Abstract

This document defines two YANG modules, one module to configure a NETCONF client and the other module to configure a NETCONF server. Both modules support both the SSH and TLS transport protocols, and support both standard NETCONF and NETCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

This draft contains many placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document.

This document contains references to other drafts in progress, both in the Normative References section, as well as in body text throughout. Please update the following references to reflect their final RFC assignments:

- draft-ietf-netconf-keystore
- draft-ietf-netconf-ssh-client-server
- draft-ietf-netconf-tls-client-server

Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements:

- "XXXX" --> the assigned RFC value for this draft
- "YYYY" --> the assigned RFC value for draft-ietf-netconf-ssh-client-server
- "ZZZZ" --> the assigned RFC value for draft-ietf-netconf-tls-client-server
Internet-Draft NETCONF Client and Server Models November 2016

o "AAAA" --> the assigned RFC value for draft-ietf-netconf-call-home

Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement:

o "2016-11-02" --> the publication date of this draft

The following two Appendix sections are to be removed prior to publication:

o Appendix A. Change Log

o Appendix B. Open Issues

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 7, 2017.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Internet-Draft NETCONF Client and Server Models November 2016

Table of Contents

1. Introduction ... 3
 1.1. Terminology ... 4
 1.2. Tree Diagrams .. 4
2. The NETCONF Client Model 4
 2.1. Tree Diagram ... 5
 2.2. Example Usage ... 6
 2.3. YANG Model ... 8
3. The NETCONF Server Model 14
 3.1. Tree Diagram ... 15
 3.2. Example Usage ... 17
 3.3. YANG Model ... 21
4. Design Considerations 31
 4.1. Support all NETCONF transports 31
 4.2. Enable each transport to select which keys to use 32
 4.3. Support authenticating NETCONF clients certificates ... 32
 4.4. Support mapping authenticated NETCONF client certificates
to usernames ... 32
 4.5. Support both listening for connections and call home ... 32
 4.6. For Call Home connections 32
 4.6.1. Support more than one NETCONF client 32
 4.6.2. Support NETCONF clients having more than one endpoint 33
 4.6.3. Support a reconnection strategy 33
 4.6.4. Support both persistent and periodic connections ... 33
 4.6.5. Reconnection strategy for periodic connections ... 33
 4.6.6. Keep-ales for persistent connections 33
 4.6.7. Customizations for periodic connections 34
5. Security Considerations 34
6. IANA Considerations 34
 6.1. The IETF XML Registry 34
 6.2. The YANG Module Names Registry 34
7. Acknowledgements ... 35
8. References .. 35
 8.1. Normative References 35
 8.2. Informative References 36
1. Introduction

This document defines two YANG [RFC6020] modules, one module to configure a NETCONF client and the other module to configure a NETCONF server. Both modules support both the SSH and TLS transport protocols, and support both standard NETCONF and NETCONF Call Home connections.

1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Tree Diagrams

A simplified graphical representation of the data models is used in this document. The meaning of the symbols in these diagrams is as follows:

- Brackets "[" and "]" enclose list keys.
- Braces "{" and "}" enclose feature names, and indicate that the named feature must be present for the subtree to be present.
- Abbreviations before data node names: "rw" means configuration (read-write) and "ro" state data (read-only).
- Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and leaf-list.
- Parentheses enclose choice and case nodes, and case nodes are also marked with a colon (":"),
2. The NETCONF Client Model

The NETCONF client model presented in this section supports both clients initiating connections to servers, as well as clients listening for connections from servers calling home.

This model supports both the SSH and TLS transport protocols, using the SSH client and TLS client groupings defined in [draft-ietf-netconf-ssh-client-server] and [draft-ietf-netconf-tls-client-server] respectively.

All private keys and trusted certificates are held in the keystore model defined in [draft-ietf-netconf-keystore].
trusted-certificates/name	++-rw trusted-server-certs? -> /ks:keystore																
		++-rw client-auth															
			+++-rw matches* [name]														
				+++-rw name string													
					+++-rw match* [name]												
							+++-rw name string										
							+++-rw trusted-ssh-host-keys? -> /ks:keystore/trusted-ssh-host-keys/name										
								++-rw trusted-ca-certs? -> /ks:keystore/trusted-certificates/name									
									++-rw trusted-server-certs? -> /ks:keystore/trusted-certificates/name								
										++-rw user-auth-credentials? -> /ks:keystore/user-auth-credentials/user-auth-credential/username							
											++-rw listen {listen}?						
												+++-rw max-sessions? uint16					
												+++-rw idle-timeout? uint16					
													+++-rw endpoint* [name]				
														+++-rw name string			
															+++-:(ssh) {ssh-listen}?		
																+++-rw ssh	
																	+++-rw address? inet:ip-address
																	+++-rw port? inet:port-number
																	+++-rw server-auth

2.2. Example Usage

The following example illustrates configuring a NETCONF client to initiate connections, using both the SSH and TLS transport protocols, as well as listening for call-home connections, again using both the SSH and TLS transport protocols.

