
Network Working Group R. Enns, Ed.
Internet-Draft Juniper Networks
Expires: December 31, 2005 June 29, 2005

NETCONF Configuration Protocol
draft-ietf-netconf-prot-07

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 31, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The NETCONF configuration protocol defined in this document provides
 mechanisms to install, manipulate, and delete the configuration of
 network devices. It uses an Extensible Markup Language (XML) based
 data encoding for the configuration data as well as the protocol
 messages. The NETCONF protocol operations are realized on top of a
 simple Remote Procedure Call (RPC) layer.

 Please send comments to netconf@ops.ietf.org. To subscribe, use
 netconf-request@ops.ietf.org.

Enns Expires December 31, 2005 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NETCONF Protocol June 2005

Table of Contents

1. Introduction . 5
1.1 Protocol Overview . 6
1.2 Capabilities . 7
1.3 Separation of Configuration and State Data 7

2. Application Protocol Requirements 8
2.1 Connection-oriented operation 9
2.2 Authentication, Integrity, and Privacy 9
2.3 Authentication . 9

3. XML Considerations . 10
3.1 Namespace . 10
3.2 No Document Type Declarations 10

4. RPC Model . 10
4.1 <rpc> Element . 10
4.2 <rpc-reply> Element 11
4.3 <rpc-error> Element 12
4.4 <ok> Element . 15
4.5 Pipelining . 16

5. Configuration Model . 16
5.1 Configuration Datastores 16

6. Subtree Filtering . 16
6.1 Overview . 16
6.2 Subtree Filter Components 17
6.2.1 Namespace Selection 18
6.2.2 Attribute Match Expressions 18
6.2.3 Containment Nodes 19
6.2.4 Selection Nodes 19
6.2.5 Content Match Nodes 20

6.3 Subtree Filter Processing 21
6.4 Subtree Filtering Examples 22
6.4.1 No filter . 22
6.4.2 Empty filter . 22
6.4.3 Select the entire <users> subtree 23

 6.4.4 Select all <name> elements within the <users>
 subtree . 25

6.4.5 One specific <user> entry 26
6.4.6 Specific elements from a specific <user> entry 27
6.4.7 Multiple Subtrees 28
6.4.8 Elements with attribute naming 30

7. Protocol Operations . 31
7.1 <get-config> . 32
7.2 <edit-config> . 35
7.3 <copy-config> . 41
7.4 <delete-config> . 43
7.5 <lock> . 43
7.6 <unlock> . 46
7.7 <get> . 47

Enns Expires December 31, 2005 [Page 2]

Internet-Draft NETCONF Protocol June 2005

7.8 <close-session> . 49
7.9 <kill-session> . 50

8. Capabilities . 51
8.1 Capabilities Exchange 51
8.2 Writable-Running Capability 52
8.2.1 Description . 52
8.2.2 Dependencies . 53
8.2.3 Capability and Namespace 53
8.2.4 New Operations . 53
8.2.5 Modifications to Existing Operations 53

8.3 Candidate Configuration Capability 53
8.3.1 Description . 53
8.3.2 Dependencies . 54
8.3.3 Capability and Namespace 54
8.3.4 New Operations . 54
8.3.5 Modifications to Existing Operations 56

8.4 Confirmed Commit Capability 56
8.4.1 Description . 56
8.4.2 Dependencies . 57
8.4.3 Capability and Namespace 57
8.4.4 New Operations . 57
8.4.5 Modifications to Existing Operations 57

8.5 Rollback on Error Capability 58
8.5.1 Description . 58
8.5.2 Dependencies . 58
8.5.3 Capability and Namespace 59
8.5.4 New Operations . 59
8.5.5 Modifications to Existing Operations 59

8.6 Validate Capability 59
8.6.1 Description . 60
8.6.2 Dependencies . 60
8.6.3 Capability and Namespace 60
8.6.4 New Operations . 60

8.7 Distinct Startup Capability 61
8.7.1 Description . 61
8.7.2 Dependencies . 61
8.7.3 Capability and Namespace 62
8.7.4 New Operations . 62
8.7.5 Modifications to Existing Operations 62

8.8 URL Capability . 62
8.8.1 Description . 62
8.8.2 Dependencies . 62
8.8.3 Capability and Namespace 62
8.8.4 New Operations . 63
8.8.5 Modifications to Existing Operations 63

8.9 XPath Capability . 63
8.9.1 Description . 63
8.9.2 Dependencies . 64

Enns Expires December 31, 2005 [Page 3]

Internet-Draft NETCONF Protocol June 2005

8.9.3 Capability and Namespace 64
8.9.4 New Operations . 64
8.9.5 Modifications to Existing Operations 64

9. Security Considerations 64
10. IANA Considerations . 66
11. Authors and Acknowledgements 66
12. References . 67
12.1 Normative References 67
12.2 Informative References 67

 Author's Address . 68
A. NETCONF Error List . 68
B. XML Schema for NETCONF RPC and Protocol Operations 71
C. Capability Template . 82
C.1 capability-name (template) 83
C.1.1 Overview . 83
C.1.2 Dependencies . 83
C.1.3 Capability and Namespace 83
C.1.4 New Operations . 83
C.1.5 Modifications to Existing Operations 83
C.1.6 Interactions with Other Capabilities 83

D. Configuring Multiple Devices with NETCONF 83
D.1 Operations on Individual Devices 83
D.1.1 Acquiring the Configuration Lock 84
D.1.2 Loading the Update 84
D.1.3 Validating the Incoming Configuration 85
D.1.4 Checkpointing the Running Configuration 86
D.1.5 Changing the Running Configuration 87
D.1.6 Testing the New Configuration 87
D.1.7 Making the Change Permanent 88
D.1.8 Releasing the Configuration Lock 88

D.2 Operations on Multiple Devices 89
E. Deferred Features . 90
F. Change Log . 90
F.1 draft-ietf-netconf-prot-07 90
F.2 draft-ietf-netconf-prot-06 91
F.3 draft-ietf-netconf-prot-05 91
F.4 draft-ietf-netconf-prot-04 92
F.5 draft-ietf-netconf-prot-03 93
F.6 draft-ietf-netconf-prot-02 95

 Intellectual Property and Copyright Statements 96

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-07
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-06
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-05
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-04
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-03
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-02

Enns Expires December 31, 2005 [Page 4]

Internet-Draft NETCONF Protocol June 2005

1. Introduction

 The NETCONF protocol defines a simple mechanism through which a
 network device can be managed, configuration data information can be
 retrieved, and new configuration data can be uploaded and
 manipulated. The protocol allows the device to expose a full,
 formal, application programming interface (API). Applications can
 use this straight-forward API to send and receive full and partial
 configuration data sets.

 The NETCONF protocol uses a remote procedure call (RPC) paradigm. A
 client encodes an RPC in XML [1] and sends it to a server using a
 secure, connection-oriented session. The server responds with a
 reply encoded in XML. The contents of both the request and the
 response are fully described in XML DTDs or XML schemas, or both,
 allowing both parties to recognize the syntax constraints imposed on
 the exchange.

 A key aspect of NETCONF is that it allows the functionality of the
 management protocol to closely mirror the native functionality of the
 device. This reduces implementation costs and allows timely access
 to new features. In addition, applications can access both the
 syntactic and semantic content of the device's native user interface.

 NETCONF allows a client to discover the set of protocol extensions
 supported by a server. These "capabilities" permit the client to
 adjust its behavior to take advantage of the features exposed by the
 device. The capability definitions can be easily extended in a
 noncentralized manner. Standard and non-standard capabilities can be
 defined with semantic and syntactic rigor. Capabilities are
 discussed in Section 8.

 The NETCONF protocol is a building block in a system of automated
 configuration. XML is the lingua franca of interchange, providing a
 flexible but fully specified encoding mechanism for hierarchical
 content. NETCONF can be used in concert with XML-based
 transformation technologies such as XSLT [9] to provide a system for
 automated generation of full and partial configurations. The system
 can query one or more databases for data about networking topologies,
 links, policies, customers, and services. This data can be
 transformed using one or more XSLT scripts from a task-oriented,
 vendor-independent data schema into a form that is specific to the
 vendor, product, operating system, and software release. The
 resulting data can be passed to the device using the NETCONF
 protocol.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Enns Expires December 31, 2005 [Page 5]

Internet-Draft NETCONF Protocol June 2005

 document are to be interpreted as described in RFC 2119 [3].

1.1 Protocol Overview

 NETCONF uses a simple RPC-based mechanism to facilitate communication
 between a client and a server. The client can be a script or
 application typically running as part of a network manager. The
 server is typically a network device. The terms "device" and
 "server" are used interchangeably in this document, as are "client"
 and "application".

 A NETCONF session is the logical connection between a network
 administrator or network configuration application and a network
 device. A device MUST support at least one NETCONF session, and
 SHOULD support multiple sessions. Global configuration attributes
 can be changed during any authorized session, and the affects are
 visible in all sessions. Session-specific attributes affect only the
 session in which they are changed.

 NETCONF can be conceptually partitioned into four layers:

 Layer Example
 +-------------+ +-----------------------------+
 (4) | Content | | Configuration data |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 (3) | Operations | | <get-config>, <edit-config> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 (2) | RPC | | <rpc>, <rpc-reply> |
 +-------------+ +-----------------------------+
 | |
 +-------------+ +-----------------------------+
 (1) | Application | | BEEP, SSH, SSL, console |
 | Protocol | | |
 +-------------+ +-----------------------------+

 1. The application protocol layer provides a communication path
 between the client and server. NETCONF can be layered over any
 application protocol that provides a set of basic requirements.

Section 2 discusses these requirements.

 2. The RPC layer provides a simple, transport-independent framing
 mechanism for encoding RPCs. Section 4 documents this protocol.

https://datatracker.ietf.org/doc/html/rfc2119

Enns Expires December 31, 2005 [Page 6]

Internet-Draft NETCONF Protocol June 2005

 3. The operations layer defines a set of base operations invoked as
 RPC methods with XML-encoded parameters. Section 7 details the
 list of base operations.

 4. The content layer is outside the scope of this document. Given
 the current proprietary nature of the configuration data being
 manipulated, the specification of this content depends on the
 NETCONF implementation. It is expected that a separate effort to
 specify a standard data definition language and standard content
 will be undertaken.

1.2 Capabilities

 A NETCONF capability is a set of functionality that supplements the
 base NETCONF specification. The capability is identified by a
 uniform resource identifier (URI). These URIs should follow the
 guidelines as described in Section 8.

 Capabilities augment the base operations of the device, describing
 both additional operations and the content allowed inside operations.
 The client can discover the server's capabilities and use any
 additional operations, parameters, and content defined by those
 capabilities.

 The capability definition may name one or more dependent
 capabilities. To support a capability, the server MUST support any
 capabilities upon which it depends.

Section 8 defines the capabilities exchange that allows the client to
 discover the server's capabilities. Section 8 also lists the set of
 capabilities defined in this document.

 Additional capabilities can be defined at any time in external
 documents, allowing the set of capabilities to expand over time.
 Standards bodies may define standardized capabilities and
 implementations may define proprietary ones. A capability URI MUST
 sufficiently distinguish the naming authority to avoid naming
 collisions.

1.3 Separation of Configuration and State Data

 The information that can be retrieved from a running system is
 separated into two classes, configuration data and state data.
 Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. State data is the additional data on a system that is not
 configuration data such as read-only status information and collected

Enns Expires December 31, 2005 [Page 7]

Internet-Draft NETCONF Protocol June 2005

 statistics. When a device is performing configuration operations a
 number of problems would arise if state data were included:

 o Comparisons of configuration data sets would be dominated by
 irrelevant entries such as different statistics.

 o Incoming data could contain nonsensical requests, such as attempts
 to write read-only data.

 o The data sets would be large.

 o Archived data could contain values for read-only data items,
 complicating the processing required to restore archived data.

 To account for these issues, the NETCONF protocol recognizes the
 difference between configuration data and state data and provides
 operations for each. The <get-config> operation retrieves
 configuration data only while the <get> operation retrieves
 configuration and state data.

 Note that the NETCONF protocol is focused on the information required
 to get the device into its desired running state. The inclusion of
 other important, persistent data is implementation specific. For
 example, user files and databases are not treated as configuration
 data by the NETCONF protocol.

 If a local database of user authentication data is stored on the
 device, whether it is included in configuration data is an
 implementation dependent matter.

2. Application Protocol Requirements

 NETCONF uses an RPC-based communication paradigm. A client sends a
 series of one or more RPC request operations, which cause the server
 to respond with a corresponding series of RPC replies.

 The NETCONF protocol can be layered on any application protocol that
 provides the required set of functionality. It is not bound to any
 particular application protocol, but allows a mapping to define how
 it can be implemented over any specific protocol.

 The application protocol MUST provide a mechanism to indicate the
 session type (client or server) to the NETCONF protocol layer.

 This section details the characteristics that NETCONF requires from
 the underlying application protocol.

