
Network Working Group R. Enns, Editor
Internet-Draft Juniper Networks
Expires: April 24, 2005 October 24, 2004

NETCONF Configuration Protocol
draft-ietf-netconf-prot-04

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 24, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

 The NETCONF configuration protocol defined in this document provides
 mechanisms to install, manipulate, and delete the configuration of
 network devices. It uses an XML-based data encoding for the
 configuration data as well as the protocol messages. The NETCONF
 protocol operations are realized on top of a simple RPC layer.

 Please send comments to netconf@ops.ietf.org. To subscribe, use
 netconf-request@ops.ietf.org.

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Enns, Editor Expires April 24, 2005 [Page 1]

Internet-Draft NETCONF Protocol October 2004

Table of Contents

1. Introduction . 5
1.1 Protocol Overview . 6
1.2 Capabilities . 7
1.3 Separation of Configuration and State Data 7

2. Application Protocol Requirements 8
2.1 Connection-oriented operation 8
2.2 Security and Privacy 9
2.3 Authentication . 9

3. XML Considerations . 9
3.1 Namespace . 10
3.2 No DTDs . 10

4. RPC Model . 10
4.1 <rpc> Element . 10
4.2 <rpc-reply> Element 11
4.3 <rpc-error> Element 12
4.4 <ok> Element . 13
4.5 Pipelining . 14

5. Configuration Model . 14
5.1 Configuration Datastores 14

6. Subtree Filtering . 14
6.1 Overview . 14
6.2 Subtree filter components 15
6.3 Attribute Match Expressions 16
6.4 Containment Nodes . 16
6.5 Content Match Nodes 16
6.6 Selection Nodes . 17
6.7 Subtree Filter Processing 17
6.8 Subtree Filtering Examples 18
6.8.1 No filter . 18
6.8.2 Empty filter . 18
6.8.3 Select the entire <users> subtree 19

 6.8.4 Select all <name> elements within the <users>
 subtree . 20

6.8.5 One specific <user> entry 21
6.8.6 Specific elements from a specific <user> entry 22
6.8.7 Multiple Subtrees 23
6.8.8 Table with attribute naming 25

7. Protocol Operations . 26
7.1 <get-config> . 27
7.2 <edit-config> . 28
7.3 <copy-config> . 34
7.4 <delete-config> . 35
7.5 <lock> . 36
7.6 <unlock> . 39
7.7 <get> . 40
7.8 <close-session> . 42

Enns, Editor Expires April 24, 2005 [Page 2]

Internet-Draft NETCONF Protocol October 2004

7.9 <kill-session> . 43
8. Capabilities . 44
8.1 Capabilities Exchange 44
8.2 Writable-Running Capability 45
8.2.1 Description . 45
8.2.2 Dependencies . 45
8.2.3 Capability and Namespace 45
8.2.4 New Operations . 46
8.2.5 Modifications to Existing Operations 46

8.3 Candidate Configuration Capability 46
8.3.1 Description . 46
8.3.2 Dependencies . 47
8.3.3 Capability and Namespace 47
8.3.4 New Operations . 47
8.3.5 Modifications to Existing Operations 48

8.4 Confirmed Commit Capability 49
8.4.1 Description . 49
8.4.2 Dependencies . 49
8.4.3 Capability and Namespace 49
8.4.4 New Operations . 49
8.4.5 Modifications to Existing Operations 50

8.5 Rollback on Error Capability 50
8.5.1 Description . 50
8.5.2 Dependencies . 51
8.5.3 Capability and Namespace 51
8.5.4 New Operations . 51
8.5.5 Modifications to Existing Operations 51

8.6 Validate Capability 52
8.6.1 Description . 52
8.6.2 Dependencies . 52
8.6.3 Capability and Namespace 52
8.6.4 New Operations . 52

8.7 Distinct Startup Capability 53
8.7.1 Description . 53
8.7.2 Dependencies . 53
8.7.3 Capability and Namespace 53
8.7.4 New Operations . 54
8.7.5 Modifications to Existing Operations 54

8.8 URL Capability . 54
8.8.1 Description . 54
8.8.2 Dependencies . 54
8.8.3 Capability and Namespace 54
8.8.4 New Operations . 55
8.8.5 Modifications to Existing Operations 55

8.9 XPATH Capability . 55
8.9.1 Description . 55
8.9.2 Dependencies . 55
8.9.3 Capability and Namespace 56

Enns, Editor Expires April 24, 2005 [Page 3]

Internet-Draft NETCONF Protocol October 2004

8.9.4 New Operations . 56
8.9.5 Modifications to Existing Operations 56

9. Security Considerations 56
10. IANA Considerations . 58
11. Authors and Acknowledgements 58
12. References . 59
12.1 Normative References . 59
12.2 Informative References 59

 Author's Address . 60
A. NETCONF Error List . 60
B. XML Schema for NETCONF RPC and Protocol Operations 63
C. Capability Template . 71
C.1 capability-name (template) 71
C.1.1 Overview . 71
C.1.2 Dependencies . 71
C.1.3 Capability and Namespace 71
C.1.4 New Operations . 71
C.1.5 Modifications to Existing Operations 71
C.1.6 Interactions with Other Capabilities 72

D. Configuring Multiple Devices with NETCONF 72
D.1 Operations on Individual Devices 72
D.1.1 Acquiring the Configuration Lock 72
D.1.2 Loading the Update 73
D.1.3 Validating the Incoming Configuration 74
D.1.4 Checkpointing the Running Configuration 74
D.1.5 Changing the Running Configuration 75
D.1.6 Testing the New Configuration 76
D.1.7 Making the Change Permanent 76
D.1.8 Releasing the Configuration Lock 77

D.2 Operations on Multiple Devices 77
E. Change Log . 78
E.1 draft-ietf-netconf-prot-04 78
E.2 draft-ietf-netconf-prot-03 79
E.3 draft-ietf-netconf-prot-02 80

 Intellectual Property and Copyright Statements 82

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-04
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-03
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-02

Enns, Editor Expires April 24, 2005 [Page 4]

Internet-Draft NETCONF Protocol October 2004

1. Introduction

 The NETCONF protocol defines a simple mechanism through which a
 network device can be managed, configuration data and system state
 information can be retrieved, and new configuration data can be
 uploaded and manipulated. The protocol allows the device to expose a
 full, formal, application programming interface (API). Applications
 can use this straight-forward API to send and receive full and
 partial configuration data sets.

 NETCONF uses a remote procedure call (RPC) paradigm to define a
 formal API for the network device. A client encodes an RPC in XML
 [1] and sends it to a server using a secure, connection-oriented
 session. The server responds with a reply encoded in XML. The
 contents of both the request and the response are fully described in
 XML DTDs or XML schemas, or both, allowing both parties to recognize
 the syntax constraints imposed on the exchange.

 A key aspect of NETCONF is that it allows the functionality of the
 API to closely mirror the native functionality of the device. This
 reduces implementation costs and allows timely access to new
 features. In addition, applications can access both the syntactic
 and semantic content of the device's native user interface.

 NETCONF allows a client to discover the set of protocol extensions
 supported by the server. These "capabilities" permit the client to
 adjust its behavior to take advantage of the features exposed by the
 device. The capability definitions can be easily extended in a
 noncentralized manner. Standard and vendor-specific capabilities can
 be defined with semantic and syntactic rigor. Capabilities are
 discussed in Section 8.

 The NETCONF protocol is a building block in a system of automated
 configuration. XML is the lingua franca of interchange, providing a
 flexible but fully specified encoding mechanism for hierarchical
 content. NETCONF can be used in concert with XML-based
 transformation technologies such as XSLT [8] to provide a system for
 automated generation of full and partial configurations. The system
 can query one or more databases for data about networking topologies,
 links, policies, customers, and services. This data can be
 transformed using one or more XSLT scripts from a vendor-independent
 data schema into a form that is specific to the vendor, product,
 operating system, and software release. The resulting data can be
 passed to the device using the NETCONF protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

https://datatracker.ietf.org/doc/html/rfc2119

Enns, Editor Expires April 24, 2005 [Page 5]

Internet-Draft NETCONF Protocol October 2004

1.1 Protocol Overview

 NETCONF uses a simple RPC-based mechanism to facilitate communication
 between a client and a server. The client is a script or application
 typically running as part of a network manager. The server is a
 network device. The terms "device" and "server" are used
 interchangeably in this document, as are "client" and "application".

 A NETCONF session is the logical connection between a network
 administrator or network configuration application and a network
 device. A device MUST support at least one NETCONF session, and MAY
 support more than one. Global configuration attributes can be
 changed during any session, and the affects are visible in all
 sessions. Session-specific attributes affect only the session in
 which they are changed.

 NETCONF can be conceptually partitioned into four layers:

 Layer Example
 +-------------+ +-----------------------------+
 | Content | | Configuration data |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | Operations | | <get-config>, <edit-config> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | RPC | | <rpc>, <rpc-reply> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 | Application | | BEEP, SSH, SSL, console |
 | Protocol | | |
 +-------------+ +-----------------------------+

 1. The application protocol layer provides a communication path
 between the client and server. NETCONF can be layered over any
 application protocol that provides a set of basic requirements.

Section 2 discusses these requirements.

 2. The RPC layer provides a simple, transport-independent framing
 mechanism for encoding RPCs. Section 4 documents this protocol.

 3. The operations layer defines a set of base operations invoked as
 RPC methods with XML-encoded parameters. Section 7 details the
 list of base operations.

Enns, Editor Expires April 24, 2005 [Page 6]

Internet-Draft NETCONF Protocol October 2004

 4. The content layer is outside the scope of this document. Given
 the current proprietary nature of the configuration data being
 manipulated, the specification of this content depends on the
 device vendor. It is expected that a separate effort to specify
 a standard data definition language and standard content will be
 undertaken.

1.2 Capabilities

 A NETCONF capability is a set of functionality that supplements the
 base NETCONF specification. The capability is identified by a
 uniform resource identifier (URI). These URIs should follow the
 guidelines as described in Section 8.

 Capabilities augment the base operations of the device, describing
 both additional operations and the content allowed inside operations.
 The client can discover the server's capabilities and use any
 additional operations, parameters, and content defined by those
 capabilities.

 The capability definition may name one or more dependent
 capabilities. These capabilities must be implemented before the
 first capability can function properly. To support a capability, the
 server MUST support any capabilities upon which it depends.

Section 8 defines the capabilities exchange that allows the client to
 discover the server's capabilities. Section 8 also lists the set of
 capabilities defined in this document.

 Additional capabilities can be defined at any time in external
 documents, allowing the set of capabilities to expand over time.
 Standards bodies may define standardized capabilities and vendors may
 define proprietary ones. The capability URI MUST sufficiently
 distinguish the naming authority to avoid naming collisions.

1.3 Separation of Configuration and State Data

 The information that can be retrieved from a running system is
 separated into two classes, configuration data and state data.
 Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. State data is the additional data on a system that is not
 configuration data such as read-only status information and collected
 statistics. When a device is performing configuration operations a
 number of problems would arise if state data were included:

 o Comparisons of configuration files would be dominated by

Enns, Editor Expires April 24, 2005 [Page 7]

Internet-Draft NETCONF Protocol October 2004

 irrelevant entries such as different statistics.

 o A command to load the file would contain nonsensical commands such
 as commands to write read-only data.

 o The configuration file would be too large.