This example is consistent with the examples presented in Section 2.2 of [draft-ietf-netconf-keystore].

```xml
<netconf-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-client">

<!-- NETCONF servers to initiate NETCONF connections to -->
<initiate>
  <netconf-server>
    <name>corp-fw1</name>
    <ssh>
      <address>corp-fw1.example.com</address>
      <server-auth>
        <trusted-server-certs>
          deployment-specific-ca-certs
        </trusted-server-certs>
      </server-auth>
      <client-auth>
        <matches>
          <match>
            <trusted-ca-certs>
              deployment-specific-ca-certs
            </trusted-ca-certs>
          </match>
        </matches>
      </client-auth>
    </ssh>
  </netconf-server>
</initiate>
</netconf-client>
```
<!-- endpoints to listen for NETCONF Call Home connections on -->
<listen>
 <endpoint>
 <name>Intranet-facing listener</name>
 <ssh>
 <address>11.22.33.44</address>
 <server-auth>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 <trusted-server-certs>
 explicitly-trusted-server-certs
 </trusted-server-certs>
 <trusted-ssh-host-keys>
 explicitly-trusted-ssh-host-keys
 </trusted-ssh-host-keys>
 </server-auth>
 <client-auth>
 <matches>
 <match>
 <trusted-ca-certs>
 deployment-specific-ca-certs
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 <matches>
 <match>
 <trusted-ca-certs>
 explicitly-trusted-server-certs
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 <matches>
 <match>
 <trusted-ca-certs>
 explicitly-trusted-ssh-host-keys
 </trusted-ca-certs>
 </match>
 <user-auth-credentials>admin</user-auth-credentials>
 </matches>
 </client-auth>
 </ssh>
 </endpoint>
</listen>
2.3. YANG Model

This YANG module imports YANG types from [RFC6991] and [RFC7407].

<CODE BEGINS> file "ietf-netconf-client@2016-11-02.yang"

module ietf-netconf-client {
 yang-version 1.1;

 prefix "ncc";

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991": Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407": A YANG Data Model for SNMP Configuration";
 }

 import ietf-ssh-client {
 prefix ss;
 revision-date 2016-11-02; // stable grouping definitions
 reference
 "RFC YYYY": SSH Client and Server Models";
 }

 // import ietf-tls-client {
 // prefix ts;
 // revision-date 2016-11-02; // stable grouping definitions
 // reference
 // "RFC ZZZZ": TLS Client and Server Models";
 // }

This module contains a collection of YANG definitions for configuring NETCONF servers.

Copyright (c) 2014 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices.

revision "2016-11-02" {
 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
}

// Features
feature initiate {
 description
 "The 'initiate' feature indicates that the NETCONF client supports initiating NETCONF connections to NETCONF servers using at least one transport (e.g., SSH, TLS, etc.).";
}

feature ssh-initiate {
 description
 "The 'ssh-initiate' feature indicates that the NETCONF client supports initiating SSH connections to NETCONF servers.";
 reference
 "RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
}

feature tls-initiate {
 description
 "The 'tls-initiate' feature indicates that the NETCONF client supports initiating TLS connections to NETCONF servers.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication";
}

feature listen {
 description
 "The 'listen' feature indicates that the NETCONF client supports opening a port to accept NETCONF server call home connections using at least one transport (e.g., SSH, TLS, etc.).";
}

feature ssh-listen {
 description
 "The 'ssh-listen' feature indicates that the NETCONF client supports opening a port to listen for incoming NETCONF server call-home SSH connections.";
 reference
 "RFC AAAA: NETCONF Call Home and RESTCONF Call Home";
}
feature tls-listen {
 description
 "The 'tls-listen' feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call-home TLS connections."
 reference
 "RFC AAAA: NETCONF Call Home and RESTCONF Call Home"
}

container netconf-client {
 description
 "Top-level container for NETCONF client configuration."
}

container initiate {
 if-feature initiate;
 description
 "Configures client initiating underlying TCP connections."
 list netconf-server {
 key name;
 description
 "List of NETCONF servers the NETCONF client is to initiate
 connections to."
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF server."
 }
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports."
 case ssh {
 if-feature ssh-initiate;
 container ssh {
 description
 "Specifies SSH-specific transport configuration."
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint. If
a hostname is configured and the DNS resolution results in more than one IP address, the NETCONF client will process the IP addresses as if they had been explicitly configured in place of the hostname.