Enns Expires December 31, 2005 [Page 8]

Internet-Draft NETCONF Protocol June 2005

2.1 Connection-oriented operation

 NETCONF is connection-oriented, requiring a persistent connection
 between peers. This connection must provide reliable, sequenced data
 delivery.

 NETCONF connections are long-lived, persisting between protocol
 operations. This allows the client to make changes to the state of
 the connection that will persist for the lifetime of the connection.
 For example, authentication information specified for a connection
 remains in effect until the connection is closed.

 In addition, resources requested from the server for a particular
 connection MUST be automatically released when the connection closes,
 making failure recovery simpler and more robust. For example, when a
 lock is acquired by a client, the lock persists until either
 explicitly released or the server determines that the connection has
 been terminated. If a connection is terminated while the client
 holds a lock, the server can perform any appropriate recovery. The
 lock operation is further discussed in Section 7.5.

2.2 Authentication, Integrity, and Privacy

 NETCONF connections must provide authentication, data integrity, and
 privacy. NETCONF depends on the application protocol for this
 capability. A NETCONF peer assumes that an appropriate level of
 security and privacy are provided independent of this document. For
 example, connections may be encrypted in TLS [4] or SSH [10],
 depending on the underlying protocol.

2.3 Authentication

 NETCONF connections must be authenticated. The application protocol
 is responsible for authentication. The peer assumes that the
 connection's authentication information has been validated by the
 underlying protocol using sufficiently trustworthy mechanisms and
 that the peer's identity has been sufficiently proven.

 One goal of NETCONF is to provide a programmatic interface to the
 device that closely follows the functionality of the device's native
 interface. Therefore, it is expected that the underlying protocol
 uses existing authentication mechanisms defined by the device. For
 example, a device that supports RADIUS [7] should allow the use of
 RADIUS to authenticate NETCONF sessions.

 The authentication process should result in an identity whose
 permissions are known to the device. These permissions MUST be
 enforced during the remainder of the NETCONF session.

Enns Expires December 31, 2005 [Page 9]

Internet-Draft NETCONF Protocol June 2005

3. XML Considerations

 XML serves as the encoding format for NETCONF, allowing complex
 hierarchical data to be expressed in a text format that can be read,
 saved, and manipulated with both traditional text tools and tools
 specific to XML.

 This section discusses a small number of XML-related considerations
 pertaining to NETCONF.

3.1 Namespace

 All NETCONF protocol elements are defined in the following namespace:

 urn:ietf:params:xml:ns:netconf:base:1.0

 NETCONF capability names MUST be URIs [5], and SHOULD be URNs [6].
 NETCONF capabilities are discussed in Section 8.

3.2 No Document Type Declarations

 Document type declarations MUST NOT appear in NETCONF content.

4. RPC Model

 The NETCONF protocol uses an RPC-based communication model. NETCONF
 peers use <rpc> and <rpc-reply> elements to provide application
 protocol-independent framing of NETCONF requests and responses.

4.1 <rpc> Element

 The <rpc> element is used to enclose a NETCONF request sent from the
 client to the server.

 The <rpc> element has a mandatory attribute "message-id", which is an
 arbitrary string chosen by the sender of the RPC that will commonly
 encode a monotonically increasing integer. The receiver of the RPC
 does not decode or interpret this string but simply saves it to use
 as a "message-id" attribute in any resulting <rpc-reply> message.
 For example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <some-method>
 <!-- method parameters here... -->
 </some-method>
 </rpc>

Enns Expires December 31, 2005 [Page 10]

Internet-Draft NETCONF Protocol June 2005

 If additional attributes are present in an <rpc> element, a NETCONF
 peer MUST return them unmodified in the <rpc-reply> element.

 The name and parameters of an RPC are encoded as the contents of the
 <rpc> element. The name of the RPC is an element directly inside the
 <rpc> element, and any parameters are encoded inside this element.

 The following example invokes a method called <my-own-method> which
 has two parameters, <my-first-parameter>, with a value of "14", and
 <another-parameter>, with a value of "fred":

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <my-own-method xmlns="http://example.net/me/my-own/1.0">
 <my-first-parameter>14</my-first-parameter>
 <another-parameter>fred</another-parameter>
 </my-own-method>
 </rpc>

 The following example invokes a <rock-the-house> method with a <zip-
 code> parameter of "27606-0100":

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock-the-house xmlns="http://example.net/rock/1.0">
 <zip-code>27606-0100</zip-code>
 </rock-the-house>
 </rpc>

 The following example invokes the NETCONF <get> method with no
 parameters:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
 </rpc>

4.2 <rpc-reply> Element

 The <rpc-reply> message is sent in response to a <rpc> operation.

 The <rpc-reply> element has a mandatory attribute "message-id", which
 is equal to the "message-id" attribute of the <rpc> for which this is
 a response.

 A NETCONF peer MUST also return any additional attributes included in
 the <rpc> element unmodified in the <rpc-reply> element.

Enns Expires December 31, 2005 [Page 11]

Internet-Draft NETCONF Protocol June 2005

 The response name and response data are encoded as the contents of
 the <rpc-reply> element. The name of the reply is an element
 directly inside the <rpc-reply> element, and any data is encoded
 inside this element.

 For example:

 The following <rpc> element invokes the NETCONF <get> method and
 includes an additional attribute called "user-id". Note that the
 "user-id" attribute is not in the NETCONF namespace. The returned
 <rpc-reply> element returns the "user-id" attribute, as well as the
 requested content.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user-id="fred">
 <get/>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0"
 ex:user-id="fred">
 <data>
 <!-- contents here... -->
 </data>
 </rpc-reply>

4.3 <rpc-error> Element

 The <rpc-error> element is sent in <rpc-reply> messages if an error
 occurs during the processing of an <rpc> request.

 If a server encounters multiple errors during the processing of an
 <rpc> request, the <rpc-reply> MAY contain multiple <rpc-error>
 elements. However, a server is not required to detect or report more
 than one <rpc-error> element, if a request contains multiple errors.
 A server is not required to check for particular error conditions in
 a specific sequence. A server MUST return an <rpc-error> element if
 any error conditions occur during processing, and SHOULD return an
 <rpc-error> element if any warning conditions occur during
 processing.

 A server MUST NOT return application level or data model specific
 error information in an <rpc-error> element for which the client does
 not have sufficient access rights.

Enns Expires December 31, 2005 [Page 12]

Internet-Draft NETCONF Protocol June 2005

 The <rpc-error> element includes the following information:

 error-type: Defines the conceptual layer that the error occurred.
 Enumeration. One of:

 * transport

 * rpc

 * protocol

 * application

 error-tag: Contains a string identifying the error condition. See
Appendix A for allowed values.

 error-severity: Contains a string identifying the error severity, as
 determined by the device. One of:

 * error

 * warning

 error-app-tag: Contains a string identifying the data model specific
 or implementation specific error condition, if one exists. This
 element will not be present if no appropriate application error
 tag can be associated with a particular error condition.

 error-path: Contains the absolute XPath [2] expression identifying
 the element path to the node which is associated with the error
 being reported in a particular rpc-error element. This element
 will not be present if no appropriate payload element can be
 associated with a particular error condition, or if the 'bad-
 element' QString returned in the 'error-info' container is
 sufficient to identify the node associated with the error.

 error-message: Contains a string suitable for human display which
 describes the error condition. This element will not be present
 if no appropriate message is provided for a particular error
 condition. This element SHOULD include an xml:lang attribute as
 defined in [1] and discussed in [11].

 error-info: Contains protocol or data model specific error content.
 This element will not be present if no such error content is
 provided for a particular error condition. The list in Appendix A
 defines any mandatory error-info content for each error. After
 any protocol-mandated content, a data model definition may mandate
 certain application layer error information be included in the

Enns Expires December 31, 2005 [Page 13]

Internet-Draft NETCONF Protocol June 2005

 error-info container. An implementation may include additional
 elements to provide extended and/or implementation-specific
 debugging information.

Appendix A enumerates the standard NETCONF errors.

 Example:

 An error is returned if an <rpc> element is received without a
 message-id attribute. Note that only in this case is it
 acceptable for the NETCONF peer to omit the message-id attribute
 in the <rpc-reply> element.

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
 </rpc>

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>rpc</error-type>
 <error-tag>missing-attribute</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <bad-attribute>message-id</bad-attribute>
 <bad-element>rpc</bad-element>
 </error-info>
 </rpc-error>
 </rpc-reply>

 The following <rpc-reply> illustrates the case of returning
 multiple <rpc-error> elements.

Enns Expires December 31, 2005 [Page 14]

Internet-Draft NETCONF Protocol June 2005

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>invalid-value</error-tag>
 <error-severity>error</error-severity>
 <error-message xml:lang="en">
 MTU value 25000 is not within range 256..9192
 </error-message>
 <error-info>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>25000</mtu>
 </interface>
 </top>
 </error-info>
 </rpc-error>
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>invalid-value</error-tag>
 <error-severity>error</error-severity>
 <error-message xml:lang="en">
 Invalid IP address for interface Ethernet1/0
 </error-message>
 <error-info>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet1/0</name>
 <address>
 <name>1.4</name>
 <prefix-length>24</prefix-length>
 </address>
 </interface>
 </top>
 </error-info>
 </rpc-error>
 </rpc-reply>

4.4 <ok> Element

 The <ok> element is sent in <rpc-reply> messages if no error occurred
 during the processing of an <rpc> request. For example:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>

Enns Expires December 31, 2005 [Page 15]

Internet-Draft NETCONF Protocol June 2005

 </rpc-reply>

4.5 Pipelining

 NETCONF <rpc> requests MUST be processed serially by the managed
 device. Additional <rpc> requests MAY be sent before previous ones
 have been completed. The managed device MUST send responses only in
 the order the requests were received.

5. Configuration Model

 NETCONF provides an initial set of operations and a number of
 capabilities that can be used to extend the base. NETCONF peers
 exchange device capabilities when the session is initiated as
 described in Section 8.1.

5.1 Configuration Datastores

 NETCONF defines the existence of one or more configuration datastores
 and allows configuration operations on them. A configuration
 datastore is defined as the complete set of configuration data that
 is required to get a device from its initial default state into a
 desired operational state. The configuration datastore does not
 include state data or executive commands.

 Only the <running> configuration datastore is present in the base
 model. Additional configuration datastores may be defined by
 capabilities. Such configuration datastores are available only on
 devices that advertise the capabilities.

 o Running: The complete configuration currently active on the
 network device. Only one configuration datastore of this type
 exists on the device, and it is always present. NETCONF protocol
 operations refer to this datastore using the <running> element.

 The capabilities in Section 8.3 and Section 8.7 define the
 <candidate> and <startup> configuration datastores, respectively.

6. Subtree Filtering

6.1 Overview

 XML subtree filtering is a mechanism that allows an application to
 select particular XML subtrees to include in the <rpc-reply> for a
 <get> or <get-config> operation. A small set of filters for
 inclusion, simple content exact-match, and selection is provided,
 which allows some useful, but also very limited selection mechanisms.

Enns Expires December 31, 2005 [Page 16]

Internet-Draft NETCONF Protocol June 2005

 The agent does not need to utilize any data-model specific semantics
 during processing, allowing for simple and centralized implementation
 strategies.

 Conceptually, a subtree filter is comprised of zero or more element
 subtrees, which represent the filter selection criteria. At each
 containment level within a subtree, the set of sibling nodes is
 logically processed by the server to determine if its subtree (and
 path to the root) are included in the filter output.

 All elements present in a particular subtree within a filter must
 match associated nodes present in the server's conceptual data model.
 XML namespaces may be specified (via 'xmlns' declarations) within the
 filter data model. If so, the declared namespace must first exactly
 match a namespace supported by the server. Note that prefix values
 for qualified namespaces are not relevant when comparing filter
 elements to elements in the underlying data model. Only data
 associated with a specified namespace will be included in the filter
 output.

 Each node specified in a subtree filter represents an inclusive
 filter. Only associated nodes in underlying data model(s) within the
 specified configuration datastore on the server are selected by the
 filter. A node must exactly match the namespace and absolute path
 name of the filter data, except the filter absolute path name is
 adjusted to start from the layer below <filter>.

 Response messages contain only the subtrees selected by the filter.
 Any selection criteria that were present in the request, within a
 particular selected subtree, is also included in the response. Note
 that some elements expressed in the filter as leaf nodes will be
 expanded (i.e., subtrees included) in the filter output. Specific
 data instances are not duplicated in the response in the event the
 request contains multiple filter subtree expressions which select the
 same data.

6.2 Subtree Filter Components

 A subtree filter is comprised of XML elements and their XML
 attributes. There are five types of components that may be present
 in a subtree filter:

 o Namespace Selection

 o Attribute Match Expressions

 o Containment Nodes

Enns Expires December 31, 2005 [Page 17]

Internet-Draft NETCONF Protocol June 2005

 o Selection Nodes

 o Content Match Nodes

6.2.1 Namespace Selection

 If namespaces are used then the filter output will only include
 elements from the specified namespace. A namespace is considered to
 match (for filter purposes) if the content of the 'xmlns' attributes
 are the same in the filter and the underlying data model. Note that
 namespace selection cannot be used by itself. At least one element
 must be specified in the filter in order for any elements to selected
 in the filter output.

