
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-list-pagination-01

Published: 11 March 2023

Intended Status: Standards Track

Expires: 12 September 2023

Authors: K. Watsen

Watsen Networks

Q. Wu

Huawei Technologies

O. Hagsand

Netgate

H. Li

Hewlett Packard Enterprise

P. Andersson

Cisco Systems

List Pagination for YANG-driven Protocols

Abstract

In some circumstances, instances of YANG modeled "list" and "leaf-

list" nodes may contain numerous entries. Retrieval of all the

entries can lead to inefficiencies in the server, the client, and

the network in between.

This document defines a model for list pagination that can be

implemented by YANG-driven management protocols such as NETCONF and

RESTCONF. The model supports paging over optionally filtered and/or

sorted entries. The solution additionally enables servers to

constrain query expressions on some "config false" lists or leaf-

lists.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Conventions

1.3. Adherence to the NMDA

2. Solution Overview

3. Solution Details

3.1. Query Parameters for a Targeted List or Leaf-List

3.2. Query Parameter for Descendant Lists and Leaf-Lists

3.3. Constraints on "where" and "sort-by" for "config false"

Lists

3.3.1. Identifying Constrained "config false" Lists and Leaf-

Lists

3.3.2. Indicating the Constraints for "where" Filters and

"sort-by" Expressions

4. The "ietf-list-pagination" Module

4.1. Data Model Overview

4.2. Example Usage

4.2.1. Constraining a "config false" list

4.2.2. Indicating number remaining in a limited list

4.3. YANG Module

5. IANA Considerations

5.1. The "IETF XML" Registry

5.2. The "YANG Module Names" Registry

6. Security Considerations

6.1. Regarding the "ietf-list-pagination" YANG Module

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Vector Tests

A.1. Example YANG Module

A.2. Example Data Set

A.3. Example Queries

A.3.1. The "limit" Parameter

A.3.2. The "offset" Parameter

A.3.3. The "cursor" Parameter

A.3.4. The "direction" Parameter

A.3.5. The "sort-by" Parameter

¶

https://trustee.ietf.org/license-info

A.3.6. The "where" Parameter

A.3.7. The "sublist-limit" Parameter

A.3.8. Combinations of Parameters

Acknowledgements

Authors' Addresses

1. Introduction

YANG modeled "list" and "leaf-list" nodes may contain a large number

of entries. For instance, there may be thousands of entries in the

configuration for network interfaces or access control lists. And

time-driven logging mechanisms, such as an audit log or a traffic

log, can contain millions of entries.

Retrieval of all the entries can lead to inefficiencies in the

server, the client, and the network in between. For instance,

consider the following:

A client may need to filter and/or sort list entries in order to,

e.g., present the view requested by a user.

A server may need to iterate over many more list entries than

needed by a client.

A network may need to convey more data than needed by a client.

Optimal global resource utilization is obtained when clients are

able to cherry-pick just that which is needed to support the

application-level business logic.

This document defines a generic model for list pagination that can

be implemented by YANG-driven management protocols such as NETCONF

[RFC6241] and RESTCONF [RFC8040]. Details for how such protocols are

updated are outside the scope of this document.

The model presented in this document supports paging over optionally

filtered and/or sorted entries. Server-side filtering and sorting is

ideal as servers can leverage indexes maintained by a backend

storage layer to accelerate queries.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

The following terms are defined in [RFC7950] and are not redefined

here: client, data model, data tree, feature, extension, module,

leaf, leaf-list, and server.

1.2. Conventions

Various examples used in this document use a placeholder value for

binary data that has been base64 encoded (e.g., "BASE64VALUE=").

This placeholder value is used as real base64 encoded structures are

often many lines long and hence distracting to the example being

presented.

1.3. Adherence to the NMDA

This document is compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. The "ietf-list-pagination" module

only defines a YANG extension and augments a couple leafs into a

"config false" node defined by the "ietf-system-capabilities"

module.

2. Solution Overview

The solution presented in this document broadly entails a client

sending a query to a server targeting a specific list or leaf-list

including optional parameters guiding which entries should be

returned.

A secondary aspect of this solution entails a client sending a query

parameter to a server guiding how descendent lists and leaf-lists

should be returned. This parameter may be used on any target node,

not just "list" and "leaf-list" nodes.

Clients detect a server's support for list pagination via an entry

for the "ietf-list-pagination" module (defined in Section 4) in the

server's YANG Library [RFC8525] response.

Relying on client-provided query parameters ensures servers remain

backward compatible with legacy clients.

3. Solution Details

This section is composed of the following subsections:

Section 3.1 defines five query parameters clients may use to page

through the entries of a single list or leaf-list in a data tree.

Section 3.2 defines one query parameter that clients may use to

affect the content returned for descendant lists and leaf-lists.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Description

Default Value

Allowed Values

Conformance

Description

Section 3.3 defines per schema-node tags enabling servers to

indicate which "config false" lists are constrained and how they

may be interacted with.

3.1. Query Parameters for a Targeted List or Leaf-List

The five query parameters presented this section are listed in

processing order. This processing order is logical, efficient, and

matches the processing order implemented by database systems, such

as SQL.

The order is as follows: a server first processes the "where"

parameter (see Section 3.1.1), then the "sort-by" parameter (see

Section 3.1.2), then the "direction" parameter (see Section 3.1.3),

and either a combination of the "offset" parameter (see

Section 3.1.4) or the "cursor" parameter (see Section 3.1.5), and

lastly "the "limit" parameter (see Section 3.1.6).

3.1.1. The "where" Query Parameter

The "where" query parameter specifies a filter expression that

result-set entries must match.

If this query parameter is unspecified, then no entries are

filtered from the working result-set.

The allowed values are XPath 1.0 expressions. It is an error if

the XPath expression references a node identifier that does not

exist in the schema, is optional or conditional in the schema or,

for constrained "config false" lists and leaf-lists (see

Section 3.3), if the node identifier does not point to a node

having the "indexed" extension statement applied to it (see

Section 3.3.2).

The "where" query parameter MUST be supported for all "config

true" lists and leaf-lists and SHOULD be supported for "config

false" lists and leaf-lists. Servers MAY disable the support for

some or all "config false" lists and leaf-lists as described in

Section 3.3.2.

3.1.2. The "sort-by" Query Parameter

The "sort-by" query parameter indicates the node in the working

result-set (i.e., after the "where" parameter has been applied)

that entries should be sorted by. Sorts are in ascending order

*

¶

¶

¶

¶

¶

¶

¶

Default Value

Allowed Values

Conformance

Description

Default Value

Allowed Values

forwards

backwards

Conformance

(e.g., '1' before '9', 'a' before 'z', etc.). Missing values are

sorted to the end (e.g., after all nodes having values). Sub-

sorts are not supported.

If this query parameter is unspecified, then the list or leaf-

list's default order is used, per the YANG "ordered-by" statement

(see Section 7.7.7 of [RFC7950]).

The allowed values are node identifiers. It is an error if the

specified node identifier does not exist in the schema, is

optional or conditional in the schema or, for constrained "config

false" lists and leaf-lists (see Section 3.3), if the node

identifier does not point to a node having the "indexed"

extension statement applied to it (see Section 3.3.2).