leaf port {
 type inet:port-number;
 default 830;
 description
 "The IP port for this endpoint. The NETCONF client will use the IANA-assigned well-known port if no value is specified."

 uses ss:initiating-ssh-client-grouping;
}

container listen {
 if-feature listen;
description
 "Configures client accepting call-home TCP connections."
leaf max-sessions {
 type uint16;
default 0;
description
 "Specifies the maximum number of concurrent sessions
 that can be active at one time. The value 0 indicates
 that no artificial session limit should be used."
}
leaf idle-timeout {
 type uint16;
 units "seconds";
default 3600; // one hour
description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be dropped
 if it is idle for an interval longer than this number of
 seconds. If set to zero, then the server will never drop
 a session because it is idle. Sessions that have a
 notification subscription active are never dropped.";
}
list endpoint {
 key name;
description
 "List of endpoints to listen for NETCONF connections on."
leaf name {
 type string;
description
 "An arbitrary name for the NETCONF listen endpoint."
}
choice transport {
 mandatory true;
description
 "Selects between available transports."
case ssh {
 if-feature ssh-listen;
 container ssh {

description
"SSH-specific listening configuration for inbound
connections."
uses ss:listening-ssh-client-grouping {
refine port {
 default 4334;
}
}
}

/ *

case tls {
 if-feature tls-listen;
 container tls {
 description
"TLS-specific listening configuration for inbound
connections."
 uses ts:listening-tls-client-grouping {
 refine port {
 default 4335;
 }
 augment "client-auth" {
 description
"Augments in the cert-to-name structure.";
 uses cert-maps-grouping;
 }
 }
 }
} /*

grouping cert-maps-grouping {
 description
"A grouping that defines a container around the
cert-to-name structure defined in RFC 7407."
 container cert-maps {
 uses x509c2n:cert-to-name;
description
"The cert-maps container is used by a TLS-based NETCONF server to map the NETCONF client's presented X.509 certificate to a NETCONF username. If no matching and valid cert-to-name list entry can be found, then the NETCONF server MUST close the connection, and MUST NOT accept NETCONF messages over it."

reference
"RFC WWWW: NETCONF over TLS, Section 7";

}
}

<CODE ENDS>

3. The NETCONF Server Model

The NETCONF server model presented in this section supports servers both listening for connections as well as initiating call-home connections.

This model also supports both the SSH and TLS transport protocols, using the SSH server and TLS server groupings defined in [draft-ietf-netconf-ssh-client-server] and [draft-ietf-netconf-tls-client-server] respectively.

All private keys and trusted certificates are held in the keystore model defined in [draft-ietf-netconf-keystore].

YANG feature statements are used to enable implementations to advertise which parts of the model the NETCONF server supports.

3.1. Tree Diagram

Note: all lines are folded at column 71 with no '\ ' character.
module: ietf-netconf-server
 +--rw netconf-server
 +--rw session-options
 | +--rw hello-timeout? uint16
 +--rw listen {listen}?
 | +--rw max-sessions? uint16
 +--rw idle-timeout? uint16
 +--rw endpoint* [name]
 | +--rw name string
 +--rw (transport)
 +--:(ssh) {ssh-listen}?
 | +--rw ssh
 | +--rw address? inet:ip-address
 | +--rw port? inet:port-number
 +--rw host-keys
 | +--rw host-key* [name]
 | +--rw name string
 | +--rw (host-key-type)
 | +--:(public-key)
 | | +--rw public-key? -> /ks:keystore/private-keys/private-key/name
 | | +--:(certificate)
 | | +--rw certificate? -> /ks:keystore/private-keys/private-key/certificate-chains/certificate-chain/name {ssh-x509-certs}?
 | | +--rw client-cert-auth {ssh-x509-certs}?
 | | +--rw trusted-ca-certs? -> /ks:keystore/trusted-certificates/name
 | | +--rw trusted-client-certs? -> /ks:keystore/trusted-certificates/name
 | +--:(tls) {tls-listen}?
 | | +--rw tls
 | | +--rw address? inet:ip-address
 | | +--rw port? inet:port-number
 | +--rw certificates
 | | +--rw certificate* [name]
 | | | +--rw name -> /ks:keystore/private-keys/private-key/certificate-chains/certificate-chain/name
 | +--rw client-auth
 | +--rw trusted-ca-certs? -> /ks:keystore/trusted-certificates/name
 | +--rw trusted-client-certs? -> /ks:keystore/trusted-certificates/name
 +--rw cert-maps
3.2. Example Usage

