
Workgroup: NETCONF Working Group

Internet-Draft: draft-ietf-netconf-keystore-21

Published: 10 February 2021

Intended Status: Standards Track

Expires: 14 August 2021

Authors: K. Watsen

Watsen Networks

A YANG Data Model for a Keystore

Abstract

This document defines a YANG module called "ietf-keystore" that

enables centralized configuration of both symmetric and asymmetric

keys. The secret value for both key types may be encrypted or

hidden. Asymmetric keys may be associated with certificates.

Notifications are sent when certificates are about to expire.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for draft-ietf-netconf-crypto-

types

CCCC --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2021-02-10 --> the publication date of this draft

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

*

¶

* ¶

¶

* ¶

¶

* ¶

¶

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 August 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

1.3. Terminology

1.4. Adherence to the NMDA

2. The "ietf-keystore" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Support for Built-in Keys

4. Encrypting Keys in Configuration

5. Security Considerations

5.1. Security of Data at Rest

5.2. Unconstrained Private Key Usage

5.3. The "ietf-keystore" YANG Module

6. IANA Considerations

6.1. The "IETF XML" Registry

6.2. The "YANG Module Names" Registry

7. References

7.1. Normative References

7.2. Informative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Appendix A. Change Log

A.1. 00 to 01

A.2. 01 to 02

A.3. 02 to 03

A.4. 03 to 04

A.5. 04 to 05

A.6. 05 to 06

A.7. 06 to 07

A.8. 07 to 08

A.9. 08 to 09

A.10. 09 to 10

A.11. 10 to 11

A.12. 11 to 12

A.13. 12 to 13

A.14. 13 to 14

A.15. 14 to 15

A.16. 15 to 16

A.17. 16 to 17

A.18. 17 to 18

A.19. 18 to 19

A.20. 19 to 20

A.21. 20 to 21

Acknowledgements

Author's Address

1. Introduction

This document defines a YANG 1.1 [RFC7950] module called "ietf-

keystore" that enables centralized configuration of both symmetric

and asymmetric keys. The secret value for both key types may be

encrypted or hidden (see [I-D.ietf-netconf-crypto-types]. Asymmetric

keys may be associated with certificates. Notifications are sent

when certificates are about to expire.

The "ietf-keystore" module defines many "grouping" statements

intended for use by other modules that may import it. For instance,

there are groupings that define enabling a key to be either

configured locally (within the defining data model) or be a

reference to a key in the keystore.

Special consideration has been given for systems that have

cryptographic hardware, such as a Trusted Platform Module (TPM).

These systems are unique in that the cryptographic hardware hides

the secret key values. Additionally, such hardware is commonly

initiailized when manufactured to protect a "built-in" asymmetric

key for which the public half is conveyed in an identity certificate

(e.g., an IDevID [Std-802.1AR-2009] certificate). Please see Section

3 to see how built-in keys are supported.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document intends to support existing practices; it does not

intend to define new behvior for systems to implement. To simplify

implementation, advanced key formats may be selectively implemented.

Implementations may utilize zero or more operating system level

keystore utilities and/or hardware security modules (HSMs).

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to, ultimately,

enable the configuration of the clients and servers of both the

NETCONF [RFC6241] and RESTCONF [RFC8040] protocols.

The modules have been defined in a modular fashion to enable their

use by other efforts, some of which are known to be in progress at

the time of this writing, with many more expected to be defined in

time.

The normative dependency relationship between the various RFCs in

the collection is presented in the below diagram. The labels in the

diagram represent the primary purpose provided by each RFC.

Hyperlinks to each RFC are provided below the diagram.

Label in Diagram Originating RFC

¶

¶

¶

¶

¶

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Terminology

The terms "client" and "server" are defined in [RFC6241] and are not

redefined here.

The term "keystore" is defined in this draft as a mechanism that

intends safeguard secrets placed into it for protection.

The nomenclature "<running>" and "<operational>" are defined in

[RFC8342].

The sentence fragments "augmented" and "augmented in" are used

herein as the past tense verbified form of the "augment" statement

defined in Section 7.17 of [RFC7950].

1.4. Adherence to the NMDA

This document is compliant with Network Management Datastore

Architecture (NMDA) [RFC8342]. For instance, keys and associated

certificates installed during manufacturing (e.g., for an IDevID

certificate) are expected to appear in <operational> (see Section

3).

2. The "ietf-keystore" Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-

keystore". A high-level overview of the module is provided in

Section 2.1. Examples illustatrating the module's use are provided

in Section 2.2. The YANG module itself is defined in Section 2.3.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.17

2.1. Data Model Overview

This section provides an overview of the "ietf-keystore" module in

terms of its features, typedefs, groupings, and protocol-accessible

nodes.

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

2.1.2. Typedefs

The following diagram lists the "typedef" statements defined in the

"ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Comments:

All of the typedefs defined in the "ietf-keystore" module extend

the base "leafref" type defined in [RFC7950].

The leafrefs refer to symmetric and asymmetric keys in the

keystore, when the keystore module is implemented.

These typedefs are provided as an aid to downstream modules that

import the "ietf-keystore" module.

2.1.3. Groupings

The "ietf-keystore" module defines the following "grouping"

statements:

encrypted-by-choice-grouping

asymmetric-key-certificate-ref-grouping

local-or-keystore-symmetric-key-grouping

¶

¶

Features:

 +-- keystore-supported

 +-- local-definitions-supported

¶

¶

¶

Typedefs:

 leafref

 +-- symmetric-key-ref

 +-- asymmetric-key-ref

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

local-or-keystore-asymmetric-key-grouping

local-or-keystore-asymmetric-key-with-certs-grouping

local-or-keystore-end-entity-cert-with-key-grouping

keystore-grouping

Each of these groupings are presented in the following subsections.

2.1.3.1. The "encrypted-by-choice-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "encrypted-by-

choice-grouping" grouping:

The grouping's name is intended to be parsed "(encrypted-by)-

(choice)-(grouping)", not as "(encrypted)-(by-choice)-(grouping)".

Comments:

This grouping defines a "choice" statement with options to

reference either a symmetric or an asymmetric key configured in

the keystore.

This grouping is usable only when the keystore module is

implemented. Servers defining custom keystore locations MUST

augment in alternate "encrypted-by" references to the alternate

locations.

2.1.3.2. The "asymmetric-key-certificate-ref-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "asymmetric-

key-certificate-ref-grouping" grouping:

Comments:

This grouping defines a reference to a certificate in two parts:

the first being the name of the asymmetric key the certificate is

associated with, and the second being the name of the certificate

itself.

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

 grouping encrypted-by-choice-grouping

 +-- (encrypted-by-choice)

 +--:(symmetric-key-ref)

 | +-- symmetric-key-ref? ks:symmetric-key-ref

 +--:(asymmetric-key-ref)

 +-- asymmetric-key-ref? ks:asymmetric-key-ref

¶

¶

*

¶

*

¶

¶

 grouping asymmetric-key-certificate-ref-grouping

 +-- asymmetric-key? ks:asymmetric-key-ref

 +-- certificate? leafref

¶

¶

*

¶

This grouping is usable only when the keystore module is

implemented. Servers defining custom keystore locations MAY

define an alternate grouping for references to the alternate

locations.