The "sort-by" query parameter MUST be supported for all "config

true" lists and leaf-lists and SHOULD be supported for "config

false" lists and leaf-lists. Servers MAY disable the support for

some or all "config false" lists and leaf-lists as described in

Section 3.3.2.

3.1.3. The "direction" Query Parameter

The "direction" query parameter indicates how the entries in the

working result-set (i.e., after the "sort-by" parameter has been

applied) should be traversed.

If this query parameter is unspecified, the default value is

"forwards".

The allowed values are:

Return entries in the forwards direction. Also known as the

"default" or "ascending" direction.

Return entries in the backwards direction. Also known as the

"reverse" or "descending" direction

The "direction" query parameter MUST be supported for all lists

and leaf-lists.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-7.7.7

Description

Default Value

Allowed Values

Conformance

Description

Default Value

Allowed Values

Conformance

Description

3.1.4. The "offset" Query Parameter

The "offset" query parameter indicates the number of entries in

the working result-set (i.e., after the "direction" parameter has

been applied) that should be skipped over when preparing the

response.

If this query parameter is unspecified, then no entries in the

result-set are skipped, same as when the offset value '0' is

specified.

The allowed values are unsigned integers. It is an error for the

offset value to exceed the number of entries in the working

result-set, and the "offset-out-of-range" identity SHOULD be

produced in the error output when this occurs.

The "offset" query parameter MUST be supported for all lists and

leaf-lists.

3.1.5. The "cursor" Query Parameter

The "cursor" query parameter indicates where to start the working

result-set (i.e., after the "direction" parameter has been

applied), the elements before the cursor are skipped over when

preparing the response. Furthermore the result-set is annotated

with attributes for the next and previous cursors following a

result-set constrained with the "limit" query parameter.

If this query parameter is unspecified, then no entries in the

result-set are skipped.

The allowed values are base64 encoded positions interpreted by

the server to index an element in the list. It is an error to

supply an unkown cursor for the working result-set, and the

"cursor-not-found" identity SHOULD be produced in the error

output when this occurs.

The "cursor" query parameter MUST be supported for all lists.

3.1.6. The "limit" Query Parameter

¶

¶

¶

¶

¶

¶

¶

¶

Default Value

Allowed Values

Conformance

Description

The "limit" query parameter limits the number of entries returned

from the working result-set (i.e., after the "offset" parameter

has been applied). Any list or leaf-list that is limited

includes, somewhere in its encoding, a metadata value [RFC7952]

called "remaining", a positive integer indicating the number of

elements that were not included in the result-set by the "limit"

operation, or the value "unknown" in case, e.g., the server

determines that counting would be prohibitively expensive.

If this query parameter is unspecified, the number of entries

that may be returned is unbounded.

The allowed values are positive integers.

The "limit" query parameter MUST be supported for all lists and

leaf-lists.

3.2. Query Parameter for Descendant Lists and Leaf-Lists

Whilst this document primarily regards pagination for a list or

leaf-list, it begs the question for how descendant lists and leaf-

lists should be handled, which is addressed by the "sublist-limit"

query parameter described in this section.

3.2.1. The "sublist-limit" Query Parameter

The "sublist-limit" parameter limits the number of entries

returned for descendent lists and leaf-lists.

Any descendent list or leaf-list limited by the "sublist-limit"

parameter includes, somewhere in its encoding, a metadata value

[RFC7952] called "remaining", a positive integer indicating the

number of elements that were not included by the "sublist-limit"

parameter, or the value "unknown" in case, e.g., the server

determines that counting would be prohibitively expensive.

¶

¶

¶

¶

¶

¶

¶

Default Value

Allowed Values

Conformance

When used on a list node, it only affects the list's descendant

nodes, not the list itself, which is only affected by the

parameters presented in Section 3.1.

If this query parameter is unspecified, the number of entries

that may be returned for descendent lists and leaf-lists is

unbounded.

The allowed values are positive integers.

The "sublist-limit" query parameter MUST be supported for all

conventional nodes, including a datastore's top-level node (i.e.,

'/').

3.3. Constraints on "where" and "sort-by" for "config false" Lists

Some "config false" lists and leaf-lists may contain an enormous

number of entries. For instance, a time-driven logging mechanism,

such as an audit log or a traffic log, can contain millions of

entries.

In such cases, "where" and "sort-by" expressions will not perform

well if the server must bring each entry into memory in order to

process it.

The server's best option is to leverage query-optimizing features

(e.g., indexes) built into the backend database holding the dataset.

However, arbitrary "where" expressions and "sort-by" node

identifiers into syntax supported by the backend database and/or

query-optimizers may prove challenging, if not impossible, to

implement.

Thusly this section introduces mechanisms whereby a server can:

Identify which "config false" lists and leaf-lists are

constrained.

Identify what node-identifiers and expressions are allowed for

the constrained lists and leaf-lists.

Note: The pagination performance for "config true" lists and leaf-

lists is not considered as already servers must be able to process

them as configuration. Whilst some "config true' lists and leaf-

lists may contain thousands of entries, they are well within the

capability of server-side processing.

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

¶

3.3.1. Identifying Constrained "config false" Lists and Leaf-Lists

Identification of which lists and leaf-lists are constrained occurs

in the schema tree, not the data tree. However, as server abilities

vary, it is not possible to define constraints in YANG modules

defining generic data models.

In order to enable servers to identify which lists and leaf-lists

are constrained, the solution presented in this document augments

the data model defined by the "ietf-system-capabilities" module

presented in [I-D.ietf-netconf-notification-capabilities].

Specifically, the "ietf-list-pagination" module (see Section 4)

augments an empty leaf node called "constrained" into the "per-node-

capabilities" node defined in the "ietf-system-capabilities" module.

The "constrained" leaf MAY be specified for any "config false" list

or leaf-list.

When a list or leaf-list is constrained:

All parts of XPath 1.0 expressions are disabled unless explicitly

enabled by Section 3.3.2.

Node-identifiers used in "where" expressions and "sort-by"

filters MUST have the "indexed" leaf applied to it (see

Section 3.3.2).

For lists only, node-identifiers used in "where" expressions and

"sort-by" filters MUST NOT descend past any descendent lists.

This ensures that only indexes relative to the targeted list are

used. Further constraints on node identifiers MAY be applied in

Section 3.3.2.

3.3.2. Indicating the Constraints for "where" Filters and "sort-by"

Expressions

This section identifies how constraints for "where" filters and

"sort-by" expressions are specified. These constraints are valid

only if the "constrained" leaf described in the previous section

Section 3.3.1 has been set on the immediate ancestor "list" node or,

for "leaf-list" nodes, on itself.

3.3.2.1. Indicating Filterable/Sortable Nodes

For "where" filters, an unconstrained XPath expressions may use any

node in comparisons. However, efficient mappings to backend

databases may support only a subset of the nodes.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

Similarly, for "sort-by" expressions, efficient sorts may only

support a subset of the nodes.

In order to enable servers to identify which nodes may be used in

comparisons (for both "where" and "sort-by" expressions), the "ietf-

list-pagination" module (see Section 4) augments an empty leaf node

called "indexed" into the "per-node-capabilities" node defined in

the "ietf-system-capabilities" module (see

[I-D.ietf-netconf-notification-capabilities]).

When a "list" or "leaf-list" node has the "constrained" leaf, only

nodes having the "indexed" node may be used in "where" and/or "sort-

by" expressions. If no nodes have the "indexed" leaf, when the

"constrained" leaf is present, then "where" and "sort-by"

expressions are disabled for that list or leaf-list.

