmetricKey structure, as defined in RFC 5958,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 5958: Asymmetric Key Packages

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Identities for Public Key Format Structures */

 /***/

 identity ssh-public-key-format {

 base public-key-format;

 description

 "Indicates that the public key value is an SSH public key,

 as specified by RFC 4253, Section 6.6, i.e.:

 string certificate or public key format

 identifier

 byte[n] key/certificate data.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity subject-public-key-info-format {

 base public-key-format;

 description

 "Indicates that the public key value is a SubjectPublicKeyInfo

 structure, as described in RFC 5280 encoded using ASN.1

 distinguished encoding rules (DER), as specified in

 ITU-T X.690.";

 reference

 "RFC 5280:

 Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /**/

 /* Identities for Symmetric Key Format Structures */

 /**/

 identity octet-string-key-format {

 base symmetric-key-format;

 description

 "Indicates that the key is encoded as a raw octet string.

 The length of the octet string MUST be appropriate for

 the associated algorithm's block size.

 How the associated algorithm is known is outside the

 scope of this module. This statement also applies when

 the octet string has been encrypted.";

 }

 identity one-symmetric-key-format {

 if-feature "one-symmetric-key-format";

 base symmetric-key-format;

 description

 "Indicates that the private key value is a CMS

 OneSymmetricKey structure, as defined in RFC 6031,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 6031: Cryptographic Message Syntax (CMS)

 Symmetric Key Package Content Type

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Identities for Encrypted Value Structures */

 /***/

 identity encrypted-value-format {

 description

 "Base format identity for encrypted values.";

 }

 identity symmetrically-encrypted-value-format {

 if-feature "symmetrically-encrypted-value-format";

 base encrypted-value-format;

 description

 "Base format identity for symmetrically encrypted

 values.";

 }

 identity asymmetrically-encrypted-value-format {

 if-feature "asymmetrically-encrypted-value-format";

 base encrypted-value-format;

 description

 "Base format identity for asymmetrically encrypted

 values.";

 }

 identity cms-encrypted-data-format {

 if-feature "cms-encrypted-data-format";

 base symmetrically-encrypted-value-format;

 description

 "Indicates that the encrypted value conforms to

 the 'encrypted-data-cms' type with the constraint

 that the 'unprotectedAttrs' value is not set.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 identity cms-enveloped-data-format {

 if-feature "cms-enveloped-data-format";

 base asymmetrically-encrypted-value-format;

 description

 "Indicates that the encrypted value conforms to the

 'enveloped-data-cms' type with the following constraints:

 The EnvelopedData structure MUST have exactly one

 'RecipientInfo'.

 If the asymmetric key supports public key cryptography

 (e.g., RSA), then the 'RecipientInfo' must be a

 'KeyTransRecipientInfo' with the 'RecipientIdentifier'

 using a 'subjectKeyIdentifier' with the value set using

 'method 1' in RFC 7093 over the recipient's public key.

 Otherwise, if the asymmetric key supports key agreement

 (e.g., ECC), then the 'RecipientInfo' must be a

 'KeyAgreeRecipientInfo'. The 'OriginatorIdentifierOrKey'

 value must use the 'OriginatorPublicKey' alternative.

 The 'UserKeyingMaterial' value must not be present.

 There must be exactly one 'RecipientEncryptedKeys' value

 having the 'KeyAgreeRecipientIdentifier' set to 'rKeyId'

 with the value set using 'method 1' in RFC 7093 over the

 recipient's public key.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)

 RFC 7093:

 Additional Methods for Generating Key

 Identifiers Values

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Identities for Certificate Signing Request Formats */

 /***/

 identity csr-format {

 description

 "A base identity for the certificate signing request

 formats. Additional derived identities MAY be defined

 by future efforts.";

 }

 identity p10-csr {

 if-feature "p10-based-csrs";

 base csr-format;

 description

 "Indicates the 'CertificationRequest' structure

 defined in RFC 2986.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7";

 }

 /***/

 /* Typedefs for ASN.1 structures from RFC 2986 */

 /***/

 typedef csr-info {

 type binary;

 description

 "A CertificationRequestInfo structure, as defined in

 RFC 2986, encoded using ASN.1 distinguished encoding

 rules (DER), as specified in ITU-T X.690.";

 reference

 "RFC 2986: PKCS #10: Certification Request Syntax

 Specification Version 1.7

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 typedef p10-csr {

 type binary;

 description

 "A CertificationRequest structure, as specified in

 RFC 2986, encoded using ASN.1 distinguished encoding

 rules (DER), as specified in ITU-T X.690.";

 reference

 "RFC 2986:

 PKCS #10: Certification Request Syntax Specification

 Version 1.7

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Typedefs for ASN.1 structures from RFC 5280 */

 /***/

 typedef x509 {

 type binary;

 description

 "A Certificate structure, as specified in RFC 5280,

 encoded using ASN.1 distinguished encoding rules (DER),

 as specified in ITU-T X.690.";

 reference

 "RFC 5280:

 Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 typedef crl {

 type binary;

 description

 "A CertificateList structure, as specified in RFC 5280,

 encoded using ASN.1 distinguished encoding rules (DER),

 as specified in ITU-T X.690.";

 reference

 "RFC 5280:

 Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Typedefs for ASN.1 structures from RFC 6960 */