The following example illustrates configuring a NETCONF server to listen for NETCONF client connections using both the SSH and TLS transport protocols, as well as configuring call-home to two NETCONF clients, one using SSH and the other using TLS.

This example is consistent with the examples presented in Section 2.2 of [draft-ietf-netconf-keystore].

```xml
<netconf-server xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server">
  <listen>
    <!-- listening for SSH connections -->
    <endpoint>
<name>netconf/ssh</name>
<ssh>
  <address>11.22.33.44</address>
  <host-keys>
    <host-key>
      <public-key>my-rsa-key</public-key>
    </host-key>
  </host-keys>
  <client-cert-auth>
    <trusted-ca-certs>
      deployment-specific-ca-certs
    </trusted-ca-certs>
    <trusted-client-certs>
      explicitly-trusted-client-certs
    </trusted-client-certs>
  </client-cert-auth>
</ssh>
</endpoint>

<!-- listening for TLS connections -->
<endpoint>
  <name>netconf/tls</name>
  <tls>
    <address>11.22.33.44</address>
    <certificates>
      <certificate>ex-key-sect571r1-cert</certificate>
    </certificates>
    <client-auth>
      <trusted-ca-certs>
        deployment-specific-ca-certs
      </trusted-ca-certs>
      <trusted-client-certs>
        explicitly-trusted-client-certs
      </trusted-client-certs>
      <cert-maps>
        <cert-to-name>
          <id>1</id>
          <fingerprint>11:0A:05:11:00</fingerprint>
        </cert-to-name>
      </cert-maps>
    </client-auth>
  </tls>
</endpoint>
<!-- calling home to an SSH-based NETCONF client -->
<netconf-client>
  <name>config-mgr</name>
  <ssh>
    <endpoints>
      <endpoint>
        <name>east-data-center</name>
        <address>11.22.33.44</address>
      </endpoint>
      <endpoint>
        <name>west-data-center</name>
        <address>55.66.77.88</address>
      </endpoint>
    </endpoints>
    <host-keys>
      <host-key>
        <certificate>TPM key</certificate>
      </host-key>
    </host-keys>
    <client-cert-auth>
      <trusted-ca-certs>
        deployment-specific-ca-certs
      </trusted-ca-certs>
      <trusted-client-certs>
        explicitly-trusted-client-certs
      </trusted-client-certs>
    </client-cert-auth>
  </ssh>
</netconf-client>
</client-cert-auth>
</ssh>
<connection-type>
<periodic>
<idle-timeout>300</idle-timeout>
<reconnect-timeout>60</reconnect-timeout>
</periodic>
</connection-type>
<reconnect-strategy>
<start-with>last-connected</start-with>
<max-attempts>3</max-attempts>
</reconnect-strategy>
</netconf-client>

<!-- calling home to a TLS-based NETCONF client -->
<netconf-client>
  <name>event-correlator</name>
  <tls>
    <endpoints>
      <endpoint>
        <name>east-data-center</name>
        <address>22.33.44.55</address>
      </endpoint>
      <endpoint>
        <name>west-data-center</name>
        <address>33.44.55.66</address>
      </endpoint>
    </endpoints>
    <certificates>
      <certificate>ex-key-sect571r1-cert</certificate>
    </certificates>
    <client-auth>
      <trusted-ca-certs>
        deployment-specific-ca-certs
      </trusted-ca-certs>
      <trusted-client-certs>
        explicitly-trusted-client-certs
      </trusted-client-certs>
      <cert-maps>
        <cert-to-name>
          <id>1</id>
        </cert-to-name>
      </cert-maps>
    </client-auth>
  </tls>
</netconf-client>
3.3. YANG Model

This YANG module imports YANG types from [RFC6991] and [RFC7407].

<CODE BEGINS> file "ietf-netconf-server@2016-11-02.yang"

module ietf-netconf-server {
    yang-version 1.1;

    namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
    prefix "ncs";
import ietf-inet-types {
    prefix inet;
    reference
        "RFC 6991: Common YANG Data Types";
}

import ietf-x509-cert-to-name {
    prefix x509c2n;
    reference
        "RFC 7407: A YANG Data Model for SNMP Configuration";
}

import ietf-ssh-server {
    prefix ss;
    revision-date 2016-11-02; // stable grouping definitions
    reference
        "RFC YYYY: SSH Client and Server Models";
}

import ietf-tls-server {
    prefix ts;
    revision-date 2016-11-02; // stable grouping definitions
    reference
        "RFC ZZZZ: TLS Client and Server Models";
}

organization
    "IETF NETCONF (Network Configuration) Working Group";

contact
    "WG Web:  <http://tools.ietf.org/wg/netconf/>
    WG List:  <mailto:netconf@ietf.org>
    
    WG Chair: Mehmet Ersue
              <mailto:mehmet.ersue@nsn.com>"
description
"This module contains a collection of YANG definitions for configuring NETCONF servers.

Copyright (c) 2014 IETF Trust and the persons identified as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."

revision "2016-11-02" {
  description
    "Initial version";
  reference
    "RFC XXXX: NETCONF Client and Server Models";
}

// Features

feature listen {
  description
    "The 'listen' feature indicates that the NETCONF server supports opening a port to accept NETCONF client connections using at least one transport (e.g., SSH, TLS, etc.).";