4. The "ietf-list-pagination" Module

The "ietf-list-pagination" module is used by servers to indicate

that they support pagination on YANG "list" and "leaf-list" nodes,

and to provide an ability to indicate which "config false" list and/

or "leaf-list" nodes are constrained and, if so, which nodes may be

used in "where" and "sort-by" expressions.

4.1. Data Model Overview

The following tree diagram [RFC8340] illustrates the "ietf-list-

pagination" module:

Comments:

As shown, this module augments two optional leaves into the

"node-selector" node of the "ietf-system-capabilities" module.

Not shown is that the module also defines an "md:annotation"

statement named "remaining". This annotation may be present in a

server's response to a client request containing either the

"limit" (Section 3.1.6) or "sublist-limit" parameters

(Appendix A.3.7).

¶

¶

¶

¶

¶

module: ietf-list-pagination

 augment /sysc:system-capabilities/sysc:datastore-capabilities

 /sysc:per-node-capabilities:

 +--ro constrained? empty

 +--ro indexed? empty

¶

¶

*

¶

*

¶

4.2. Example Usage

4.2.1. Constraining a "config false" list

The following example illustrates the "ietf-list-pagination"

module's augmentations of the "system-capabilities" data tree. This

example assumes the "example-social" module defined in the

Appendix A.1 is implemented.

4.2.2. Indicating number remaining in a limited list

FIXME: valid syntax for 'where'?

4.3. YANG Module

This YANG module has normative references to [RFC7952] and

[I-D.ietf-netconf-notification-capabilities].

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<system-capabilities

 xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"

 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"

 xmlns:es="http://example.com/ns/example-social"

 xmlns:lpg="urn:ietf:params:xml:ns:yang:ietf-list-pagination">

 <datastore-capabilities>

 <datastore>ds:operational</datastore>

 <per-node-capabilities>

 <node-selector>/es:audit-logs/es:audit-log</node-selector>

 <lpg:constrained/>

 </per-node-capabilities>

 <per-node-capabilities>

 <node-selector>/es:audit-logs/es:audit-log/es:timestamp</node-\

selector>

 <lpg:indexed/>

 </per-node-capabilities>

 <per-node-capabilities>

 <node-selector>/es:audit-logs/es:audit-log/es:member-id</node-\

selector>

 <lpg:indexed/>

 </per-node-capabilities>

 <per-node-capabilities>

 <node-selector>/es:audit-logs/es:audit-log/es:outcome</node-se\

lector>

 <lpg:indexed/>

 </per-node-capabilities>

 </datastore-capabilities>

</system-capabilities>

¶

¶

¶

<CODE BEGINS> file "ietf-list-pagination@2023-03-11.yang"¶

module ietf-list-pagination {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-list-pagination";

 prefix lpg;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-yang-metadata {

 prefix md;

 reference

 "RFC 7952: Defining and Using Metadata with YANG";

 }

 import ietf-system-capabilities {

 prefix sysc;

 reference

 "draft-ietf-netconf-notification-capabilities:

 YANG Modules describing Capabilities for

 Systems and Datastore Update Notifications";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: https://datatracker.ietf.org/wg/netconf

 WG List: NETCONF WG list <mailto:netconf@ietf.org>";

 description

 "This module is used by servers to 1) indicate they support

 pagination on 'list' and 'leaf-list' resources, 2) define a

 grouping for each list-pagination parameter, and 3) indicate

 which 'config false' lists have constrained 'where' and

 'sort-by' parameters and how they may be used, if at all.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2023-03-11 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: List Pagination for YANG-driven Protocols";

 }

 // Annotations

 md:annotation remaining {

 type union {

 type uint32;

 type enumeration {

 enum "unknown" {

 description

 "Indicates that number of remaining entries is unknown

 to the server in case, e.g., the server has determined

 that counting would be prohibitively expensive.";

 }

 }

 }

 description

 "This annotation contains the number of elements not included

 in the result set (a positive value) due to a 'limit' or

 'sublist-limit' operation. If no elements were removed,

 this annotation MUST NOT appear. The minimum value (0),

 which never occurs in normal operation, is reserved to

 represent 'unknown'. The maximum value (2^32-1) is

 reserved to represent any value greater than or equal

 to 2^32-1 elements.";

 }

 // Identities

 identity list-pagination-error {

 description

 "Base identity for list-pagination errors.";

 }

 identity offset-out-of-range {

 base list-pagination-error;

 description

 "The 'offset' query parameter value is greater than the number

 of instances in the target list or leaf-list resource.";

 }

 identity cursor-not-found {

 base list-pagination-error;

 description

 "The 'cursor' query parameter value is unknown for the target

 list.";

 }

 // Groupings

 grouping where-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf where {

 type union {

 type yang:xpath1.0;

 type enumeration {

 enum "unfiltered" {

 description

 "Indicates that no entries are to be filtered

 from the working result-set.";

 }

 }

 }

 default "unfiltered";

 description

 "The 'where' parameter specifies a boolean expression

 that result-set entries must match.

 It is an error if the XPath expression references a node

 identifier that does not exist in the schema, is optional

 or conditional in the schema or, for constrained 'config

 false' lists and leaf-lists, if the node identifier does

 not point to a node having the 'indexed' extension

 statement applied to it (see RFC XXXX).";

 }

 }

 grouping sort-by-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf sort-by {

 type union {

 type string {

 // An RFC 7950 'descendant-schema-nodeid'.

 pattern '([0-9a-fA-F]*:)?[0-9a-fA-F]*'

 + '(/([0-9a-fA-F]*:)?[0-9a-fA-F]*)*';

 }

 type enumeration {

 enum "none" {

 description

 "Indicates that the list or leaf-list's default

 order is to be used, per the YANG 'ordered-by'

 statement.";

 }

 }

 }

 default "none";

 description

 "The 'sort-by' parameter indicates the node in the

 working result-set (i.e., after the 'where' parameter

 has been applied) that entries should be sorted by.

 Sorts are in ascending order (e.g., '1' before '9',

 'a' before 'z', etc.). Missing values are sorted to

 the end (e.g., after all nodes having values).";

 }

 }

 grouping direction-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf direction {

 type enumeration {

 enum forwards {

 description

 "Indicates that entries should be traversed from

 the first to last item in the working result set.";

 }

 enum backwards {

 description

 "Indicates that entries should be traversed from

 the last to first item in the working result set.";

 }

 }

 default "forwards";

 description

 "The 'direction' parameter indicates how the entries in the

 working result-set (i.e., after the 'sort-by' parameter

 has been applied) should be traversed.";

 }

 }

 grouping cursor-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf cursor {

 type string;

 description

 "The 'cursor' parameter indicates where to start the working

 result-set (i.e. after the 'direction' parameter has been

 applied), the elements before the cursor are skipped over

 when preparing the response. Furthermare the result-set is

 annotated with attributes for the next and previous cursors

 following a result-set constrained with the 'limit' query

 parameter.";

 }

 }

 grouping offset-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf offset {

 type uint32;

 default 0;

 description

 "The 'offset' parameter indicates the number of entries

 in the working result-set (i.e., after the 'direction'

 parameter has been applied) that should be skipped over

 when preparing the response.";

 }

 }

 grouping limit-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf limit {

 type union {

 type uint32 {

 range "1..max";

 }

 type enumeration {

 enum "unbounded" {

 description

 "Indicates that the number of entries that may be

 returned is unbounded.";

 }

 }

 }

 default "unbounded";

 description

 "The 'limit' parameter limits the number of entries returned

 from the working result-set (i.e., after the 'offset'

 parameter has been applied).