2.1.3.3. The "local-or-keystore-symmetric-key-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

keystore-symmetric-key-grouping" grouping:

Comments:

The "local-or-keystore-symmetric-key-grouping" grouping is

provided soley as convenience to downstream modules that wish to

offer an option for whether a symmetric key is defined locally or

as a reference to a symmetric key in the keystore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a symmetric key in an alternate location.

For the "local-definition" option, the defintion uses the

"symmetric-key-grouping" grouping discussed in Section 2.1.4.3 of

[I-D.ietf-netconf-crypto-types].

For the "keystore" option, the "keystore-reference" is an

instance of the "symmetric-key-ref" discussed in Section 2.1.2.

2.1.3.4. The "local-or-keystore-asymmetric-key-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

keystore-asymmetric-key-grouping" grouping:

*

¶

¶

 grouping local-or-keystore-symmetric-key-grouping

 +-- (local-or-keystore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +---u ct:symmetric-key-grouping

 +--:(keystore) {keystore-supported}?

 +-- keystore-reference? ks:symmetric-key-ref

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

 grouping local-or-keystore-asymmetric-key-grouping

 +-- (local-or-keystore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +---u ct:asymmetric-key-pair-grouping

 +--:(keystore) {keystore-supported}?

 +-- keystore-reference? ks:asymmetric-key-ref

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.3

Comments:

The "local-or-keystore-asymmetric-key-grouping" grouping is

provided soley as convenience to downstream modules that wish to

offer an option for whether an asymmetric key is defined locally

or as a reference to an asymmetric key in the keystore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference an asymmetric key in an alternate location.

For the "local-definition" option, the defintion uses the

"asymmetric-key-pair-grouping" grouping discussed in

Section 2.1.4.5 of [I-D.ietf-netconf-crypto-types].

For the "keystore" option, the "keystore-reference" is an

instance of the "asymmetric-key-ref" typedef discussed in Section

2.1.2.

2.1.3.5. The "local-or-keystore-asymmetric-key-with-certs-grouping"

Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

keystore-asymmetric-key-with-certs-grouping" grouping:

Comments:

The "local-or-keystore-asymmetric-key-with-certs-grouping"

grouping is provided soley as convenience to downstream modules

that wish to offer an option for whether an asymmetric key is

defined locally or as a reference to an asymmetric key in the

keystore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference an asymmetric key in an alternate location.

For the "local-definition" option, the defintion uses the

"asymmetric-key-pair-with-certs-grouping" grouping discussed in

Section 2.1.4.11 of [I-D.ietf-netconf-crypto-types].

¶

*

¶

*

¶

*

¶

*

¶

¶

 grouping local-or-keystore-asymmetric-key-with-certs-grouping

 +-- (local-or-keystore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +---u ct:asymmetric-key-pair-with-certs-grouping

 +--:(keystore) {keystore-supported}?

 +-- keystore-reference? ks:asymmetric-key-ref

¶

¶

*

¶

*

¶

*

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.5
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.11

For the "keystore" option, the "keystore-reference" is an

instance of the "asymmetric-key-ref" typedef discussed in Section

2.1.2.

2.1.3.6. The "local-or-keystore-end-entity-cert-with-key-grouping"

Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

keystore-end-entity-cert-with-key-grouping" grouping:

Comments:

The "local-or-keystore-end-entity-cert-with-key-grouping"

grouping is provided soley as convenience to downstream modules

that wish to offer an option for whether a symmetric key is

defined locally or as a reference to a symmetric key in the

keystore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a symmetric key in an alternate location.

For the "local-definition" option, the defintion uses the

"asymmetric-key-pair-with-certs-grouping" grouping discussed in

Section 2.1.4.11 of [I-D.ietf-netconf-crypto-types].

For the "keystore" option, the "keystore-reference" uses the

"asymmetric-key-certificate-ref-grouping" grouping discussed in

Section 2.1.3.2.

2.1.3.7. The "keystore-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "keystore-

grouping" grouping:

*

¶

¶

 grouping local-or-keystore-end-entity-cert-with-key-grouping

 +-- (local-or-keystore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +---u ct:asymmetric-key-pair-with-cert-grouping

 +--:(keystore) {keystore-supported}?

 +-- keystore-reference

 +---u asymmetric-key-certificate-ref-grouping

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.11

Comments:

The "keystore-grouping" grouping defines a keystore instance as

being composed of symmetric and asymmetric keys. The stucture for

the symmetric and asymmetric keys is essentially the same, being

a "list" inside a "container".

For asymmetric keys, each "asymmetric-key" uses the "asymmetric-

key-pair-with-certs-grouping" grouping discussed in

Section 2.1.4.11 of [I-D.ietf-netconf-crypto-types].

For symmetric keys, each "symmetric-key" uses the "symmetric-key-

grouping" grouping discussed in Section 2.1.4.3 of [I-D.ietf-

netconf-crypto-types].

2.1.4. Protocol-accessible Nodes

The following tree diagram [RFC8340] lists all the protocol-

accessible nodes defined in the "ietf-keystore" module, without

expanding the "grouping" statements:

The following tree diagram [RFC8340] lists all the protocol-

accessible nodes defined in the "ietf-keystore" module, with all

"grouping" statements expanded, enabling the keystore's full

structure to be seen:

 grouping keystore-grouping

 +-- asymmetric-keys

 | +-- asymmetric-key* [name]

 | +-- name? string

 | +---u ct:asymmetric-key-pair-with-certs-grouping

 +-- symmetric-keys

 +-- symmetric-key* [name]

 +-- name? string

 +---u ct:symmetric-key-grouping

¶

¶

*

¶

*

¶

*

¶

¶

module: ietf-keystore

 +--rw keystore

 +---u keystore-grouping

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.11
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.3

module: ietf-keystore

 +--rw keystore

 +--rw asymmetric-keys

 | +--rw asymmetric-key* [name]

 | +--rw name string

 | +--rw public-key-format identityref

 | +--rw public-key binary

 | +--rw private-key-format? identityref

 | +--rw (private-key-type)

 | | +--:(cleartext-private-key)

 | | | +--rw cleartext-private-key? binary

 | | +--:(hidden-private-key)

 | | | +--rw hidden-private-key? empty

 | | +--:(encrypted-private-key) {private-key-encryption}?

 | | +--rw encrypted-private-key

 | | +--rw encrypted-by

 | | | +--rw (encrypted-by-choice)

 | | | +--:(symmetric-key-ref)

 | | | | +--rw symmetric-key-ref?

 | | | | ks:symmetric-key-ref

 | | | +--:(asymmetric-key-ref)

 | | | +--rw asymmetric-key-ref?

 | | | ks:asymmetric-key-ref

 | | +--rw encrypted-value-format identityref

 | | +--rw encrypted-value binary

 | +--rw certificates

 | | +--rw certificate* [name]

 | | +--rw name string

 | | +--rw cert-data end-entity-cert-cms

 | | +---n certificate-expiration

 | | {certificate-expiration-notification}?

 | | +-- expiration-date yang:date-and-time

 | +---x generate-certificate-signing-request

 | {certificate-signing-request-generation}?

 | +---w input

 | | +---w csr-info ct:csr-info

 | +--ro output

 | +--ro certificate-signing-request ct:csr

 +--rw symmetric-keys

 +--rw symmetric-key* [name]

 +--rw name string

 +--rw key-format? identityref

 +--rw (key-type)

 +--:(cleartext-key)

 | +--rw cleartext-key? binary

 +--:(hidden-key)

 | +--rw hidden-key? empty

 +--:(encrypted-key) {symmetric-key-encryption}?