 To account for these issues, the NETCONF protocol recognizes the
 difference between configuration data and state data and provides
 commands that operate on each independently. The <get-config>
 command retrieves configuration data only while the <get> command
 retrieves configuration and state data.

 Note that the NETCONF protocol is concerned only with information
 required to get the system software into its desired running state.
 Other important persistent data such as user files and databases are
 not treated as configuration data by the NETCONF protocol.
 Similarly, the collection of configuration files stored on a system
 (for example, the configuration files themselves) is not itself
 included in configuration data.

 If a local database of user authentication data is stored on the
 device, whether it is included in configuration data is an
 implementation dependent matter.

2. Application Protocol Requirements

 NETCONF uses an RPC-based communication paradigm. A client sends a
 series of one or more RPC request operations, which cause the server
 to respond with a corresponding series of RPC replies.

 The NETCONF protocol can be layered on any application protocol that
 provides the required set of functionality. It is not bound to any
 particular application protocol, but allows a mapping to define how
 it can be implemented over any specific protocol.

 The application protocol MUST provide a mechanism to indicate the
 session type (manager or agent) to the NETCONF protocol layer.

 This section details the characteristics that NETCONF requires from
 the underlying application protocol.

2.1 Connection-oriented operation

 NETCONF is connection-oriented, requiring a persistent connection
 between peers. This connection must provide reliable, sequenced data
 delivery.

Enns, Editor Expires April 24, 2005 [Page 8]

Internet-Draft NETCONF Protocol October 2004

 NETCONF connections are long-lived, persisting between protocol
 operations. This allows the client to make changes to the state of
 the connection that will persist for the lifetime of the connection.
 For example, authentication information specified for a connection
 remains in effect until the connection is closed.

 In addition, resources requested from the server for a particular
 connection MUST be automatically released when the connection closes,
 making failure recovery simpler and more robust. For example, when a
 lock is acquired by a peer, the lock persists until either explicitly
 released or the server determines that the connection has been
 terminated. If a connection is terminated while the client holds a
 lock, the server can perform any appropriate recovery. The lock
 operation is further discussed in Section 7.5

2.2 Security and Privacy

 NETCONF connections must provide authentication, data integrity, and
 privacy. NETCONF depends on the application protocol for this
 capability. A NETCONF peer assumes that an appropriate level of
 security and privacy are provided independent of this document. For
 example, connections may be encrypted in TLS [5] or SSH [12],
 depending on the underlying protocol.

2.3 Authentication

 NETCONF connections must be authenticated. The application protocol
 is responsible for authentication. The peer assumes that the
 connection's authentication information has been validated by the
 underlying protocol using sufficiently trustworthy mechanisms and
 that the peer's entity can be trusted.

 One goal of NETCONF is to provide a programmatic interface to the
 device that closely follows the functionality of the device's native
 interface. Therefore, it is expected that the underlying protocol
 uses existing authentication mechanisms defined by the device. For
 example, a device that supports RADIUS [6] should use RADIUS to
 authenticate NETCONF sessions.

 The authentication process should result in an entity whose
 permissions and capabilities are known to the device. These
 permissions must be enforced during the NETCONF session.

3. XML Considerations

 XML serves as the encoding format for NETCONF, allowing complex
 hierarchical data to be expressed in a text format that can be read,
 saved, and manipulated with both traditional text tools and tools

Enns, Editor Expires April 24, 2005 [Page 9]

Internet-Draft NETCONF Protocol October 2004

 specific to XML.

 This section discusses a small number of XML-related considerations
 pertaining to NETCONF.

3.1 Namespace

 All NETCONF protocol elements are defined in the following namespace:

 urn:ietf:params:xml:ns:netconf:base:1.0

3.2 No DTDs

 Document type declarations (DTDs) are not permitted to appear in
 NETCONF content.

4. RPC Model

 The NETCONF protocol uses an RPC-based communication model. NETCONF
 peers use <rpc> and <rpc-reply> elements to provide application
 protocol-independent framing of NETCONF requests and responses.

4.1 <rpc> Element

 The <rpc> element is used to enclose a NETCONF request sent from the
 manager to the agent.

 The <rpc> element has a mandatory attribute "message-id", which is an
 arbitrary string chosen by the sender of the RPC that will commonly
 encode a monotonically increasing integer. The receiver of the RPC
 does not decode or interpret this string but simply saves it to use
 as a "message-id" attribute in any resulting <rpc-reply> message.
 For example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <some-method>
 ...
 </some-method>
 </rpc>

 If additional attributes are present in an <rpc> element, a NETCONF
 peer must return them unmodified in the <rpc-reply> element.

 The name and parameters of an RPC are encoded as the contents of the
 <rpc> element. The name of the RPC is an element directly inside the
 <rpc> element, and any parameters are encoded inside this element.

Enns, Editor Expires April 24, 2005 [Page 10]

Internet-Draft NETCONF Protocol October 2004

 The following example invokes a method called "my-own-method" which
 has two parameters, "my-first-parameter", with a value of "14", and
 "another-parameter", with a value of "fred":

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <my-own-method xmlns="http://example.net/me/my-own/1.0">
 <my-first-parameter>14</my-first-parameter>
 <another-parameter>fred</another-parameter>
 </my-own-method>
 </rpc>

 The following example invokes a "rock-the-house" method with a
 "zip-code" parameter of "27606-0100":

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock-the-house xmlns="http://example.net/house/rock/1.0">
 <zip-code>27606-0100</zip-code>
 </rock-the-house>
 </rpc>

 The following example invokes the "rock-the-world" method with no
 parameters:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock-the-world xmlns="http://example.net/house/rock/1.0"/>
 </rpc>

4.2 <rpc-reply> Element

 The <rpc-reply> message is sent in response to a <rpc> operation.

 The <rpc-reply> element has a mandatory attribute "message-id", which
 is equal to the "message-id" attribute of the <rpc> for which this is
 a response.

 A NETCONF peer must also return any additional attributes included in
 the <rpc> element unmodified in the <rpc-reply> element.

 The response name and response data are encoded as the contents of
 the <rpc-reply> element. The name of the reply is an element
 directly inside the <rpc-reply> element, and any data is encoded
 inside this element.

 For example:

Enns, Editor Expires April 24, 2005 [Page 11]

Internet-Draft NETCONF Protocol October 2004

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <some-content>
 ...
 </some-content>
 </rpc-reply>

4.3 <rpc-error> Element

 The <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request.

 The <rpc-error> element includes the following information:

 error-type: Defines the conceptual layer that the error occurred.
 Enumeration. One of:

 * transport

 * rpc

 * protocol

 * application

 error-tag: String identifying the error condition. See list below
 for allowed values.

 error-severity: String identifying the error severity, as determined
 by the device. One of:

 * error

 * warning

 error-app-tag: String identifying the data model specific or vendor
 specific error condition, if one exists. This element will not be
 present if no appropriate application error tag can be associated
 with a particular error condition.

 error-path: Absolute XPATH [2] expression identifying the element
 path to the node which is associated with the error being reported
 in a particular rpc-error element. This element will not be
 present if no appropriate payload element can be associated with a
 particular error condition, or if the 'bad-element' QString
 returned in the 'error-info' container is sufficient to identify
 the node associated with the error.

Enns, Editor Expires April 24, 2005 [Page 12]

Internet-Draft NETCONF Protocol October 2004

 error-message: String describing the error condition. This element
 will not be present if no appropriate message is provided for a
 particular error condition.

 error-info: Contains protocol or data model specific error content.
 This element will not be present if no such error content is
 provided for a particular error condition. The list below defines
 any mandatory error-info content for each error. After any
 protocol-mandated content, a data model definition may mandate
 certain application layer error information be included in the
 error-info container. A vendor may include additional elements at
 the end of the sequence to provide extended and/or
 implementation-specific debugging information.

Appendix A enumerates the standard NETCONF errors.

 Example:

 An error is returned if an <rpc> element is received without a
 message-id attribute.

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
 </rpc>

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>rpc</error-type>
 <error-tag>MISSING_ATTRIBUTE</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-attribute>message-id</bad-attribute>
 <bad-element>rpc</bad-element>
 </error-info>
 </rpc-error>
 </rpc-reply>

4.4 <ok> Element

 The <ok> element is sent in <rpc-reply> messages if no error occurred
 during the processing of an <rpc> request. For example:

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">

Enns, Editor Expires April 24, 2005 [Page 13]

Internet-Draft NETCONF Protocol October 2004

 <ok/>
 </rpc-reply>

4.5 Pipelining

 NETCONF <rpc> requests are processed serially by the managed device.
 Additional <rpc> requests MAY be sent before previous ones have been
 completed. The managed device MUST send responses only in the order
 the requests were received.

5. Configuration Model

 NETCONF provides an initial set of operations and a number of
 capabilities that can be used to extend the base. NETCONF peers
 exchange device capabilities when the session is initiated as
 described in Section 8.1.

5.1 Configuration Datastores

 NETCONF defines the existence of one or more configuration datastores
 and allows configuration operations on them. A configuration
 datastore is defined as the complete set of configuration data that
 is required to get a device from its initial default state into a
 desired operational state. The configuration datastore does not
 include state data or executive commands.

 Only the <running> configuration datastore is present in the base
 model. Additional configuration datastores may be defined by
 capabilities. Such configuration datastores are available only on
 devices that advertise the capabilities.

 o Running: The complete configuration currently active on the
 network device. Only one configuration datastore of this type
 exists on the device, and it is always present. NETCONF protocol
 operations refer to this datastore using the <running> element.

Section 8.3 and Section 8.7 define the <candidate> and <startup>
 configuration datatores, respectively.

6. Subtree Filtering

6.1 Overview

 XML subtree filtering is a mechanism that allows an application to
 select particular XML subtrees to include in the <rpc-reply> for a
 <get> or <get-config> operation. A small set of filters for
 inclusion, simple content exact-match, and selection is provided,

Enns, Editor Expires April 24, 2005 [Page 14]

Internet-Draft NETCONF Protocol October 2004

 which allows some useful, but also very limited selection mechanisms.
 The agent does not need to utilize any data-model specific semantics
 during processing, allowing for simple and centralized implementation
 strategies.

 A subtree filter is comprised of well-formed XML. No special tags,
 content, or structure are imposed in any way. It is possible that a
 subtree filter expression may contain an empty leaf node, even if the
 XSD for the particular data model indicates some content is required
 (i.e., maxOccurs > 0). For this reason, it may not be possible to
 completely validate all filter expressions against an XSD which
 represents the fully populated data model.

 Conceptually, a subtree filter is comprised of zero or more element
 subtrees, which represent the filter selection criteria. At each
 containment level within a subtree, the set of sibling nodes is
 logically processed by the agent to determine if its subtree (and
 path to the root) are included in the filter output.

 Element nodes have different purposes, depending on their position in
 the subtree. Most nodes in the subtree identify containment, in
 which the specified node name must exactly match a corresponding node
 in the agent's data model. A leaf node in the filter with simple
 content is used to select matching data (some or all of the set of
 sibling nodes which includes this leaf node).