 /***/

 typedef oscp-request {

 type binary;

 description

 "A OCSPRequest structure, as specified in RFC 6960,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 6960:

 X.509 Internet Public Key Infrastructure Online

 Certificate Status Protocol - OCSP

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 typedef oscp-response {

 type binary;

 description

 "A OCSPResponse structure, as specified in RFC 6960,

 encoded using ASN.1 distinguished encoding rules

 (DER), as specified in ITU-T X.690.";

 reference

 "RFC 6960:

 X.509 Internet Public Key Infrastructure Online

 Certificate Status Protocol - OCSP

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 /***/

 /* Typedefs for ASN.1 structures from 5652 */

 /***/

 typedef cms {

 type binary;

 description

 "A ContentInfo structure, as specified in RFC 5652,

 encoded using ASN.1 distinguished encoding rules (DER),

 as specified in ITU-T X.690.";

 reference

 "RFC 5652:

 Cryptographic Message Syntax (CMS)

 ITU-T X.690:

 Information technology - ASN.1 encoding rules:

 Specification of Basic Encoding Rules (BER),

 Canonical Encoding Rules (CER) and Distinguished

 Encoding Rules (DER).";

 }

 typedef data-content-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 data content type, as described by Section 4 in RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 typedef signed-data-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 signed-data content type, as described by Section 5 in

 RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 typedef enveloped-data-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 enveloped-data content type, as described by Section 6

 in RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 typedef digested-data-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 digested-data content type, as described by Section 7

 in RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 typedef encrypted-data-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 encrypted-data content type, as described by Section 8

 in RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 typedef authenticated-data-cms {

 type cms;

 description

 "A CMS structure whose top-most content type MUST be the

 authenticated-data content type, as described by Section 9

 in RFC 5652.";

 reference

 "RFC 5652: Cryptographic Message Syntax (CMS)";

 }

 /***/

 /* Typedefs for ASN.1 structures related to RFC 5280 */

 /***/

 typedef trust-anchor-cert-x509 {

 type x509;

 description

 "A Certificate structure that MUST encode a self-signed

 root certificate.";

 }

 typedef end-entity-cert-x509 {

 type x509;

 description

 "A Certificate structure that MUST encode a certificate

 that is neither self-signed nor having Basic constraint

 CA true.";

 }

 /***/

 /* Typedefs for ASN.1 structures related to RFC 5652 */

 /***/

 typedef trust-anchor-cert-cms {

 type signed-data-cms;

 description

 "A CMS SignedData structure that MUST contain the chain of

 X.509 certificates needed to authenticate the certificate

 presented by a client or end-entity.

 The CMS MUST contain only a single chain of certificates.

 The client or end-entity certificate MUST only authenticate

 to last intermediate CA certificate listed in the chain.

 In all cases, the chain MUST include a self-signed root

 certificate. In the case where the root certificate is

 itself the issuer of the client or end-entity certificate,

 only one certificate is present.

 This CMS structure MAY (as applicable where this type is

 used) also contain suitably fresh (as defined by local

 policy) revocation objects with which the device can

 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData

 structure that is commonly used to disseminate X.509

 certificates and revocation objects (RFC 5280).";

 reference

 "RFC 5280:

 Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile.";

 }

 typedef end-entity-cert-cms {

 type signed-data-cms;

 description

 "A CMS SignedData structure that MUST contain the end

 entity certificate itself, and MAY contain any number

 of intermediate certificates leading up to a trust

 anchor certificate. The trust anchor certificate

 MAY be included as well.

 The CMS MUST contain a single end entity certificate.

 The CMS MUST NOT contain any spurious certificates.

 This CMS structure MAY (as applicable where this type is

 used) also contain suitably fresh (as defined by local

 policy) revocation objects with which the device can

 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData

 structure that is commonly used to disseminate X.509

 certificates and revocation objects (RFC 5280).";

 reference

 "RFC 5280:

 Internet X.509 Public Key Infrastructure Certificate

 and Certificate Revocation List (CRL) Profile.";

 }

 /*****************/

 /* Groupings */

 /*****************/

 grouping encrypted-value-grouping {

 description

 "A reusable grouping for a value that has been encrypted by

 a referenced symmetric or asymmetric key.";

 container encrypted-by {

 nacm:default-deny-write;

 description

 "An empty container enabling a reference to the key that

 encrypted the value to be augmented in. The referenced

 key MUST be a symmetric key or an asymmetric key.

 A symmetric key MUST be referenced via a leaf node called

 'symmetric-key-ref'. An asymmetric key MUST be referenced

 via a leaf node called 'asymmetric-key-ref'.

 The leaf nodes MUST be direct descendants in the data tree,

 and MAY be direct descendants in the schema tree.";

 }

 leaf encrypted-value-format {

 type identityref {

 base encrypted-value-format;

 }

 mandatory true;

 description

 "Identifies the format of the 'encrypted-value' leaf.

 If 'encrypted-by' points to a symmetric key, then a

 'symmetrically-encrypted-value-format' based identity

 MUST by set (e.g., cms-encrypted-data-format).