 +--rw encrypted-key

 +--rw encrypted-by

 | +--rw (encrypted-by-choice)

 | +--:(symmetric-key-ref)

 | | +--rw symmetric-key-ref?

 | | ks:symmetric-key-ref

 | +--:(asymmetric-key-ref)

 | +--rw asymmetric-key-ref?

 | ks:asymmetric-key-ref

 +--rw encrypted-value-format identityref

 +--rw encrypted-value binary

¶

Comments:

Protocol-accessible nodes are those nodes that are accessible

when the module is "implemented", as described in Section 5.6.5

of [RFC7950].

The protcol-accessible nodes for the "ietf-keystore" module are

an instance of the "keystore-grouping" grouping discussed in

Section 2.1.3.7.

The reason for why "keystore-grouping" exists separate from the

protocol-accessible nodes definition is so as to enable instances

of the keystore to be instantiated in other locations, as may be

needed or desired by some modules.

2.2. Example Usage

The examples in this section are encoded using XML, such as might be

the case when using the NETCONF protocol. Other encodings MAY be

used, such as JSON when using the RESTCONF protocol.

2.2.1. A Keystore Instance

The following example illustrates keys in <running>. Please see

Section 3 for an example illustrating built-in values in

<operational>.

¶

*

¶

*

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <symmetric-keys>

 <symmetric-key>

 <name>cleartext-symmetric-key</name>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>base64encodedvalue==</cleartext-key>

 </symmetric-key>

 <symmetric-key>

 <name>hidden-symmetric-key</name>

 <hidden-key/>

 </symmetric-key>

 <symmetric-key>

 <name>encrypted-symmetric-key</name>

 <key-format>ct:one-symmetric-key-format</key-format>

 <encrypted-key>

 <encrypted-by>

 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-k\

ey-ref>

 </encrypted-by>

 <encrypted-value-format>

 ct:cms-enveloped-data-format

 </encrypted-value-format>

 <encrypted-value>base64encodedvalue==</encrypted-value>

 </encrypted-key>

 </symmetric-key>

 </symmetric-keys>

 <asymmetric-keys>

 <asymmetric-key>

 <name>ssh-rsa-key</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-priv\

ate-key>

 </asymmetric-key>

 <asymmetric-key>

 <name>ssh-rsa-key-with-cert</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-priv\

ate-key>

 <certificates>

 <certificate>

 <name>ex-rsa-cert2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>raw-private-key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-priv\

ate-key>

 </asymmetric-key>

 <asymmetric-key>

 <name>rsa-asymmetric-key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-priv\

ate-key>

 <certificates>

 <certificate>

 <name>ex-rsa-cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>ec-asymmetric-key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:ec-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-priv\

ate-key>

 <certificates>

 <certificate>

 <name>ex-ec-cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>hidden-asymmetric-key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <hidden-private-key/>

 <certificates>

 <certificate>

 <name>builtin-idevid-cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>my-ldevid-cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 <asymmetric-key>

 <name>encrypted-asymmetric-key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:one-asymmetric-key-format

 </private-key-format>

 <encrypted-private-key>

 <encrypted-by>

 <symmetric-key-ref>encrypted-symmetric-key</symmetric-k\

ey-ref>

 </encrypted-by>

 <encrypted-value-format>

 ct:cms-encrypted-data-format

 </encrypted-value-format>

 <encrypted-value>base64encodedvalue==</encrypted-value>

 </encrypted-private-key>

 </asymmetric-key>

 </asymmetric-keys>

</keystore>

¶

2.2.2. A Certificate Expiration Notification

The following example illustrates a "certificate-expiration"

notification for a certificate associated with a key configured in

the keystore.

2.2.3. The "Local or Keystore" Groupings

This section illustrates the various "local-or-keystore" groupings

defined in the "ietf-keystore" module, specifically the "local-or-

keystore-symmetric-key-grouping" (Section 2.1.3.3), "local-or-

keystore-asymmetric-key-grouping" (Section 2.1.3.4), "local-or-

keystore-asymmetric-key-with-certs-grouping" (Section 2.1.3.5), and

"local-or-keystore-end-entity-cert-with-key-grouping" (Section

2.1.3.6) groupings.

These examples assume the existence of an example module called "ex-

keystore-usage" having the namespace "http://example.com/ns/example-

keystore-usage".

The ex-keystore-usage module is first presented using tree diagrams

[RFC8340], followed by an instance example illustrating all the

"local-or-keystore" groupings in use, followed by the YANG module

itself.

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification

 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2018-05-25T00:01:00Z</eventTime>

 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">

 <asymmetric-keys>

 <asymmetric-key>

 <name>hidden-asymmetric-key</name>

 <certificates>

 <certificate>

 <name>my-ldevid-cert</name>

 <certificate-expiration>

 <expiration-date>2018-08-05T14:18:53-05:00</expiration\

-date>

 </certificate-expiration>

 </certificate>

 </certificates>

 </asymmetric-key>

 </asymmetric-keys>

 </keystore>

</notification>

¶

¶

¶

¶

The following tree diagram illustrates "ex-keystore-usage" without

expanding the "grouping" statements:

The following tree diagram illustrates the "ex-keystore-usage"

module, with all "grouping" statements expanded, enabling the

usage's full structure to be seen:

¶

module: ex-keystore-usage

 +--rw keystore-usage

 +--rw symmetric-key* [name]

 | +--rw name string

 | +---u ks:local-or-keystore-symmetric-key-grouping

 +--rw asymmetric-key* [name]

 | +--rw name string

 | +---u ks:local-or-keystore-asymmetric-key-grouping

 +--rw asymmetric-key-with-certs* [name]

 | +--rw name

 | | string

 | +---u ks:local-or-keystore-asymmetric-key-with-certs-grouping

 +--rw end-entity-cert-with-key* [name]

 +--rw name

 | string

 +---u ks:local-or-keystore-end-entity-cert-with-key-grouping

¶

¶

module: ex-keystore-usage

 +--rw keystore-usage

 +--rw symmetric-key* [name]

 | +--rw name string

 | +--rw (local-or-keystore)

 | +--:(local) {local-definitions-supported}?

 | | +--rw local-definition

 | | +--rw key-format? identityref

 | | +--rw (key-type)

 | | +--:(cleartext-key)

 | | | +--rw cleartext-key? binary

 | | +--:(hidden-key)

 | | | +--rw hidden-key? empty

 | | +--:(encrypted-key) {symmetric-key-encryption}?

 | | +--rw encrypted-key

 | | +--rw encrypted-by

 | | +--rw encrypted-value-format identityref

 | | +--rw encrypted-value binary

 | +--:(keystore) {keystore-supported}?

 | +--rw keystore-reference? ks:symmetric-key-ref

 +--rw asymmetric-key* [name]

 | +--rw name string

 | +--rw (local-or-keystore)

 | +--:(local) {local-definitions-supported}?

 | | +--rw local-definition

 | | +--rw public-key-format identityref

 | | +--rw public-key binary

 | | +--rw private-key-format? identityref

 | | +--rw (private-key-type)

 | | +--:(cleartext-private-key)

 | | | +--rw cleartext-private-key? binary

 | | +--:(hidden-private-key)

 | | | +--rw hidden-private-key? empty

 | | +--:(encrypted-private-key)

 | | {private-key-encryption}?