 XML attributes can be present in any node in the filter. Each
 attribute acts as an additional term for the "AND" expression for
 that particular node. In addition to matching the name and position
 of the element, only instances matching all specified attribute
 values will be included in the response.

 XML namespaces may be specified (via 'xmlns' declarations) within the
 filter data model. If so, the declared namespace must first exactly
 match a namespace supported by the agent. Only data associated with
 a specified namespace will be considered in the filter operation.

 Response messages contains only the subtrees selected by the filter.
 Any selection criteria that was present in the request, within a
 particular selected subtree, is also included in the response.
 Specific data instances are not duplicated in the response in the
 event the request contains multiple filter subtree expressions which
 select the same data.

6.2 Subtree filter components

 A subtree filter is comprised of XML elements and their XML
 attributes. An attribute which appears in a subtree filter is called

Enns, Editor Expires April 24, 2005 [Page 15]

Internet-Draft NETCONF Protocol October 2004

 an "attribute match expression". All elements present in a
 particular subtree within a filter must match associated nodes
 present in the agent's conceptual data model.

 Nodes which contain only child elements are called "containment
 nodes". Leaf nodes which contain simple content are called "content
 match nodes". Empty leaf nodes are called "selection nodes".

6.3 Attribute Match Expressions

 Any number of (unqualified or qualified) XML attributes may be
 present in any type of filter node. In addition to the selection
 criteria normally applicable to that node, the selected data must
 have matching values for every attribute specified in the node. If
 an element is not defined to include a specified attribute, then it
 is not selected in the filter output.

6.4 Containment Nodes

 Each node specified in a subtree filter represents an inclusive
 filter. Only associated nodes in the specified configuration
 datastore on the agent are selected by the filter. A node must
 exactly match the namespace and absolute path name of the filter
 data, except the filter absolute path name is adjusted to start from
 the layer below <filter>. A containment node must have one or more
 child nodes.

6.5 Content Match Nodes

 A leaf node with simple content represents an exact-match filter on
 the simple content, which is combined (as an "AND" expression") with
 the criteria for a containment node, to select data model instances.
 All sibling content match nodes combine to represent a logical "AND"
 expression.

 If all specified sibling content match nodes in a subtree filter
 expression are 'true', then the agent determines the nodes to be
 selected in the following manner:

 o If the set of all sibling nodes (at a given processing level)
 includes only content match nodes, then all sibling subtrees
 (including the content match nodes) are selected by the filter.

 o If the set of all sibling nodes (at a given processing level)
 includes any containment or selection nodes, then only the content
 match nodes, plus any sibling subtrees selected by further
 processing, are selected by the filter.

Enns, Editor Expires April 24, 2005 [Page 16]

Internet-Draft NETCONF Protocol October 2004

 o If a containment node is present in the sibling set, then it is
 potentially selected. If further recursive processing of its
 child nodes produces any selected filter output, then the
 containment nodes the element hierarchy related to the particular
 subtree are included in the filter results.

 o If a selection node is present in the sibling set, then its
 subtree is selected in the filter output.

 If any of the sibling content match node tests are 'false', then no
 further filter processing is performed on that sibling set, and none
 of the sibling subtrees are selected by the filter, including the
 content match node(s).

6.6 Selection Nodes

 An empty leaf node represents an "explicit selection" filter.
 Presence of any selection nodes (within a set of sibling nodes) will
 cause the filter to select the specified subtree(s). If a particular
 sibling set contains content match nodes and selection or containment
 nodes, then automatic selection of the entire sibling subtree is
 suppressed, and only the specified selection and/or containment nodes
 are selected by the filter. Unless further restricted by the
 application of attribute match expressions or content match nodes in
 the entire element hierarchy containing a particular node, the
 presence of a selection node will cause all instances of that node
 (and each node's subtree) to be selected by the filter output.

6.7 Subtree Filter Processing

 The filter output (the set of selected nodes) is initially empty.

 Each subtree filter can contain one or more data model fragments,
 which represent portions of the data model which should be selected
 (with all child nodes) in the filter output.

 Each subtree data fragment is compared by the agent to the internal
 data models supported by the agent. If the entire subtree
 data-fragment filter (starting from the root to the innermost element
 specified in the filter) exactly matches a corresponding portion of
 the supported data model, then that node and all its children are
 included in the result data.

 The agent processes all nodes with the same parent node (sibling set)
 together, starting from the root to the leaf nodes. The root
 elements in the filter are considered to be in the same sibling set
 (assuming they are in the same namespace), even though they do not
 have a common parent.

Enns, Editor Expires April 24, 2005 [Page 17]

Internet-Draft NETCONF Protocol October 2004

 For each sibling set, the agent determines which nodes are included
 (or potentially included) in the filter output, and which sibling
 subtrees are excluded (pruned) from the filter output. The agent
 first determines which types of nodes are present in the sibling set,
 and processes the nodes according to the rules for their type. If
 any nodes in the sibling set are selected, then the process is
 recursively applied to the sibling sets of each selected node. The
 algorithm continues until all sibling sets in all subtrees specified
 in the filter have been processed.

6.8 Subtree Filtering Examples

6.8.1 No filter

 Leaving out the filter on the get request returns the entire data
 model.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 ... entire set of data returned ...
 </data>
 </rpc-reply>

6.8.2 Empty filter

 An empty filter will select nothing because no content match or
 selection nodes are present. This is not an error.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 </data>
 </rpc-reply>

Enns, Editor Expires April 24, 2005 [Page 18]

Internet-Draft NETCONF Protocol October 2004

6.8.3 Select the entire <users> subtree

 This filter in this example contains one selection node (<users>), so
 just that subtree is selected by the filter This example represents
 the fully-populated <users> data model in most of the filter examples
 that follow. In a real data model, the 'company-info' would not
 likely be returned with the list of users for a particular host or
 network.

 NOTE: The filtering and configuration examples used in this document
 appear in the namespace "http://example.com/schema/1.2/config". The
 root element of this namespace is <top>. The <top> element and it's
 descendents represent an example configuration data model only.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full-name>Charlie Root</full-name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 <company-info>
 <dept>2</dept>
 <id>2</id>
 </company-info>
 </user>
 <user>

 <name>barney</name>

Enns, Editor Expires April 24, 2005 [Page 19]

Internet-Draft NETCONF Protocol October 2004

 <type>admin</type>
 <full-name>Barney Rubble</full-name>
 <company-info>
 <dept>2</dept>
 <id>3</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

 The following filter request would have produced the same result, but
 only because the container <users> defines one child element (<user>)

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user/>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

6.8.4 Select all <name> elements within the <users> subtree

 This filter contains two containment nodes (<users>, <user>), and one
 selector node (<name>). All instances of the <name> element in the
 same sibling set are selected in the filter output. The manager may
 need to know that <name> is used as an instance identifier in this
 particular data structure, but the agent does not need to know that
 meta-data in order to process the request.

Enns, Editor Expires April 24, 2005 [Page 20]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name/>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 </user>
 <user>
 <name>fred</name>
 </user>
 <user>
 <name>barney</name>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.8.5 One specific <user> entry

 This filter contains two containment nodes (<users>, <user>) and one
 content match node (<name>). All instances of the sibling set
 containing <name>, for which the value of <name> equals "fred", are
 selected in the filter output.

Enns, Editor Expires April 24, 2005 [Page 21]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 <company-info>
 <dept>2</dept>
 <id>2</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.8.6 Specific elements from a specific <user> entry

 This filter contains two containment nodes (<users>, <user>), one
 content match node (<name>), and two selector nodes (<type>,
 <full-name>). All instances of the <type> and <full-name> elements
 in the same siibling set containing <name>, for which the value of
 <name> equals "fred", are selected in the filter output. The
 <company-info> element is not included because the sibling set
 contains selection nodes.

Enns, Editor Expires April 24, 2005 [Page 22]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type/>
 <full-name/>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.8.7 Multiple Subtrees

 This filter contains three subtrees (name=root, fred, barney)

 The "root" subtree filter contains two containment nodes (<users>,
 <user>), one content match node (<name>), and one selector node
 (<company-info>). The subtree selection criteria is met, and just
 the company-info subtree for "root" is selected in the filter output.

 The "fred" subtree filter contains three containment nodes (<users>,
 <user>, <company-info>), one content match node (<name>), and one
 selector node (<id>). The subtree selection criteria is met, and
 just the <id> element within the company-info subtree for "fred" is
 selected in the filter output.

 The "barney" subtree filter contains three containment nodes

Enns, Editor Expires April 24, 2005 [Page 23]

Internet-Draft NETCONF Protocol October 2004

 (<users>, <user>, <company-info>), two content match nodes (<name>,
 <type>), and one selector node (<dept>). The subtree selection
 criteria is not met because user "barney" is not a "superuser", and
 the entire subtree for "barney" (including its parent <user> entry)
 is excluded from the filter output.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 <user>
 <name>root</name>
 <company-info/>
 </user>
 <user>
 <name>fred</name>
 <company-info>
 <id/>
 </company-info>
 </user>
 <user>
 <name>barney</name>
 <type>superuser</type>
 <company-info>
 <dept/>
 </company-info>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config"/>
 <users>
 <user>
 <name>root</name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <user>
 <name>fred</name>

 <company-info>

Enns, Editor Expires April 24, 2005 [Page 24]

Internet-Draft NETCONF Protocol October 2004

 <id>2</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.8.8 Table with attribute naming

 This filter contains one containment node (<interfaces>), one
 attribute match expression (ifName), and one selector node
 (<interface>). All instances of the <interface> subtree which have
 an ifName attribute equal to "eth0" are selected in the filter
 output. The filter data elements and attributes must be qualified
 because the ifName attribute will not be considered part of the
 'schema/2.0' namespace if it is unqualified.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <t:interfaces xmlns:t="http://example.com/schema/1.2/stats"/>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <t:interfaces xmlns:t="http://example.com/schema/1.2/stats">
 <t:interface t:ifName="eth0">
 <t:ifInOctets>45621</t:ifInOctets>
 <t:ifOutOctets>774344</t:ifOutOctets>
 </t:interface>
 </t:interfaces>
 </data>
 </rpc-reply>

 If ifName were a child node instead of an attribute, then the
 following request would produce the same results.

Enns, Editor Expires April 24, 2005 [Page 25]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </filter>
 </get>
 </rpc>

7. Protocol Operations

 The NETCONF protocol provides a small set of low-level operations to
 manage device configurations and retrieve device state information.
 The base protocol provides operations to retrieve, configure, copy,
 and delete configuration datastores. Additional operations are
 provided, based on the capabilities advertised by the device.

 The base protocol includes the following protocol operations:

 o get-config

 o edit-config

 o copy-config

 o delete-config

 o lock

 o unlock

 o get

 o close-session

 o kill-session

 A protocol operation may fail for various reasons, including
 "operation not supported". An initiator should not assume that any
 operation will always succeed. The return values in any RPC reply
 should be checked for error responses.