}

feature ssh-listen {
  description
    "The 'ssh-listen' feature indicates that the NETCONF server supports opening a port to accept NETCONF over SSH client connections.";
  reference
    "RFC 6242: Using the NETCONF Protocol over Secure Shell (SSH)";
}
feature tls-listen {
    description
    "The 'tls-listen' feature indicates that the NETCONF server supports opening a port to accept NETCONF over TLS client connections.";
    reference
    "RFC 7589": Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual X.509 Authentication";
}

feature call-home {
    description
    "The 'call-home' feature indicates that the NETCONF server supports initiating NETCONF call home connections to NETCONF clients using at least one transport (e.g., SSH, TLS, etc.).";
    reference
    "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}

feature ssh-call-home {
    description
    "The 'ssh-call-home' feature indicates that the NETCONF server supports initiating a NETCONF over SSH call home connection to NETCONF clients.";
    reference
    "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}

feature tls-call-home {
    description
    "The 'tls-call-home' feature indicates that the NETCONF server supports initiating a NETCONF over TLS call home connection to NETCONF clients.";
    reference
    "RFC YYYY: NETCONF Call Home and RESTCONF Call Home";
}

// top-level container (groupings below)
container netconf-server {
    description
    "Top-level container for NETCONF server configuration.";
    container session-options { // SHOULD WE REMOVE THIS ALTOGETHER?
        description
        "",";
    }
"NETCONF session options, independent of transport or connection strategy."
leaf hello-timeout {
  type uint16;
  units "seconds";
  default 600;
  description
  "Specifies the maximum number of seconds that a SSH/TLS connection may wait for a hello message to be received. A connection will be dropped if no hello message is received before this number of seconds elapses. If set to zero, then the server will wait forever for a hello message.";
}

container listen {
  if-feature listen;
  description
  "Configures listen behavior";
  leaf max-sessions {
    type uint16;
    default 0;
    description
    "Specifies the maximum number of concurrent sessions that can be active at one time. The value 0 indicates that no artificial session limit should be used.";
  }
  leaf idle-timeout {
    type uint16;
    units "seconds";
    default 3600; // one hour
    description
    "Specifies the maximum number of seconds that a NETCONF session may remain idle. A NETCONF session will be dropped if it is idle for an interval longer than this number of seconds. If set to zero, then the server will never drop a session because it is idle. Sessions that have a notification subscription active are never dropped.";
  }
  list endpoint {
    key name;
description
"List of endpoints to listen for NETCONF connections on."
leaf name {
  type string;
  description
  "An arbitrary name for the NETCONF listen endpoint."
}

choice transport {
  mandatory true;
  description
  "Selects between available transports."
  case ssh {
    if-feature ssh-listen;
    container ssh {
      description
      "SSH-specific listening configuration for inbound
      connections."
      uses ss:listening-ssh-server-grouping {
        refine port {
          default 830;
        }
      }
    }
  }
  case tls {
    if-feature tls-listen;
    container tls {
      description
      "TLS-specific listening configuration for inbound
      connections."
      uses ts:listening-tls-server-grouping {
        refine port {
          default 6513;
        }
      }
      augment "client-auth" {
        description
        "Augments in the cert-to-name structure."
        uses cert-maps-grouping;
      }
    }
  }
}
container call-home {
    if-feature call-home;
    description
        "Configures call-home behavior";
    list netconf-client {
        key name;
        description
            "List of NETCONF clients the NETCONF server is to initiate call-home connections to.";
        leaf name {
            type string;
            description
                "An arbitrary name for the remote NETCONF client.";
        }
    choice transport {
        mandatory true;
        description
            "Selects between available transports.";
        case ssh {
            if-feature ssh-call-home;
            container ssh {
                description
                    "Specifies SSH-specific call-home transport configuration.";
                uses endpoints-container {
                    refine endpoints/endpoint/port {
                        default 4334;
                    }
                }
                uses ss:non-listening-ssh-server-grouping;
            }
        }
        case tls {
            if-feature tls-call-home;
            container tls {
                description
            }