 If 'encrypted-by' points to an asymmetric key, then an

 'asymmetrically-encrypted-value-format' based identity

 MUST by set (e.g., cms-enveloped-data-format).";

 }

 leaf encrypted-value {

 nacm:default-deny-write;

 type binary;

 must '../encrypted-by';

 mandatory true;

 description

 "The value, encrypted using the referenced symmetric

 or asymmetric key. The value MUST be encoded using

 the format associated with the 'encrypted-value-format'

 leaf.";

 }

 }

 grouping password-grouping {

 description

 "A password that MAY be encrypted.";

 choice password-type {

 nacm:default-deny-write;

 mandatory true;

 description

 "Choice between password types.";

 case cleartext-password {

 leaf cleartext-password {

 nacm:default-deny-all;

 type string;

 description

 "The cleartext value of the password.";

 }

 }

 case encrypted-password {

 if-feature "password-encryption";

 container encrypted-password {

 description

 "A container for the encrypted password value.";

 uses encrypted-value-grouping;

 }

 }

 }

 }

 grouping symmetric-key-grouping {

 description

 "A symmetric key.";

 leaf key-format {

 nacm:default-deny-write;

 type identityref {

 base symmetric-key-format;

 }

 description

 "Identifies the symmetric key's format. Implementations

 SHOULD ensure that the incoming symmetric key value is

 encoded in the specified format.

 For encrypted keys, the value is the same as it would

 have been if the key were not encrypted.";

 }

 choice key-type {

 nacm:default-deny-write;

 mandatory true;

 description

 "Choice between key types.";

 case cleartext-key {

 leaf cleartext-key {

 nacm:default-deny-all;

 type binary;

 must '../key-format';

 description

 "The binary value of the key. The interpretation of

 the value is defined by the 'key-format' field.";

 }

 }

 case hidden-key {

 if-feature "hidden-keys";

 leaf hidden-key {

 type empty;

 must 'not(../key-format)';

 description

 "A hidden key. How such keys are created is outside

 the scope of this module.";

 }

 }

 case encrypted-key {

 if-feature "symmetric-key-encryption";

 container encrypted-key {

 must '../key-format';

 description

 "A container for the encrypted symmetric key value.

 The interpretation of the 'encrypted-value' node

 is via the 'key-format' node";

 uses encrypted-value-grouping;

 }

 }

 }

 }

 grouping public-key-grouping {

 description

 "A public key.";

 leaf public-key-format {

 nacm:default-deny-write;

 type identityref {

 base public-key-format;

 }

 mandatory true;

 description

 "Identifies the public key's format. Implementations SHOULD

 ensure that the incoming public key value is encoded in the

 specified format.";

 }

 leaf public-key {

 nacm:default-deny-write;

 type binary;

 mandatory true;

 description

 "The binary value of the public key. The interpretation

 of the value is defined by 'public-key-format' field.";

 }

 }

 grouping asymmetric-key-pair-grouping {

 description

 "A private key and its associated public key. Implementations

 SHOULD ensure that the two keys are a matching pair.";

 uses public-key-grouping;

 leaf private-key-format {

 nacm:default-deny-write;

 type identityref {

 base private-key-format;

 }

 description

 "Identifies the private key's format. Implementations SHOULD

 ensure that the incoming private key value is encoded in the

 specified format.

 For encrypted keys, the value is the same as it would have

 been if the key were not encrypted.";

 }

 choice private-key-type {

 nacm:default-deny-write;

 mandatory true;

 description

 "Choice between key types.";

 case cleartext-private-key {

 leaf cleartext-private-key {

 nacm:default-deny-all;

 type binary;

 must '../private-key-format';

 description

 "The value of the binary key The key's value is

 interpreted by the 'private-key-format' field.";

 }

 }

 case hidden-private-key {

 if-feature "hidden-keys";

 leaf hidden-private-key {

 type empty;

 must 'not(../private-key-format)';

 description

 "A hidden key. How such keys are created is

 outside the scope of this module.";

 }

 }

 case encrypted-private-key {

 if-feature "private-key-encryption";

 container encrypted-private-key {

 must '../private-key-format';

 description

 "A container for the encrypted asymmetric private key

 value. The interpretation of the 'encrypted-value'

 node is via the 'private-key-format' node";

 uses encrypted-value-grouping;

 }

 }

 }

 }

 grouping certificate-expiration-grouping {

 description

 "A notification for when a certificate is about to, or

 already has, expired.";

 notification certificate-expiration {

 if-feature "certificate-expiration-notification";

 description

 "A notification indicating that the configured certificate

 is either about to expire or has already expired. When to

 send notifications is an implementation specific decision,

 but it is RECOMMENDED that a notification be sent once a

 month for 3 months, then once a week for four weeks, and

 then once a day thereafter until the issue is resolved.";

 leaf expiration-date {

 type yang:date-and-time;

 mandatory true;

 description

 "Identifies the expiration date on the certificate.";

 }

 }

 }

 grouping trust-anchor-cert-grouping {

 description

 "A trust anchor certificate, and a notification for when

 it is about to (or already has) expire.";

 leaf cert-data {

 nacm:default-deny-write;

 type trust-anchor-cert-cms;

 description

 "The binary certificate data for this certificate.";

 }

 uses certificate-expiration-grouping;

 }

 grouping end-entity-cert-grouping {

 description

 "An end entity certificate, and a notification for when

 it is about to (or already has) expire. Implementations

 SHOULD assert that, where used, the end entity certificate

 contains the expected public key.";

 leaf cert-data {

 nacm:default-deny-write;

 type end-entity-cert-cms;

 description

 "The binary certificate data for this certificate.";

 }

 uses certificate-expiration-grouping;

 }

 grouping generate-csr-grouping {

 description

 "Defines the 'generate-csr' action.";

 action generate-csr {

 if-feature "csr-generation";

 nacm:default-deny-all;

 description

 "Generates a certificate signing request structure for

 the associated asymmetric key using the passed subject

 and attribute values.