 Example:

 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config"/>
 </filter>

 In this example the <top> element is a selection node, and only this
 node and any child nodes (from the underlying data model) in the
 'http://example.com/schema/1.2/config' namespace will be included in
 the filter output.

6.2.2 Attribute Match Expressions

 An attribute which appears in a subtree filter is part of an
 "attribute match expression". Any number of (unqualified or
 qualified) XML attributes may be present in any type of filter node.
 In addition to the selection criteria normally applicable to that
 node, the selected data must have matching values for every attribute
 specified in the node. If an element is not defined to include a
 specified attribute, then it is not selected in the filter output.

 Example:

 <filter type="subtree">
 <t:top xmlns:t="http://example.com/schema/1.2/stats">
 <t:interfaces>
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </t:top>
 </filter>

 In this example the <top>, <interfaces> and <interface> elements are
 containment nodes, and 'ifName' is an attribute match expression.

Enns Expires December 31, 2005 [Page 18]

Internet-Draft NETCONF Protocol June 2005

 Only nodes in the 'http://example.com/schema/1.2/config' namespace,
 which match the absolute path '/top/interfaces/interface', and the
 <interface> element has an 'ifName' attribute defined with the value
 'eth0', will be included in the filter output,

6.2.3 Containment Nodes

 Nodes which contain child elements within a subtree filter are called
 "containment nodes". Each child element can be any type of node,
 including another containment node. For each containment node
 specified in a subtree filter, all data model instances which exactly
 match the specified namespaces, absolute path, and any attribute
 match expressions within this node, are included in the filter
 output.

 Example:

 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>

 In this example the <top>, element is a containment node, and the
 <users> element is a selection node. Only nodes in the
 'http://example.com/schema/1.2/config' namespace, which match the
 absolute path '/top/users' will be included in the filter output.

6.2.4 Selection Nodes

 An empty leaf node within a filter is called a "selection node", and
 it represents an "explicit selection" filter on the underlying data
 model. Presence of any selection nodes within a set of sibling nodes
 will cause the filter to select the specified subtree(s), and
 suppress automatic selection of the entire set of sibling nodes in
 the underlying data model. For filtering purposes, an empty leaf
 node can be declared with either an empty tag (e.g., <foo/>) or with
 explicit start and end tags (e.g., <foo> </foo>). Any whitespace
 characters are ignored in this form.

 Example:

 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>

Enns Expires December 31, 2005 [Page 19]

Internet-Draft NETCONF Protocol June 2005

 In this example the <top> element is a containment node, and the
 <users> element is a selection node. Only nodes in the
 'http://example.com/schema/1.2/config' namespace, which match the
 absolute path '/top/users' will be included in the filter output.

6.2.5 Content Match Nodes

 A leaf node which contains simple content is called a "content match
 node". It is used to select some or all of its sibling nodes for
 filter output, and represents an exact-match filter on the leaf node
 element content. The following constraints apply to content match
 nodes:

 o A content match node must not contain nested elements (i.e., must
 resolve to a simpleType in XSD).

 o Multiple content match nodes (i.e., sibling nodes) are logically
 combined in an "AND" expression.

 o Filtering of mixed content is not supported.

 o Filtering of list content is not supported.

 o Filtering of whitespace only content is not supported.

 o A content match node must contain non-whitespace characters. An
 empty element (e.g., <foo></foo>) will interpreted as a selection
 node (e.g., <foo/>).

 o Leading and trailing whitespace characters are ignored, but any
 whitespace characters within a block of text characters are not
 ignored or modified.

 If all specified sibling content match nodes in a subtree filter
 expression are 'true', then the filter output nodes are selected in
 the following manner:

 o Each content match node in the sibling set is included in the
 filter output.

 o If any containment nodes are present in the sibling set then they
 are processed further, and included if any nested filter criteria
 is also met.

 o If any selection nodes are present in the sibling set then all of
 them are included in the filter output.

Enns Expires December 31, 2005 [Page 20]

Internet-Draft NETCONF Protocol June 2005

 o Otherwise (i.e., there are no selection or containment nodes in
 the filter sibling set) all the nodes defined at this level in the
 underlying data model (and their subtrees, if any) are returned in
 the filter output.

 If any of the sibling content match node tests are 'false', then no
 further filter processing is performed on that sibling set, and none
 of the sibling subtrees are selected by the filter, including the
 content match node(s).

 Example:

 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
 </filter>

 In this example the <users> and <user> nodes are both containment
 nodes, and <name> is a content match node. Since no sibling nodes of
 <name> are specified (and therefore no containment or selection
 nodes) all of the sibling nodes of <name> are returned in the filter
 output. Only nodes in the 'http://example.com/schema/1.2/config'
 namespace, which match the absolute path '/top/users/user', and for
 which the <name> element is equal to 'fred', will be included in the
 filter output.

6.3 Subtree Filter Processing

 The filter output (the set of selected nodes) is initially empty.

 Each subtree filter can contain one or more data model fragments,
 which represent portions of the data model which should be selected
 (with all child nodes) in the filter output.

 Each subtree data fragment is compared by the server to the internal
 data models supported by the server. If the entire subtree data-
 fragment filter (starting from the root to the innermost element
 specified in the filter) exactly matches a corresponding portion of
 the supported data model, then that node and all its children are
 included in the result data.

 The server processes all nodes with the same parent node (sibling
 set) together, starting from the root to the leaf nodes. The root

Enns Expires December 31, 2005 [Page 21]

Internet-Draft NETCONF Protocol June 2005

 elements in the filter are considered to be in the same sibling set
 (assuming they are in the same namespace), even though they do not
 have a common parent.

 For each sibling set, the server determines which nodes are included
 (or potentially included) in the filter output, and which sibling
 subtrees are excluded (pruned) from the filter output. The server
 first determines which types of nodes are present in the sibling set,
 and processes the nodes according to the rules for their type. If
 any nodes in the sibling set are selected, then the process is
 recursively applied to the sibling sets of each selected node. The
 algorithm continues until all sibling sets in all subtrees specified
 in the filter have been processed.

6.4 Subtree Filtering Examples

6.4.1 No filter

 Leaving out the filter on the get operation returns the entire data
 model.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get/>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <!-- ... entire set of data returned ... -->
 </data>
 </rpc-reply>

6.4.2 Empty filter

 An empty filter will select nothing because no content match or
 selection nodes are present. This is not an error. The filter type
 attribute used in these examples is discussed further in Section 7.1.

Enns Expires December 31, 2005 [Page 22]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 </data>
 </rpc-reply>

6.4.3 Select the entire <users> subtree

 This filter in this example contains one selection node (<users>), so
 just that subtree is selected by the filter. This example represents
 the fully-populated <users> data model in most of the filter examples
 that follow. In a real data model, the <company-info> would not
 likely be returned with the list of users for a particular host or
 network.

 NOTE: The filtering and configuration examples used in this document
 appear in the namespace "http://example.com/schema/1.2/config". The
 root element of this namespace is <top>. The <top> element and its
 descendents represent an example configuration data model only.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>

Enns Expires December 31, 2005 [Page 23]

Internet-Draft NETCONF Protocol June 2005

 <user>
 <name>root</name>
 <type>superuser</type>
 <full-name>Charlie Root</full-name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 <company-info>
 <dept>2</dept>
 <id>2</id>
 </company-info>
 </user>
 <user>
 <name>barney</name>
 <type>admin</type>
 <full-name>Barney Rubble</full-name>
 <company-info>
 <dept>2</dept>
 <id>3</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

 The following filter request would have produced the same result, but
 only because the container <users> defines one child element (<user>)

Enns Expires December 31, 2005 [Page 24]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user/>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

6.4.4 Select all <name> elements within the <users> subtree

 This filter contains two containment nodes (<users>, <user>), and one
 selector node (<name>). All instances of the <name> element in the
 same sibling set are selected in the filter output. The manager may
 need to know that <name> is used as an instance identifier in this
 particular data structure, but the server does not need to know that
 meta-data in order to process the request.

Enns Expires December 31, 2005 [Page 25]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name/>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 </user>
 <user>
 <name>fred</name>
 </user>
 <user>
 <name>barney</name>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.4.5 One specific <user> entry

 This filter contains two containment nodes (<users>, <user>) and one
 content match node (<name>). All instances of the sibling set
 containing <name>, for which the value of <name> equals "fred", are
 selected in the filter output.

Enns Expires December 31, 2005 [Page 26]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 <company-info>
 <dept>2</dept>
 <id>2</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.4.6 Specific elements from a specific <user> entry

 This filter contains two containment nodes (<users>, <user>), one
 content match node (<name>), and two selector nodes (<type>, <full-
 name>). All instances of the <type> and <full-name> elements in the
 same sibling set containing <name>, for which the value of <name>
 equals "fred", are selected in the filter output. The <company-info>
 element is not included because the sibling set contains selection
 nodes.

Enns Expires December 31, 2005 [Page 27]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type/>
 <full-name/>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.4.7 Multiple Subtrees

 This filter contains three subtrees (name=root, fred, barney)

 The "root" subtree filter contains two containment nodes (<users>,
 <user>), one content match node (<name>), and one selector node
 (<company-info>). The subtree selection criteria is met, and just
 the company-info subtree for "root" is selected in the filter output.

 The "fred" subtree filter contains three containment nodes (<users>,
 <user>, <company-info>), one content match node (<name>), and one
 selector node (<id>). The subtree selection criteria is met, and

Enns Expires December 31, 2005 [Page 28]

Internet-Draft NETCONF Protocol June 2005

 just the <id> element within the company-info subtree for "fred" is
 selected in the filter output.

 The "barney" subtree filter contains three containment nodes
 (<users>, <user>, <company-info>), two content match nodes (<name>,
 <type>), and one selector node (<dept>). The subtree selection
 criteria is not met because user "barney" is not a "superuser", and
 the entire subtree for "barney" (including its parent <user> entry)
 is excluded from the filter output.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <company-info/>
 </user>
 <user>
 <name>fred</name>
 <company-info>
 <id/>
 </company-info>
 </user>
 <user>
 <name>barney</name>
 <type>superuser</type>
 <company-info>
 <dept/>
 </company-info>
 </user>
 </users>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>

Enns Expires December 31, 2005 [Page 29]

Internet-Draft NETCONF Protocol June 2005

 <name>root</name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <user>
 <name>fred</name>
 <company-info>
 <id>2</id>
 </company-info>
 </user>
 </users>
 </top>
 </data>
 </rpc-reply>

6.4.8 Elements with attribute naming

 In this example, the filter contains one containment node
 (<interfaces>), one attribute match expression (ifName), and one
 selector node (<interface>). All instances of the <interface>
 subtree which have an ifName attribute equal to "eth0" are selected
 in the filter output. The filter data elements and attributes must
 be qualified because the ifName attribute will not be considered part
 of the 'schema/1.2' namespace if it is unqualified.

Enns Expires December 31, 2005 [Page 30]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <t:interfaces xmlns:t="http://example.com/schema/1.2/stats">
 <t:interface t:ifName="eth0"/>
 </t:interfaces>
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <t:interfaces xmlns:t="http://example.com/schema/1.2/stats">
 <t:interface t:ifName="eth0">
 <t:ifInOctets>45621</t:ifInOctets>
 <t:ifOutOctets>774344</t:ifOutOctets>
 </t:interface>
 </t:interfaces>
 </top>
 </data>
 </rpc-reply>

 If ifName were a child node instead of an attribute, then the
 following request would produce similar results.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </filter>
 </get>
 </rpc>

7. Protocol Operations

 The NETCONF protocol provides a small set of low-level operations to
 manage device configurations and retrieve device state information.
 The base protocol provides operations to retrieve, configure, copy,
 and delete configuration datastores. Additional operations are

Enns Expires December 31, 2005 [Page 31]

Internet-Draft NETCONF Protocol June 2005

 provided, based on the capabilities advertised by the device.

 The base protocol includes the following protocol operations:

 o get

 o get-config

 o edit-config

 o copy-config

 o delete-config

 o lock

 o unlock

 o close-session

 o kill-session

 A protocol operation may fail for various reasons, including
 "operation not supported". An initiator should not assume that any
 operation will always succeed. The return values in any RPC reply
 should be checked for error responses.

 The syntax and XML encoding of the protocol operations are formally
 defined in the XML schema in Appendix B. The following sections
 describe the semantics of each protocol operation.

7.1 <get-config>

 Description:

 Retrieve all or part of a specified configuration.

 Parameters:

 source:

 Name of the configuration datastore being queried, such as
 <running/>. If this element is unspecified, the <running/>
 configuration is used.

Enns Expires December 31, 2005 [Page 32]

Internet-Draft NETCONF Protocol June 2005

 filter:

 The filter element identifies the portions of the device
 configuration to retrieve. If this element is unspecified, the
 entire configuration is returned.