 Any result-set that is limited includes, somewhere in its

 encoding, the metadata value 'remaining' to indicate the

 number entries not included in the result set.";

 }

 }

 grouping sublist-limit-param-grouping {

 description

 "This grouping may be used by protocol-specific YANG modules

 to define a protocol-specific query parameter.";

 leaf sublist-limit {

 type union {

 type uint32 {

 range "1..max";

 }

 type enumeration {

 enum "unbounded" {

 description

 "Indicates that the number of entries that may be

 returned is unbounded.";

 }

 }

 }

 default "unbounded";

 description

 "The 'sublist-limit' parameter limits the number of entries

 for descendent lists and leaf-lists.

 Any result-set that is limited includes, somewhere in

 its encoding, the metadata value 'remaining' to indicate

 the number entries not included in the result set.";

 }

 }

 // Protocol-accessible nodes

 augment // FIXME: ensure datastore == <operational>

 "/sysc:system-capabilities/sysc:datastore-capabilities"

 + "/sysc:per-node-capabilities" {

 description

 "Defines some leafs that MAY be used by the server to

 describe constraints imposed of the 'where' filters and

 'sort-by' parameters used in list pagination queries.";

 leaf constrained {

 type empty;

 description

 "Indicates that 'where' filters and 'sort-by' parameters

 on the targeted 'config false' list node are constrained.

 If a list is not 'constrained', then full XPath 1.0

 expressions may be used in 'where' filters and all node

 identifiers are usable by 'sort-by'.";

 }

 leaf indexed {

 type empty;

 description

 "Indicates that the targeted descendent node of a

 'constrained' list (see the 'constrained' leaf) may be

 used in 'where' filters and/or 'sort-by' parameters.

 If a descendent node of a 'constrained' list is not

 'indexed', then it MUST NOT be used in 'where' filters

 or 'sort-by' parameters.";

 }

 }

}

¶

[I-D.ietf-netconf-notification-capabilities]

[RFC2119]

<CODE ENDS>

5. IANA Considerations

5.1. The "IETF XML" Registry

This document registers one URI in the "ns" subregistry of the IETF

XML Registry [RFC3688] maintained at https://www.iana.org/

assignments/xml-registry/xml-registry.xhtml#ns. Following the format

in [RFC3688], the following registration is requested:

5.2. The "YANG Module Names" Registry

This document registers one YANG module in the YANG Module Names

registry [RFC6020] maintained at https://www.iana.org/assignments/

yang-parameters/yang-parameters.xhtml. Following the format defined

in [RFC6020], the below registration is requested:

6. Security Considerations

6.1. Regarding the "ietf-list-pagination" YANG Module

Pursuant the template defined in ...FIXME

7. References

7.1. Normative References

Lengyel, B., Clemm, A.,

and B. Claise, "YANG Modules Describing Capabilities for

Systems and Datastore Update Notifications", Work in

Progress, Internet-Draft, draft-ietf-netconf-

notification-capabilities-21, 15 October 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-

notification-capabilities-21>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

URI: urn:ietf:params:xml:ns:yang:ietf-list-pagination

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

¶

¶

name: ietf-list-pagination

namespace: urn:ietf:params:xml:ns:yang:ietf-list-pagination

prefix: lpg

RFC: XXXX

¶

¶

https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns
https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns
https://www.iana.org/assignments/yang-parameters/yang-parameters.xhtml
https://www.iana.org/assignments/yang-parameters/yang-parameters.xhtml
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-capabilities-21
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-capabilities-21
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-capabilities-21
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC3688]

[RFC7950]

[RFC7952]

[RFC8174]

[RFC6020]

[RFC6241]

[RFC8040]

[RFC8340]

[RFC8342]

[RFC8525]

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG", RFC

7952, DOI 10.17487/RFC7952, August 2016, <https://

www.rfc-editor.org/info/rfc7952>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525

Appendix A. Vector Tests

This normative appendix section illustrates every notable edge

condition conceived during this document's production.

Test inputs and outputs are provided in a manner that is both

generic and concise.

Management protocol specific documents need only reproduce as many

of these tests as necessary to convey pecularities presented by the

protocol.

Implementations are RECOMMENDED to implement the tests presented in

this document, in addition to any tests that may be presented in

protocol specific documents.

A.1. Example YANG Module

The vector tests assume the "example-social" YANG module defined in

this section.

This module has been specially crafted to cover every notable edge

condition, especially with regards to the types of the data nodes.

Following is the tree diagram [RFC8340] for the "example-social"

module:

¶

¶

¶

¶

¶

¶

¶

Following is the YANG [RFC7950] for the "example-social" module:

module: example-social

 +--rw members

 | +--rw member* [member-id]

 | +--rw member-id string

 | +--rw email-address inet:email-address

 | +--rw password ianach:crypt-hash

 | +--rw avatar? binary

 | +--rw tagline? string

 | +--rw privacy-settings

 | | +--rw hide-network? boolean

 | | +--rw post-visibility? enumeration

 | +--rw following* -> /members/member/member-id

 | +--rw posts

 | | +--rw post* [timestamp]

 | | +--rw timestamp yang:date-and-time

 | | +--rw title? string

 | | +--rw body string

 | +--rw favorites

 | | +--rw uint8-numbers* uint8

 | | +--rw uint64-numbers* uint64

 | | +--rw int8-numbers* int8

 | | +--rw int64-numbers* int64

 | | +--rw decimal64-numbers* decimal64

 | | +--rw bits* bits

 | +--ro stats

 | +--ro joined yang:date-and-time

 | +--ro membership-level enumeration

 | +--ro last-activity? yang:date-and-time

 +--ro audit-logs

 +--ro audit-log* []

 +--ro timestamp yang:date-and-time

 +--ro member-id string

 +--ro source-ip inet:ip-address

 +--ro request string

 +--ro outcome boolean

¶

¶

module example-social {

 yang-version 1.1;

 namespace "http://example.com/ns/example-social";

 prefix es;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import iana-crypt-hash {

 prefix ianach;

 reference

 "RFC 7317: A YANG Data Model for System Management";

 }

 organization "Example, Inc.";

 contact "support@example.com";

 description "Example Social Data Model.";

 revision 2023-03-11 {

 description

 "Initial version.";

 reference

 "RFC XXXX: Example social module.";

 }

 container members {

 description

 "Container for list of members.";

 list member {

 key "member-id";

 description

 "List of members.";

 leaf member-id {

 type string {

 length "1..80";

 pattern '.*[\n].*' {

 modifier invert-match;

 }

 }

 description

 "The member's identifier.";

 }

 leaf email-address {

 type inet:email-address;

 mandatory true;

 description

 "The member's email address.";

 }

 leaf password {

 type ianach:crypt-hash;

 mandatory true;

 description

 "The member's hashed-password.";

 }

 leaf avatar {

 type binary;

 description

 "An binary image file.";

 }

 leaf tagline {

 type string {

 length "1..80";

 pattern '.*[\n].*' {

 modifier invert-match;