 This action statement is only available when the

 associated 'public-key-format' node's value is

 'subject-public-key-info-format'.";

 reference

 "RFC 6125:

 Representation and Verification of Domain-Based

 Application Service Identity within Internet Public Key

 Infrastructure Using X.509 (PKIX) Certificates in the

 Context of Transport Layer Security (TLS)";

 input {

 leaf csr-format {

 type identityref {

 base csr-format;

 }

 mandatory true;

 description

 "Specifies the format for the returned certifiacte.";

 }

 leaf csr-info {

 type csr-info;

 mandatory true;

 description

 "A CertificationRequestInfo structure, as defined in

 RFC 2986.

 Enables the client to provide a fully-populated

 CertificationRequestInfo structure that the server

 only needs to sign in order to generate the complete

 'CertificationRequest' structure to return in the

 'output'.

 The 'AlgorithmIdentifier' field contained inside

 the 'SubjectPublicKeyInfo' field MUST be one known

 to be supported by the device.";

 reference

 "RFC 2986:

 PKCS #10: Certification Request Syntax Specification

 RFC AAAA:

 YANG Data Types and Groupings for Cryptography";

 }

 }

 output {

 choice csr-type {

 mandatory true;

 description

 "A choice amongst certificate signing request formats.

 Additional formats MAY be augmented into this 'choice'

 statement by future efforts.";

 case p10-csr {

 leaf p10-csr {

 type p10-csr;

 description

 "A CertificationRequest, as defined in RFC 2986.";

 }

 description

 "A CertificationRequest, as defined in RFC 2986.";

 reference

 "RFC 2986:

 PKCS #10: Certification Request Syntax Specification

 RFC AAAA:

 YANG Data Types and Groupings for Cryptography";

 }

 }

 }

 }

 } // generate-csr-grouping

 grouping asymmetric-key-pair-with-cert-grouping {

 description

 "A private/public key pair and an associated certificate.

 Implementations SHOULD assert that certificates contain

 the matching public key.";

 uses asymmetric-key-pair-grouping;

 uses end-entity-cert-grouping;

 uses generate-csr-grouping;

 } // asymmetric-key-pair-with-cert-grouping

 grouping asymmetric-key-pair-with-certs-grouping {

 description

 "A private/public key pair and associated certificates.

 Implementations SHOULD assert that certificates contain

 the matching public key.";

 uses asymmetric-key-pair-grouping;

 container certificates {

 nacm:default-deny-write;

 description

 "Certificates associated with this asymmetric key.";

 list certificate {

 key "name";

 description

 "A certificate for this asymmetric key.";

 leaf name {

 type string;

 description

 "An arbitrary name for the certificate.";

 }

 uses end-entity-cert-grouping {

 refine "cert-data" {

 mandatory true;

 }

 }

 }

 }

 uses generate-csr-grouping;

 } // asymmetric-key-pair-with-certs-grouping

}

¶

<CODE ENDS>

3. Security Considerations

3.1. No Support for CRMF

This document uses PKCS #10 [RFC2986] for the "generate-certificate-

signing-request" action. The use of Certificate Request Message

Format (CRMF) [RFC4211] was considered, but it was unclear if there

was market demand for it. If it is desired to support CRMF in the

future, a backwards compatible solution can be defined at that time.

3.2. No Support for Key Generation

Early revisions of this document included "rpc" statements for

generating symmetric and asymmetric keys. These statements were

removed due to an inability to obtain consensus for how to identify

the key-algorithm to use. Thusly, the solution presented in this

document only supports keys to be configured via an external client,

which does not support Security best practice.

3.3. Unconstrained Public Key Usage

This module defines the "public-key-grouping" grouping, which

enables the configuration of public keys without constraints on

their usage, e.g., what operations the key is allowed to be used for

(encryption, verification, both).

The "asymmetric-key-pair-grouping" grouping uses the aforementioned

"public-key-grouping" grouping, and carries the same traits.

The "asymmetric-key-pair-with-cert-grouping" grouping uses the

aforementioned "asymmetric-key-pair-grouping" grouping, whereby each

certificate may constrain the usage of the public key according to

local policy.

3.4. Unconstrained Private Key Usage

This module defines the "asymmetric-key-pair-grouping" grouping,

which enables the configuration of private keys without constraints

on their usage, e.g., what operations the key is allowed to be used

for (e.g., signature, decryption, both).

The "asymmetric-key-pair-with-cert-grouping" uses the aforementioned

"asymmetric-key-pair-grouping" grouping, whereby configured

certificates (e.g., identity certificates) may constrain the use of

the public key according to local policy.

¶

¶

¶

¶

¶

¶

¶

¶

3.5. Strength of Keys Conveyed

When accessing key values, it is desireable that implementations

ensure that the strength of the keys being accessed is not greater

than the strength of the underlying secure transport connection over

which the keys are conveyed. However, comparing key strengths can be

complicated and difficult to implement in practice.