 The syntax and XML encoding of the protocol operations are formally
 defined in the XML schema in Appendix B. The following sections

Enns, Editor Expires April 24, 2005 [Page 26]

Internet-Draft NETCONF Protocol October 2004

 describe the semantics of each protocol operation.

7.1 <get-config>

 Description:

 Retrieve all or part of a specified configuration.

 Parameters:

 source:

 Name of the configuration datastore being queried, such as
 <running>.

 filter:

 The filter element identifies the portions of the device
 configuration to retrieve. If this element is empty or
 unspecified, the entire configuration is returned.

 The filter element may optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in

Section 6. The value "subtree" explicitly identifies this type
 of filtering.

 If the NETCONF peer supports the #xpath capability (Section
8.9), the value "xpath" may be used to indicate that the filter

 element contains an XPATH expression.

 Positive Response:

 If the device can satisfy the request, the server sends an
 <rpc-reply> element containing a <config> element with the results
 of the query.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example: To retrieve the entire <users> subtree:

Enns, Editor Expires April 24, 2005 [Page 27]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full-name>Charlie Root</full-name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <!-- additional <user> elements appear here... -->
 </users>
 </top>
 </data>
 </rpc-reply>

Section 6 contains additional examples of subtree filtering.

7.2 <edit-config>

 Description:

 The <edit-config> operation loads all or part of a specified
 configuration to the specified target configuration. This
 operation allows the new configuration to be expressed in several
 ways, such as using a local file, a remote file, or inline. If
 the target configuration does not exist, it will be created.

 The device analyzes the source and target configurations and
 performs the requested changes. The target configuration is not

 simply replaced, as with the <copy-config> message. Instead the

Enns, Editor Expires April 24, 2005 [Page 28]

Internet-Draft NETCONF Protocol October 2004

 target configuration is changed in accordance with the source's
 data and requested operations.

 Attributes:

 operation:

 Elements in the <config> subtree may contain an "operation"
 attribute. The attribute identifies the point in the
 configuration to perform the operation.

 If the operation attribute is not specified, the configuration
 is merged into the configuration datastore.

 The operation attribute has one of the following values:

 merge: The configuration data identified by the element
 containing this attribute is merged with the configuration
 at the corresponding level in the configuration datastore
 identified by the target parameter. This is the default
 behavior.

 replace: The configuration data identified by the element
 containing this attribute replaces any related configuration
 in the configuration datastore identified by the target
 parameter. Unlike a <copy-config> operation, which replaces
 the entire target configuration, only the configuration
 actually present in the config parameter is affected.

 create: The configuration data identified by the element
 containing this attribute is added to the configuration if
 and only if the configuration data does not already exist on
 the device. If the configuration data exists, an
 <rpc-error> element is returned with an <error-tag> value of
 DATA_EXISTS.

 delete: The configuration data identified by the element
 containing this attribute is deleted in the configuration
 datastore identified by the target parameter.

 Parameters:

 target:

 Configuration datastore being edited, such as <running/> or
 <candidate/>.

Enns, Editor Expires April 24, 2005 [Page 29]

Internet-Draft NETCONF Protocol October 2004

 default-operation:

 Selects the default operation (as described in the "operation"
 attribute) for this <edit-config> request. The default value
 for the default-operation parameter is "merge".

 The default-operation parameter is optional, but if provided,
 must have one of the following values:

 merge: The configuration data in the <config> parameter is
 merged with the configuration at the corresponding level in
 the target datastore. This is the default behavior.

 replace: The configuration data in the <config> parameter
 completely replaces the configuration in the target
 datastore. This is useful for loading previously saved
 configuration data.

 none: The target datastore is unaffected by the configuration
 in the <config> parameter, unless and until the incoming
 configuration data uses the "operation" attribute to request
 a different operation. If the configuration in the <config>
 parameter contains data for which there is not a
 corresponding level in the target datastore, an <rpc-error>
 is returned with an <error-tag> value of DATA_MISSING.
 Using "none" allows operations like "delete" to avoid
 unintentionally creating the parent hierarchy of the element
 to be deleted, as well allowing a simple existence test for
 configuration data.

 test-option:

 The test-option element may be specified only if the device
 advertises the #validate capability (Section 8.6).

 The test-option element has one of the following values:

 test-then-set: Perform a validation test before attempting to
 set. If validation errors occur, do not perform the
 <edit-config> operation. This is the default test-option.

 set: Perform a set without a validation test first.

 error-option:

 The error-option element has one of the following values:

Enns, Editor Expires April 24, 2005 [Page 30]

Internet-Draft NETCONF Protocol October 2004

 stop-on-error: Abort the edit-config operation on first error.
 This is the default error-option.

 ignore-error: Continue to process configuration data on error;
 error is recorded and negative response is generated if any
 errors occur.

 rollback-on-error: If an error condition occurs such that an
 error severity <rpc-error> element is generated, the agent
 will stop processing the edit-config operation and restore
 the specified configuration to its complete state at the
 start of this edit-config operation. This option requires
 the agent to support the #rollback-on-error capability
 described in Section 8.5.

 config:

 Portion of the configuration subtree to edit. The namespace of
 this configuration should be specified as an attribute of this
 parameter.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent containing an <ok> element.

 Negative Response:

 An <rpc-error> response is sent if the request cannot be completed
 for any reason.

 Example:

 Set the MTU to 1500 on an interface named "Ethernet0/0" in the
 running configuration:

Enns, Editor Expires April 24, 2005 [Page 31]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

 Add an interface named "Ethernet0/0" to the running configuration,
 replacing any previous interface with that name:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 <address>
 <name>1.2.3.4</name>
 <mask>255.0.0.0</mask>
 </address>
 </interface>
 <top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

Enns, Editor Expires April 24, 2005 [Page 32]

Internet-Draft NETCONF Protocol October 2004

 Delete the interface named "Ethernet0/0" from the running
 configuration:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <default-operation>none</default-operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="delete">
 <name>Ethernet0/0</name>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

 Delete interface 192.168.0.1 from an OSPF area (other interfaces
 configured in the same area are unaffected):

Enns, Editor Expires April 24, 2005 [Page 33]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <default-operation>none</default-operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interfaces>
 <interface xc:operation="delete">
 <name>192.168.0.1</name>
 </interface>
 </interfaces>
 </area>
 </ospf>
 </protocols>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

7.3 <copy-config>

 Description:

 Create or replace an entire configuration datastore with the
 contents of another complete configuration datastore. If the
 target datastore exists, it is overwritten. Otherwise, a new one
 is created.

 If a NETCONF peer supports the #url capability (Section 8.8), the
 <url> element can appear as the <source> or <target> parameter.

 A device may choose not to support the <running/> configuration
 datastore as the <target> parameter of a <copy-config> operation.
 A device may choose not to support remote to remote copy
 operations. The source and target parameters cannot identify the
 same URL or configuration datastore.

Enns, Editor Expires April 24, 2005 [Page 34]

Internet-Draft NETCONF Protocol October 2004

 Parameters:

 source:

 The configuration datastore to use as the source of the copy
 operation or the <config> element containing the configuration
 subtree to copy.

 target:

 The configuration datastore to use as the destination of the
 copy operation.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <url>ftp://example.com/configs/testbed-dec10.txt</url>
 </target>
 </copy-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

7.4 <delete-config>

 Description:

 Delete a configuration datastore. The <running> configuration
 datastore cannot be deleted.

Enns, Editor Expires April 24, 2005 [Page 35]

Internet-Draft NETCONF Protocol October 2004

 If a NETCONF peer supports the #url capability (Section 8.8), the
 <url> element can appear as the <target> parameter.

 Parameters:

 target:

 Name of the configuration datastore to delete.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-config>
 <target>
 <startup/>
 </target>
 </delete-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

7.5 <lock>

 Description:

 The lock operation allows the client to lock the configuration
 system of a device. Such locks are intended to be short-lived and
 allow a client to make a change without fear of interaction with
 other NETCONF clients, non-NETCONF clients (SNMP and Expect
 scripts) and human users.

 An attempt to lock the configuration MUST fail if an existing
 session or other entity holds a lock on any portion of the lock
 target.

Enns, Editor Expires April 24, 2005 [Page 36]

Internet-Draft NETCONF Protocol October 2004

 When the lock is acquired, the server MUST prevent any changes to
 the locked resource other than those requested by this session.
 SNMP and CLI requests to modify the resource MUST fail with an
 appropriate error.

 The duration of the lock is defined as beginning when the lock is
 acquired and lasting until either the lock is released or the
 NETCONF session closes. The session closure may be explicitly
 performed by the client, or implicitly performed by the server
 based on criteria such as lack of network connectivity, failure of
 the underlying transport, or simple inactivity timeout. This
 criteria is dependent on the vendor's implementation and the
 underlying transport.

 The lock operation takes a mandatory parameter, target. The
 target parameter names the configuration that will be locked.
 When a lock is active, using the <edit-config> operation on the
 locked configuration and using the locked configuration as a
 target of the <copy-config> operation will be disallowed by any
 other NETCONF session. Additionally, the system will ensure that
 these locked configuration resources will not be modified by other
 non-NETCONF management operations such as SNMP and CLI. The
 <kill-session> message (at the RPC layer) can be used to force the
 release of a lock owned by another NETCONF session. It is beyond
 the scope of this document to define how to break locks held by
 other entities.

 A lock will not be granted if any of the following conditions are
 true:

 * a lock is already held by another NETCONF session or another
 entity

 * the target configuration has already been modified and these
 changes have not been committed

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 A lock will be released by the system if the session holding the
 lock is terminated for any reason.

 Parameters:

 target:

Enns, Editor Expires April 24, 2005 [Page 37]

Internet-Draft NETCONF Protocol October 2004

 Name of the configuration datastore to lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 If the lock is already held, the <error-tag> element will be
 LOCK_DENIED and the <error-info> element will include the
 <session-id> of the lock owner. If the lock is held by a
 non-NETCONF entity, a session-id of 0 (zero) is included. Note
 that any other entity performing a lock on even a partial piece of
 a target will prevent a NETCONF lock (which is global) from being
 obtained on that target.

 Example:

Enns, Editor Expires April 24, 2005 [Page 38]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/> <!-- lock succeeded -->
 </rpc-reply>

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <rpc-error> <!-- lock failed -->
 <error-type>protocol</error-type>
 <error-tag>LOCK_DENIED</error-tag>
 <error-severity>error</error-severity>
 <session-id>150</session-id>
 <error-message>Lock failed, lock is already held</error-message>
 <error-info>
 <session-id>454</session-id> <!-- lock is held by NETCONF session
454 -->
 </error-info>
 </rpc-error>
 </rpc-reply>

7.6 <unlock>

 Description:

 The unlock operation is used to release a configuration lock,
 previously obtained with the <lock> operation.

 An unlock operation will not succeed if any of the following
 conditions are true:

 * the specified lock is not currently active

 * the session issuing the <unlock> operation is not the same
 session that obtained the lock

Enns, Editor Expires April 24, 2005 [Page 39]

Internet-Draft NETCONF Protocol October 2004

 The server MUST respond with either an <ok> element or an
 <rpc-error>.

 Parameters:

 target:

 Name of the configuration datastore to unlock.