 | | +--rw encrypted-private-key

 | | +--rw encrypted-by

 | | +--rw encrypted-value-format identityref

 | | +--rw encrypted-value binary

 | +--:(keystore) {keystore-supported}?

 | +--rw keystore-reference? ks:asymmetric-key-ref

 +--rw asymmetric-key-with-certs* [name]

 | +--rw name string

 | +--rw (local-or-keystore)

 | +--:(local) {local-definitions-supported}?

 | | +--rw local-definition

 | | +--rw public-key-format

 | | | identityref

 | | +--rw public-key binary

 | | +--rw private-key-format?

 | | | identityref

 | | +--rw (private-key-type)

 | | | +--:(cleartext-private-key)

 | | | | +--rw cleartext-private-key? binary

 | | | +--:(hidden-private-key)

 | | | | +--rw hidden-private-key? empty

 | | | +--:(encrypted-private-key)

 | | | {private-key-encryption}?

 | | | +--rw encrypted-private-key

 | | | +--rw encrypted-by

 | | | +--rw encrypted-value-format identityref

 | | | +--rw encrypted-value binary

 | | +--rw certificates

 | | | +--rw certificate* [name]

 | | | +--rw name string

 | | | +--rw cert-data

 | | | | end-entity-cert-cms

 | | | +---n certificate-expiration

 | | | {certificate-expiration-notification}?

 | | | +-- expiration-date yang:date-and-time

 | | +---x generate-certificate-signing-request

 | | {certificate-signing-request-generation}?

 | | +---w input

 | | | +---w csr-info ct:csr-info

 | | +--ro output

 | | +--ro certificate-signing-request ct:csr

 | +--:(keystore) {keystore-supported}?

 | +--rw keystore-reference? ks:asymmetric-key-ref

 +--rw end-entity-cert-with-key* [name]

 +--rw name string

 +--rw (local-or-keystore)

 +--:(local) {local-definitions-supported}?

 | +--rw local-definition

 | +--rw public-key-format

 | | identityref

 | +--rw public-key binary

 | +--rw private-key-format?

 | | identityref

 | +--rw (private-key-type)

 | | +--:(cleartext-private-key)

 | | | +--rw cleartext-private-key? binary

 | | +--:(hidden-private-key)

 | | | +--rw hidden-private-key? empty

 | | +--:(encrypted-private-key)

 | | {private-key-encryption}?

 | | +--rw encrypted-private-key

 | | +--rw encrypted-by

 | | +--rw encrypted-value-format identityref

 | | +--rw encrypted-value binary

 | +--rw cert-data?

 | | end-entity-cert-cms

 | +---n certificate-expiration

 | | {certificate-expiration-notification}?

 | | +-- expiration-date yang:date-and-time

 | +---x generate-certificate-signing-request

 | {certificate-signing-request-generation}?

 | +---w input

 | | +---w csr-info ct:csr-info

 | +--ro output

 | +--ro certificate-signing-request ct:csr

 +--:(keystore) {keystore-supported}?

 +--rw keystore-reference

 +--rw asymmetric-key? ks:asymmetric-key-ref

 +--rw certificate? leafref

¶

The following example provides two equivalent instances of each

grouping, the first being a reference to a keystore and the second

being locally-defined. The instance having a reference to a keystore

is consistent with the keystore defined in Section 2.2.1. The two

instances are equivalent, as the locally-defined instance example

contains the same values defined by the keystore instance referenced

by its sibling example.¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore-usage

 xmlns="http://example.com/ns/example-keystore-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate the -->

 <!-- "local-or-keystore-symmetric-key-grouping" grouping: -->

 <symmetric-key>

 <name>example 1a</name>

 <keystore-reference>cleartext-symmetric-key</keystore-reference>

 </symmetric-key>

 <symmetric-key>

 <name>example 1b</name>

 <local-definition>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>base64encodedvalue==</cleartext-key>

 </local-definition>

 </symmetric-key>

 <!-- The following two equivalent examples illustrate the -->

 <!-- "local-or-keystore-asymmetric-key-grouping" grouping: -->

 <asymmetric-key>

 <name>example 2a</name>

 <keystore-reference>rsa-asymmetric-key</keystore-reference>

 </asymmetric-key>

 <asymmetric-key>

 <name>example 2b</name>

 <local-definition>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-private\

-key>

 </local-definition>

 </asymmetric-key>

 <!-- the following two equivalent examples illustrate -->

 <!-- "local-or-keystore-asymmetric-key-with-certs-grouping": -->

 <asymmetric-key-with-certs>

 <name>example 3a</name>

 <keystore-reference>rsa-asymmetric-key</keystore-reference>

 </asymmetric-key-with-certs>

 <asymmetric-key-with-certs>

 <name>example 3b</name>

 <local-definition>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-private\

-key>

 <certificates>

 <certificate>

 <name>a locally-defined cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </local-definition>

 </asymmetric-key-with-certs>

 <!-- The following two equivalent examples illustrate -->

 <!-- "local-or-keystore-end-entity-cert-with-key-grouping": -->

 <end-entity-cert-with-key>

 <name>example 4a</name>

 <keystore-reference>

 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>

 <certificate>ex-rsa-cert</certificate>

 </keystore-reference>

 </end-entity-cert-with-key>

 <end-entity-cert-with-key>

 <name>example 4b</name>

 <local-definition>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>

 ct:rsa-private-key-format

 </private-key-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-private\

-key>

 <cert-data>base64encodedvalue==</cert-data>

 </local-definition>

 </end-entity-cert-with-key>

</keystore-usage>

¶

Following is the "ex-keystore-usage" module's YANG definition:¶

module ex-keystore-usage {

 yang-version 1.1;

 namespace "http://example.com/ns/example-keystore-usage";

 prefix "eku";

 import ietf-keystore {

 prefix ks;

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 organization

 "Example Corporation";

 contact

 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description

 "This module illustrates notable groupings defined in

 the 'ietf-keystore' module.";

 revision "2021-02-10" {

 description

 "Initial version";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 container keystore-usage {

 description

 "An illustration of the various keystore groupings.";

 list symmetric-key {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ks:local-or-keystore-symmetric-key-grouping;

 description

 "An symmetric key that may be configured locally or be a

 reference to a symmetric key in the keystore.";

 }

 list asymmetric-key {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ks:local-or-keystore-asymmetric-key-grouping;

 description

 "An asymmetric key, with no certs, that may be configured

 locally or be a reference to an asymmetric key in the

 keystore. The intent is to reference just the asymmetric

 key, not any certificates that may also be associated

 with the asymmetric key.";

 }

 list asymmetric-key-with-certs {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ks:local-or-keystore-asymmetric-key-with-certs-grouping;

 description

 "An asymmetric key and its associated certs, that may be

 configured locally or be a reference to an asymmetric key

 (and its associated certs) in the keystore.";

 }

 list end-entity-cert-with-key {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this key.";

 }

 uses ks:local-or-keystore-end-entity-cert-with-key-grouping;

 description

 "An end-entity certificate and its associated asymmetric

 key, that may be configured locally or be a reference

 to another certificate (and its associated asymmetric

 key) in the keystore.";

 }

 }

}

¶

2.3. YANG Module

This YANG module has normative references to [RFC8341] and [I-

D.ietf-netconf-crypto-types].