 }

 }

 description

 "The member's tagline.";

 }

 container privacy-settings {

 leaf hide-network {

 type boolean;

 description

 "Hide who you follow and who follows you.";

 }

 leaf post-visibility {

 type enumeration {

 enum public {

 description

 "Posts are public.";

 }

 enum unlisted {

 description

 "Posts are unlisted, though visable to all.";

 }

 enum followers-only {

 description

 "Posts only visible to followers.";

 }

 }

 default public;

 description

 "The post privacy setting.";

 }

 description

 "Preferences for the member.";

 }

 leaf-list following {

 type leafref {

 path "/members/member/member-id";

 }

 description

 "Other members this members is following.";

 }

 container posts {

 description

 "The member's posts.";

 list post {

 key timestamp;

 leaf timestamp {

 type yang:date-and-time;

 description

 "The timestamp for the member's post.";

 }

 leaf title {

 type string {

 length "1..80";

 pattern '.*[\n].*' {

 modifier invert-match;

 }

 }

 description

 "A one-line title.";

 }

 leaf body {

 type string;

 mandatory true;

 description

 "The body of the post.";

 }

 description

 "A list of posts.";

 }

 }

 container favorites {

 description

 "The member's favorites.";

 leaf-list uint8-numbers {

 type uint8;

 ordered-by user;

 description

 "The member's favorite uint8 numbers.";

 }

 leaf-list uint64-numbers {

 type uint64;

 ordered-by user;

 description

 "The member's favorite uint64 numbers.";

 }

 leaf-list int8-numbers {

 type int8;

 ordered-by user;

 description

 "The member's favorite int8 numbers.";

 }

 leaf-list int64-numbers {

 type int64;

 ordered-by user;

 description

 "The member's favorite uint64 numbers.";

 }

 leaf-list decimal64-numbers {

 type decimal64 {

 fraction-digits 5;

 }

 ordered-by user;

 description

 "The member's favorite decimal64 numbers.";

 }

 leaf-list bits {

 type bits {

 bit zero {

 position 0;

 description "zero";

 }

 bit one {

 position 1;

 description "one";

 }

 bit two {

 position 2;

 description "two";

 }

 }

 ordered-by user;

 description

 "The member's favorite bits.";

 }

 }

 container stats {

 config false;

 description

 "Operational state members values.";

 leaf joined {

 type yang:date-and-time;

 mandatory true;

 description

 "Timestamp when member joined.";

 }

 leaf membership-level {

 type enumeration {

 enum admin {

 description

 "Site administrator.";

 }

 enum standard {

 description

 "Standard membership level.";

 }

 enum pro {

 description

 "Professional membership level.";

 }

 }

 mandatory true;

 description

 "The membership level for this member.";

 }

 leaf last-activity {

 type yang:date-and-time;

 description

 "Timestamp of member's last activity.";

 }

 }

 }

 }

 container audit-logs {

 config false;

 description

 "Audit log configuration";

 list audit-log {

 description

 "List of audit logs.";

 leaf timestamp {

 type yang:date-and-time;

 mandatory true;

 description

 "The timestamp for the event.";

 }

 leaf member-id {

 type string;

 mandatory true;

 description

 "The 'member-id' of the member.";

 }

 leaf source-ip {

 type inet:ip-address;

 mandatory true;

 description

 "The apparent IP address the member used.";

 }

 leaf request {

 type string;

 mandatory true;

 description

 "The member's request.";

 }

 leaf outcome {

 type boolean;

 mandatory true;

 description

 "Indicate if request was permitted.";

 }

 }

 }

}

¶

A.2. Example Data Set

The examples assume the server's operational state as follows.

The data is provided in JSON only for convenience and, in

particular, has no bearing on the "generic" nature of the tests

themselves.

¶

¶

{

 "example-social:members": {

 "member": [

 {

 "member-id": "bob",

 "email-address": "bob@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Here and now, like never before.",

 "posts": {

 "post": [

 {

 "timestamp": "2020-08-14T03:32:25Z",

 "body": "Just got in."

 },

 {

 "timestamp": "2020-08-14T03:33:55Z",

 "body": "What's new?"

 },

 {

 "timestamp": "2020-08-14T03:34:30Z",

 "body": "I'm bored..."

 }

]

 },

 "favorites": {

 "decimal64-numbers": ["3.14159", "2.71828"]

 },

 "stats": {

 "joined": "2020-08-14T03:30:00Z",

 "membership-level": "standard",

 "last-activity": "2020-08-14T03:34:30Z"

 }

 },

 {

 "member-id": "eric",

 "email-address": "eric@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Go to bed with dreams; wake up with a purpose.",

 "following": ["alice"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-09-17T18:02:04Z",

 "title": "Son, brother, husband, father",

 "body": "What's your story?"

 }

]

 },

 "favorites": {

 "bits": ["two", "one", "zero"]

 },

 "stats": {

 "joined": "2020-09-17T19:38:32Z",

 "membership-level": "pro",

 "last-activity": "2020-09-17T18:02:04Z"

 }

 },

 {

 "member-id": "alice",

 "email-address": "alice@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Every day is a new day",

 "privacy-settings": {

 "hide-network": false,

 "post-visibility": "public"

 },

 "following": ["bob", "eric", "lin"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-07-08T13:12:45Z",

 "title": "My first post",

 "body": "Hiya all!"

 },

 {

 "timestamp": "2020-07-09T01:32:23Z",

 "title": "Sleepy...",

 "body": "Catch y'all tomorrow."

 }

]

 },

 "favorites": {

 "uint8-numbers": [17, 13, 11, 7, 5, 3],

 "int8-numbers": [-5, -3, -1, 1, 3, 5]

 },

 "stats": {

 "joined": "2020-07-08T12:38:32Z",

 "membership-level": "admin",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 },

 {

 "member-id": "lin",

 "email-address": "lin@example.com",

 "password": "$0$1543",

 "privacy-settings": {

 "hide-network": true,

 "post-visibility": "followers-only"

 },

 "following": ["joe", "eric", "alice"],

 "stats": {

 "joined": "2020-07-09T12:38:32Z",

 "membership-level": "standard",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 },

 {

 "member-id": "joe",

 "email-address": "joe@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Greatness is measured by courage and heart.",

 "privacy-settings": {

 "post-visibility": "unlisted"

 },

 "following": ["bob"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-10-17T18:02:04Z",

 "body": "What's your status?"