 The filter element may optionally contain a "type" attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in

Section 6. The value "subtree" explicitly identifies this type
 of filtering.

 If the NETCONF peer supports the :xpath capability
 (Section 8.9), the value "xpath" may be used to indicate that
 the filter element contains an XPath expression.

 Positive Response:

 If the device can satisfy the request, the server sends an <rpc-
 reply> element containing a <data> element with the results of the
 query.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example: To retrieve the entire <users> subtree:

Enns Expires December 31, 2005 [Page 33]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <top xmlns="http://example.com/schema/1.2/config">
 <users/>
 </top>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <users>
 <user>
 <name>root</name>
 <type>superuser</type>
 <full-name>Charlie Root</full-name>
 <company-info>
 <dept>1</dept>
 <id>1</id>
 </company-info>
 </user>
 <!-- additional <user> elements appear here... -->
 </users>
 </top>
 </data>
 </rpc-reply>

 If the configuration is available in multiple formats, such as XML
 and text, an XML namespace can be used to specify which format is
 desired.

Enns Expires December 31, 2005 [Page 34]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <!-- request a text version of the configuration -->
 <config-text xmlns="http://example.com/text/1.2/config"/>
 </filter>
 </get-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <config-text xmlns="http://example.com/text/1.2/config">
 <!-- configuration text... -->
 </config-text>
 </data>
 </rpc-reply>

Section 6 contains additional examples of subtree filtering.

7.2 <edit-config>

 Description:

 The <edit-config> operation loads all or part of a specified
 configuration to the specified target configuration. This
 operation allows the new configuration to be expressed in several
 ways, such as using a local file, a remote file, or inline. If
 the target configuration does not exist, it will be created.

 The device analyzes the source and target configurations and
 performs the requested changes. The target configuration is not
 necessarily replaced, as with the <copy-config> message. Instead
 the target configuration is changed in accordance with the
 source's data and requested operations.

 Attributes:

 operation:

Enns Expires December 31, 2005 [Page 35]

Internet-Draft NETCONF Protocol June 2005

 Elements in the <config> subtree may contain an "operation"
 attribute. The attribute identifies the point in the
 configuration to perform the operation, and MAY appear on
 multiple elements throughout the <config> subtree.

 If the operation attribute is not specified, the configuration
 is merged into the configuration datastore.

 The operation attribute has one of the following values:

 merge: The configuration data identified by the element
 containing this attribute is merged with the configuration
 at the corresponding level in the configuration datastore
 identified by the target parameter. This is the default
 behavior.

 replace: The configuration data identified by the element
 containing this attribute replaces any related configuration
 in the configuration datastore identified by the target
 parameter. Unlike a <copy-config> operation, which replaces
 the entire target configuration, only the configuration
 actually present in the config parameter is affected.

 create: The configuration data identified by the element
 containing this attribute is added to the configuration if
 and only if the configuration data does not already exist on
 the device. If the configuration data exists, an <rpc-
 error> element is returned with an <error-tag> value of
 data-exists.

 delete: The configuration data identified by the element
 containing this attribute is deleted in the configuration
 datastore identified by the target parameter.

 Parameters:

 target:

 Configuration datastore being edited, such as <running/> or
 <candidate/>.

 default-operation:

 Selects the default operation (as described in the "operation"
 attribute) for this <edit-config> request. The default value
 for the default-operation parameter is "merge".

Enns Expires December 31, 2005 [Page 36]

Internet-Draft NETCONF Protocol June 2005

 The default-operation parameter is optional, but if provided,
 must have one of the following values:

 merge: The configuration data in the <config> parameter is
 merged with the configuration at the corresponding level in
 the target datastore. This is the default behavior.

 replace: The configuration data in the <config> parameter
 completely replaces the configuration in the target
 datastore. This is useful for loading previously saved
 configuration data.

 none: The target datastore is unaffected by the configuration
 in the <config> parameter, unless and until the incoming
 configuration data uses the "operation" attribute to request
 a different operation. If the configuration in the <config>
 parameter contains data for which there is not a
 corresponding level in the target datastore, an <rpc-error>
 is returned with an <error-tag> value of data-missing.
 Using "none" allows operations like "delete" to avoid
 unintentionally creating the parent hierarchy of the element
 to be deleted.

 test-option:

 The test-option element may be specified only if the device
 advertises the :validate capability (Section 8.6).

 The test-option element has one of the following values:

 test-then-set: Perform a validation test before attempting to
 set. If validation errors occur, do not perform the <edit-
 config> operation. This is the default test-option.

 set: Perform a set without a validation test first.

 error-option:

 The error-option element has one of the following values:

 stop-on-error: Abort the edit-config operation on first error.
 This is the default error-option.

 ignore-error: Continue to process configuration data on error;
 error is recorded and negative response is generated if any
 errors occur.

Enns Expires December 31, 2005 [Page 37]

Internet-Draft NETCONF Protocol June 2005

 rollback-on-error: If an error condition occurs such that an
 error severity <rpc-error> element is generated, the server
 will stop processing the edit-config operation and restore
 the specified configuration to its complete state at the
 start of this edit-config operation. This option requires
 the server to support the :rollback-on-error capability
 described in Section 8.5.

 config:

 Portion of the configuration subtree to edit.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent containing an <ok> element.

 Negative Response:

 An <rpc-error> response is sent if the request cannot be completed
 for any reason.

 Example:

 Set the MTU to 1500 on an interface named "Ethernet0/0" in the
 running configuration:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

Enns Expires December 31, 2005 [Page 38]

Internet-Draft NETCONF Protocol June 2005

 Add an interface named "Ethernet0/0" to the running configuration,
 replacing any previous interface with that name:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="replace">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 <address>
 <name>1.2.3.4</name>
 <prefix-length>24</prefix-length>
 </address>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Delete the configuration for an interface named "Ethernet0/0" from
 the running configuration:

Enns Expires December 31, 2005 [Page 39]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <default-operation>none</default-operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <interface xc:operation="delete">
 <name>Ethernet0/0</name>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Delete interface 192.168.0.1 from an OSPF area (other interfaces
 configured in the same area are unaffected):

Enns Expires December 31, 2005 [Page 40]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <default-operation>none</default-operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <top xmlns="http://example.com/schema/1.2/config">
 <protocols>
 <ospf>
 <area>
 <name>0.0.0.0</name>
 <interfaces>
 <interface xc:operation="delete">
 <name>192.168.0.1</name>
 </interface>
 </interfaces>
 </area>
 </ospf>
 </protocols>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

7.3 <copy-config>

 Description:

 Create or replace an entire configuration datastore with the
 contents of another complete configuration datastore. If the
 target datastore exists, it is overwritten. Otherwise, a new one
 is created, if allowed.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <source> or <target> parameter.

 A device may choose not to support the <running/> configuration
 datastore as the <target> parameter of a <copy-config> operation.
 A device may choose not to support remote to remote copy
 operations, where both the <source> and <target> parameters use

Enns Expires December 31, 2005 [Page 41]

Internet-Draft NETCONF Protocol June 2005

 the <url> element. If the source and target parameters identify
 the same URL or configuration datastore, an error MUST be returned
 with an error-tag containing invalid-value.

 Parameters:

 source:

 The configuration datastore to use as the source of the copy
 operation or the <config> element containing the configuration
 subtree to copy.

 target:

 The configuration datastore to use as the destination of the
 copy operation.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <url>https://user@example.com:passphrase/cfg/new.txt</url>
 </source>
 <target>
 <running/>
 </target>
 </copy-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

Enns Expires December 31, 2005 [Page 42]

Internet-Draft NETCONF Protocol June 2005

7.4 <delete-config>

 Description:

 Delete a configuration datastore. The <running> configuration
 datastore cannot be deleted.

 If a NETCONF peer supports the :url capability (Section 8.8), the
 <url> element can appear as the <target> parameter.

 Parameters:

 target:

 Name of the configuration datastore to delete.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included within the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-config>
 <target>
 <startup/>
 </target>
 </delete-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

7.5 <lock>

Enns Expires December 31, 2005 [Page 43]

Internet-Draft NETCONF Protocol June 2005

 Description:

 The lock operation allows the client to lock the configuration
 system of a device. Such locks are intended to be short-lived and
 allow a client to make a change without fear of interaction with
 other NETCONF clients, non-NETCONF clients (SNMP and CLI scripts)
 and human users.

 An attempt to lock the configuration MUST fail if an existing
 session or other entity holds a lock on any portion of the lock
 target.

 When the lock is acquired, the server MUST prevent any changes to
 the locked resource other than those requested by this session.
 SNMP and CLI requests to modify the resource MUST fail with an
 appropriate error.

 The duration of the lock is defined as beginning when the lock is
 acquired and lasting until either the lock is released or the
 NETCONF session closes. The session closure may be explicitly
 performed by the client, or implicitly performed by the server
 based on criteria such as failure of the underlying transport, or
 simple inactivity timeout. This criteria is dependent on the
 implementation and the underlying transport.

 The lock operation takes a mandatory parameter, target. The
 target parameter names the configuration that will be locked.
 When a lock is active, using the <edit-config> operation on the
 locked configuration and using the locked configuration as a
 target of the <copy-config> operation will be disallowed by any
 other NETCONF session. Additionally, the system will ensure that
 these locked configuration resources will not be modified by other
 non-NETCONF management operations such as SNMP and CLI. The
 <kill-session> message (at the RPC layer) can be used to force the
 release of a lock owned by another NETCONF session. It is beyond
 the scope of this document to define how to break locks held by
 other entities.

 A lock MUST not be granted if any of the following conditions are
 true:

 * a lock is already held by another NETCONF session or another
 entity

 * the target configuration has already been modified and these
 changes have not been committed or rolled back

Enns Expires December 31, 2005 [Page 44]

Internet-Draft NETCONF Protocol June 2005

 The server MUST respond with either an <ok> element or an <rpc-
 error>.

 A lock will be released by the system if the session holding the
 lock is terminated for any reason.

 Parameters:

 target:

 Name of the configuration datastore to lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 If the lock is already held, the <error-tag> element will be
 'lock-denied' and the <error-info> element will include the
 <session-id> of the lock owner. If the lock is held by a non-
 NETCONF entity, a <session-id> of 0 (zero) is included. Note that
 any other entity performing a lock on even a partial piece of a
 target will prevent a NETCONF lock (which is global) from being
 obtained on that target.

 Example:

 The following example shows a successful acquisition of a lock.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/> <!-- lock succeeded -->
 </rpc-reply>

Enns Expires December 31, 2005 [Page 45]

Internet-Draft NETCONF Protocol June 2005

 Example:

 The following example shows a failed attempt to acquire of a lock
 when the lock is already in use.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error> <!-- lock failed -->
 <error-type>protocol</error-type>
 <error-tag>lock-denied</error-tag>
 <error-severity>error</error-severity>
 <error-message>
 Lock failed, lock is already held
 </error-message>
 <error-info>
 <session-id>454</session-id>
 <!-- lock is held by NETCONF session 454 -->
 </error-info>
 </rpc-error>
 </rpc-reply>

7.6 <unlock>

 Description:

 The unlock operation is used to release a configuration lock,
 previously obtained with the <lock> operation.

 An unlock operation will not succeed if any of the following
 conditions are true:

 * the specified lock is not currently active

 * the session issuing the <unlock> operation is not the same
 session that obtained the lock

Enns Expires December 31, 2005 [Page 46]

Internet-Draft NETCONF Protocol June 2005

 The server MUST respond with either an <ok> element or an <rpc-
 error>.

 Parameters:

 target:

 Name of the configuration datastore to unlock.

 A NETCONF client is not permitted to unlock a configuration
 datastore that it did not lock.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

7.7 <get>

 Description:

 Retrieve running configuration and device state information.

Enns Expires December 31, 2005 [Page 47]

Internet-Draft NETCONF Protocol June 2005

 Parameters:

 filter:

 This parameter specifies the portion of the system
 configuration and state data to retrieve. If this parameter is
 empty, all the device configuration and state information is
 returned.

 The filter element may optionally contain a 'type' attribute.
 This attribute indicates the type of filtering syntax used
 within the filter element. The default filtering mechanism in
 NETCONF is referred to as subtree filtering and is described in

Section 6. The value 'subtree' explicitly identifies this type
 of filtering.

 If the NETCONF peer supports the :xpath capability
 (Section 8.9), the value 'xpath' may be used to indicate that
 the filter element contains an XPath expression.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent. The <data> section contains the appropriate subset.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

Enns Expires December 31, 2005 [Page 48]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 </interface>
 </interfaces>
 </filter>
 </get>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces xmlns="http://example.com/schema/1.2/stats">
 <interface>
 <ifName>eth0</ifName>
 <ifInOctets>45621</ifInOctets>
 <ifOutOctets>774344</ifOutOctets>
 </interface>
 </interfaces>
 </top>
 </data>
 </rpc-reply>

7.8 <close-session>

 Description:

 Request graceful termination of a NETCONF session.