        }
    }
}
"Specifies TLS-specific call-home transport configuration.":

uses endpoints-container {
    refine endpoints/endpoint/port {
        default 4335;
    }
}

uses ts:non-listening-tls-server-grouping {
    augment "client-auth" {
        description
            "Augments in the cert-to-name structure.";
        uses cert-maps-grouping;
    }
}

carrier connection-type {
    description
        "Indicates the kind of connection to use.";
}

choice connection-type {
    description
        "Selects between available connection types.";
    case persistent-connection {
        container persistent {
            presence true;
            description
                "Maintain a persistent connection to the NETCONF client. If the connection goes down, immediately start trying to reconnect to it, using the reconnection strategy."
            leaf idle-timeout {
                type uint32;
                units "seconds";
                default 86400; // one day;
                description
                    "Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF session will be dropped if it is idle for an interval longer than this number of seconds. If set to zero, then the server will never drop a session because it is idle. Sessions that have a notification subscription active are never dropped.

} container keep-alives {
  description
  "Configures the keep-alive policy, to proactively test the aliveness of the SSH/TLS client. An unresponsive SSH/TLS client will be dropped after approximately \text{max-attempts} \times \text{max-wait} \text{ seconds.}";
  reference
  "RFC YYYY: NETCONF Call Home and RESTCONF Call Home, Section 3.1, item S6";
  leaf max-wait {
    type uint16 {
      range "1..\text{max}";
    }
    units seconds;
    default 30;
    description
    "Sets the amount of time in seconds after which if no data has been received from the SSH/TLS client, a SSH/TLS-level message will be sent to test the aliveness of the SSH/TLS client.";
  }
  leaf max-attempts {
    type uint8;
    default 3;
    description
    "Sets the maximum number of sequential keep-alive messages that can fail to obtain a response from the SSH/TLS client before assuming the SSH/TLS client is no longer alive."
  }
}
case periodic-connection {
  container periodic {
    presence true;
    description
    "Periodically connect to the NETCONF client, so that
the NETCONF client may deliver messages pending for
the NETCONF server. The NETCONF client must close
the connection when it is ready to release it. Once
the connection has been closed, the NETCONF server
will restart its timer until the next connection."
  leaf idle-timeout {
    type uint16;
    units "seconds";
    default 300; // five minutes
    description
    "Specifies the maximum number of seconds that a
a NETCONF session may remain idle. A NETCONF
session will be dropped if it is idle for an
interval longer than this number of seconds.
If set to zero, then the server will never drop
a session because it is idle. Sessions that
have a notification subscription active are
never dropped.";
  }
  leaf reconnect_timeout {
    type uint16 {
      range "1..max";
    }
    units minutes;
    default 60;
    description
    "Sets the maximum amount of unconnected time the
NETCONF server will wait before re-establishing
a connection to the NETCONF client. The NETCONF
server may initiate a connection before this
time if desired (e.g., to deliver an event
notification message)."
  }
}
}
container reconnect-strategy {
  description
  "The reconnection strategy directs how a NETCONF server reconnects to a NETCONF client, after discovering its connection to the client has dropped, even if due to a reboot. The NETCONF server starts with the specified endpoint and tries to connect to it max-attempts times before trying the next endpoint in the list (round robin).";
  leaf start-with {
    type enumeration {
      enum first-listed {
        description
        "Indicates that reconnections should start with the first endpoint listed.";
      }
      enum last-connected {
        description
        "Indicates that reconnections should start with the endpoint last connected to. If no previous connection has ever been established, then the first endpoint configured is used. NETCONF servers SHOULD be able to remember the last endpoint connected to across reboots.";
      }
    }
    default first-listed;
    description
    "Specifies which of the NETCONF client's endpoints the NETCONF server should start with when trying to connect to the NETCONF client.";
  }
  leaf max-attempts {
    type uint8 {
      range "1..max";
    }
    default 3;
    description
    "Specifies the number times the NETCONF server tries to connect to a specific endpoint before moving on to the
grouping cert-maps-grouping {
    description "A grouping that defines a container around the cert-to-name structure defined in RFC 7407.";
    container cert-maps {
        uses x509c2n:cert-to-name;