 }

]

 },

 "stats": {

 "joined": "2020-10-08T12:38:32Z",

 "membership-level": "pro",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 }

]

 },

 "example-social:audit-logs": {

 "audit-log": [

 {

 "timestamp": "2020-10-11T06:47:59Z",

 "member-id": "alice",

 "source-ip": "192.168.0.92",

 "request": "POST /groups/group/2043",

 "outcome": true

 },

 {

 "timestamp": "2020-11-01T15:22:01Z",

 "member-id": "bob",

 "source-ip": "192.168.2.16",

 "request": "POST /groups/group/123",

 "outcome": false

 },

 {

 "timestamp": "2020-12-12T21:00:28Z",

 "member-id": "eric",

 "source-ip": "192.168.254.1",

 "request": "POST /groups/group/10",

 "outcome": true

 },

 {

 "timestamp": "2021-01-03T06:47:59Z",

 "member-id": "alice",

 "source-ip": "192.168.0.92",

 "request": "POST /groups/group/333",

 "outcome": true

 },

 {

 "timestamp": "2021-01-21T10:00:00Z",

 "member-id": "bob",

 "source-ip": "192.168.2.16",

 "request": "POST /groups/group/42",

 "outcome": true

 },

 {

 "timestamp": "2020-02-07T09:06:21Z",

 "member-id": "alice",

 "source-ip": "192.168.0.92",

 "request": "POST /groups/group/1202",

 "outcome": true

 },

 {

 "timestamp": "2020-02-28T02:48:11Z",

 "member-id": "bob",

 "source-ip": "192.168.2.16",

 "request": "POST /groups/group/345",

 "outcome": true

 }

]

 }

}

¶

A.3. Example Queries

The following sections are presented in reverse query-parameters

processing order. Starting with the simplest (limit) and ending with

the most complex (where).

All the vector tests are presented in a protocol-independent manner.

JSON is used only for its conciseness.

A.3.1. The "limit" Parameter

Noting that "limit" must be a positive number, the edge condition

values are '1', '2', num-elements-1, num-elements, and num-

elements+1.

If '0' were a valid limit value, it would always return an empty

result set. Any value greater than or equal to num-elements results

the entire result set, same as when "limit" is unspecified.

These vector tests assume the target "/example-social:members/

member=alice/favorites/uint8-numbers", which has six values, thus

the edge condition "limit" values are: '1', '2', '5', '6', and '7'.

A.3.1.1. limit=1

REQUEST

RESPONSE

A.3.1.2. limit=2

REQUEST

¶

¶

¶

¶

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 1

¶

¶

{

 "example-social:uint8-numbers": [17],

 "@example-social:uint8-numbers": [

 {

 "ietf-list-pagination:remaining": 5

 }

]

}

¶

¶

RESPONSE

A.3.1.3. limit=5

REQUEST

RESPONSE

A.3.1.4. limit=6

REQUEST

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 2

¶

¶

{

 "example-social:uint8-numbers": [17, 13],

 "@example-social:uint8-numbers": [

 {

 "ietf-list-pagination:remaining": 4

 }

]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 5

¶

¶

{

 "example-social:uint8-numbers": [17, 13, 11, 7, 5],

 "@example-social:uint8-numbers": [

 {

 "ietf-list-pagination:remaining": 1

 }

]

}

¶

¶

RESPONSE

A.3.1.5. limit=7

REQUEST

RESPONSE

A.3.2. The "offset" Parameter

Noting that "offset" must be an unsigned number less than or equal

to the num-elements, the edge condition values are '0', '1', '2',

num-elements-1, num-elements, and num-elements+1.

These vector tests again assume the target "/example-social:members/

member=alice/favorites/uint8-numbers", which has six values, thus

the edge condition "limit" values are: '0', '1', '2', '5', '6', and

'7'.

A.3.2.1. offset=0

REQUEST

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 6

¶

¶

{

 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 7

¶

¶

{

 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]

}

¶

¶

¶

¶

RESPONSE

A.3.2.2. offset=1

REQUEST

RESPONSE

A.3.2.3. offset=2

REQUEST

RESPONSE

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 0

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 1

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [13, 11, 7, 5, 3]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 2

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [11, 7, 5, 3]

}

¶

A.3.2.4. offset=5

REQUEST

RESPONSE

A.3.2.5. offset=6

REQUEST

RESPONSE

A.3.2.6. offset=7

REQUEST

RESPONSE

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 5

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [3]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 6

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": []

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: 7

 Limit: -

¶

¶

A.3.3. The "cursor" Parameter

Noting that "cursor" must be an base64 encoded opaque value which

addresses an element in a list.

The default value is empty, which is the same as supplying the

cursor value for the first element in the list.

These vector tests assume the target "/example-social:members/

member" which has five members.

Note that response has added attributes describing the result set

and position in pagination.

A.3.3.1. cursor=&limit=2

REQUEST

RESPONSE

ERROR¶

¶

¶

¶

¶

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 2

 Cursor: -

¶

¶

{

 "example-social:member": [

 {

 "member-id": "bob",

 "email-address": "bob@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Here and now, like never before.",

 "posts": {

 "post": [

 {

 "timestamp": "2020-08-14T03:32:25Z",

 "body": "Just got in."

 },

 {

 "timestamp": "2020-08-14T03:33:55Z",

 "body": "What's new?"

 },

 {

 "timestamp": "2020-08-14T03:34:30Z",

 "body": "I'm bored..."

 }

]

 },

 "favorites": {

 "decimal64-numbers": ["3.14159", "2.71828"]

 },

 "stats": {

 "joined": "2020-08-14T03:30:00Z",

 "membership-level": "standard",

 "last-activity": "2020-08-14T03:34:30Z"

 }

 },

 {

 "member-id": "eric",

 "email-address": "eric@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Go to bed with dreams; wake up with a purpose.",

 "following": ["alice"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-09-17T18:02:04Z",

 "title": "Son, brother, husband, father",

 "body": "What's your story?"

 }

]

 },

 "favorites": {

 "bits": ["two", "one", "zero"]

 },

 "stats": {

 "joined": "2020-09-17T19:38:32Z",

 "membership-level": "pro",

 "last-activity": "2020-09-17T18:02:04Z"

 }

 }

],

 "@example-social:member": [

 {

 "ietf-list-pagination:remaining": 3,

 "ietf-list-pagination:previous": "",

 "ietf-list-pagination:next": "YWxpY2U=" // alice

 }

]

}

¶

A.3.3.2. cursor="YWxpY2U="&limit=2

REQUEST

RESPONSE

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 2

 Cursor: YWxpY2U=

¶

¶

{

 "example-social:member": [

 {

 "member-id": "alice",

 "email-address": "alice@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Every day is a new day",

 "privacy-settings": {

 "hide-network": false,

 "post-visibility": "public"

 },

 "following": ["bob", "eric", "lin"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-07-08T13:12:45Z",

 "title": "My first post",

 "body": "Hiya all!"

 },

 {

 "timestamp": "2020-07-09T01:32:23Z",

 "title": "Sleepy...",

 "body": "Catch y'all tomorrow."

 }

]

 },

 "favorites": {

 "uint8-numbers": [17, 13, 11, 7, 5, 3],

 "int8-numbers": [-5, -3, -1, 1, 3, 5]

 },

 "stats": {

 "joined": "2020-07-08T12:38:32Z",

 "membership-level": "admin",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 },

 {

 "member-id": "lin",

 "email-address": "lin@example.com",

 "password": "$0$1543",

 "privacy-settings": {

 "hide-network": true,

 "post-visibility": "followers-only"

 },

 "following": ["joe", "eric", "alice"],

 "stats": {

 "joined": "2020-07-09T12:38:32Z",

 "membership-level": "standard",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 }

],

 "@example-social:member": [

 {

 "ietf-list-pagination:remaining": 1,

 "ietf-list-pagination:previous": "ZXJpYw==", // eric

 "ietf-list-pagination:next": "am9l" // joe

 }

]

}

¶

A.3.3.3. cursor="am9l"&limit=2

REQUEST

RESPONSE

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: 2

 Cursor: am9l

¶

¶

A.3.4. The "direction" Parameter

Noting that "direction" is an enumeration with two values, the edge

condition values are each defined enumeration.