<CODE BEGINS> file "ietf-keystore@2021-02-10.yang"

¶

¶

module ietf-keystore {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";

 prefix ks;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description

 "This module defines a 'keystore' to centralize management

 of security credentials.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC CCCC

 (https://www.rfc-editor.org/info/rfcCCCC); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2021-02-10 {

 description

 "Initial version";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 /****************/

 /* Features */

 /****************/

 feature keystore-supported {

 description

 "The 'keystore-supported' feature indicates that the server

 supports the keystore.";

 }

 feature local-definitions-supported {

 description

 "The 'local-definitions-supported' feature indicates that the

 server supports locally-defined keys.";

 }

 /****************/

 /* Typedefs */

 /****************/

 typedef symmetric-key-ref {

 type leafref {

 path "/ks:keystore/ks:symmetric-keys/ks:symmetric-key"

 + "/ks:name";

 }

 description

 "This typedef enables modules to easily define a reference

 to a symmetric key stored in the keystore, when this

 module is implemented.";

 }

 typedef asymmetric-key-ref {

 type leafref {

 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"

 + "/ks:name";

 }

 description

 "This typedef enables modules to easily define a reference

 to an asymmetric key stored in the keystore, when this

 module is implemented.";

 }

 /*****************/

 /* Groupings */

 /*****************/

 grouping encrypted-by-choice-grouping {

 description

 "A grouping that defines a 'choice' statement that can be

 augmented into the 'encrypted-by' node, present in the

 'symmetric-key-grouping' and 'asymmetric-key-pair-grouping'

 groupings defined in RFC AAAA, enabling references to keys

 in the keystore, when this module is implemented.";

 choice encrypted-by-choice {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice amongst other symmetric or asymmetric keys.";

 case symmetric-key-ref {

 leaf symmetric-key-ref {

 type ks:symmetric-key-ref;

 description

 "Identifies the symmetric key used to encrypt the

 associated key.";

 }

 }

 case asymmetric-key-ref {

 leaf asymmetric-key-ref {

 type ks:asymmetric-key-ref;

 description

 "Identifies the asymmetric key whose public key

 encrypted the associated key.";

 }

 }

 }

 }

 grouping asymmetric-key-certificate-ref-grouping {

 description

 "This grouping defines a reference to a specific certificate

 associated with an asymmetric key stored in the keystore,

 when this module is implemented.";

 leaf asymmetric-key {

 nacm:default-deny-write;

 type ks:asymmetric-key-ref;

 must '../certificate';

 description

 "A reference to an asymmetric key in the keystore.";

 }

 leaf certificate {

 nacm:default-deny-write;

 type leafref {

 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key[ks:"

 + "name = current()/../asymmetric-key]/ks:certificates"

 + "/ks:certificate/ks:name";

 }

 must '../asymmetric-key';

 description

 "A reference to a specific certificate of the

 asymmetric key in the keystore.";

 }

 }

 // local-or-keystore-* groupings

 grouping local-or-keystore-symmetric-key-grouping {

 description

 "A grouping that expands to allow the symmetric key to be

 either stored locally, i.e., within the using data model,

 or a reference to a symmetric key stored in the keystore.

 Servers that do not 'implement' this module, and hence

 'keystore-supported' is not defined, SHOULD augment in

 custom 'case' statements enabling references to the

 alternate keystore locations.";

 choice local-or-keystore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the keystore.";

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "Container to hold the local key definition.";

 uses ct:symmetric-key-grouping;

 }

 }

 case keystore {

 if-feature "keystore-supported";

 leaf keystore-reference {

 type ks:symmetric-key-ref;

 description

 "A reference to an symmetric key that exists in

 the keystore, when this module is implmented.";

 }

 }

 }

 }

 grouping local-or-keystore-asymmetric-key-grouping {

 description

 "A grouping that expands to allow the asymmetric key to be

 either stored locally, i.e., within the using data model,

 or a reference to an asymmetric key stored in the keystore.

 Servers that do not 'implement' this module, and hence

 'keystore-supported' is not defined, SHOULD augment in

 custom 'case' statements enabling references to the

 alternate keystore locations.";

 choice local-or-keystore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the keystore.";

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "Container to hold the local key definition.";

 uses ct:asymmetric-key-pair-grouping;

 }

 }

 case keystore {

 if-feature "keystore-supported";

 leaf keystore-reference {

 type ks:asymmetric-key-ref;

 description

 "A reference to an asymmetric key that exists in

 the keystore, when this module is implmented. The

 intent is to reference just the asymmetric key

 without any regard for any certificates that may

 be associated with it.";

 }

 }

 }

 }

 grouping local-or-keystore-asymmetric-key-with-certs-grouping {

 description

 "A grouping that expands to allow an asymmetric key and

 its associated certificates to be either stored locally,

 i.e., within the using data model, or a reference to an

 asymmetric key (and its associated certificates) stored

 in the keystore.

 Servers that do not 'implement' this module, and hence

 'keystore-supported' is not defined, SHOULD augment in

 custom 'case' statements enabling references to the

 alternate keystore locations.";

 choice local-or-keystore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the keystore.";

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "Container to hold the local key definition.";

 uses ct:asymmetric-key-pair-with-certs-grouping;

 }

 }

 case keystore {

 if-feature "keystore-supported";

 leaf keystore-reference {

 type ks:asymmetric-key-ref;

 description

 "A reference to an asymmetric-key (and all of its

 associated certificates) in the keystore, when

 this module is implmented.";

 }

 }

 }

 }

 grouping local-or-keystore-end-entity-cert-with-key-grouping {

 description

 "A grouping that expands to allow an end-entity certificate

 (and its associated asymmetric key pair) to be either stored

 locally, i.e., within the using data model, or a reference

 to a specific certificate in the keystore.

 Servers that do not 'implement' this module, and hence

 'keystore-supported' is not defined, SHOULD augment in

 custom 'case' statements enabling references to the

 alternate keystore locations.";

 choice local-or-keystore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the keystore.";

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "Container to hold the local key definition.";

 uses ct:asymmetric-key-pair-with-cert-grouping;

 }

 }

 case keystore {

 if-feature "keystore-supported";

 container keystore-reference {

 uses asymmetric-key-certificate-ref-grouping;

 description

 "A reference to a specific certificate associated with

 an asymmetric key stored in the keystore, when this

 module is implmented.";

 }

 }

 }

 }

 grouping keystore-grouping {

 description

 "Grouping definition enables use in other contexts. If ever

 done, implementations MUST augment new 'case' statements

 into the various local-or-keystore 'choice' statements to

 supply leafrefs to the model-specific location(s).";

 container asymmetric-keys {

 nacm:default-deny-write;

 description

 "A list of asymmetric keys.";

 list asymmetric-key {

 key "name";

 description

 "An asymmetric key.";

 leaf name {

 type string;

 description

 "An arbitrary name for the asymmetric key.";

 }

 uses ct:asymmetric-key-pair-with-certs-grouping;

 }

 }

 container symmetric-keys {

 nacm:default-deny-write;

 description

 "A list of symmetric keys.";

 list symmetric-key {

 key "name";

 description

 "A symmetric key.";

 leaf name {

 type string;

 description

 "An arbitrary name for the symmetric key.";

 }

 uses ct:symmetric-key-grouping;

 }

 }

 } // grouping keystore-grouping

 /*********************************/

 /* Protocol accessible nodes */

 /*********************************/

 container keystore {

 description

 "The keystore contains a list of symmetric keys and a list

 of asymmetric keys.";

 nacm:default-deny-write;

 uses keystore-grouping {

 augment "symmetric-keys/symmetric-key/key-type/encrypted-key/"

 + "encrypted-key/encrypted-by" {

 description

 "Augments in a choice statement enabling the encrypting

 key to be any other symmetric or asymmetric key in the

 keystore.";

 uses encrypted-by-choice-grouping;

 }

 augment "asymmetric-keys/asymmetric-key/private-key-type/"

 + "encrypted-private-key/encrypted-private-key/"

 + "encrypted-by" {

 description

 "Augments in a choice statement enabling the encrypting

 key to be any other symmetric or asymmetric key in the

 keystore.";

 uses encrypted-by-choice-grouping;

 }

 }

 }

}

¶

<CODE ENDS>

3. Support for Built-in Keys

In some implementations, a server may support built-in keys. Built-

in keys MAY be set during the manufacturing process or be

dynamically generated the first time the server is booted or a

particular service (e.g., SSH) is enabled.