That said, expert Security opinion suggests that already it is

infeasible to break a 128-bit symmetric key using a classical

computer, and thus the concern for conveying higher-strength keys

begins to lose its allure.

Implementations SHOULD only use secure transport protocols meeting

local policy. A reasonable policy may, e.g., state that only

ciphersuites listed as "recommended" by the IETF be used (e.g.,

[RFC7525] for TLS).

3.6. Encrypting Passwords

The module contained within this document enables passwords to be

encrypted. Passwords may be encrypted via a symmetric key using the

"cms-encrypted-data-format" format. This format uses the CMS

EncryptedData structure, which allows any encryption algorithm to be

used.

In order to thwart rainbow attacks, algorithms that result in a

unique output for the same input SHOULD NOT be used. For instance,

AES using "ECB" SHOULD NOT be used to encrypt passwords, whereas

"CBC" mode is permissible since an unpredictable initialization

vector (IV) MUST be used for each use.

3.7. Deletion of Cleartext Key Values

This module defines storage for cleartext key values that SHOULD be

zeroized when deleted, so as to prevent the remnants of their

persisted storage locations from being analyzed in any meaningful

way.

The cleartext key values are the "cleartext-key" node defined in the

"symmetric-key-grouping" grouping (Section 2.1.4.3) and the

"cleartext-private-key" node defined in the "asymmetric-key-pair-

grouping" grouping ("Section 2.1.4.5).

3.8. The "ietf-crypto-types" YANG Module

The YANG module in this document defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

¶

¶

¶

¶

¶

¶

¶

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The Network Access Control Model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only defines groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

Some of the readable data nodes defined in this YANG module may be

considered sensitive or vulnerable in some network environments. It

is thus important to control read access (e.g., via get, get-config,

or notification) to these data nodes. These are the subtrees and

data nodes and their sensitivity/vulnerability:

The "cleartext-key" node:

The "cleartext-key" node defined in the "symmetric-key-

grouping" grouping is additionally sensitive to read

operations such that, in normal use cases, it should never be

returned to a client. For this reason, the NACM extension

"default-deny-all" has been applied to it.

The "cleartext-private-key" node:

The "cleartext-private-key" node defined in the "asymmetric-

key-pair-grouping" grouping is additionally sensitive to read

operations such that, in normal use cases, it should never be

returned to a client. For this reason, the NACM extension

"default-deny-all" has been applied.

The "cert-data" node:

The "cert-data" node, defined in both the "trust-anchor-cert-

grouping" and "end-entity-cert-grouping" groupings, is

additionally sensitive to read operations, as certificates

sometimes convey personally identifying information

(especially end-entity certificates). However, as it is

commonly understood that certificates are "public", the NACM

extension "nacm:default-deny-write" (not "default-deny-all")

has been applied. It is RECOMMENDED that implementations

adjust read-access to certificates to comply with local

policy.

All the writable data nodes defined by all the groupings defined in

this module may be considered sensitive or vulnerable in some

network environments. For instance, even the modification of a

public key or a certificate can dramatically alter the implemented

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

[ITU.X680.2015]

security policy. For this reason, the NACM extension "default-deny-

write" has been applied to all the data nodes defined in the module.

Some of the operations in this YANG module may be considered

sensitive or vulnerable in some network environments. It is thus

important to control access to these operations. These are the

operations and their sensitivity/vulnerability:

generate-certificate-signing-request:

This "action" statement SHOULD only be executed by authorized

users. For this reason, the NACM extension "default-deny-all"

has been applied. Note that NACM uses "default-deny-all" to

protect "RPC" and "action" statements; it does not define,

e.g., an extension called "default-deny-execute".

For this action, it is RECOMMENDED that implementations assert

channel binding [RFC5056], so as to ensure that the

application layer that sent the request is the same as the

device authenticated when the secure transport layer was

established.

4. IANA Considerations

4.1. The "IETF XML" Registry

This document registers one URI in the "ns" subregistry of the "IETF

XML" registry [RFC3688]. Following the format in [RFC3688], the

following registration is requested:

4.2. The "YANG Module Names" Registry

This document registers one YANG module in the "YANG Module Names"

registry [RFC6020]. Following the format in [RFC6020], the following

registration is requested:

5. References

5.1. Normative References

¶

¶

* ¶

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-crypto-types

 Registrant Contact: The IESG

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-crypto-types

 namespace: urn:ietf:params:xml:ns:yang:ietf-crypto-types

 prefix: ct

 reference: RFC AAAA

¶

[ITU.X690.2015]

[RFC2119]

[RFC3447]

[RFC4253]

[RFC5280]

[RFC5652]

[RFC5958]

[RFC6031]

[RFC6991]

International Telecommunication Union, "Information

technology - Abstract Syntax Notation One (ASN.1):

Specification of basic notation", ITU-T Recommendation X.

680, ISO/IEC 8824-1:2015, August 2015, <https://

www.itu.int/rec/T-REC-X.680/>.

International Telecommunication Union, "Information

Technology - ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", ITU-T Recommendation

X.690, ISO/IEC 8825-1:2015, August 2015, <https://

www.itu.int/rec/T-REC-X.690/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Jonsson, J. and B. Kaliski, "Public-Key Cryptography

Standards (PKCS) #1: RSA Cryptography Specifications

Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February

2003, <https://www.rfc-editor.org/info/rfc3447>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, DOI 10.17487/

RFC4253, January 2006, <https://www.rfc-editor.org/info/

rfc4253>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI

10.17487/RFC5958, August 2010, <https://www.rfc-

editor.org/info/rfc5958>.