 A NETCONF client is not permitted to unlock a configuration
 datastore that it did not lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

7.7 <get>

 Description:

 Retrieve configuration and device state information.

 Parameters:

 filter:

Enns, Editor Expires April 24, 2005 [Page 40]

Internet-Draft NETCONF Protocol October 2004

 This parameter specifies the portion of the system
 configuration and state data to retrieve. If this parameter is
 empty, all the device configuration and state information is
 returned.

 The filter element may optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in

Section 6. The value "subtree" explicitly identifies this type
 of filtering.

 If the NETCONF peer supports the #xpath capability (Section
8.9), the value "xpath" may be used to indicate that the filter

 element contains an XPATH expression.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent. The <data> section contains the appropriate subset.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

Enns, Editor Expires April 24, 2005 [Page 41]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 <ifInOctets>45621</ifInOctets>
 <ifOutOctets>774344</ifOutOctets>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

7.8 <close-session>

 Description:

 Request graceful termination of a NETCONF session.

 When a NETCONF entity receives a <close-session> request, it will
 gracefully close the session. Any operations currently in process
 will be allowed to complete. When any in-process operations have
 completed, the NETCONF entity will release any locks and resources
 associated with the session and gracefully close any associated
 connections. Any NETCONF requests received after a
 <close-session> request will be ignored.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

Enns, Editor Expires April 24, 2005 [Page 42]

Internet-Draft NETCONF Protocol October 2004

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close-session/>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

7.9 <kill-session>

 Description:

 Force the termination of a NETCONF session.

 When a NETCONF entity receives a <kill-session> request for an
 open session, it will abort any operations currently in process,
 release any locks and resources associated with the session and
 close any associated connections.

 Parameters:

 session-id:

 Session identifier of the NETCONF session to be terminated. If
 this value is equal to the current session ID, a 'Bad Value'
 error is returned.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

Enns, Editor Expires April 24, 2005 [Page 43]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <kill-session>
 <session-id>4</session-id>
 </kill-session>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

8. Capabilities

 This section defines a set of capabilities that a client or a server
 MAY implement. Each peer advertises its capabilities by sending them
 during an initial capabilities exchange. Each peer needs to
 understand only those capabilities that it might use and must be able
 to process and ignore any capability received from the other peer
 that it does not require or does not understand.

 Additional capabilities can be defined using the template in Appendix
C. Future capability definitions may be published as standards by

 standards bodies or published as propriety by vendors.

 A NETCONF capability is identified with a URI. The base capabilities
 are defined using URNs following the method described in RFC 3553
 [7].

 urn:ietf:params:netconf:base:1.0#{name}

 Capabilities defined in this document have the following format:

 urn:ietf:params:xml:ns:netconf:base:1.0#{name}

 where {name} is the name of the capability. Capabilities are often
 referenced in discussions and email using the shorthand #{name}. For
 example, the foo capability would have the formal name
 "urn:ietf:params:xml:ns:netconf:base:1.0#foo" and be called "#foo".
 The shorthand form MUST NOT be used inside the protocol.

8.1 Capabilities Exchange

 A NETCONF capability is a set of additional functionality implemented
 on top of the base NETCONF specification. The capability is
 distinguished by a URI.

 Capabilities are advertised in messages sent when each peer starts
 operation. When the NETCONF session is opened, each peer sends a

https://datatracker.ietf.org/doc/html/rfc3553

Enns, Editor Expires April 24, 2005 [Page 44]

Internet-Draft NETCONF Protocol October 2004

 <hello> element containing a list of that peer's capabilities.

 In the following example, the peer advertises the base NETCONF
 capability, one NETCONF capability defined in the base NETCONF
 document, and one vendor-specific capability.

 <hello>
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0#startup
 </capability>
 <capability>
 http:/example.net/router/2.3/core#myfeature
 </capability>
 </capabilities>
 </hello>

 Each peer sends its <hello> element simultaneously as soon as the
 connection is open. A peer MUST NOT wait to receive the capability
 set from the other side before sending its own set.

8.2 Writable-Running Capability

8.2.1 Description

 The #writable-running capability indicates that the device supports
 writes directly to the <running> configuration datastore. In other
 words, the device supports edit-config and copy-config operations
 where the <running> configuration is the target.

8.2.2 Dependencies

 None.

8.2.3 Capability and Namespace

 The #writable-running capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:base:1.0#writable-running

 The #writable-running capability uses the base NETCONF namespace URN.

Enns, Editor Expires April 24, 2005 [Page 45]

Internet-Draft NETCONF Protocol October 2004

8.2.4 New Operations

 None.

8.2.5 Modifications to Existing Operations

8.2.5.1 <edit-config>

 The #writable-running capability modifies the <edit-config> operation
 to accept the <running> element as a <target>.

8.2.5.2 <copy-config>

 The #writable-running capability modifies the <copy-config> operation
 to accept the <running> element as a <target>.

8.3 Candidate Configuration Capability

8.3.1 Description

 The candidate configuration capability, #candidate, indicates that
 the device supports a candidate configuration datastore, which is
 used to hold configuration data that can manipulated without
 impacting the device's current configuration. The candidate
 configuration is a full configuration data set that serves as a work
 place for creating a manipulating configuration data. Additions,
 deletions, and changes may be made to this data to construct the
 desired configuration data. A <commit> operation may be performed at
 any time that causes the device's running configuration to be set to
 the value of the candidate configuration.

 The candidate configuration can be used as a source or target of any
 operation with a <source> or <target> parameter. The <candidate>
 element is used to indicate the candidate configuration:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <operation>
 <source>
 <candidate/>
 </source>
 </operation>
 </rpc>

 The candidate configuration may be shared among multiple sessions.
 Unless a client has specific information that the candidate
 configuration is not shared (for example, through another
 capability), it must assume that other sessions may be able to modify
 the candidate configuration at the same time. It is therefore

Enns, Editor Expires April 24, 2005 [Page 46]

Internet-Draft NETCONF Protocol October 2004

 prudent for a client to lock the candidate configuration before
 modifying it.

 The client can discard any changes since the last <commit> operation
 by executing the <discard-changes> operation. The candidate
 configuration's content then reverts to the current committed
 configuration.

8.3.2 Dependencies

 None.

8.3.3 Capability and Namespace

 The #candidate capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:base:1.0#candidate

 The #candidate capability uses the base NETCONF namespace URN.

8.3.4 New Operations

8.3.4.1 <commit>

 Description:

 When a candidate configuration's content is complete, the
 configuration data can be committed, publishing the data set to
 the rest of the device and requesting the device to conform to
 the behavior described in the new configuration.

 To commit the candidate configuration as the device's new
 current configuration, use the <commit> operation.

 The <commit> operation instructs the device to implement the
 configuration data contained in the candidate configuration.

 If the system does not have the #candidate capability, the
 <commit> operation is not available.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

Enns, Editor Expires April 24, 2005 [Page 47]

Internet-Draft NETCONF Protocol October 2004

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

8.3.4.2 <discard-changes>

 If the client decides that the candidate configuration should not be
 committed, the <discard-changes> operation can be used to revert the
 candidate configuration to the current committed configuration.

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <discard-changes/>
 </rpc>

 This operation discards any uncommitted changes.

8.3.5 Modifications to Existing Operations

8.3.5.1 <lock> and <unlock>

 The candidate configuration can be locked using the <lock> operation
 with the <candidate> element as the <target> parameter:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
 </rpc>

 Similarly, the candidate configuration is unlocked using the
 <candidate> element as the <target> parameter:

Enns, Editor Expires April 24, 2005 [Page 48]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
 </rpc>

 When a client fails with outstanding changes to the candidate
 configuration, recovery can be difficult. To facilitate easy
 recovery, any outstanding changes are discarded when the lock is
 released, whether explicitly with the <unlock> operation or
 implicitly from session failure.

8.4 Confirmed Commit Capability

8.4.1 Description

 The #confirmed-commit capability indicates that the agent will
 support the <confirmed> and <confirm-timeout> parameters for the
 <commit> protocol operation. See section Section 8.3 for further
 details on the <commit> operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, lock obtained before the edit-config operation is
 started). Therefore, it is strongly suggested that in order to use
 this feature with shared configuration databases, configuration
 locking must also be available and used properly.

8.4.2 Dependencies

 The #confirmed-commit capability is only relevant if the #candidate
 capability is also supported.

8.4.3 Capability and Namespace

 The #confirmed-commit capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:base:1.0#confirmed-commit

 The #confirmed-commit capability uses the base NETCONF namespace URN.

8.4.4 New Operations

 None.

Enns, Editor Expires April 24, 2005 [Page 49]

Internet-Draft NETCONF Protocol October 2004

8.4.5 Modifications to Existing Operations

8.4.5.1 <commit>

 The #confirmed-commit capability allows 2 additional parameters to
 the <commit> operation

 confirmed:

 The <confirmed> element indicates that the <commit> operation
 MUST be reverted if a confirming commit is not issued within
 ten (10) minutes. The timeout period can be adjusted with the
 <confirm-timeout> element.

 confirm-timeout:

 Timeout period for confirmed commit, in minutes.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm-timeout>20</confirm-timeout>
 </commit>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

8.5 Rollback on Error Capability

8.5.1 Description

 This capability indicates that the agent will support the
 rollback-on-error value in the <error-option> parameter to the
 <edit-config> operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, lock obtained before the edit-config operation is
 started). Therefore, it is strongly suggested that in order to use
 this feature with shared configuration databases, configuration
 locking must also be used.

Enns, Editor Expires April 24, 2005 [Page 50]

Internet-Draft NETCONF Protocol October 2004

8.5.2 Dependencies

 None

8.5.3 Capability and Namespace

 The #rollback-on-error capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:base:1.0#rollback-on-error

 The #rollback-on-error capability uses the base NETCONF namespace
 URN.

8.5.4 New Operations

 None.

8.5.5 Modifications to Existing Operations

8.5.5.1 <edit-config>

 The #rollback-on-error capability allows the rollback-on-error value
 to the <error-option> parameter on the <edit-config> operation.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <error-option>rollback-on-error</error-option>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>100000</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

Enns, Editor Expires April 24, 2005 [Page 51]

Internet-Draft NETCONF Protocol October 2004

8.6 Validate Capability

8.6.1 Description

 Validation consists of checking a candidate configuration for
 syntactical and semantic errors before applying the configuration to
 the device.

 If this capability is advertised, the device supports the <validate>
 protocol operation and checks at least for syntax errors. In
 addition, this capability supports the test-option parameter to the
 <edit-config> operation and, when it is provided, checks at least for
 syntax errors.

8.6.2 Dependencies

 None.

8.6.3 Capability and Namespace

 The #validate capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:base:1.0#validate

 The #validate capability uses the base NETCONF namespace URN.

8.6.4 New Operations

8.6.4.1 <validate>

 Description:

 This protocol operation validates the contents of the specified
 configuration.