        description "The cert-maps container is used by a TLS-based NETCONF server to map the NETCONF client's presented X.509 certificate to a NETCONF username. If no matching and valid cert-to-name list entry can be found, then the NETCONF server MUST close the connection, and MUST NOT accept NETCONF messages over it.";
        reference "RFC WWWW: NETCONF over TLS, Section 7";
    }
}

grouping endpoints-container {
    description "This grouping is used by both the ssh and tls containers for call-home configurations.";
    container endpoints {
        description "Container for the list of endpoints.";
        list endpoint {
            key name;
            min-elements 1;
            ordered-by user;
            description "User-ordered list of endpoints for this NETCONF client. Defining more than one enables high-availability.";
            leaf name {
                type string;
                description "An arbitrary name for this endpoint.";
            }
            leaf address {
                type inet:host;
            }
        }
    }
}
mandatory true;
description
  "The IP address or hostname of the endpoint. If a
  hostname is configured and the DNS resolution results
  in more than one IP address, the NETCONF server
  will process the IP addresses as if they had been
  explicitly configured in place of the hostname."
}]
leaf port {
  type inet:port-number;
  description
  "The IP port for this endpoint. The NETCONF server will
  use the IANA-assigned well-known port if no value is
  specified.";
}

<CODE ENDS>

4. Design Considerations

Editorial: this section is a hold over from before, previously called "Objectives". It was only written two support the "server" (not the "client"). The question is if it's better to add the missing "client" parts, or remove this section altogether.

The primary purpose of the YANG modules defined herein is to enable the configuration of the NETCONF client and servers. This scope includes the following objectives:

4.1. Support all NETCONF transports

The YANG module should support all current NETCONF transports, namely NETCONF over SSH [RFC6242], NETCONF over TLS [RFC7589], and to be extensible to support future transports as necessary.

Because implementations may not support all transports, the modules should use YANG "feature" statements so that implementations can
accurately advertise which transports are supported.

4.2. Enable each transport to select which keys to use

Servers may have a multiplicity of host-keys or server-certificates from which subsets may be selected for specific uses. For instance, a NETCONF server may want to use one set of SSH host-keys when listening on port 830, and a different set of SSH host-keys when calling home. The data models provided herein should enable configuration of which keys to use on a per-use basis.

4.3. Support authenticating NETCONF clients certificates

When a certificate is used to authenticate a NETCONF client, there is a need to configure the server to know how to authenticate the certificates. The server should be able to authenticate the client's certificate either by using path-validation to a configured trust anchor or by matching the client-certificate to one previously configured.

4.4. Support mapping authenticated NETCONF client certificates to usernames

When a client certificate is used for TLS client authentication, the NETCONF server must be able to derive a username from the authenticated certificate. Thus the modules defined herein should enable this mapping to be configured.

4.5. Support both listening for connections and call home

The NETCONF protocols were originally defined as having the server opening a port to listen for client connections. More recently the NETCONF working group defined support for call-home ([draft-ietf-netconf-call-home]), enabling the server to initiate the connection to the client. Thus the modules defined herein should enable configuration for both listening for connections and calling home. Because implementations may not support both listening for connections and calling home, YANG "feature" statements should be
used so that implementation can accurately advertise the connection
types it supports.

4.6. For Call Home connections

The following objectives only pertain to call home connections.

4.6.1. Support more than one NETCONF client

A NETCONF server may be managed by more than one NETCONF client. For
instance, a deployment may have one client for provisioning and
another for fault monitoring. Therefore, when it is desired for a

server to initiate call home connections, it should be able to do so
to more than one client.

4.6.2. Support NETCONF clients having more than one endpoint

A NETCONF client managing a NETCONF server may implement a high-
availability strategy employing a multiplicity of active and/or
passive endpoint. Therefore, when it is desired for a server to
initiate call home connections, it should be able to connect to any