The primary characteristic of the built-in keys is that they are

provided by the system, as opposed to configuration. As such, they

are present in <operational>. The example below illustrates what the

keystore in <operational> might look like for a server in its

factory default state.

In order for the built-in keys (and their associated built-in

certificates) to be referenced by configuration, the referenced keys

and associated certificates MUST first be copied into <running>.

Built-in keys that are "hidden" MUST be copied into <running> using

the same key values, so that the server can bind them to the built-

in entries.

Built-in keys that are "encrypted" MAY be copied into other parts of

the configuration so long as they are otherwise unmodified (e.g.,

the "encypted-by" reference cannot be altered).

¶

¶

¶

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <asymmetric-keys>

 <asymmetric-key or:origin="or:system">

 <name>Manufacturer-Generated Hidden Key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <hidden-private-key/>

 <certificates>

 <certificate>

 <name>Manufacturer-Generated IDevID Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 </asymmetric-keys>

</keystore>

¶

¶

¶

¶

Built-in keys that are "cleartext" MAY be copied into other parts of

the configuration but, by doing so, they lose their association to

the built-in entries and any assurances afforded by knowing they

are/were built-in.

The built-in keys and built-in associated certificates are immutable

by configuration operations. With exception to additional/custom

certificates associated to a built-in key, servers MUST ignore

attempts to modify any aspect of built-in keys and/or built-in

associated certificates.

The following example illustrates how a single built-in key

definition from the previous example has been propagated to

<running>:

After the above configuration is applied, <operational> should

appear as follows:

¶

¶

¶

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <asymmetric-keys>

 <asymmetric-key>

 <name>Manufacturer-Generated Hidden Key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <hidden-private-key/>

 <certificates>

 <certificate>

 <name>Manufacturer-Generated IDevID Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Deployment-Specific LDevID Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 </asymmetric-keys>

</keystore>

¶

¶

4. Encrypting Keys in Configuration

This section describes an approach that enables both the symmetric

and asymmetric keys on a server to be encrypted, such that

traditional backup/restore procedures can be used without concern

for the keys being compromised when in transit.

4.1. Key Encryption Key

The ability to encrypt configured keys is predicated on the

existence of a "key encryption key" (KEK). There may be any number

of KEKs in a system. A KEK, by its namesake, is a key that is used

to encrypt other keys. A KEK MAY be either a symmetric key or an

asymmetric key.

If a KEK is a symmetric key, then the server MUST provide an API for

administrators to encrypt other keys without needing to know the

symmetric key's value. If the KEK is an asymmetric key, then the

server MAY provide an API enabling the encryption of other keys or,

alternatively, let the administrators do so themselves using the

asymmetric key's public half.

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <asymmetric-keys>

 <asymmetric-key or:origin="or:system">

 <name>Manufacturer-Generated Hidden Key</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 <hidden-private-key/>

 <certificates>

 <certificate>

 <name>Manufacturer-Generated IDevID Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate or:origin="or:intended">

 <name>Deployment-Specific LDevID Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificates>

 </asymmetric-key>

 </asymmetric-keys>

</keystore>

¶

¶

¶

¶

A server MUST possess (or be able to possess, in case the KEK has

been encrypted by another KEK) a KEK's cleartext value so that it

can decrypt the other keys in the configurion at runtime.

4.2. Configuring Encrypted Keys

Each time a new key is configured, it SHOULD be encrypted by a KEK.

In "ietf-crypto-types" [I-D.ietf-netconf-crypto-types], the format

for encrytped values is described by identity statements derived

from the "symmetrically-encrypted-value-format" and "symmetrically-

encrypted-value-format" identity statements.

Implementations SHOULD provide an API that simultaneously generates

and encrypts a key (symmetric or asymmetric) using a KEK. Thusly

newly generated key cleartext values may never known to the

administrators generating the keys.

In case the server implementation does not provide such an API, then

the generating and encrypting steps MAY be performed outside the

server, e.g., by an administrator with special access control rights

(e.g., an organization's crypto officer).

In either case, the encrypted key can be configured into the

keystore using either the "encrypted-key" (for symmetric keys) or

the "encrypted-private-key" (for asymmetric keys) nodes. These two

nodes contain both the encrypted value as well as a reference to the

KEK that encrypted the key.

4.3. Migrating Configuration to Another Server

When a KEK is used to encrypt other keys, migrating the

configuration to another server is only possible if the second

server has the same KEK. How the second server comes to have the

same KEK is discussed in this section.

In some deployments, mechanisms outside the scope of this document

may be used to migrate a KEK from one server to another. That said,

beware that the ability to do so typically entails having access to

the first server but, in many scenarios, the first server may no

longer be operational.

In other deployments, an organization's crypto officer, possessing a

KEK's cleartext value, configures the same KEK on the second server,

presumably as a hidden key or a key protected by access-control

(e.g., NACM's "default-deny-all"), so that the cleartext value is

not disclosed to regular administrators. However, this approach

creates high-coupling to and dependency on the crypto officers that

doesn't scale in production environments.

¶

¶

¶

¶

¶

¶

¶

¶

¶

In order to decouple the crypto officers from the regular

administrators, a special KEK, called the "master key" (MK), may be

used.

A MK is commonly a globally-unique built-in (see Section 3)

asymmetric key. The private key, due to its long lifetime, is hidden

(i.e., "hidden-private-key" in Section 2.1.4.5. of [I-D.ietf-

netconf-crypto-types]). The public key is often contained in an

identity certificate (e.g., IDevID). How to configure a MK during

the manufacturing process is outside the scope of this document.

It is highly RECOMMENDED that MKs are built-in and hidden but, if

this is not possible, highly restricted access mechanisms SHOULD be

used to limit access to the MK's secret data to only highly

authorized clients (e.g., an organization's crypto officer). In this

case, it is RECOMMENDED that the MK is not built-in and hence is,

effectively, just like a KEK.

Assuming the server has a MK, the MK can be used to encrypt a

"shared KEK", which is then used to encrypt the keys configured by

regular administrators.

With this extra level of indirection, it is possible for a crypto

officer to encrypt the same KEK for a multiplicity of servers

offline using the public key contained in their identity

certificates. The crypto officer can then safely handoff the

encrypted KEKs to the regular administrators responsible for server

installations, including migrations.

In order to migrate the configuration from a first server, an

administrator would need to make just a single modification to the

configuration before loading it onto a second server, which is to

replace the encrypted KEK keystore entry from the first server with

the encrypted KEK for the second server. Upon doing this, the

configuration (containing many encrypted keys) can be loaded into

the second server while enabling the second server to decrypt all

the encrypted keys in the configuration.