 When a NETCONF server receives a <close-session> request, it will
 gracefully close the session. The server will release any locks
 and resources associated with the session and gracefully close any
 associated connections. Any NETCONF requests received after a
 <close-session> request will be ignored.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

Enns Expires December 31, 2005 [Page 49]

Internet-Draft NETCONF Protocol June 2005

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close-session/>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

7.9 <kill-session>

 Description:

 Force the termination of a NETCONF session.

 When a NETCONF entity receives a <kill-session> request for an
 open session, it will abort any operations currently in process,
 release any locks and resources associated with the session and
 close any associated connections.

 Parameters:

 session-id:

 Session identifier of the NETCONF session to be terminated. If
 this value is equal to the current session ID, an 'invalid-
 value' error is returned.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply> is
 sent that includes an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

Enns Expires December 31, 2005 [Page 50]

Internet-Draft NETCONF Protocol June 2005

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <kill-session>
 <session-id>4</session-id>
 </kill-session>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

8. Capabilities

 This section defines a set of capabilities that a client or a server
 MAY implement. Each peer advertises its capabilities by sending them
 during an initial capabilities exchange. Each peer needs to
 understand only those capabilities that it might use and must be able
 to process and ignore any capability received from the other peer
 that it does not require or does not understand.

 Additional capabilities can be defined using the template in
Appendix C. Future capability definitions may be published as

 standards by standards bodies or published as proprietary extensions.

 A NETCONF capability is identified with a URI. The base capabilities
 are defined using URNs following the method described in RFC 3553
 [8]. Capabilities defined in this document have the following
 format:

 urn:ietf:params:xml:ns:netconf:capability:{name}:1.0

 where {name} is the name of the capability. Capabilities are often
 referenced in discussions and email using the shorthand :{name}. For
 example, the foo capability would have the formal name
 "urn:ietf:params:xml:ns:netconf:capability:foo:1.0" and be called
 ":foo". The shorthand form MUST NOT be used inside the protocol.

8.1 Capabilities Exchange

 A NETCONF capability is a set of additional functionality implemented
 on top of the base NETCONF specification. The capability is
 distinguished by a URI.

 Capabilities are advertised in messages sent by each peer during

https://datatracker.ietf.org/doc/html/rfc3553

Enns Expires December 31, 2005 [Page 51]

Internet-Draft NETCONF Protocol June 2005

 session establishment. When the NETCONF session is opened, each peer
 MUST send a <hello> element containing a list of that peer's
 capabilities. Each peer MUST send at least the base NETCONF
 capability, "urn:ietf:params:xml:ns:netconf:base:1.0".

 A server sending the <hello> element MUST include a <session-id>
 element containing the session ID for this NETCONF session. A client
 sending the <hello> element MUST NOT include a <session-id> element.

 A server receiving a <session-id> element MUST NOT continue the
 NETCONF session. Similarly, a client which does not receive a
 <session-id> element in the server's <hello> message MUST NOT
 continue the NETCONF session. In both cases the underlying transport
 should be closed.

 In the following example, a server advertises the base NETCONF
 capability, one NETCONF capability defined in the base NETCONF
 document, and one implementation-specific capability.

 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:startup:1.0
 </capability>
 <capability>
 http:/example.net/router/2.3/myfeature
 </capability>
 </capabilities>
 <session-id>4</session-id>
 </hello>

 Each peer sends its <hello> element simultaneously as soon as the
 connection is open. A peer MUST NOT wait to receive the capability
 set from the other side before sending its own set.

8.2 Writable-Running Capability

8.2.1 Description

 The :writable-running capability indicates that the device supports
 writes directly to the <running> configuration datastore. In other
 words, the device supports edit-config and copy-config operations
 where the <running> configuration is the target.

Enns Expires December 31, 2005 [Page 52]

Internet-Draft NETCONF Protocol June 2005

8.2.2 Dependencies

 None.

8.2.3 Capability and Namespace

 The :writable-running capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:capability:writable-running:1.0

8.2.4 New Operations

 None.

8.2.5 Modifications to Existing Operations

8.2.5.1 <edit-config>

 The :writable-running capability modifies the <edit-config> operation
 to accept the <running> element as a <target>.

8.2.5.2 <copy-config>

 The :writable-running capability modifies the <copy-config> operation
 to accept the <running> element as a <target>.

8.3 Candidate Configuration Capability

8.3.1 Description

 The candidate configuration capability, :candidate, indicates that
 the device supports a candidate configuration datastore, which is
 used to hold configuration data that can manipulated without
 impacting the device's current configuration. The candidate
 configuration is a full configuration data set that serves as a work
 place for creating and manipulating configuration data. Additions,
 deletions, and changes may be made to this data to construct the
 desired configuration data. A <commit> operation may be performed at
 any time that causes the device's running configuration to be set to
 the value of the candidate configuration.

 The candidate configuration can be used as a source or target of any
 operation with a <source> or <target> parameter. The <candidate>
 element is used to indicate the candidate configuration:

Enns Expires December 31, 2005 [Page 53]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config> <!-- any NETCONF operation -->
 <source>
 <candidate/>
 </source>
 </get-config>
 </rpc>

 The candidate configuration may be shared among multiple sessions.
 Unless a client has specific information that the candidate
 configuration is not shared (for example, through another capability,
 e.g. :lock), it must assume that other sessions may be able to modify
 the candidate configuration at the same time. It is therefore
 prudent for a client to lock the candidate configuration before
 modifying it.

 The client can discard any changes since the last <commit> operation
 by executing the <discard-changes> operation. The candidate
 configuration's content then reverts to the current committed
 configuration.

8.3.2 Dependencies

 None.

8.3.3 Capability and Namespace

 The :candidate capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:capability:candidate:1.0

8.3.4 New Operations

8.3.4.1 <commit>

 Description:

 When a candidate configuration's content is complete, the
 configuration data can be committed, publishing the data set to
 the rest of the device and requesting the device to conform to
 the behavior described in the new configuration.

 To commit the candidate configuration as the device's new
 current configuration, use the <commit> operation.

Enns Expires December 31, 2005 [Page 54]

Internet-Draft NETCONF Protocol June 2005

 The <commit> operation instructs the device to implement the
 configuration data contained in the candidate configuration.
 If the device is unable to commit all of the changes in the
 candidate configuration datastore, then the running
 configuration MUST remain unchanged. If the device does
 succeed in committing, the running configuration MUST be
 updated with the contents of the candidate configuration.

 If the system does not have the :candidate capability, the
 <commit> operation is not available.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

8.3.4.2 <discard-changes>

 If the client decides that the candidate configuration should not be
 committed, the <discard-changes> operation can be used to revert the
 candidate configuration to the current committed configuration.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <discard-changes/>
 </rpc>

 This operation discards any uncommitted changes by reseting the
 candidate configuration with the content of the running
 configuration.

Enns Expires December 31, 2005 [Page 55]

Internet-Draft NETCONF Protocol June 2005

8.3.5 Modifications to Existing Operations

8.3.5.1 <lock> and <unlock>

 The candidate configuration can be locked using the <lock> operation
 with the <candidate> element as the <target> parameter:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
 </rpc>

 Similarly, the candidate configuration is unlocked using the
 <candidate> element as the <target> parameter:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
 </rpc>

 When a client fails with outstanding changes to the candidate
 configuration, recovery can be difficult. To facilitate easy
 recovery, any outstanding changes are discarded when the lock is
 released, whether explicitly with the <unlock> operation or
 implicitly from session failure.

8.4 Confirmed Commit Capability

8.4.1 Description

 The :confirmed-commit capability indicates that the server will
 support the <confirmed> and <confirm-timeout> parameters for the
 <commit> protocol operation. See section Section 8.3 for further
 details on the <commit> operation.

 A confirmed commit operation MUST be reverted if a follow-up commit
 (called the "confirming commit") is not issued within 600 seconds (10
 minutes). The timeout period can be adjusted with the <confirm-
 timeout> element. The confirming commit can itself include a
 <confirmed> parameter.

Enns Expires December 31, 2005 [Page 56]

Internet-Draft NETCONF Protocol June 2005

 If the session issuing the confirmed commit is terminated for any
 reason before the confirm timeout expires, the server MUST restore
 the configuration to its state before the confirmed commit was
 issued.

 If the device reboots for any reason before the confirm timeout
 expires, the server MUST restore the configuration to its state
 before the confirmed commit was issued.

 If a confirming commit is not issued, the device will revert its
 configuration to the state prior to the issuance of the confirmed
 commit. Note that any commit operation, including a commit which
 introduces additional changes to the configuration, will serve as a
 confirming commit. Thus to cancel a confirmed commit and revert
 changes without waiting for the confirm timeout to expire, the
 manager can explicitly restore the configuration to its state before
 the confirmed commit was issued.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, lock obtained before the edit-config operation is
 started). Therefore, it is strongly suggested that in order to use
 this feature with shared configuration databases, configuration
 locking should also be used.

8.4.2 Dependencies

 The :confirmed-commit capability is only relevant if the :candidate
 capability is also supported.

8.4.3 Capability and Namespace

 The :confirmed-commit capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0

8.4.4 New Operations

 None.

8.4.5 Modifications to Existing Operations

8.4.5.1 <commit>

 The :confirmed-commit capability allows 2 additional parameters to

Enns Expires December 31, 2005 [Page 57]

Internet-Draft NETCONF Protocol June 2005

 the <commit> operation.

 Parameters:

 confirmed:

 Perform a confirmed commit operation.

 confirm-timeout:

 Timeout period for confirmed commit, in seconds. If
 unspecified, the confirm timeout defaults to 600 seconds.

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm-timeout>120</confirm-timeout>
 </commit>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

8.5 Rollback on Error Capability

8.5.1 Description

 This capability indicates that the server will support the 'rollback-
 on-error' value in the <error-option> parameter to the <edit-config>
 operation.

 For shared configurations, this feature can cause other configuration
 changes (for example, via other NETCONF sessions) to be inadvertently
 altered or removed, unless the configuration locking feature is used
 (in other words, lock obtained before the edit-config operation is
 started). Therefore, it is strongly suggested that in order to use
 this feature with shared configuration databases, configuration
 locking must also be used.

8.5.2 Dependencies

 None

Enns Expires December 31, 2005 [Page 58]

Internet-Draft NETCONF Protocol June 2005

8.5.3 Capability and Namespace

 The :rollback-on-error capability is identified by the following
 capability string:

 urn:ietf:params:xml:ns:netconf:capability:rollback-on-error:1.0

8.5.4 New Operations

 None.

8.5.5 Modifications to Existing Operations

8.5.5.1 <edit-config>

 The :rollback-on-error capability allows the 'rollback-on-error'
 value to the <error-option> parameter on the <edit-config> operation.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <error-option>rollback-on-error</error-option>
 <config>
 <top xmlns="http://example.com/schema/1.2/config">
 <interface>
 <name>Ethernet0/0</name>
 <mtu>100000</mtu>
 </interface>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

8.6 Validate Capability

Enns Expires December 31, 2005 [Page 59]

Internet-Draft NETCONF Protocol June 2005

8.6.1 Description

 Validation consists of checking a candidate configuration for
 syntactical and semantic errors before applying the configuration to
 the device.

 If this capability is advertised, the device supports the <validate>
 protocol operation and checks at least for syntax errors. In
 addition, this capability supports the test-option parameter to the
 <edit-config> operation and, when it is provided, checks at least for
 syntax errors.

8.6.2 Dependencies

 None.

8.6.3 Capability and Namespace

 The :validate capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:capability:validate:1.0

8.6.4 New Operations

8.6.4.1 <validate>

 Description:

 This protocol operation validates the contents of the specified
 configuration.

 Parameters:

 source:

 Name of the configuration datastore being validated, such as
 <candidate>.

 Positive Response:

 If the device was able to satisfy the request, an <rpc-reply>
 is sent that contains an <ok> element.

Enns Expires December 31, 2005 [Page 60]

Internet-Draft NETCONF Protocol June 2005

 Negative Response:

 An <rpc-error> element is included in the <rpc-reply> if the
 request cannot be completed for any reason.

 A validate operation can fail for any of the following reasons:

 + Syntax errors

 + Missing parameters

 + References to undefined configuration data

 Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

8.7 Distinct Startup Capability

8.7.1 Description

 The device supports separate running and startup configuration
 datastores. Operations which affect the running configuration will
 not be automatically copied to the startup configuration. An
 explicit <copy-config> operation from the <running> to the <startup>
 must be invoked to update the startup configuration to the current
 contents of the running configuration. NETCONF protocol operations
 refer to the startup datastore using the <startup> element.

8.7.2 Dependencies

 None.

Enns Expires December 31, 2005 [Page 61]

Internet-Draft NETCONF Protocol June 2005

8.7.3 Capability and Namespace

 The :startup capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:capability:startup:1.0

8.7.4 New Operations

 None.