 Parameters:

 source:

 Name of the configuration datastore being validated, such as
 <candidate>.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

Enns, Editor Expires April 24, 2005 [Page 52]

Internet-Draft NETCONF Protocol October 2004

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 A validate operation can fail for any of the following reasons:

 + Syntax errors

 + Missing parameters

 + References to undefined configuration data

 Example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
 </rpc>

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <ok/>
 </rpc-reply>

8.7 Distinct Startup Capability

8.7.1 Description

 The device supports separate running and startup configuration
 datastores. Operations which affect the running configuration will
 not be automatically copied to the startup configuration. An
 explicit <copy-config> operation from the <running> to the <startup>
 must be invoked to update the startup configuration to the current
 contents of the running configuration. NETCONF protocol operations
 refer to the startup datastore using the <startup> element.

8.7.2 Dependencies

 None.

8.7.3 Capability and Namespace

 The #startup capability is identified by the following capability
 string:

Enns, Editor Expires April 24, 2005 [Page 53]

Internet-Draft NETCONF Protocol October 2004

 urn:ietf:params:xml:ns:netconf:base:1.0#startup

 The #startup capability uses the base NETCONF namespace URN.

8.7.4 New Operations

 None.

8.7.5 Modifications to Existing Operations

8.7.5.1 <copy-config>

 To save the startup configuration, use the copy-config command to
 copy the <running> configuration datastore to the <startup>
 configuration datastore.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:
1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 </copy-config>
 </rpc>

8.8 URL Capability

8.8.1 Description

 The NETCONF peer has the ability to accept the <url> element in
 <source> and <target> parameters. The capability is further
 identified by URL arguments indicating the protocols supported.

8.8.2 Dependencies

 None.

8.8.3 Capability and Namespace

 The #url capability is identified by the following capability string:

 urn:ietf:params:xml:ns:netconf:base:1.0#url?protocol={protocol-name,...}

 The #url capability uses the base NETCONF namespace URN.

Enns, Editor Expires April 24, 2005 [Page 54]

Internet-Draft NETCONF Protocol October 2004

 The #url capability URI MUST contain a "protocol" argument assigned a
 comma-separated list of protocol names indicating which protocols the
 NETCONF peer supports. For example:

 urn:ietf:params:xml:ns:netconf:base:1.0#url?protocol=http,ftp,file

 The #url capability uses the base NETCONF namespace URN.

8.8.4 New Operations

 None.

8.8.5 Modifications to Existing Operations

8.8.5.1 <edit-config>

 The #url capability modifies the <edit-config> operation to accept
 the <url> element as the <config> parameter.

8.8.5.2 <copy-config>

 The #url capability modifies the <copy-config> operation to accept
 the <url> element as the value of the the <source> and the <target>
 parameters.

8.8.5.3 <delete-config>

 The #url capability modifies the <delete-config> operation to accept
 the <url> element as the value of the the <target> parameters. If
 this parameter contains a URL, then it should identify a local
 configuration file.

8.8.5.4 <validate>

 The #url capability modifies the <validate> operation to accept the
 <url> element as the value of the the <source> parameter.

8.9 XPATH Capability

8.9.1 Description

 The XPATH capability indicates that the NETCONF peer supports the use
 of XPATH expressions in the <filter> element. XPATH is described in
 [2].

8.9.2 Dependencies

 None.

Enns, Editor Expires April 24, 2005 [Page 55]

Internet-Draft NETCONF Protocol October 2004

8.9.3 Capability and Namespace

 The #xpath capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:base:1.0#xpath

 The #xpath capability uses the base NETCONF namespace URN.

8.9.4 New Operations

 None.

8.9.5 Modifications to Existing Operations

8.9.5.1 <get-config> and <get>

 The #xpath capability modifies the <get> and <get-config> operations
 to accept the value "xpath" in the type attribute of the filter
 element. When the type attribute is set to "xpath", the contents of
 the filter element will be treated as an xpath expression and used to
 filter the returned data.

 For example:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="xpath"> <!-- get the user named fred -->
 users/user[name="fred"]
 </filter>
 </get-config>
 </rpc>

9. Security Considerations

 This standard does not specify an authorization scheme, as such a
 scheme should be tied to a meta-data model or a data model.
 Implementators SHOULD also provide a well thought out authorization
 scheme with NETCONF.

 Authorization of individual users via the NETCONF agent may or may
 not map 1:1 to other interfaces. First, the data models may be
 incompatable. Second, it may be desirable to authorize based on
 mechanisms available in the application protocol layer (TELNET, SSH,

Enns, Editor Expires April 24, 2005 [Page 56]

Internet-Draft NETCONF Protocol October 2004

 etc).

 In addition, operations on configurations may have unintended
 consequences if those operations are also not guarded by the global
 lock on the files or objects being operated upon. For instance, a
 partially complete access list could be committed from a candidate
 configuration unbnownest to the owner of the lock of the candidate
 configuration, leading to either an insecure or inaccessible device
 if the lock on the candidate configuration does not also apply to the
 <copy-config> operation when applied to it.

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic so-called "person in the middle" attacks.
 Configuration information often times contains passwords, user names,
 service descriptions, and topological information, all of which are
 sensitive. Because of this, this protocol should be implemented
 carefully with adequate attention to all manner of attack one might
 expect to experience with other management interfaces.

 The protocol, therefore, must minimally support options for both
 privacy and authentication. It is anticipated that the underlying
 protocol (SSH, BEEP, etc) will provide for both privacy and
 authentication, as is required. It is further expected that the
 identity of each end of a NETCONF session will be available to the
 other in order to determine authorization for any given request. One
 could also easily envision additional information such as transport
 and encryption methods being made available for purposes of
 authorization. NETCONF itself provide no means to reauthenticate,
 much less authenticate. All such actions occur at lower layers.

 Different environments may well allow different rights prior to and
 then after authentication. Thus, an authorization model is not
 specified in this document. When an operation is not properly
 authorized then a simple "permission denied" is sufficient. Note
 that authorization information may be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

 That having been said, it is important to recognize that some
 commands are clearly more sensitive by nature than others. For
 instance, <copy-config> to the startup or running configurations is
 clearly not a normal provisioning operation, where-as <edit-config>
 is. Similarly, just because someone says go write a configuration
 through the URL capability at a particular place does not mean that
 an element should do it without proper authorization.

 The <lock> operation will demonstrate that use of NETCONF is intended

Enns, Editor Expires April 24, 2005 [Page 57]

Internet-Draft NETCONF Protocol October 2004

 for use by systems that have at least some trust of the
 administrator. As specified in this document, it is possible to lock
 portions of a configuration that a principle might not otherwise have
 access to. After all, the entire configuration is locked. To
 mitigate this problem there are two approaches. It is possible to
 kill another NETCONF session programmatically from within NETCONF if
 one knows the session identifier of the offending session. The other
 possible way to break a lock is to provide an function within the
 device's native user interface. These two mechanisms suffer from a
 race condition that may be ameliorated by removing the offending user
 from an AAA server. However, such a solution is not useful in all
 deployment scenarios, such as those where SSH public/private key
 pairs are used.

10. IANA Considerations

 TBD.

11. Authors and Acknowledgements

 This document was written by:

 Andy Bierman, Cisco Systems

 Ken Crozier, Cisco Systems

 Rob Enns, Juniper Networks

 Ted Goddard, IceSoft

 Eliot Lear, Cisco Systems

 Phil Shafer, Juniper Networks

 Steve Waldbusser

 Margaret Wasserman, ThingMagic

 The authors would like to acknowledge the members of the NETCONF
 working group. In particular, we would like to thank Wes Hardaker
 for his persistance and patience in assisting us with security
 considerations. We would also like to thank Randy Presuhn, Sharon
 Chisolm, Juergen Schoenwalder, Glenn Waters, David Perkins, Weijing
 Chen, Simon Leinen, Keith Allen and Dave Harrington for all of their
 valuable advice.

Enns, Editor Expires April 24, 2005 [Page 58]

Internet-Draft NETCONF Protocol October 2004

12. References

12.1 Normative References

 [1] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C REC
 REC-xml-20001006, October 2000.

 [2] Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", W3C REC REC-xpath-19991116, November 1999.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [5] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

 [6] Rigney, C., Willens, S., Rubens, A. and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

 [7] Mealling, M., Masinter, L., Hardie, T. and G. Klyne, "An IETF
 URN Sub-namespace for Registered Protocol Parameters", BCP 73,

RFC 3553, June 2003.

12.2 Informative References

 [8] Clark, J., "XSL Transformations (XSLT) Version 1.0", W3C REC
 REC-xslt-19991116, November 1999.

 [9] Hollenbeck, S., Rose, M. and L. Masinter, "Guidelines for the
 Use of Extensible Markup Language (XML) within IETF Protocols",

BCP 70, RFC 3470, January 2003.

 [10] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March 2001.

 [11] Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC
3080, March 2001.

 [12] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T. and S.
 Lehtinen, "SSH Protocol Architecture",

draft-ietf-secsh-architecture-15 (work in progress), October
 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/bcp73
https://datatracker.ietf.org/doc/html/rfc3553
https://datatracker.ietf.org/doc/html/bcp70
https://datatracker.ietf.org/doc/html/rfc3470
https://datatracker.ietf.org/doc/html/rfc3076
https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-15

Enns, Editor Expires April 24, 2005 [Page 59]

Internet-Draft NETCONF Protocol October 2004

Author's Address

 Rob Enns
 Juniper Networks
 1194 North Mathilda Ave
 Sunnyvale, CA 94089
 US

 EMail: rpe@juniper.net

Appendix A. NETCONF Error List

 Tag: TOO_BIG
 Error-type: transport, rpc, protocol, application
 Severity: error
 Error-info: none
 Description: The request or response (that would be generated) is too
 large for the implementation to handle.

 Tag: MISSING_ATTRIBUTE
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the missing attribute
 <bad-element> : name of the element that should
 contain the missing attribute
 Description: An expected attribute is missing

 Tag: BAD_ATTRIBUTE
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the attribute w/ bad value
 <bad-element> : name of the element that contains
 the attribute with the bad value
 Description: An attribute value is not correct; e.g., wrong type,
 out of range, pattern mismatch

 Tag: UNKNOWN_ATTRIBUTE
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the unexpected attribute
 <bad-element> : name of the element that contains
 the unexpected attribute
 Description: An unexpected attribute is present

 Tag: MISSING_ELEMENT
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the missing element

Enns, Editor Expires April 24, 2005 [Page 60]

Internet-Draft NETCONF Protocol October 2004

 Description: An expected element is missing

 Tag: BAD_ELEMENT
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the element w/ bad value
 Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch

 Tag: UNKNOWN_ELEMENT
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the unexpected element
 Description: An unexpected element is present

 Tag: ACCESS_DENIED
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Access to the requested RPC, protocol operation,
 or application data model is denied because
 authorization failed

 Tag: LOCK_DENIED
 Error-type: protocol
 Severity: error
 Error-info: <session-id> : session ID of session holding the
 requested lock, or zero to indicate a non-NETCONF
 entity holds the lock
 Description: Access to the requested lock is denied because the
 lock is currently held by another entity

 Tag: RESOURCE_DENIED
 Error-type: transport, rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Request could not be completed because of insufficient
 resources

 Tag: ROLLBACK_FAILED
 Error-type: protocol, application
 Severity: error
 Error-info: none
 Description: Request to rollback some configuration change (via
 rollback-on-error or discard-changes operations) was
 not completed for some reason.