of the client's endpoints.

4.6.3. Support a reconnection strategy

Assuming a NETCONF client has more than one endpoint, then it becomes
necessary to configure how a NETCONF server should reconnect to the
client should it lose its connection to one the client's endpoints.
For instance, the NETCONF server may start with first endpoint
defined in a user-ordered list of endpoints or with the last
endpoints it was connected to.

4.6.4. Support both persistent and periodic connections

NETCONF clients may vary greatly on how frequently they need to
interact with a NETCONF server, how responsive interactions need to
be, and how many simultaneous connections they can support. Some
clients may need a persistent connection to servers to optimize real-
time interactions, while others prefer periodic interactions in order
to minimize resource requirements. Therefore, when it is necessary
for server to initiate connections, it should be configurable if the
connection is persistent or periodic.

4.6.5. Reconnection strategy for periodic connections

The reconnection strategy should apply to both persistent and periodic connections. How it applies to periodic connections becomes clear when considering that a periodic "connection" is a logical connection to a single server. That is, the periods of unconnectedness are intentional as opposed to due to external reasons. A periodic "connection" should always reconnect to the same server until it is no longer able to, at which time the reconnection strategy guides how to connect to another server.

4.6.6. Keep-alives for persistent connections

If a persistent connection is desired, it is the responsibility of the connection initiator to actively test the "aliveness" of the connection. The connection initiator must immediately work to reestablish a persistent connection as soon as the connection is lost. How often the connection should be tested is driven by NETCONF client requirements, and therefore keep-alive settings should be configurable on a per-client basis.

4.6.7. Customizations for periodic connections

If a periodic connection is desired, it is necessary for the NETCONF server to know how often it should connect. This frequency determines the maximum amount of time a NETCONF client may have to wait to send data to a server. A server may connect to a client before this interval expires if desired (e.g., to send data to a client).

5. Security Considerations

A denial of service (DoS) attack MAY occur if the NETCONF server limits the maximum number of NETCONF sessions it will accept (i.e. the 'max-sessions' field in the ietf-netconf-server module is not zero) and either the "hello-timeout" or "idle-timeout" fields in ietf-netconf-server module have been set to indicate the NETCONF server should wait forever (i.e. set to zero).
6. IANA Considerations

6.1. The IETF XML Registry

This document registers two URIs in the IETF XML registry [RFC2119]. Following the format in [RFC3688], the following registrations are requested:

Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

6.2. The YANG Module Names Registry

This document registers two YANG modules in the YANG Module Names registry [RFC6020]. Following the format in [RFC6020], the following registrations are requested:

name: ietf-netconf-client
prefix: ncc
reference: RFC XXXX

name: ietf-netconf-server
prefix: ncs
reference: RFC XXXX

7. Acknowledgements

The authors would like to thank for following for lively discussions on list and in the halls (ordered by last name): Andy Bierman, Martin Bjorklund, Benoit Claise, Mehmet Ersue, David Lamparter, Alan Luchuk,
8. References

8.1. Normative References

[draft-ietf-netconf-keystore]
Watsen, K., "Keystore Model", draft-ietf-netconf-keystore-00 (work in progress), 2016,

[draft-ietf-netconf-ssh-client-server]
Watsen, K., "SSH Client and Server Models", draft-ietf-netconf-ssh-client-server-00 (work in progress), 2016,

[draft-ietf-netconf-tls-client-server]
Watsen, K., "TLS Client and Server Models", draft-ietf-netconf-tls-client-server-00 (work in progress), 2016,

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,


Internet-Draft NETCONF Client and Server Models November 2016

DOI 10.17487/RFC6020, October 2010,

DOI 10.17487/RFC6241, June 2011,
8.2. Informative References

[draft-ietf-netconf-call-home]


Appendix A.  Change Log

A.1.  server-model-09 to 00

  o  This draft was split out from draft-ietf-netconf-server-model-09.

  o  Added in previously missing ietf-netconf-client module.

  o  Added in new features 'listen' and 'call-home' so future
     transports can be augmented in.

Appendix B.  Open Issues

  Please see:  https://github.com/netconf-wg/netconf-client-server/
               issues.

Authors' Addresses

Kent Watsen
Juniper Networks

EMail: kwatsen@juniper.net

Gary Wu
Cisco Networks

EMail: garywu@cisco.com

Juergen Schoenwaelder
Jacobs University Bremen

EMail: j.schoenwaelder@jacobs-university.de