Turner, S. and R. Housley, "Cryptographic Message Syntax

(CMS) Symmetric Key Package Content Type", RFC 6031, DOI

10.17487/RFC6031, December 2010, <https://www.rfc-

editor.org/info/rfc6031>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

https://www.itu.int/rec/T-REC-X.680/
https://www.itu.int/rec/T-REC-X.680/
https://www.itu.int/rec/T-REC-X.690/
https://www.itu.int/rec/T-REC-X.690/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3447
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc6031
https://www.rfc-editor.org/info/rfc6031
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991

[RFC7093]

[RFC7950]

[RFC8174]

[RFC8341]

[I-D.ietf-netconf-crypto-types]

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-netconf-client-server]

Turner, S., Kent, S., and J. Manger, "Additional Methods

for Generating Key Identifiers Values", RFC 7093, DOI

10.17487/RFC7093, December 2013, <https://www.rfc-

editor.org/info/rfc7093>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

5.2. Informative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-24, 7 July 2022, <https://

www.ietf.org/archive/id/draft-ietf-netconf-crypto-

types-24.txt>.

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-10, 24 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-http-

client-server-10>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-25, 24 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-

keystore-25>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

client-server-26, 24 May 2022, <https://

https://www.rfc-editor.org/info/rfc7093
https://www.rfc-editor.org/info/rfc7093
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-24.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-24.txt
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-24.txt
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-10
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-10
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-10
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-25
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-25
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-25
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-26

[I-D.ietf-netconf-restconf-client-server]

[I-D.ietf-netconf-ssh-client-server]

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

[I-D.ietf-netconf-trust-anchors]

[RFC2986]

[RFC3688]

[RFC4211]

datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-

client-server-26>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-26, 24 May 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-

restconf-client-server-26>.

Watsen, K., "YANG Groupings for SSH Clients and SSH

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-ssh-client-server-30, 30 August 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-

client-server-30>.

Watsen, K. and M. Scharf, "YANG

Groupings for TCP Clients and TCP Servers", Work in

Progress, Internet-Draft, draft-ietf-netconf-tcp-client-

server-13, 24 May 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-netconf-tcp-client-server-13>.

Watsen, K., "YANG Groupings for TLS Clients and TLS

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-tls-client-server-30, 30 August 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-

client-server-30>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-18, 24 May 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-netconf-trust-anchors-18>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Schaad, J., "Internet X.509 Public Key Infrastructure

Certificate Request Message Format (CRMF)", RFC 4211, DOI

10.17487/RFC4211, September 2005, <https://www.rfc-

editor.org/info/rfc4211>.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-26
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tcp-client-server-13
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tcp-client-server-13
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-30
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-trust-anchors-18
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-trust-anchors-18
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4211

[RFC5056]

[RFC5915]

[RFC6020]

[RFC6125]

[RFC6241]

[RFC7525]

[RFC8040]

[RFC8340]

[RFC8342]

Williams, N., "On the Use of Channel Bindings to Secure

Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

Turner, S. and D. Brown, "Elliptic Curve Private Key

Structure", RFC 5915, DOI 10.17487/RFC5915, June 2010,

<https://www.rfc-editor.org/info/rfc5915>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May

2015, <https://www.rfc-editor.org/info/rfc7525>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.¶

https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5915
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342

A.1. I-D to 00

Removed groupings and notifications.

Added typedefs for identityrefs.

Added typedefs for other RFC 5280 structures.

Added typedefs for other RFC 5652 structures.

Added convenience typedefs for RFC 4253, RFC 5280, and RFC 5652.

A.2. 00 to 01

Moved groupings from the draft-ietf-netconf-keystore here.

A.3. 01 to 02

Removed unwanted "mandatory" and "must" statements.

Added many new crypto algorithms (thanks Haiguang!)

Clarified in asymmetric-key-pair-with-certs-grouping, in

certificates/certificate/name/description, that if the name MUST

NOT match the name of a certificate that exists independently in

<operational>, enabling certs installed by the manufacturer

(e.g., an IDevID).

A.4. 02 to 03

renamed base identity 'asymmetric-key-encryption-algorithm' to

'asymmetric-key-algorithm'.

added new 'asymmetric-key-algorithm' identities for secp192r1,

secp224r1, secp256r1, secp384r1, and secp521r1.

removed 'mac-algorithm' identities for mac-aes-128-ccm, mac-

aes-192-ccm, mac-aes-256-ccm, mac-aes-128-gcm, mac-aes-192-gcm,

mac-aes-256-gcm, and mac-chacha20-poly1305.

for all -cbc and -ctr identities, renamed base identity

'symmetric-key-encryption-algorithm' to 'encryption-algorithm'.

for all -ccm and -gcm identities, renamed base identity

'symmetric-key-encryption-algorithm' to 'encryption-and-mac-

algorithm' and renamed the identity to remove the "enc-" prefix.

for all the 'signature-algorithm' based identities, renamed from

'rsa-*' to 'rsassa-*'.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

removed all of the "x509v3-" prefixed 'signature-algorithm' based

identities.

added 'key-exchange-algorithm' based identities for 'rsaes-oaep'

and 'rsaes-pkcs1-v1_5'.

renamed typedef 'symmetric-key-encryption-algorithm-ref' to

'symmetric-key-algorithm-ref'.

renamed typedef 'asymmetric-key-encryption-algorithm-ref' to

'asymmetric-key-algorithm-ref'.

added typedef 'encryption-and-mac-algorithm-ref'.