 Tag: DATA_EXISTS

Enns, Editor Expires April 24, 2005 [Page 61]

Internet-Draft NETCONF Protocol October 2004

 Error-type: application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the relevant
 data model content already exists. For example,
 a 'create' operation was attempted on data which
 already exists.

 Tag: DATA_MISSING
 Error-type: application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the relevant
 data model content does not exist. For example,
 a 'modify' or 'delete' operation was attempted on
 data which does not exist.

 Tag: OPERATION_NOT_SUPPORTED
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the requested
 operation is not supported by this implementation.

 Tag: OPERATION_FAILED
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the requested
 operation failed for some reason not covered by
 any other error condition.

 Tag: PARTIAL_OPERATION
 Error-type: application
 Severity: error
 Error-info: <ok-element> : identifies an element in the data model
 for which the requested operation has been completed
 for that node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

 <err-element> : identifies an element in the data model
 for which the requested operation has failed for that
 node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

Enns, Editor Expires April 24, 2005 [Page 62]

Internet-Draft NETCONF Protocol October 2004

 <noop-element> : identifies an element in the data model
 for which the requested operation was not attempted for
 that node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

 Description: Some part of the requested operation failed or was
 not attempted for some reason. Full cleanup has
 not been performed (e.g., rollback not supported)
 by the agent. The error-info container is used
 to identify which portions of the application
 data model content for which the requested operation
 has succeeded (<ok-element>), failed (<bad-element>),
 or not attempted (<noop-element>).

Appendix B. XML Schema for NETCONF RPC and Protocol Operations

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema
 targetNamespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <!--
 -- <rpc> element
 -->
 <xs:complexType name="rpcType">
 <xs:sequence>
 <xs:element ref="rpcOperation"/>
 </xs:sequence>
 <xs:attribute name="message-id" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="rpc" type="rpcType"/>
 <!--
 -- data types and elements used to construct rpc-errors
 -->
 <xs:simpleType name="SessionId">
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>
 <xs:simpleType name="ErrorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="transport"/>
 <xs:enumeration value="rpc"/>
 <xs:enumeration value="protocol"/>
 <xs:enumeration value="application"/>

Enns, Editor Expires April 24, 2005 [Page 63]

Internet-Draft NETCONF Protocol October 2004

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorTag">
 <xs:restriction base="xs:string">
 <xs:enumeration value="TOO_BIG"/>
 <xs:enumeration value="MISSING_ATTRIBUTE"/>
 <xs:enumeration value="BAD_ATTRIBUTE"/>
 <xs:enumeration value="UNKNOWN_ATTRIBUTE"/>
 <xs:enumeration value="MISSING_ELEMENT"/>
 <xs:enumeration value="BAD_ELEMENT"/>
 <xs:enumeration value="UNKNOWN_ELEMENT"/>
 <xs:enumeration value="ACCESS_DENIED"/>
 <xs:enumeration value="LOCK_DENIED"/>
 <xs:enumeration value="RESOURCE_DENIED"/>
 <xs:enumeration value="ROLLBACK_FAILED"/>
 <xs:enumeration value="DATA_EXISTS"/>
 <xs:enumeration value="DATA_MISSING"/>
 <xs:enumeration value="OPERATION_NOT_SUPPORTED"/>
 <xs:enumeration value="OPERATION_FAILED"/>
 <xs:enumeration value="PARTIAL_OPERATION"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorSeverity">
 <xs:restriction base="xs:string">
 <xs:enumeration value="error"/>
 <xs:enumeration value="warning"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="rpc-errorType">
 <xs:sequence>
 <xs:element name="error-type" type="ErrorType"/>
 <xs:element name="error-tag" type="ErrorTag"/>
 <xs:element name="error-severity" type="ErrorSeverity"/>
 <xs:element name="error-app-tag" type="xs:string" minOccurs="0"/>
 <xs:element name="error-path" type="xs:string" minOccurs="0"/>
 <xs:element name="error-message" type="xs:string" minOccurs="0"/>
 <xs:element name="error-info" type="xs:anyType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--
 -- elements used in the <error-info> container
 -->
 <xs:element name="bad-attribute" type="xs:QName"/>
 <xs:element name="bad-element" type="xs:QName"/>
 <xs:element name="ok-element" type="xs:QName"/>
 <xs:element name="err-element" type="xs:QName"/>
 <xs:element name="noop-element" type="xs:QName"/>
 <xs:element name="session-id" type="SessionId"/>

Enns, Editor Expires April 24, 2005 [Page 64]

Internet-Draft NETCONF Protocol October 2004

 <!--
 -- <rpc-reply> element
 -->
 <xs:complexType name="rpc-replyType">
 <xs:choice>
 <xs:element name="ok" minOccurs="0"/>
 <xs:element name="rpc-error" type="rpc-errorType" minOccurs="0"/>
 <xs:element ref="data" minOccurs="0"/>
 </xs:choice>
 <xs:attribute name="message-id" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="rpc-reply" type="rpc-replyType"/>
 <!--
 -- <test-option> parameter to <edit-config>
 -->
 <xs:simpleType name="test-optionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="test"/>
 <xs:enumeration value="test-then-set"/>
 <xs:enumeration value="set"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="test-option" type="test-optionType"/>
 <!--
 -- <error-option> parameter to <edit-config>
 -->
 <xs:simpleType name="error-optionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="stop-on-error"/>
 <xs:enumeration value="ignore-error"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="error-option" type="error-optionType"/>
 <!--
 -- rpcOperationType: used as a base type for all
 -- NETCONF operations
 -->
 <xs:complexType name="rpcOperationType"/>
 <xs:element name="rpcOperation" type="rpcOperationType" abstract="true"/>
 <!--
 -- <config> element
 -->
 <xs:complexType name="config-inlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="config" type="config-inlineType"/>

Enns, Editor Expires April 24, 2005 [Page 65]

Internet-Draft NETCONF Protocol October 2004

 <!--
 -- <data> element
 -->
 <xs:complexType name="data-inlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="data" type="data-inlineType"/>
 <!--
 -- <filter> element
 -->
 <xs:simpleType name="FilterType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="subtree"/>
 <xs:enumeration value="xpath"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="filter-inlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="type" type="FilterType" default="subtree"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="filter" type="filter-inlineType"/>
 <!--
 -- configuration datastore names
 -->
 <xs:complexType name="config-nameType"/>
 <xs:element name="config-name" type="config-nameType" abstract="true"/>
 <xs:element name="startup" type="config-nameType"
 substitutionGroup="config-name"/>
 <xs:element name="candidate" type="config-nameType"
 substitutionGroup="config-name"/>
 <xs:element name="running" type="config-nameType"
 substitutionGroup="config-name"/>
 <!--
 -- operation attribute used in <edit-config>
 -->
 <xs:simpleType name="EditOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="delete"/>
 </xs:restriction>
 </xs:simpleType>

Enns, Editor Expires April 24, 2005 [Page 66]

Internet-Draft NETCONF Protocol October 2004

 <xs:attribute name="operation" type="EditOperationType" default="merge"/>
 <!--
 -- <default-operation> element
 -->
 <xs:simpleType name="DefaultOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="default-operation" type="DefaultOperationType"/>
 <!--
 -- <url> element
 -->
 <xs:complexType name="config-uriType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI"/>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="url" type="config-uriType"/>
 <!--
 -- <source> element
 -->
 <xs:complexType name="rpcOperationSourceType">
 <xs:choice>
 <xs:element ref="config"/>
 <xs:element ref="config-name"/>
 <xs:element ref="url"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="source" type="rpcOperationSourceType"/>
 <!--
 -- <target> element
 -->
 <xs:complexType name="rpcOperationTargetType">
 <xs:choice>
 <xs:element ref="config-name"/>
 <xs:element ref="url"/>
 </xs:choice>
 </xs:complexType>
 <xs:element name="target" type="rpcOperationTargetType"/>
 <!--
 -- <get-config> operation
 -->
 <xs:complexType name="get-configType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">

Enns, Editor Expires April 24, 2005 [Page 67]

Internet-Draft NETCONF Protocol October 2004

 <xs:sequence>
 <xs:element ref="source"/>
 <xs:element ref="filter" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get-config" type="get-configType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <edit-config> operation
 -->
 <xs:complexType name="edit-configType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="target"/>
 <xs:element ref="default-operation" minOccurs="0"/>
 <xs:element ref="test-option" minOccurs="0"/>
 <xs:element ref="error-option" minOccurs="0"/>
 <xs:element ref="config" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="edit-config" type="edit-configType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <copy-config> operation
 -->
 <xs:complexType name="copy-configType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="source"/>
 <xs:element ref="target"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="copy-config" type="copy-configType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <delete-config> operation
 -->
 <xs:complexType name="delete-configType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">

Enns, Editor Expires April 24, 2005 [Page 68]

Internet-Draft NETCONF Protocol October 2004

 <xs:sequence>
 <xs:element ref="target"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="delete-config" type="delete-configType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <get> operation
 -->
 <xs:complexType name="getType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="filter" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get" type="getType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <lock> operation
 -->
 <xs:complexType name="lockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="target"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="lock" type="lockType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <unlock> operation
 -->
 <xs:complexType name="unlockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="target"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Enns, Editor Expires April 24, 2005 [Page 69]

Internet-Draft NETCONF Protocol October 2004

 <xs:element name="unlock" type="unlockType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <validate> operation
 -->
 <xs:complexType name="validateType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element ref="source"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="validate" type="validateType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <commit> operation
 -->
 <xs:complexType name="commitType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="confirmed" minOccurs="0"/>
 <xs:element name="confirm-timeout" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="commit" type="commitType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <discard-changes> operation
 -->
 <xs:complexType name="discard-changesType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="discard-changes" type="discard-changesType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <close-session> operation
 -->
 <xs:complexType name="close-sessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>

Enns, Editor Expires April 24, 2005 [Page 70]

Internet-Draft NETCONF Protocol October 2004

 </xs:complexType>
 <xs:element name="close-session" type="close-sessionType"
 substitutionGroup="rpcOperation"/>
 <!--
 -- <kill-session> operation
 -->
 <xs:complexType name="kill-sessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="session-id" type="SessionId" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="kill-session" type="kill-sessionType"
 substitutionGroup="rpcOperation"/>
 </xs:schema>

Appendix C. Capability Template

C.1 capability-name (template)

C.1.1 Overview

C.1.2 Dependencies

C.1.3 Capability and Namespace

 The {name} is identified by following capability string:

 urn:ietf:params:xml:ns:netconf:base:1.0#{name}

 The {name} capability uses the base NETCONF namespace URN.

C.1.4 New Operations

C.1.4.1 <op-name>

C.1.5 Modifications to Existing Operations

C.1.5.1 <op-name>

 If existing operations are not modified by this capability, this
 section may be omitted.

Enns, Editor Expires April 24, 2005 [Page 71]

Internet-Draft NETCONF Protocol October 2004

C.1.6 Interactions with Other Capabilities

 If this capability does not interact with other capabilities, this
 section may be omitted.