8.7.5 Modifications to Existing Operations

8.7.5.1 <copy-config>

 To save the startup configuration, use the copy-config operation to
 copy the <running> configuration datastore to the <startup>
 configuration datastore.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 </copy-config>
 </rpc>

8.8 URL Capability

8.8.1 Description

 The NETCONF peer has the ability to accept the <url> element in
 <source> and <target> parameters. The capability is further
 identified by URL arguments indicating the protocols supported.

8.8.2 Dependencies

 None.

8.8.3 Capability and Namespace

 The :url capability is identified by the following capability string:

Enns Expires December 31, 2005 [Page 62]

Internet-Draft NETCONF Protocol June 2005

 urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol={name,...}

 The :url capability URI MUST contain a "protocol" argument assigned a
 comma-separated list of protocol names indicating which protocols the
 NETCONF peer supports. For example:

 urn:ietf:params:xml:ns:netconf:capability:url:
 1.0?protocol=http,ftp,file

8.8.4 New Operations

 None.

8.8.5 Modifications to Existing Operations

8.8.5.1 <edit-config>

 The :url capability modifies the <edit-config> operation to accept
 the <url> element as an alternative to the <config> parameter. If
 the <url> element is specified, then it should identify a local
 configuration file.

8.8.5.2 <copy-config>

 The :url capability modifies the <copy-config> operation to accept
 the <url> element as the value of the the <source> and the <target>
 parameters.

8.8.5.3 <delete-config>

 The :url capability modifies the <delete-config> operation to accept
 the <url> element as the value of the the <target> parameters. If
 this parameter contains a URL, then it should identify a local
 configuration file.

8.8.5.4 <validate>

 The :url capability modifies the <validate> operation to accept the
 <url> element as the value of the the <source> parameter.

8.9 XPath Capability

8.9.1 Description

 The XPath capability indicates that the NETCONF peer supports the use
 of XPath expressions in the <filter> element. XPath is described in
 [2].

Enns Expires December 31, 2005 [Page 63]

Internet-Draft NETCONF Protocol June 2005

8.9.2 Dependencies

 None.

8.9.3 Capability and Namespace

 The :xpath capability is identified by the following capability
 string:

 urn:ietf:params:xml:ns:netconf:capability:xpath:1.0

8.9.4 New Operations

 None.

8.9.5 Modifications to Existing Operations

8.9.5.1 <get-config> and <get>

 The :xpath capability modifies the <get> and <get-config> operations
 to accept the value "xpath" in the type attribute of the filter
 element. When the type attribute is set to "xpath", the contents of
 the filter element will be treated as an xpath expression and used to
 filter the returned data.

 For example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="xpath"> <!-- get the user named fred -->
 top/users/user[name="fred"]
 </filter>
 </get-config>
 </rpc>

9. Security Considerations

 This document does not specify an authorization scheme, as such a
 scheme should be tied to a meta-data model or a data model.
 Implementators SHOULD provide a well thought out authorization scheme
 with NETCONF.

Enns Expires December 31, 2005 [Page 64]

Internet-Draft NETCONF Protocol June 2005

 Authorization of individual users via the NETCONF server may or may
 not map 1:1 to other interfaces. First, the data models may be
 incompatible. Second, it may be desirable to authorize based on
 mechanisms available in the application protocol layer (TELNET, SSH,
 etc).

 In addition, operations on configurations may have unintended
 consequences if those operations are also not guarded by the global
 lock on the files or objects being operated upon. For instance, a
 partially complete access list could be committed from a candidate
 configuration unbeknownst to the owner of the lock of the candidate
 configuration, leading to either an insecure or inaccessible device
 if the lock on the candidate configuration does not also apply to the
 <copy-config> operation when applied to it.

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic eavesdropping attacks. Configuration
 information often times contains passwords, user names, service
 descriptions, and topological information, all of which are
 sensitive. Because of this, this protocol should be implemented
 carefully with adequate attention to all manner of attack one might
 expect to experience with other management interfaces.

 The protocol, therefore, must minimally support options for both
 privacy and authentication. It is anticipated that the underlying
 protocol (SSH, BEEP, etc) will provide for both privacy and
 authentication, as is required. It is further expected that the
 identity of each end of a NETCONF session will be available to the
 other in order to determine authorization for any given request. One
 could also easily envision additional information such as transport
 and encryption methods being made available for purposes of
 authorization. NETCONF itself provide no means to reauthenticate,
 much less authenticate. All such actions occur at lower layers.

 Different environments may well allow different rights prior to and
 then after authentication. Thus, an authorization model is not
 specified in this document. When an operation is not properly
 authorized then a simple "permission denied" is sufficient. Note
 that authorization information may be exchanged in the form of
 configuration information, which is all the more reason to ensure the
 security of the connection.

 That having been said, it is important to recognize that some
 operations are clearly more sensitive by nature than others. For
 instance, <copy-config> to the startup or running configurations is
 clearly not a normal provisioning operation, where-as <edit-config>
 is. Such global operations MUST disallow the changing of information

Enns Expires December 31, 2005 [Page 65]

Internet-Draft NETCONF Protocol June 2005

 that an individual does not have authorization to perform. For
 example, if a user A is not allowed to configure an IP address on an
 interface but user B has configured an IP address on an interface in
 the <candidate> configuration, user A must not be allowed to commit
 the <candidate> configuration.

 Similarly, just because someone says go write a configuration through
 the URL capability at a particular place does not mean that an
 element should do it without proper authorization.

 The <lock> operation will demonstrate that use of NETCONF is intended
 for use by systems that have at least some trust of the
 administrator. As specified in this document, it is possible to lock
 portions of a configuration that a principle might not otherwise have
 access to. After all, the entire configuration is locked. To
 mitigate this problem there are two approaches. It is possible to
 kill another NETCONF session programmatically from within NETCONF if
 one knows the session identifier of the offending session. The other
 possible way to break a lock is to provide an function within the
 device's native user interface. These two mechanisms suffer from a
 race condition that may be ameliorated by removing the offending user
 from an AAA server. However, such a solution is not useful in all
 deployment scenarios, such as those where SSH public/private key
 pairs are used.

10. IANA Considerations

 TBD.

11. Authors and Acknowledgements

 This document was written by:

 Andy Bierman, Cisco Systems

 Ken Crozier, Cisco Systems

 Rob Enns, Juniper Networks

 Ted Goddard, IceSoft

 Eliot Lear, Cisco Systems

 Phil Shafer, Juniper Networks

 Steve Waldbusser

Enns Expires December 31, 2005 [Page 66]

Internet-Draft NETCONF Protocol June 2005

 Margaret Wasserman, ThingMagic

 The authors would like to acknowledge the members of the NETCONF
 working group. In particular, we would like to thank Wes Hardaker
 for his persistance and patience in assisting us with security
 considerations. We would also like to thank Randy Presuhn, Sharon
 Chisolm, Juergen Schoenwalder, Glenn Waters, David Perkins, Weijing
 Chen, Simon Leinen, Keith Allen and Dave Harrington for all of their
 valuable advice.

12. References

12.1 Normative References

 [1] Bray, T., Paoli, J., Sperberg-McQueen, C., and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
 REC REC-xml-20001006, October 2000.

 [2] Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", W3C REC REC-xpath-19991116, November 1999.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [5] Berners-Lee, T., "Universal Resource Identifiers in WWW: A
 Unifying Syntax for the Expression of Names and Addresses of
 Objects on the Network as used in the World-Wide Web", RFC 1630,
 June 1994.

 [6] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [7] Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865,
 June 2000.

 [8] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An IETF
 URN Sub-namespace for Registered Protocol Parameters", BCP 73,

RFC 3553, June 2003.

12.2 Informative References

 [9] Clark, J., "XSL Transformations (XSLT) Version 1.0", W3C
 REC REC-xslt-19991116, November 1999.

 [10] Ylonen, T., Kivinen, T., Saarinen, M., Rinne, T., and S.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc1630
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/bcp73
https://datatracker.ietf.org/doc/html/rfc3553

Enns Expires December 31, 2005 [Page 67]

Internet-Draft NETCONF Protocol June 2005

 Lehtinen, "SSH Protocol Architecture",
draft-ietf-secsh-architecture-15 (work in progress),

 October 2003.

 [11] Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for the
 Use of Extensible Markup Language (XML) within IETF Protocols",

BCP 70, RFC 3470, January 2003.

Author's Address

 Rob Enns (editor)
 Juniper Networks
 1194 North Mathilda Ave
 Sunnyvale, CA 94089
 US

 Email: rpe@juniper.net

Appendix A. NETCONF Error List

 Tag: in-use
 Error-type: protocol, application
 Severity: error
 Error-info: none
 Description: The request requires a resource that already in use.

 Tag: invalid-value
 Error-type: protocol, application
 Severity: error
 Error-info: none
 Description: The request specifies an unacceptable value for one
 or more parameters.

 Tag: too-big
 Error-type: transport, rpc, protocol, application
 Severity: error
 Error-info: none
 Description: The request or response (that would be generated) is too
 large for the implementation to handle.

 Tag: missing-attribute
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the missing attribute
 <bad-element> : name of the element that should
 contain the missing attribute
 Description: An expected attribute is missing

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-15
https://datatracker.ietf.org/doc/html/bcp70
https://datatracker.ietf.org/doc/html/rfc3470

Enns Expires December 31, 2005 [Page 68]

Internet-Draft NETCONF Protocol June 2005

 Tag: bad-attribute
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the attribute w/ bad value
 <bad-element> : name of the element that contains
 the attribute with the bad value
 Description: An attribute value is not correct; e.g., wrong type,
 out of range, pattern mismatch

 Tag: unknown-attribute
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-attribute> : name of the unexpected attribute
 <bad-element> : name of the element that contains
 the unexpected attribute
 Description: An unexpected attribute is present

 Tag: missing-element
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the missing element
 Description: An expected element is missing

 Tag: bad-element
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the element w/ bad value
 Description: An element value is not correct; e.g., wrong type,
 out of range, pattern mismatch

 Tag: unknown-element
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: <bad-element> : name of the unexpected element
 Description: An unexpected element is present

 Tag: unknown-namespace
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: Name of the unexpected namespace
 Description: An unexpected namespace is present

 Tag: access-denied
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Access to the requested RPC, protocol operation,
 or application data model is denied because

Enns Expires December 31, 2005 [Page 69]

Internet-Draft NETCONF Protocol June 2005

 authorization failed

 Tag: lock-denied
 Error-type: protocol
 Severity: error
 Error-info: <session-id> : session ID of session holding the
 requested lock, or zero to indicate a non-NETCONF
 entity holds the lock
 Description: Access to the requested lock is denied because the
 lock is currently held by another entity

 Tag: resource-denied
 Error-type: transport, rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Request could not be completed because of insufficient
 resources

 Tag: rollback-failed
 Error-type: protocol, application
 Severity: error
 Error-info: none
 Description: Request to rollback some configuration change (via
 rollback-on-error or discard-changes operations) was
 not completed for some reason.

 Tag: data-exists
 Error-type: application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the relevant
 data model content already exists. For example,
 a 'create' operation was attempted on data which
 already exists.

 Tag: data-missing
 Error-type: application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the relevant
 data model content does not exist. For example,
 a 'modify' or 'delete' operation was attempted on
 data which does not exist.

 Tag: operation-not-supported
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none

Enns Expires December 31, 2005 [Page 70]

Internet-Draft NETCONF Protocol June 2005

 Description: Request could not be completed because the requested
 operation is not supported by this implementation.

 Tag: operation-failed
 Error-type: rpc, protocol, application
 Severity: error
 Error-info: none
 Description: Request could not be completed because the requested
 operation failed for some reason not covered by
 any other error condition.

 Tag: partial-operation
 Error-type: application
 Severity: error
 Error-info: <ok-element> : identifies an element in the data model
 for which the requested operation has been completed
 for that node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

 <err-element> : identifies an element in the data model
 for which the requested operation has failed for that
 node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

 <noop-element> : identifies an element in the data model
 for which the requested operation was not attempted for
 that node and all its child nodes. This element
 can appear zero or more times in the <error-info>
 container.

 Description: Some part of the requested operation failed or was
 not attempted for some reason. Full cleanup has
 not been performed (e.g., rollback not supported)
 by the server. The error-info container is used
 to identify which portions of the application
 data model content for which the requested operation
 has succeeded (<ok-element>), failed (<bad-element>),
 or not attempted (<noop-element>).