The value "forwards" is sometimes known as the "default" value, as

it produces the same result set as when "direction" is unspecified.

These vector tests again assume the target "/example-social:members/

member=alice/favorites/uint8-numbers". The number of elements is

relevant to the edge condition values.

{

 "example-social:member": [

 {

 "member-id": "joe",

 "email-address": "joe@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Greatness is measured by courage and heart.",

 "privacy-settings": {

 "post-visibility": "unlisted"

 },

 "following": ["bob"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-10-17T18:02:04Z",

 "body": "What's your status?"

 }

]

 },

 "stats": {

 "joined": "2020-10-08T12:38:32Z",

 "membership-level": "pro",

 "last-activity": "2021-04-01T02:51:11Z"

 }

 }

],

 "@example-social:member": [

 {

 "ietf-list-pagination:remaining": 0,

 "ietf-list-pagination:previous": "bGlu", // lin

 "ietf-list-pagination:next": ""

 }

]

}

¶

¶

¶

¶

It is notable that "uint8-numbers" is an "ordered-by" user leaf-

list. Traversals are over the user-specified order, not the

numerically-sorted order, which is what the "sort-by" parameter

addresses. If this were an "ordered-by system" leaf-list, then the

traversals would be over the system-specified order, again not a

numerically-sorted order.

A.3.4.1. direction=forwards

REQUEST

RESPONSE

A.3.4.2. direction=backwards

REQUEST

RESPONSE

A.3.5. The "sort-by" Parameter

Noting that the "sort-by" parameter is a node identifier, there is

not so much "edge conditions" as there are "interesting conditions".

This section provides examples for some interesting conditions.

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: forwards

 Offset: -

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]

}

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: backwards

 Offset: -

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]

}

¶

¶

A.3.5.1. the target node's type

The section provides three examples, one for a "leaf-list" and two

for a "list", with one using a direct descendent and the other using

an indirect descendent.

A.3.5.1.1. type is a "leaf-list"

This example illustrates when the target node's type is a "leaf-

list". Note that a single period (i.e., '.') is used to represent

the nodes to be sorted.

This test again uses the target "/example-social:members/

member=alice/favorites/uint8-numbers", which is a leaf-list.

REQUEST

RESPONSE

A.3.5.1.2. type is a "list" and sort-by node is a direct descendent

This example illustrates when the target node's type is a "list" and

a direct descendent is the "sort-by" node.

This vector test uses the target "/example-social:members/member",

which is a "list", and the sort-by descendent node "member-id",

which is the "key" for the list.

REQUEST

¶

¶

¶

¶

Target: /example-social:members/member=alice/favorites/uint8-numbers

 Pagination Parameters:

 Where: -

 Sort-by: .

 Direction: -

 Offset: -

 Limit: -

¶

¶

{

 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]

}

¶

¶

¶

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: -

 Sort-by: member-id

 Direction: -

 Offset: -

 Limit: -

¶

RESPONSE

To make the example more understandable, an ellipse (i.e., "...") is

used to represent a missing subtree of data.

A.3.5.1.3. type is a "list" and sort-by node is an indirect descendent

This example illustrates when the target node's type is a "list" and

an indirect descendent is the "sort-by" node.

This vector test uses the target "/example-social:members/member",

which is a "list", and the sort-by descendent node "stats/joined",

which is a "config false" descendent leaf. Due to "joined" being a

"config false" node, this request would have to target the "member"

node in the <operational> datastore.

REQUEST

¶

¶

{

 "example-social:member": [

 {

 "member-id": "alice",

 ...

 },

 {

 "member-id": "bob",

 ...

 },

 {

 "member-id": "eric",

 ...

 },

 {

 "member-id": "joe",

 ...

 },

 {

 "member-id": "lin",

 ...

 }

]

}

¶

¶

¶

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: -

 Sort-by: stats/joined

 Direction: -

 Offset: -

 Limit: -

¶

RESPONSE

To make the example more understandable, an elipse (i.e., "...") is

used to represent a missing subtree of data.

A.3.5.2. handling missing entries

The section provides one example for when the "sort-by" node is not

present in the data set.

FIXME: need to finish this section...

A.3.6. The "where" Parameter

The "where" is an XPath 1.0 expression, there are numerous edge

conditions to consider, e.g., the types of the nodes that are

targeted by the expression.

A.3.6.1. match of leaf-list's values

FIXME

¶

¶

{

 "example-social:member": [

 {

 "member-id": "alice",

 ...

 },

 {

 "member-id": "lin",

 ...

 },

 {

 "member-id": "bob",

 ...

 },

 {

 "member-id": "eric",

 ...

 },

 {

 "member-id": "joe",

 ...

 }

]

}

¶

¶

¶

¶

¶

A.3.6.2. match on descendent string containing a substring

This example selects members that have an email address containing

"@example.com".

REQUEST

RESPONSE

To make the example more understandable, an elipse (i.e., "...") is

used to represent a missing subtree of data.

A.3.6.3. match on decendent timestamp starting with a substring

This example selects members that have a posting whose timestamp

begins with the string "2020".

¶

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: //.[contains (@email-address,'@example.com')]

 Sort-by: -

 Direction: -

 Offset: -

 Limit: -

¶

¶

¶

{

 "example-social:member": [

 {

 "member-id": "bob",

 ...

 },

 {

 "member-id": "eric",

 ...

 },

 {

 "member-id": "alice",

 ...

 },

 {

 "member-id": "joe",

 ...

 },

 {

 "member-id": "lin",

 ...

 }

]

}

¶

¶

REQUEST

RESPONSE

To make the example more understandable, an elipse (i.e., "...") is

used to represent a missing subtree of data.

A.3.7. The "sublist-limit" Parameter

The "sublist-limit" parameter may be used on any target node.

A.3.7.1. target is a list entry

This example uses the target node '/example-social:members/

member=alice' in the <intended> datastore.

The target node is a specific list entry/element node, not the YANG

"list" node.

This example sets the sublist-limit value '1', which returns just

the first entry for all descendent lists and leaf-lists.

¶

Target: /example-social:members/member

 Pagination Parameters:

 Where: //posts//post[starts-with(@timestamp,'2020')]

 Sort-by: -

 Direction: -

 Offset: -

 Limit: -

¶

¶

¶

{

 "example-social:member": [

 {

 "member-id": "bob",

 ...

 },

 {

 "member-id": "eric",

 ...

 },

 {

 "member-id": "alice",

 ...

 },

 {

 "member-id": "joe",

 ...

 }

]

}

¶

¶

¶

¶

¶

Note that, in the response, the "remaining" metadata value is set on

the first element of each descendent list and leaf-list having more

than one value.

REQUEST

RESPONSE

¶

¶

 Datastore: <intended>

 Target: /example-social:members/member=alice

 Sublist-limit: 1

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: -

¶

¶

{

 "example-social:member": [

 {

 "member-id": "alice",

 "email-address": "alice@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Every day is a new day",

 "privacy-settings": {

 "hide-network": "false",

 "post-visibility": "public"

 },

 "following": ["bob"],

 "@following": [

 {

 "ietf-list-pagination:remaining": "2"

 }

],

 "posts": {

 "post": [

 {

 "@": {

 "ietf-list-pagination:remaining": "1"

 },

 "timestamp": "2020-07-08T13:12:45Z",

 "title": "My first post",

 "body": "Hiya all!"