Appendix D. Configuring Multiple Devices with NETCONF

D.1 Operations on Individual Devices

 Consider the work involved in performing a configuration update
 against a single individual device. In making a change to the
 configuration, the application needs to build trust that its change
 has been made correctly and that it has not impacted the operation of
 the device. The application (and the application user) should feel
 confident that their change has not damaged the network.

 Protecting each individual device consists of a number of steps:

 o Acquiring the configuration lock.

 o Loading the update.

 o Validating the incoming configuration.

 o Checkpointing the running configuration.

 o Changing the running configuration.

 o Testing the new configuration.

 o Making the change permanent (if desired).

 o Releasing the configuration lock.

 Let's look at the details of each step.

D.1.1 Acquiring the Configuration Lock

 A lock should be acquired to prevent simultaneous updates from
 multiple sources. If multiple sources are affecting the device, the
 application is hampered in both testing of its change to the
 configuration and in recovery should the update fail. Acquiring a
 short-lived lock is a simple defense to prevent other parties from
 introducing unrelated changes while.

 The lock can be acquired using the <lock> operation.

Enns, Editor Expires April 24, 2005 [Page 72]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

D.1.2 Loading the Update

 The configuration can be loaded onto the device without impacting the
 running system. If the #url capability is supported, incoming
 changes can be placed in a local file.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </source>
 <target>
 <url>file://incoming.conf</url>
 </target>
 </copy-config>
 </rpc>

 If the #candidate capability is supported, the candidate
 configuration can be used.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </edit-config>
 </rpc>

 If the update fails, the user file can be deleted using the
 <delete-config> operation or the candidate configuration reverted
 using the <discard-changes> operation.

Enns, Editor Expires April 24, 2005 [Page 73]

Internet-Draft NETCONF Protocol October 2004

D.1.3 Validating the Incoming Configuration

 Before applying the incoming configuration, it is often useful to
 validate it. Validation allows the application to gain confidence
 that the change will succeed and simplifies recovery if it does not.

 If the device supports the #url capability, use the <validate>
 operation with the <source> parameter set to the proper user file:

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <url>file://incoming.conf</url>
 </source>
 </validate>
 </rpc>

 If the device supports the #candidate capability, some validation
 will be performed as part of loading the incoming configuration into
 the candidate. For full validation, either pass the <validate>
 parameter during the <edit-config> step given above, or use the
 <validate> operation with the <source> parameter set to <candidate>.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
 </rpc>

D.1.4 Checkpointing the Running Configuration

 The running configuration can be saved into a local file as a
 checkpoint before loading the new configuration. If the update
 fails, the configuration can be restored by reloading the checkpoint
 file.

 The checkpoint file can be created using the <copy-config> operation.

Enns, Editor Expires April 24, 2005 [Page 74]

Internet-Draft NETCONF Protocol October 2004

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <url>file://checkpoint.conf</url>
 </target>
 </copy-config>
 </rpc>

 To restore the checkpoint file, reverse the source and target
 parameters.

D.1.5 Changing the Running Configuration

 When the incoming configuration has been safely loaded onto the
 device and validated, it is ready to impact the running system.

 If the device supports the #url capability, use the <edit-config>
 operation to merge the incoming configuration into the running
 configuration.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <url>file://incoming.conf</url>
 </config>
 </edit-config>
 </rpc>

 If the device supports the #candidate capability, use the <commit>
 operation to set the running configuration to the candidate
 configuration. Use the <confirmed> parameter to allow automatic
 reverting to the original configuration if connectivity to the device
 fails.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm-timeout>15</confirm-timeout>
 </commit>
 </rpc>

Enns, Editor Expires April 24, 2005 [Page 75]

Internet-Draft NETCONF Protocol October 2004

D.1.6 Testing the New Configuration

 Now that the incoming configuration has been integrated into the
 running configuration, the application needs to gain trust that the
 change has affected the device in the way intended without affecting
 it negatively.

 To gain this confidence, the application can run tests of the
 operational state of the device. The nature of the test is dependent
 on the nature of the change and is outside the scope of this
 document. Such tests may include reachability from the system
 running the application (using ping), changes in reachability to the
 rest of the network (by comparing the device's routing table), or
 inspection of the particular change (looking for operational evidence
 of the BGP peer that was just added).

D.1.7 Making the Change Permanent

 When the configuration change is in place and the application has
 sufficient faith in the proper function of this change, the
 application should make the change permanent.

 If the device supports the #startup capability, the current
 configuration can be saved to the startup configuration by using the
 startup configuration as the target of the <copy-config> operation.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 </copy-config>
 </rpc>

 If the device supports the #candidate capability and a confirmed
 commit was requested, the confirming commit must be sent before the
 timeout expires.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
 </rpc>

Enns, Editor Expires April 24, 2005 [Page 76]

Internet-Draft NETCONF Protocol October 2004

D.1.8 Releasing the Configuration Lock

 When the configuration update is complete, the lock must be released,
 allowing other applications access to the configuration.

 Use the <unlock> operation to release the configuration lock.

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
 </rpc>

D.2 Operations on Multiple Devices

 When a configuration change requires updates across a number of
 devices, care should be taken to provide the required transaction
 semantics. The NETCONF protocol contains sufficient primitives upon
 which transaction-oriented operations can be built. Providing
 complete transactional semantics across multiple devices is
 prohibitively expensive, but the size and number of windows for
 failure scenarios can be reduced.

 There are two classes of multidevice operations. The first class of
 allows the operation to fail on individual devices without requiring
 all devices to revert to their original state. The operation can be
 retried at a later time, or its failure simply reported to the user.
 A example of this class might be adding an NTP server. For this
 class of operations, failure avoidance and recovery are focused on
 the individual device. This means recovery of the device, reporting
 the failure, and perhaps scheduling another attempt.

 The second class is more interesting, requiring that the operation
 should complete on all devices or be fully reversed. The network
 should either be transformed into a new state or be reset to its
 original state. For example, a change to a VPN may require updates
 to a number of devices. Another example of this might be adding a
 class-of-service definition. Leaving the network in a state where
 only a portion of the devices have been updated with the new
 definition will lead to future failures when the definition is
 referenced.

 To give transactional semantics, the same steps used in single device
 operations listed above are used, but are performed in parallel
 across all devices. Configuration locks should be acquired on all

Enns, Editor Expires April 24, 2005 [Page 77]

Internet-Draft NETCONF Protocol October 2004

 target devices and kept until all devices are updated and the changes
 made permanent. Configuration changes should be uploaded and
 validation performed across all devices. Checkpoints should be made
 on each device. Then the running configuration can be changed,
 tested, and made permanent. If any of these steps fail, the previous
 configurations can be restored on any devices upon which it was
 changed. After the changes have been completely implemented or
 completely discarded, the locks on each device can be released.

Appendix E. Change Log

 RFC Editor: Please remove this section before RFC publication.

E.1 draft-ietf-netconf-prot-04

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Update security considerations (action from IETF 60).

 o Add type attribute on filter element (issue 14.1).

 o Add #xpath capability (issue 14.1).

 o <rpc-reply> for <get-config> returns <data> element, not <config>
 element (issue 14.1).

 o Add detailed description of subtree filtering (issue 14.1.2).

 o Typo: change confirmed-timeout -> confirm-timeout in XSD.

 o Typo: correct misnaming of test-option parameter in text for the
 validate capability.

 o <target> is now a mandatory parameter for <lock> and <unlock>.
 There is no default target (action from IETF 60).

 o Remove XML schema for NETCONF state data (action from IETF 60).

 o Correct namespace handling a number of examples. The fix is to
 put the device's configuration under a top level tag called <top>
 which is in the device's namespace.

 o Use message-id 101 everywhere.

 o Add default-operation parameter to <edit-config> (action from IETF
 60).

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-04
http://www.nextbeacon.com/netconf/

Enns, Editor Expires April 24, 2005 [Page 78]

Internet-Draft NETCONF Protocol October 2004

 o Fix <edit-config> examples in Appendix D.

 o Update and reformat protocol XSD.

 o Remove XML usage guidelines. Add a section on XML considerations
 covering the NETCONF namespace and no DTD restriction (action from
 IETF 60).

E.2 draft-ietf-netconf-prot-03

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Consistent naming of <confirm-timeout> element.

 o Add #confirmed-commit capability (issue 10.3.2)

 o Use a URN for the NETCONF namespace (issue 11.1.2) and
 capabilities

 o Remove #manager capability (issue 11.2.1)

 o Remove #agent capability (issue 11.2.2)

 o Add "create" as a value for the operation attribute in
 <edit-config> (issue 13.3.1)

 o Add #rollback-on-error capability (issue 13.3.2)

 o Rename <get-all> operation to <get>.

 o Remove format parameter from two <get-config> and one <get>
 examples missed in the -02 draft (issue 13.3.3).

 o Add text indicating that the session-id is returned if the lock is
 already held (issue 13.12.3). Add example of this.

 o Remove <discard-changes> parameter on the <lock> operation (issue
 13.16.1), all outstanding changes are to be discarded when the
 candidate configuration is unlocked.

 o Remove section 8.7, guidelines on namespace construction.

 o Add clarifying text regarding locks held by other entities.

 o Update the abstract.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-03
http://www.nextbeacon.com/netconf/

Enns, Editor Expires April 24, 2005 [Page 79]

Internet-Draft NETCONF Protocol October 2004

 o Remove mention of the format parameter from the <get-config> and
 <get> operations and the XSD.

 o Updated security considerations section.

 o Removed terminology section, moved session description to protocol
 overview section.

 o New text describing <rpc-error>.

 o Updated NETCONF protocol schema (to reflect new <rpc-error>
 details, among other things).

 o Add <filter> parameter to <get> and <get-config>. Rename <state>
 response the <get> operation to <data>.

 o Better description of the <kill-session> operation.

 o Add <close-session> operation.

 o Removed format parameter to <copy-config>.

 o Removed restriction that a changed <candidate/> configuration
 datastore can't be locked.

 o Add note in section 2 that the application protocol must provide
 an indication of session type (manager or agent) to the NETCONF
 layer.

E.3 draft-ietf-netconf-prot-02

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Remove <rpc-abort>, <rpc-abort-reply>, and <rpc-progress> (issues
 12.1, 12.2, 12.3).

 o Remove channels (issues 3.*).

 o Remove notifications (issues 2.*, 4.2, 13.9, 13.10, 13.11).

 o Move version number to last component of the capability URI (issue
 11.1.1).

 o Remove format parameter from <get-config> (issue 13.3.3).

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-02
http://www.nextbeacon.com/netconf/

Enns, Editor Expires April 24, 2005 [Page 80]

Internet-Draft NETCONF Protocol October 2004

 o Remove mention of #lock capability from Appendix D. Locking is a
 mandatory NETCONF operation.

 o Added text indicating that attributes received in <rpc> should be
 echoed on <rpc-reply> (issue 16.1).

 o Reworded Section 7.3 to encourage always prefixing attributes with
 namespaces.

Enns, Editor Expires April 24, 2005 [Page 81]

Internet-Draft NETCONF Protocol October 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Enns, Editor Expires April 24, 2005 [Page 82]