Updated copyright date, boilerplate template, affiliation, and

folding algorithm.

A.5. 03 to 04

ran YANG module through formatter.

A.6. 04 to 05

fixed broken symlink causing reformatted YANG module to not show.

A.7. 05 to 06

Added NACM annotations.

Updated Security Considerations section.

Added 'asymmetric-key-pair-with-cert-grouping' grouping.

Removed text from 'permanently-hidden' enum regarding such keys

not being backed up or restored.

Updated the boilerplate text in module-level "description"

statement to match copyeditor convention.

Added an explanation to the 'public-key-grouping' and

'asymmetric-key-pair-grouping' statements as for why the nodes

are not mandatory (e.g., because they may exist only in

<operational>.

Added 'must' expressions to the 'public-key-grouping' and

'asymmetric-key-pair-grouping' statements ensuring sibling nodes

are either all exist or do not all exist.

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

Added an explanation to the 'permanently-hidden' that the value

cannot be configured directly by clients and servers MUST fail

any attempt to do so.

Added 'trust-anchor-certs-grouping' and 'end-entity-certs-

grouping' (the plural form of existing groupings).

Now states that keys created in <operational> by the *-hidden-key

actions are bound to the lifetime of the parent 'config true'

node, and that subsequent invocations of either action results in

a failure.

A.8. 06 to 07

Added clarifications that implementations SHOULD assert that

configured certificates contain the matching public key.

Replaced the 'generate-hidden-key' and 'install-hidden-key'

actions with special 'crypt-hash' -like input/output values.

A.9. 07 to 08

Removed the 'generate-key and 'hidden-key' features.

Added grouping symmetric-key-grouping

Modified 'asymmetric-key-pair-grouping' to have a 'choice'

statement for the keystone module to augment into, as well as

replacing the 'union' with leafs (having different NACM settings.

A.10. 08 to 09

Converting algorithm from identities to enumerations.

A.11. 09 to 10

All the below changes are to the algorithm enumerations defined

in ietf-crypto-types.

Add in support for key exchange over x.25519 and x.448 based on

RFC 8418.

Add in SHAKE-128, SHAKE-224, SHAKE-256, SHAKE-384 and SHAKE 512

Revise/add in enum of signature algorithm for x25519 and x448

Add in des3-cbc-sha1 for IPSec

Add in sha1-des3-kd for IPSec

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

Add in definit for rc4-hmac and rc4-hmac-exp. These two

algorithms have been deprecated in RFC 8429. But some existing

draft in i2nsf may still want to use them.

Add x25519 and x448 curve for asymmetric algorithms

Add signature algorithms ed25519, ed25519-cts, ed25519ph

add signature algorithms ed448, ed448ph

Add in rsa-sha2-256 and rsa-sha2-512 for SSH protocols (rfc8332)

A.12. 10 to 11

Added a "key-format" identity.

Added symmetric keys to the example in Section 2.2.

A.13. 11 to 12

Removed all non-essential (to NC/RC) algorithm types.

Moved remaining algorithm types each into its own module.

Added a 'config false' "algorithms-supported" list to each of the

algorithm-type modules.

A.14. 12 to 13

Added the four features: "[encrypted-]one-[a]symmetric-key-

format", each protecting a 'key-format' identity of the same

name.

Added 'must' expressions asserting that the 'key-format' leaf

exists whenever a non-hidden key is specified.

Improved the 'description' statements and added 'reference'

statements for the 'key-format' identities.

Added a questionable forward reference to "encrypted-*" leafs in

a couple 'when' expressions.

Did NOT move "config false" alg-supported lists to SSH/TLS

drafts.

A.15. 13 to 14

Resolved the "FIXME: forward ref" issue by modulating 'must',

'when', and 'mandatory' expressions.

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Moved the 'generatesymmetric-key' and 'generate-asymmetric-key'

actions from ietf-keystore to ietf-crypto-types, now as RPCs.

Cleaned up various description statements and removed lingering

FIXMEs.

Converted the "iana-<alg-type>-algs" YANG modules to IANA

registries with instructions for how to generate modules from the

registries, whenever they may be updated.

A.16. 14 to 15

Removed the IANA-maintained registries for symmetric, asymmetric,

and hash algorithms.

Removed the "generate-symmetric-key" and "generate-asymmetric-

key" RPCs.

Removed the "algorithm" node in the various symmetric and

asymmetric key groupings.

Added 'typedef csr' and 'feature certificate-signing-request-

generation'.

Refined a usage of "end-entity-cert-grouping" to make the "cert"

node mandatory true.

Added a "Note to Reviewers" note to first page.

A.17. 15 to 16

Updated draft title (refer to "Groupings" too).

Removed 'end-entity-certs-grouping' as it wasn't being used

anywhere.

Removed 'trust-anchor-certs-grouping' as it was no longer being

used after modifying 'local-or-truststore-certs-grouping' to use

lists (not leaf-lists).