 }

]

 },

 "favorites": {

 "uint8-numbers": [17],

 "int8-numbers": [-5],

 "@uint8-numbers": [

 {

 "ietf-list-pagination:remaining": "5"

 }

],

 "@int8-numbers": [

 {

 "ietf-list-pagination:remaining": "5"

 }

]

 }

 }

]

}

¶

A.3.7.2. target is a datastore

This example uses the target node <intended>.

This example sets the sublist-limit value '1', which returns just

the first entry for all descendent lists and leaf-lists.

Note that, in the response, the "remaining" metadata value is set on

the first element of each descendent list and leaf-list having more

than one value.

REQUEST

RESPONSE

¶

¶

¶

¶

 Datastore: <intended>

 Target: /

 Sublist-limit: 1

 Pagination Parameters:

 Where: -

 Sort-by: -

 Direction: -

 Offset: -

 Limit: -

¶

¶

A.3.8. Combinations of Parameters

A.3.8.1. All six parameters at once

REQUEST

{

 "example-social:members": {

 "member": [

 {

 "@": {

 "ietf-list-pagination:remaining": "4"

 },

 "member-id": "bob",

 "email-address": "bob@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Here and now, like never before.",

 "posts": {

 "post": [

 {

 "@": {

 "ietf-list-pagination:remaining": "2"

 },

 "timestamp": "2020-08-14T03:32:25Z",

 "body": "Just got in."

 }

]

 },

 "favorites": {

 "decimal64-numbers": ["3.14159"],

 "@decimal64-numbers": [

 {

 "ietf-list-pagination:remaining": "1"

 }

]

 }

 }

]

 }

}

¶

¶

RESPONSE

 Datastore: <operational>

 Target: /example-social:members/member

 Sublist-limit: 1

 Pagination Parameters:

 Where: //stats//joined[starts-with(@timestamp,'2020')]

 Sort-by: member-id

 Direction: backwards

 Offset: 2

 Limit: 2

¶

¶

{

 "example-social:member": [

 {

 "@": {

 "ietf-list-pagination:remaining": "1"

 },

 "member-id": "eric",

 "email-address": "eric@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Go to bed with dreams; wake up with a purpose.",

 "following": ["alice"],

 "posts": {

 "post": [

 {

 "timestamp": "2020-09-17T18:02:04Z",

 "title": "Son, brother, husband, father",

 "body": "What's your story?"

 }

]

 },

 "favorites": {

 "bits": ["two"],

 "@bits": [

 {

 "ietf-list-pagination:remaining": "2"

 }

]

 },

 "stats": {

 "joined": "2020-09-17T19:38:32Z",

 "membership-level": "pro",

 "last-activity": "2020-09-17T18:02:04Z"

 }

 },

 {

 "member-id": "bob",

 "email-address": "bob@example.com",

 "password": "$0$1543",

 "avatar": "BASE64VALUE=",

 "tagline": "Here and now, like never before.",

 "posts": {

 "post": [

 {

 "@": {

 "ietf-list-pagination:remaining": "2"

 },

 "timestamp": "2020-08-14T03:32:25Z",

 "body": "Just got in."

 }

]

 },

 "favorites": {

 "decimal64-numbers": ["3.14159"],

 "@decimal64-numbers": [

 {

 "ietf-list-pagination:remaining": "1"

 }

]

 },

 "stats": {

 "joined": "2020-08-14T03:30:00Z",

 "membership-level": "standard",

 "last-activity": "2020-08-14T03:34:30Z"

 }

 }

 }

}

¶

Acknowledgements

The authors would like to thank the following for lively discussions

on list (ordered by first name): Andy Bierman, Martin Björklund, and

Robert Varga.

Authors' Addresses

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

Qin Wu

Huawei Technologies

Email: bill.wu@huawei.com

Olof Hagsand

Netgate

Email: olof@hagsand.se

Hongwei Li

Hewlett Packard Enterprise

Email: flycoolman@gmail.com

Per Andersson

Cisco Systems

Email: perander@cisco.com

¶

mailto:kent+ietf@watsen.net
mailto:bill.wu@huawei.com
mailto:olof@hagsand.se
mailto:flycoolman@gmail.com
mailto:perander@cisco.com

	List Pagination for YANG-driven Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Conventions
	1.3. Adherence to the NMDA

	2. Solution Overview
	3. Solution Details
	3.1. Query Parameters for a Targeted List or Leaf-List
	3.1.1. The "where" Query Parameter
	3.1.2. The "sort-by" Query Parameter
	3.1.3. The "direction" Query Parameter
	3.1.4. The "offset" Query Parameter
	3.1.5. The "cursor" Query Parameter
	3.1.6. The "limit" Query Parameter

	3.2. Query Parameter for Descendant Lists and Leaf-Lists
	3.2.1. The "sublist-limit" Query Parameter

	3.3. Constraints on "where" and "sort-by" for "config false" Lists
	3.3.1. Identifying Constrained "config false" Lists and Leaf-Lists
	3.3.2. Indicating the Constraints for "where" Filters and "sort-by" Expressions
	3.3.2.1. Indicating Filterable/Sortable Nodes

	4. The "ietf-list-pagination" Module
	4.1. Data Model Overview
	4.2. Example Usage
	4.2.1. Constraining a "config false" list
	4.2.2. Indicating number remaining in a limited list

	4.3. YANG Module

	5. IANA Considerations
	5.1. The "IETF XML" Registry
	5.2. The "YANG Module Names" Registry

	6. Security Considerations
	6.1. Regarding the "ietf-list-pagination" YANG Module

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Vector Tests
	A.1. Example YANG Module
	A.2. Example Data Set
	A.3. Example Queries
	A.3.1. The "limit" Parameter
	A.3.1.1. limit=1
	A.3.1.2. limit=2
	A.3.1.3. limit=5
	A.3.1.4. limit=6
	A.3.1.5. limit=7

	A.3.2. The "offset" Parameter
	A.3.2.1. offset=0
	A.3.2.2. offset=1
	A.3.2.3. offset=2
	A.3.2.4. offset=5
	A.3.2.5. offset=6
	A.3.2.6. offset=7

	A.3.3. The "cursor" Parameter
	A.3.3.1. cursor=&limit=2
	A.3.3.2. cursor="YWxpY2U="&limit=2
	A.3.3.3. cursor="am9l"&limit=2

	A.3.4. The "direction" Parameter
	A.3.4.1. direction=forwards
	A.3.4.2. direction=backwards

	A.3.5. The "sort-by" Parameter
	A.3.5.1. the target node's type
	A.3.5.1.1. type is a "leaf-list"
	A.3.5.1.2. type is a "list" and sort-by node is a direct descendent
	A.3.5.1.3. type is a "list" and sort-by node is an indirect descendent

	A.3.5.2. handling missing entries

	A.3.6. The "where" Parameter
	A.3.6.1. match of leaf-list's values
	A.3.6.2. match on descendent string containing a substring
	A.3.6.3. match on decendent timestamp starting with a substring

	A.3.7. The "sublist-limit" Parameter
	A.3.7.1. target is a list entry
	A.3.7.2. target is a datastore

	A.3.8. Combinations of Parameters
	A.3.8.1. All six parameters at once

	Acknowledgements
	Authors' Addresses