The following diagram illustrates this idea:

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18#section-2.1.4.5.

 +-------------+ +-------------+

 | shared KEK | | shared KEK |

 |(unencrypted)|-------------------------------> | (encrypted) |

 +-------------+ encrypts offline using +-------------+

 ^ each server's MK |

 | |

 | |

 | possesses \o |

 +-------------- |\ |

 / \ shares with |

 crypto +--------------------+

 officer |

 |

 |

+----------------------+ | +----------------------+

| server-1 | | | server-2 |

| configuration | | | configuration |

| | | | |

| | | | |

| +----------------+ | | | +----------------+ |

| | MK-1 | | | | | MK-2 | |

| | (hidden) | | | | | (hidden) | |

| +----------------+ | | | +----------------+ |

| ^ | | | ^ |

| | | | | | |

| | | | | | |

| | encrypted | | | | encrypted |

| | by | | | | by |

| | | | | | |

| | | | | | |

| +----------------+ | | | +----------------+ |

| | shared KEK | | | | | shared KEK | |

| | (encrypted) | | v | | (encrypted) | |

| +----------------+ | | +----------------+ |

| ^ | regular | ^ |

| | | admin | | |

| | | | | |

| | encrypted | \o | | encrypted |

| | by | |\ | | by |

| | | / \ | | |

| | | | | |

| +----------------+ |----------------->| +----------------+ |

| | all other keys | | migrate | | all other keys | |

| | (encrypted) | | configuration | | (encrypted) | |

| +----------------+ | | +----------------+ |

| | | |

+----------------------+ +----------------------+

¶

5. Security Considerations

5.1. Security of Data at Rest

The YANG module defined in this document defines a mechanism called

a "keystore" that, by its name, suggests that it will protect its

contents from unauthorized disclosure and modification.

Security controls for the API (i.e., data in motion) are discussed

in Section 5.3, but controls for the data at rest cannot be

specified by the YANG module.

In order to satisfy the expectations of a "keystore", it is

RECOMMENDED that implementations ensure that the keystore contents

are encrypted when persisted to non-volatile memory.

5.2. Unconstrained Private Key Usage

This module enables the configuration of private keys without

constraints on their usage, e.g., what operations the key is allowed

to be used for (e.g., signature, decryption, both).

This module also does not constrain the usage of the associated

public keys, other than in the context of a configured certificate

(e.g., an identity certificate), in which case the key usage is

constrained by the certificate.

5.3. The "ietf-keystore" YANG Module

The YANG module defined in this document is designed to be accessed

via YANG based management protocols, such as NETCONF [RFC6241] and

RESTCONF [RFC8040]. Both of these protocols have mandatory-to-

implement secure transport layers (e.g., SSH, TLS) with mutual

authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

Please be aware that this module uses the "cleartext-key" and

"cleartext-private-key" nodes from the "ietf-crypto-types" module

[I-D.ietf-netconf-crypto-types], where said nodes have the NACM

extension "default-deny-all" set, thus preventing uncontrolled read-

access to the cleartext key values.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-netconf-crypto-types]

[RFC2119]

All of the writable data nodes defined by this module, both in the

"grouping" statements as well as the protocol-accessible "keystore"

instance, may be considered sensitive or vulnerable in some network

environments.. For instance, any modification to a key or reference

to a key may dramatically alter the implemented security policy. For

this reason, the NACM extension "default-deny-write" has been set

for all data nodes defined in this module.

This module does not define any "rpc" or "action" statements, and

thus the security considerations for such is not provided here.

6. IANA Considerations

6.1. The "IETF XML" Registry

This document registers one URI in the "ns" subregistry of the IETF

XML Registry [RFC3688]. Following the format in [RFC3688], the

following registration is requested:

6.2. The "YANG Module Names" Registry

This document registers one YANG module in the YANG Module Names

registry [RFC6020]. Following the format in [RFC6020], the following

registration is requested:

7. References

7.1. Normative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-18, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-crypto-types-18>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-keystore

 Registrant Contact: The IESG

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-keystore

 namespace: urn:ietf:params:xml:ns:yang:ietf-keystore

 prefix: ks

 reference: RFC CCCC

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-18

[RFC6020]

[RFC7950]

[RFC8341]

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-netconf-client-server]

[I-D.ietf-netconf-restconf-client-server]

[I-D.ietf-netconf-ssh-client-server]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

7.2. Informative References

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-05, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-http-client-

server-05>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-20, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-keystore-20>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

client-server-21, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-netconf-client-

server-21>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-21, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-restconf-client-

server-21>.

Watsen, K., "YANG Groupings for SSH Clients and SSH

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-ssh-client-server-22, 20 August 2020, <https://

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-05
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-05
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-05
https://tools.ietf.org/html/draft-ietf-netconf-keystore-20
https://tools.ietf.org/html/draft-ietf-netconf-keystore-20
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-22

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

[I-D.ietf-netconf-trust-anchors]

[RFC3688]

[RFC6241]

[RFC8040]

[RFC8174]

[RFC8340]

[RFC8342]

tools.ietf.org/html/draft-ietf-netconf-ssh-client-

server-22>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients

and TCP Servers", Work in Progress, Internet-Draft,

draft-ietf-netconf-tcp-client-server-08, 20 August 2020,

<https://tools.ietf.org/html/draft-ietf-netconf-tcp-

client-server-08>.

Watsen, K., "YANG Groupings for TLS Clients and TLS

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-tls-client-server-22, 20 August 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-tls-client-

server-22>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-13, 20 August 2020, <https://tools.ietf.org/html/

draft-ietf-netconf-trust-anchors-13>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-22
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-22
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-08
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-08
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-22
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-22
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-22
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-13
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-13
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8340

[Std-802.1AR-2009]

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Group, W. -. H. L. L. P. W., "IEEE Standard for

Local and metropolitan area networks - Secure Device

Identity", December 2009, <http://standards.ieee.org/

findstds/standard/802.1AR-2009.html>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

A.1. 00 to 01

Replaced the 'certificate-chain' structures with PKCS#7

structures. (Issue #1)

Added 'private-key' as a configurable data node, and removed the

'generate-private-key' and 'load-private-key' actions. (Issue #2)

Moved 'user-auth-credentials' to the ietf-ssh-client module.

(Issues #4 and #5)

A.2. 01 to 02

Added back 'generate-private-key' action.

Removed 'RESTRICTED' enum from the 'private-key' leaf type.

Fixed up a few description statements.

A.3. 02 to 03

Changed draft's title.

Added missing references.

Collapsed sections and levels.

Added RFC 8174 to Requirements Language Section.

Renamed 'trusted-certificates' to 'pinned-certificates'.

Changed 'public-key' from config false to config true.

Switched 'host-key' from OneAsymmetricKey to definition from RFC

4253.

A.4. 03 to 04

Added typedefs around leafrefs to common keystore paths

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

https://www.rfc-editor.org/info/rfc8342
http://standards.ieee.org/findstds/standard/802.1AR-2009.html
http://standards.ieee.org/findstds/standard/802.1AR-2009.html

Now tree diagrams reference ietf-netmod-yang-tree-diagrams

Removed Design Considerations section

Moved key and certificate definitions from data tree to groupings

A.5. 04 to 05

Removed trust anchors (now in their own draft)

Added back global keystore structure

Added groupings enabling keys to either be locally defined or a

reference to the keystore.