Renamed "cert" to "cert-data" in trust-anchor-cert-grouping.

Added "csr-info" typedef, to complement the existing "csr"

typedef.

Added "ocsp-request" and "ocsp-response" typedefs, to complement

the existing "crl" typedef.

Added "encrypted" cases to both symmetric-key-grouping and

asymmetric-key-pair-grouping (Moved from Keystore draft).

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Updated the Security Considerations section.

A.18. 16 to 17

[Re]-added a "Strength of Keys Configured" Security Consideration

Prefixed "cleartext-" in the "key" and "private-key" node names.

A.19. 17 to 18

Fixed issues found by the SecDir review of the "keystore" draft.

Added "password-grouping", discussed during the IETF 108 session.

A.20. 18 to 19

Added a "Unconstrained Public Key Usage" Security Consideration

to address concern raised by SecDir of the 'truststore' draft.

Added a "Unconstrained Private Key Usage" Security Consideration

to address concern raised by SecDir of the 'truststore' draft.

Changed the encryption strategy, after conferring with Russ

Housley.

Added a "password-grouping" example to the "crypto-types-usage"

example.

Added an "Encrypting Passwords" section to Security

Consideration.

Addressed other comments raised by YANG Doctor.

A.21. 19 to 20

Nits found via YANG Doctors reviews.

Aligned modules with `pyang -f` formatting.

A.22. 20 to 21

Replaced "base64encodedvalue==" with "BASE64VALUE=".

Accommodated SecDir review by Valery Smyslov.

A.23. 21 to 22

fixup the 'WG Web' and 'WG List' lines in YANG module(s)

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

fixup copyright (i.e., s/Simplified/Revised/) in YANG module(s)

added 'hidden-keys' feature.

A.24. 22 to 23

Fixed an example to reference correct key.

Fixed an example to not have line-returns around the encoding for

a binary value.

A.25. 23 to 24

Added mandatory leaf "csr-format" to action "generate-csr".

s/certificate-signing-request/csr/g in the YANG module.

A.26. 24 to 25

Updated per Shepherd reviews."

Acknowledgements

The authors would like to thank for following for lively discussions

on list and in the halls (ordered by first name): Balazs Kovacs,

Eric Voit, Juergen Schoenwaelder, Liang Xia, Martin Bjoerklund, Nick

Hancock, Rich Salz, Rob Wilton, Russ Housley, Sandra Murphy, Tom

Petch, Valery Smyslov, and Wang Haiguang.

Author's Address

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

mailto:kent+ietf@watsen.net

	YANG Data Types and Groupings for Cryptography
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA
	1.4. Conventions

	2. The "ietf-crypto-types" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Identities
	2.1.3. Typedefs
	2.1.4. Groupings
	2.1.4.1. The "encrypted-value-grouping" Grouping
	2.1.4.2. The "password-grouping" Grouping
	2.1.4.3. The "symmetric-key-grouping" Grouping
	2.1.4.4. The "public-key-grouping" Grouping
	2.1.4.5. The "asymmetric-key-pair-grouping" Grouping
	2.1.4.6. The "certificate-expiration-grouping" Grouping
	2.1.4.7. The "trust-anchor-cert-grouping" Grouping
	2.1.4.8. The "end-entity-cert-grouping" Grouping
	2.1.4.9. The "generate-csr-grouping" Grouping
	2.1.4.10. The "asymmetric-key-pair-with-cert-grouping" Grouping
	2.1.4.11. The "asymmetric-key-pair-with-certs-grouping" Grouping

	2.1.5. Protocol-accessible Nodes

	2.2. Example Usage
	2.2.1. The "symmetric-key-grouping" and "asymmetric-key-pair-with-certs-grouping" Grouping
	2.2.2. The "generate-certificate-signing-request" Action
	2.2.3. The "certificate-expiration" Notification

	2.3. YANG Module

	3. Security Considerations
	3.1. No Support for CRMF
	3.2. No Support for Key Generation
	3.3. Unconstrained Public Key Usage
	3.4. Unconstrained Private Key Usage
	3.5. Strength of Keys Conveyed
	3.6. Encrypting Passwords
	3.7. Deletion of Cleartext Key Values
	3.8. The "ietf-crypto-types" YANG Module

	4. IANA Considerations
	4.1. The "IETF XML" Registry
	4.2. The "YANG Module Names" Registry

	5. References
	5.1. Normative References
	5.2. Informative References

	Appendix A. Change Log
	A.1. I-D to 00
	A.2. 00 to 01
	A.3. 01 to 02
	A.4. 02 to 03
	A.5. 03 to 04
	A.6. 04 to 05
	A.7. 05 to 06
	A.8. 06 to 07
	A.9. 07 to 08
	A.10. 08 to 09
	A.11. 09 to 10
	A.12. 10 to 11
	A.13. 11 to 12
	A.14. 12 to 13
	A.15. 13 to 14
	A.16. 14 to 15
	A.17. 15 to 16
	A.18. 16 to 17
	A.19. 17 to 18
	A.20. 18 to 19
	A.21. 19 to 20
	A.22. 20 to 21
	A.23. 21 to 22
	A.24. 22 to 23
	A.25. 23 to 24
	A.26. 24 to 25

	Acknowledgements
	Author's Address