Appendix B. XML Schema for NETCONF RPC and Protocol Operations

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

Enns Expires December 31, 2005 [Page 71]

Internet-Draft NETCONF Protocol June 2005

 targetNamespace="urn:ietf:params:xml:ns:netconf:base:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">
 <!--
 import standard XML definitions
 -->
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation>
 This import accesses the xml: attribute groups for the
 xml:lang as declared on the error-message element.
 </xs:documentation>
 </xs:annotation>
 </xs:import>
 <!--
 <rpc> element
 -->
 <xs:complexType name="rpcType">
 <xs:sequence>
 <xs:element ref="rpcOperation"/>
 </xs:sequence>
 <xs:attribute name="message-id" type="xs:string" use="required"/>
 <!--
 Arbitrary attributes can be supplied with <rpc> element.
 -->
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:element name="rpc" type="rpcType"/>
 <!--
 data types and elements used to construct rpc-errors
 -->
 <xs:simpleType name="SessionId">
 <xs:restriction base="xs:unsignedInt"/>
 </xs:simpleType>
 <xs:simpleType name="ErrorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="transport"/>
 <xs:enumeration value="rpc"/>
 <xs:enumeration value="protocol"/>
 <xs:enumeration value="application"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorTag">
 <xs:restriction base="xs:string">
 <xs:enumeration value="in-use"/>
 <xs:enumeration value="invalid-value"/>

Enns Expires December 31, 2005 [Page 72]

Internet-Draft NETCONF Protocol June 2005

 <xs:enumeration value="too-big"/>
 <xs:enumeration value="missing-attribute"/>
 <xs:enumeration value="bad-attribute"/>
 <xs:enumeration value="unknown-attribute"/>
 <xs:enumeration value="missing-element"/>
 <xs:enumeration value="bad-element"/>
 <xs:enumeration value="unknown-element"/>
 <xs:enumeration value="unknown-namespace"/>
 <xs:enumeration value="access-denied"/>
 <xs:enumeration value="lock-denied"/>
 <xs:enumeration value="resource-denied"/>
 <xs:enumeration value="rollback-failed"/>
 <xs:enumeration value="data-exists"/>
 <xs:enumeration value="data-missing"/>
 <xs:enumeration value="operation-not-supported"/>
 <xs:enumeration value="operation-failed"/>
 <xs:enumeration value="partial-operation"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="ErrorSeverity">
 <xs:restriction base="xs:string">
 <xs:enumeration value="error"/>
 <xs:enumeration value="warning"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:group name="errorInfoContent">
 <xs:sequence>
 <xs:element name="bad-attribute" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="bad-element" type="xs:QName"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="ok-element" type="xs:QName"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="err-element" type="xs:QName"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="noop-element" type="xs:QName"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="session-id" type="SessionId"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="rpcErrorType">
 <xs:sequence>
 <xs:element name="error-type" type="ErrorType"/>
 <xs:element name="error-tag" type="ErrorTag"/>
 <xs:element name="error-severity" type="ErrorSeverity"/>
 <xs:element name="error-app-tag" type="xs:string"
 minOccurs="0"/>

Enns Expires December 31, 2005 [Page 73]

Internet-Draft NETCONF Protocol June 2005

 <xs:element name="error-path" type="xs:string" minOccurs="0"/>
 <xs:element name="error-message" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <!-- <error-info> can be any type -->
 <xs:element name="error-info" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <!--
 <rpc-reply> element
 -->
 <xs:complexType name="rpcReplyType">
 <xs:choice>
 <xs:element name="ok"/>
 <xs:group ref="rpcResponse"/>
 </xs:choice>
 <xs:attribute name="message-id" type="xs:string" use="optional"/>
 <!--
 Any attributes supplied with <rpc> element must be returned
 on <rpc-reply>.
 -->
 <xs:anyAttribute processContents="lax"/>
 </xs:complexType>
 <xs:group name="rpcResponse">
 <xs:sequence>
 <xs:element name="rpc-error" type="rpcErrorType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="data" type="dataInlineType" minOccurs="0"/>
 </xs:sequence>
 </xs:group>
 <xs:element name="rpc-reply" type="rpcReplyType"/>
 <!--
 Type for <test-option> parameter to <edit-config>
 -->
 <xs:simpleType name="testOptionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="test-then-set"/>
 <xs:enumeration value="set"/>
 </xs:restriction>
 </xs:simpleType>
 <!--
 Type for <error-option> parameter to <edit-config>

Enns Expires December 31, 2005 [Page 74]

Internet-Draft NETCONF Protocol June 2005

 -->
 <xs:simpleType name="errorOptionType">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation>
 Use of the rollback-on-error value requires
 the :rollback-on-error capability.
 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="stop-on-error"/>
 <xs:enumeration value="ignore-error"/>
 <xs:enumeration value="rollback-on-error"/>
 </xs:restriction>
 </xs:simpleType>
 <!--
 rpcOperationType: used as a base type for all
 NETCONF operations
 -->
 <xs:complexType name="rpcOperationType"/>
 <xs:element name="rpcOperation"
 type="rpcOperationType" abstract="true"/>
 <!--
 Type for <config> element
 -->
 <xs:complexType name="configInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <!--
 Type for <data> element
 -->
 <xs:complexType name="dataInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 <!--
 Type for <filter> element
 -->
 <xs:simpleType name="FilterType">
 <xs:restriction base="xs:string">
 <xs:annotation>
 <xs:documentation>
 Use of the xpath value requires the :xpath capability.
 </xs:documentation>
 </xs:annotation>
 <xs:enumeration value="subtree"/>

Enns Expires December 31, 2005 [Page 75]

Internet-Draft NETCONF Protocol June 2005

 <xs:enumeration value="xpath"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="filterInlineType">
 <xs:complexContent>
 <xs:extension base="xs:anyType">
 <xs:attribute name="type"
 type="FilterType" default="subtree"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!--
 configuration datastore names
 -->
 <xs:annotation>
 <xs:documentation>
 The startup datastore can be used only if the :startup
 capability is advertised. The candidate datastore can
 be used only if the :candidate datastore is advertised.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType name="configNameType"/>
 <xs:element name="config-name"
 type="configNameType" abstract="true"/>
 <xs:element name="startup" type="configNameType"
 substitutionGroup="config-name"/>
 <xs:element name="candidate" type="configNameType"
 substitutionGroup="config-name"/>
 <xs:element name="running" type="configNameType"
 substitutionGroup="config-name"/>
 <!--
 operation attribute used in <edit-config>
 -->
 <xs:simpleType name="editOperationType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="delete"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:attribute name="operation"
 type="editOperationType" default="merge"/>
 <!--
 <default-operation> element
 -->
 <xs:simpleType name="defaultOperationType">
 <xs:restriction base="xs:string">

Enns Expires December 31, 2005 [Page 76]

Internet-Draft NETCONF Protocol June 2005

 <xs:enumeration value="merge"/>
 <xs:enumeration value="replace"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>
 <!--
 <url> element
 -->
 <xs:complexType name="configURIType">
 <xs:annotation>
 <xs:documentation>
 Use of the url element requires the :url capability.
 </xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:anyURI"/>
 </xs:simpleContent>
 </xs:complexType>
 <!--
 Type for <source> element (except <get-config>)
 -->
 <xs:complexType name="rpcOperationSourceType">
 <xs:choice>
 <xs:element name="config" type="configInlineType"/>
 <xs:element ref="config-name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!--
 Type for <source> element in <get-config>
 -->
 <xs:complexType name="getConfigSourceType">
 <xs:choice>
 <xs:element ref="config-name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!--
 Type for <target> element
 -->
 <xs:complexType name="rpcOperationTargetType">
 <xs:choice>
 <xs:element ref="config-name"/>
 <xs:element name="url" type="configURIType"/>
 </xs:choice>
 </xs:complexType>
 <!--
 <get-config> operation

Enns Expires December 31, 2005 [Page 77]

Internet-Draft NETCONF Protocol June 2005

 -->
 <xs:complexType name="getConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="source"
 type="getConfigSourceType"/>
 <xs:element name="filter"
 type="filterInlineType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get-config" type="getConfigType"
 substitutionGroup="rpcOperation"/>
 <!--
 <edit-config> operation
 -->
 <xs:complexType name="editConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 Use of the test-option element requires the
 :validate capability. Use of the url element
 requires the :url capability.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="target"
 type="rpcOperationTargetType"/>
 <xs:element name="default-operation"
 type="defaultOperationType"
 minOccurs="0"/>
 <xs:element name="test-option"
 type="testOptionType"
 minOccurs="0"/>
 <xs:element name="error-option"
 type="errorOptionType"
 minOccurs="0"/>
 <xs:choice>
 <xs:element name="config"
 type="configInlineType"/>
 <xs:element name="url"
 type="configURIType"/>
 </xs:choice>
 </xs:sequence>
 </xs:extension>

Enns Expires December 31, 2005 [Page 78]

Internet-Draft NETCONF Protocol June 2005

 </xs:complexContent>
 </xs:complexType>
 <xs:element name="edit-config" type="editConfigType"
 substitutionGroup="rpcOperation"/>
 <!--
 <copy-config> operation
 -->
 <xs:complexType name="copyConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="source" type="rpcOperationSourceType"/>
 <xs:element name="target" type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="copy-config" type="copyConfigType"
 substitutionGroup="rpcOperation"/>
 <!--
 <delete-config> operation
 -->
 <xs:complexType name="deleteConfigType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target" type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="delete-config" type="deleteConfigType"
 substitutionGroup="rpcOperation"/>
 <!--
 <get> operation
 -->
 <xs:complexType name="getType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="filter"
 type="filterInlineType" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="get" type="getType"
 substitutionGroup="rpcOperation"/>

Enns Expires December 31, 2005 [Page 79]

Internet-Draft NETCONF Protocol June 2005

 <!--
 <lock> operation
 -->
 <xs:complexType name="lockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target"
 type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="lock" type="lockType"
 substitutionGroup="rpcOperation"/>
 <!--
 <unlock> operation
 -->
 <xs:complexType name="unlockType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="target" type="rpcOperationTargetType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="unlock" type="unlockType"
 substitutionGroup="rpcOperation"/>
 <!--
 <validate> operation
 -->
 <xs:complexType name="validateType">
 <xs:annotation>
 <xs:documentation>
 The validate operation requires the :validate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="source" type="rpcOperationSourceType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="validate" type="validateType"
 substitutionGroup="rpcOperation"/>

Enns Expires December 31, 2005 [Page 80]

Internet-Draft NETCONF Protocol June 2005

 <!--
 <commit> operation
 -->
 <xs:complexType name="commitType">
 <xs:annotation>
 <xs:documentation>
 The commit operation requires the :candidate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>
 Use of the confirmed and confirm-timeout elements
 requires the :confirmed-commit capability.
 </xs:documentation>
 </xs:annotation>
 <xs:element name="confirmed" minOccurs="0"/>
 <xs:element name="confirm-timeout"
 type="xs:positiveInteger"
 minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="commit" type="commitType"
 substitutionGroup="rpcOperation"/>
 <!--
 <discard-changes> operation
 -->
 <xs:complexType name="discardChangesType">
 <xs:annotation>
 <xs:documentation>
 The discard-changes operation requires the
 :candidate capability.
 </xs:documentation>
 </xs:annotation>
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="discard-changes"
 type="discardChangesType"
 substitutionGroup="rpcOperation"/>
 <!--
 <close-session> operation
 -->

Enns Expires December 31, 2005 [Page 81]

Internet-Draft NETCONF Protocol June 2005

 <xs:complexType name="closeSessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="close-session" type="closeSessionType"
 substitutionGroup="rpcOperation"/>
 <!--
 <kill-session> operation
 -->
 <xs:complexType name="killSessionType">
 <xs:complexContent>
 <xs:extension base="rpcOperationType">
 <xs:sequence>
 <xs:element name="session-id"
 type="SessionId" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="kill-session" type="killSessionType"
 substitutionGroup="rpcOperation"/>
 <!--
 <hello> element
 -->
 <xs:element name="hello">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capabilities">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="capability" type="xs:anyURI"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="session-id"
 type="SessionId" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Appendix C. Capability Template

Enns Expires December 31, 2005 [Page 82]

Internet-Draft NETCONF Protocol June 2005

C.1 capability-name (template)

C.1.1 Overview

C.1.2 Dependencies

C.1.3 Capability and Namespace

 The {name} is identified by following capability string:

 urn:ietf:params:xml:ns:netconf:capability:{name}:1.0

C.1.4 New Operations

C.1.4.1 <op-name>

C.1.5 Modifications to Existing Operations

C.1.5.1 <op-name>

 If existing operations are not modified by this capability, this
 section may be omitted.

C.1.6 Interactions with Other Capabilities

 If this capability does not interact with other capabilities, this
 section may be omitted.

Appendix D. Configuring Multiple Devices with NETCONF

D.1 Operations on Individual Devices

 Consider the work involved in performing a configuration update
 against a single individual device. In making a change to the
 configuration, the application needs to build trust that its change
 has been made correctly and that it has not impacted the operation of
 the device. The application (and the application user) should feel
 confident that their change has not damaged the network.

 Protecting each individual device consists of a number of steps:

 o Acquiring the configuration lock.

 o Loading the update.

 o Validating the incoming configuration.

Enns Expires December 31, 2005 [Page 83]

Internet-Draft NETCONF Protocol June 2005

 o Checkpointing the running configuration.

 o Changing the running configuration.

 o Testing the new configuration.

 o Making the change permanent (if desired).

 o Releasing the configuration lock.