A.6. 05 to 06

Added feature "local-keys-supported"

Added nacm:default-deny-all and nacm:default-deny-write

Renamed generate-asymmetric-key to generate-hidden-key

Added an install-hidden-key action

Moved actions inside fo the "asymmetric-key" container

Moved some groupings to draft-ietf-netconf-crypto-types

A.7. 06 to 07

Removed a "require-instance false"

Clarified some description statements

Improved the keystore-usage examples

A.8. 07 to 08

Added "local-definition" containers to avoid posibility of the

action/notification statements being under a "case" statement.

Updated copyright date, boilerplate template, affiliation,

folding algorithm, and reformatted the YANG module.

A.9. 08 to 09

Added a 'description' statement to the 'must' in the /keystore/

asymmetric-key node explaining that the descendent values may

exist in <operational> only, and that implementation MUST assert

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

that the values are either configured or that they exist in

<operational>.

Copied above 'must' statement (and description) into the local-

or-keystore-asymmetric-key-grouping, local-or-keystore-

asymmetric-key-with-certs-grouping, and local-or-keystore-end-

entity-cert-with-key-grouping statements.

A.10. 09 to 10

Updated draft title to match new truststore draft title

Moved everything under a top-level 'grouping' to enable use in

other contexts.

Renamed feature from 'local-keys-supported' to 'local-

definitions-supported' (same name used in truststore)

Removed the either-all-or-none 'must' expressions for the key's

3-tuple values (since the values are now 'mandatory true' in

crypto-types)

Example updated to reflect 'mandatory true' change in crypto-

types draft

A.11. 10 to 11

Replaced typedef asymmetric-key-certificate-ref with grouping

asymmetric-key-certificate-ref-grouping.

Added feature feature 'key-generation'.

Cloned groupings symmetric-key-grouping, asymmetric-key-pair-

grouping, asymmetric-key-pair-with-cert-grouping, and asymmetric-

key-pair-with-certs-grouping from crypto-keys, augmenting into

each new case statements for values that have been encrypted by

other keys in the keystore. Refactored keystore model to use

these groupings.

Added new 'symmetric-keys' lists, as a sibling to the existing

'asymmetric-keys' list.

Added RPCs (not actions) 'generate-symmetric-key' and 'generate-

asymmetric-key' to *return* a (potentially encrypted) key.

A.12. 11 to 12

Updated to reflect crypto-type's draft using enumerations over

identities.

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

Added examples for the 'generate-symmetric-key' and 'generate-

asymmetric-key' RPCs.

Updated the Introduction section.

A.13. 12 to 13

Updated examples to incorporate new "key-format" identities.

Made the two "generate-*-key" RPCs be "action" statements

instead.

A.14. 13 to 14

Updated YANG module and examples to incorporate the new iana-*-

algorithm modules in the crypto-types draft..

A.15. 14 to 15

Added new "Support for Built-in Keys" section.

Added 'must' expressions asserting that the 'key-format' leaf

whenever an encrypted key is specified.

Added local-or-keystore-symmetric-key-grouping for PSK support.

A.16. 15 to 16

Moved the generate key actions to ietf-crypt-types as RPCs, which

are augmented by ietf-keystore to support encrypted keys.

Examples updated accordingly.

Added a SSH certificate-based key (RFC 6187) and a raw private

key to the example instance document (partly so they could be

referenced by examples in the SSH and TLS client/server drafts.

A.17. 16 to 17

Removed augments to the "generate-symmetric-key" and "generate-

asymmetric-key" groupings.

Removed "generate-symmetric-key" and "generate-asymmetric-key"

examples.

Removed the "algorithm" nodes from remaining examples.

Updated the "Support for Built-in Keys" section.

Added new section "Encrypting Keys in Configuration".

Added a "Note to Reviewers" note to first page.

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

A.18. 17 to 18

Removed dangling/unnecessary ref to RFC 8342.

r/MUST/SHOULD/ wrt strength of keys being configured over

transports.

Added an example for the "certificate-expiration" notification.

Clarified that OS MAY have a multiplicity of underlying keystores

and/or HSMs.

Clarified expected behavior for "built-in" keys in <operational>

Clarified the "Migrating Configuration to Another Server"

section.

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Updated the Security Considerations section.

A.19. 18 to 19

Updated examples to reflect new "cleartext-" prefix in the

crypto-types draft.

A.20. 19 to 20

Addressed SecDir comments from Magnus Nystroem and Sandra Murphy.

A.21. 20 to 21

Added a "Unconstrained Private Key Usage" Security Consideration

to address concern raised by SecDir.

(Editorial) Removed the output of "grouping" statements in the

tree diagrams for the "ietf-keystore" and "ex-keystore-usage"

modules.

Addressed comments raised by YANG Doctor.

Acknowledgements

The authors would like to thank for following for lively discussions

on list and in the halls (ordered by first name): Alan Luchuk, Andy

Bierman, Benoit Claise, Bert Wijnen, Balazs Kovacs, David Lamparter,

Eric Voit, Ladislav Lhotka, Liang Xia, Juergen Schoenwaelder, Mahesh

Jethanandani, Magnus Nystroem, Martin Bjorklund, Mehmet Ersue, Phil

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

Shafer, Radek Krejci, Ramkumar Dhanapal, Reshad Rahman, Sandra

Murphy, Sean Turner, and Tom Petch.

Author's Address

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

¶

mailto:kent+ietf@watsen.net

	A YANG Data Model for a Keystore
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Terminology
	1.4. Adherence to the NMDA

	2. The "ietf-keystore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "encrypted-by-choice-grouping" Grouping
	2.1.3.2. The "asymmetric-key-certificate-ref-grouping" Grouping
	2.1.3.3. The "local-or-keystore-symmetric-key-grouping" Grouping
	2.1.3.4. The "local-or-keystore-asymmetric-key-grouping" Grouping
	2.1.3.5. The "local-or-keystore-asymmetric-key-with-certs-grouping" Grouping
	2.1.3.6. The "local-or-keystore-end-entity-cert-with-key-grouping" Grouping
	2.1.3.7. The "keystore-grouping" Grouping

	2.1.4. Protocol-accessible Nodes

	2.2. Example Usage
	2.2.1. A Keystore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Local or Keystore" Groupings

	2.3. YANG Module

	3. Support for Built-in Keys
	4. Encrypting Keys in Configuration
	4.1. Key Encryption Key
	4.2. Configuring Encrypted Keys
	4.3. Migrating Configuration to Another Server

	5. Security Considerations
	5.1. Security of Data at Rest
	5.2. Unconstrained Private Key Usage
	5.3. The "ietf-keystore" YANG Module

	6. IANA Considerations
	6.1. The "IETF XML" Registry
	6.2. The "YANG Module Names" Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Change Log
	A.1. 00 to 01
	A.2. 01 to 02
	A.3. 02 to 03
	A.4. 03 to 04
	A.5. 04 to 05
	A.6. 05 to 06
	A.7. 06 to 07
	A.8. 07 to 08
	A.9. 08 to 09
	A.10. 09 to 10
	A.11. 10 to 11
	A.12. 11 to 12
	A.13. 12 to 13
	A.14. 13 to 14
	A.15. 14 to 15
	A.16. 15 to 16
	A.17. 16 to 17
	A.18. 17 to 18
	A.19. 18 to 19
	A.20. 19 to 20
	A.21. 20 to 21
	Acknowledgements
	Author's Address