 Let's look at the details of each step.

D.1.1 Acquiring the Configuration Lock

 A lock should be acquired to prevent simultaneous updates from
 multiple sources. If multiple sources are affecting the device, the
 application is hampered in both testing of its change to the
 configuration and in recovery should the update fail. Acquiring a
 short-lived lock is a simple defense to prevent other parties from
 introducing unrelated changes.

 The lock can be acquired using the <lock> operation.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <lock>
 <target>
 <running/>
 </target>
 </lock>
 </rpc>

D.1.2 Loading the Update

 The configuration can be loaded onto the device without impacting the
 running system. If the :url capability is supported, incoming
 changes can be placed in a local file.

Enns Expires December 31, 2005 [Page 84]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </source>
 <target>
 <url>file://incoming.conf</url>
 </target>
 </copy-config>
 </rpc>

 If the :candidate capability is supported, the candidate
 configuration can be used.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <!-- place incoming configuration here -->
 </config>
 </edit-config>
 </rpc>

 If the update fails, the user file can be deleted using the <delete-
 config> operation or the candidate configuration reverted using the
 <discard-changes> operation.

D.1.3 Validating the Incoming Configuration

 Before applying the incoming configuration, it is often useful to
 validate it. Validation allows the application to gain confidence
 that the change will succeed and simplifies recovery if it does not.

 If the device supports the :url capability, use the <validate>
 operation with the <source> parameter set to the proper user file:

Enns Expires December 31, 2005 [Page 85]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <url>file://incoming.conf</url>
 </source>
 </validate>
 </rpc>

 If the device supports the :candidate capability, some validation
 will be performed as part of loading the incoming configuration into
 the candidate. For full validation, either pass the <validate>
 parameter during the <edit-config> step given above, or use the
 <validate> operation with the <source> parameter set to <candidate>.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
 </rpc>

D.1.4 Checkpointing the Running Configuration

 The running configuration can be saved into a local file as a
 checkpoint before loading the new configuration. If the update
 fails, the configuration can be restored by reloading the checkpoint
 file.

 The checkpoint file can be created using the <copy-config> operation.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <url>file://checkpoint.conf</url>
 </target>
 </copy-config>
 </rpc>

 To restore the checkpoint file, reverse the source and target
 parameters.

Enns Expires December 31, 2005 [Page 86]

Internet-Draft NETCONF Protocol June 2005

D.1.5 Changing the Running Configuration

 When the incoming configuration has been safely loaded onto the
 device and validated, it is ready to impact the running system.

 If the device supports the :url capability, use the <edit-config>
 operation to merge the incoming configuration into the running
 configuration.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <url>file://incoming.conf</url>
 </config>
 </edit-config>
 </rpc>

 If the device supports the :candidate capability, use the <commit>
 operation to set the running configuration to the candidate
 configuration. Use the <confirmed> parameter to allow automatic
 reverting to the original configuration if connectivity to the device
 fails.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit>
 <confirmed/>
 <confirm-timeout>120</confirm-timeout>
 </commit>
 </rpc>

D.1.6 Testing the New Configuration

 Now that the incoming configuration has been integrated into the
 running configuration, the application needs to gain trust that the
 change has affected the device in the way intended without affecting
 it negatively.

 To gain this confidence, the application can run tests of the
 operational state of the device. The nature of the test is dependent
 on the nature of the change and is outside the scope of this
 document. Such tests may include reachability from the system
 running the application (using ping), changes in reachability to the

Enns Expires December 31, 2005 [Page 87]

Internet-Draft NETCONF Protocol June 2005

 rest of the network (by comparing the device's routing table), or
 inspection of the particular change (looking for operational evidence
 of the BGP peer that was just added).

D.1.7 Making the Change Permanent

 When the configuration change is in place and the application has
 sufficient faith in the proper function of this change, the
 application should make the change permanent.

 If the device supports the :startup capability, the current
 configuration can be saved to the startup configuration by using the
 startup configuration as the target of the <copy-config> operation.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <copy-config>
 <source>
 <running/>
 </source>
 <target>
 <startup/>
 </target>
 </copy-config>
 </rpc>

 If the device supports the :candidate capability and a confirmed
 commit was requested, the confirming commit must be sent before the
 timeout expires.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <commit/>
 </rpc>

D.1.8 Releasing the Configuration Lock

 When the configuration update is complete, the lock must be released,
 allowing other applications access to the configuration.

 Use the <unlock> operation to release the configuration lock.

Enns Expires December 31, 2005 [Page 88]

Internet-Draft NETCONF Protocol June 2005

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <unlock>
 <target>
 <running/>
 </target>
 </unlock>
 </rpc>

D.2 Operations on Multiple Devices

 When a configuration change requires updates across a number of
 devices, care should be taken to provide the required transaction
 semantics. The NETCONF protocol contains sufficient primitives upon
 which transaction-oriented operations can be built. Providing
 complete transactional semantics across multiple devices is
 prohibitively expensive, but the size and number of windows for
 failure scenarios can be reduced.

 There are two classes of multidevice operations. The first class
 allows the operation to fail on individual devices without requiring
 all devices to revert to their original state. The operation can be
 retried at a later time, or its failure simply reported to the user.
 A example of this class might be adding an NTP server. For this
 class of operations, failure avoidance and recovery are focused on
 the individual device. This means recovery of the device, reporting
 the failure, and perhaps scheduling another attempt.

 The second class is more interesting, requiring that the operation
 should complete on all devices or be fully reversed. The network
 should either be transformed into a new state or be reset to its
 original state. For example, a change to a VPN may require updates
 to a number of devices. Another example of this might be adding a
 class-of-service definition. Leaving the network in a state where
 only a portion of the devices have been updated with the new
 definition will lead to future failures when the definition is
 referenced.

 To give transactional semantics, the same steps used in single device
 operations listed above are used, but are performed in parallel
 across all devices. Configuration locks should be acquired on all
 target devices and kept until all devices are updated and the changes
 made permanent. Configuration changes should be uploaded and
 validation performed across all devices. Checkpoints should be made
 on each device. Then the running configuration can be changed,
 tested, and made permanent. If any of these steps fail, the previous
 configurations can be restored on any devices upon which it was

Enns Expires December 31, 2005 [Page 89]

Internet-Draft NETCONF Protocol June 2005

 changed. After the changes have been completely implemented or
 completely discarded, the locks on each device can be released.

Appendix E. Deferred Features

 The following features have been deferred until a future revision of
 this document.

 o Granular locking of configuration objects.

 o Named configuration files/datastores.

 o Support for multiple NETCONF channels.

 o Asynchronous notifications.

 o Explicit protocol support for rollback of configuration changes to
 prior versions.

Appendix F. Change Log

 RFC Editor: Please remove this section before RFC publication.

F.1 draft-ietf-netconf-prot-07

 o Add clarifying text to :confirmed-commit capability.

 o Change units of 'confirm-timeout' parameter to seconds.

 o Type confirm-timeout element as a positiveInteger in the XSD.

 o Update XSD to allow <url> element in <edit-config> as required by
 :url capability.

 o Denote attribute names with single quotes in the text; some cases
 were missed.

 o Update <rpc-error> to state that the server must not return data
 that the client has no access rights on.

 o [XMLDir] Moderate use of the term API.

 o [XMLDir] Clarify capability naming requirements in Section 3.1.

 o [XMLDir] Remove "DTD" acronym from Section 3.2.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-07

Enns Expires December 31, 2005 [Page 90]

Internet-Draft NETCONF Protocol June 2005

 o [XMLDir] Remove # naming scheme from capability URNs.

 o Error code when a lock is in use is 'lock-denied'.

F.2 draft-ietf-netconf-prot-06

 o Allow an xml:lang attribute in the <error-message> tag.

 o Update XSD to permit artibrary attributes on <rpc> and <rpc-
 reply>.

 o Add example showing retrieval of textual configuration to <get-
 config>.

 o Indicate that URLs passed to <edit-config> should be local.

 o Update <copy-config> example to use https.

 o Update <rpc-error> description to explicitly allow multiple <rpc-
 error> elements. Add example. Update XSD.

 o Incorporate clarifying text on subtree filtering.

 o Annotate XSD with capability information.

 o Make error tags lower case separated with dashes.

 o Add unknown-namespace error tag.

 o Add text expliticly stating that a server must discontinue the
 NETCONF session if it receives a <session-id> element, and
 similarly a client must discontinue if it does not receive one.

F.3 draft-ietf-netconf-prot-05

 o Change XPATH to XPath.

 o Fix I-D nits (mostly long lines).

 o Remove "--" from XSD comments.

 o Add <source> attribute where it was missing in <get-config>
 examples.

 o Clarified Section 8.1 by indicating that each peer MUST send a
 <hello> element at session startup.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-06
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-05

Enns Expires December 31, 2005 [Page 91]

Internet-Draft NETCONF Protocol June 2005

 o Typo propriety -> proprietary in Section 8.

 o Fix some bugs in examples.

 o Section 7.1: typo: change <config> to <data> in the positive
 response section.

 o Section 7.1: If <filter> is unspecified, the entire configuration
 is returned. If it is empty, nothing is returned.

 o Be explicit about <commit> being atomic.

 o s/MAY/SHOULD/ wrt supporting more than one NETCONF session.

 o Strengthen language to say that NETCONF requests MUST be processed
 serially.

 o Fix misspelling of "unbeknownst."

 o Change "Expect scripts" to "CLI scripts" in Section 7.5.

 o Change "system software" to "device" in Section 1.3.

 o The <hello> element must also include the session ID (issue I002).

 o Address all accepted clarifications from working group last call.
 See the NETCONF mailing list for details.

 o Address all closed issues from working group last call. See the
 NETCONF mailing list for details.

F.4 draft-ietf-netconf-prot-04

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Update security considerations (action from IETF 60).

 o Add type attribute on filter element (issue 14.1).

 o Add #xpath capability (issue 14.1).

 o <rpc-reply> for <get-config> returns <data> element, not <config>
 element (issue 14.1).

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-04
http://www.nextbeacon.com/netconf/

Enns Expires December 31, 2005 [Page 92]

Internet-Draft NETCONF Protocol June 2005

 o Add detailed description of subtree filtering (issue 14.1.2).

 o Typo: change confirmed-timeout -> confirm-timeout in XSD.

 o Typo: correct misnaming of test-option parameter in text for the
 validate capability.

 o <target> is now a mandatory parameter for <lock> and <unlock>.
 There is no default target (action from IETF 60).

 o Remove XML schema for NETCONF state data (action from IETF 60).

 o Correct namespace handling a number of examples. The fix is to
 put the device's configuration under a top level tag called <top>
 which is in the device's namespace.

 o Use message-id 101 everywhere.

 o Add default-operation parameter to <edit-config> (action from IETF
 60).

 o Fix <edit-config> examples in Appendix D.

 o Update and reformat protocol XSD.

 o Remove XML usage guidelines. Add a section on XML considerations
 covering the NETCONF namespace and no DTD restriction (action from
 IETF 60).

F.5 draft-ietf-netconf-prot-03

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Consistent naming of <confirm-timeout> element.

 o Add #confirmed-commit capability (issue 10.3.2)

 o Use a URN for the NETCONF namespace (issue 11.1.2) and
 capabilities

 o Remove #manager capability (issue 11.2.1)

 o Remove #agent capability (issue 11.2.2)

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-03
http://www.nextbeacon.com/netconf/

Enns Expires December 31, 2005 [Page 93]

Internet-Draft NETCONF Protocol June 2005

 o Add "create" as a value for the operation attribute in <edit-
 config> (issue 13.3.1)

 o Add #rollback-on-error capability (issue 13.3.2)

 o Rename <get-all> operation to <get>.

 o Remove format parameter from two <get-config> and one <get>
 examples missed in the -02 draft (issue 13.3.3).

 o Add text indicating that the session-id is returned if the lock is
 already held (issue 13.12.3). Add example of this.

 o Remove <discard-changes> parameter on the <lock> operation (issue
 13.16.1), all outstanding changes are to be discarded when the
 candidate configuration is unlocked.

 o Remove section 8.7, guidelines on namespace construction.

 o Add clarifying text regarding locks held by other entities.

 o Update the abstract.

 o Remove mention of the format parameter from the <get-config> and
 <get> operations and the XSD.

 o Updated security considerations section.

 o Removed terminology section, moved session description to protocol
 overview section.

 o New text describing <rpc-error>.

 o Updated NETCONF protocol schema (to reflect new <rpc-error>
 details, among other things).

 o Add <filter> parameter to <get> and <get-config>. Rename <state>
 response the <get> operation to <data>.

 o Better description of the <kill-session> operation.

 o Add <close-session> operation.

 o Removed format parameter to <copy-config>.

 o Removed restriction that a changed <candidate/> configuration
 datastore can't be locked.

Enns Expires December 31, 2005 [Page 94]

Internet-Draft NETCONF Protocol June 2005

 o Add note in section 2 that the application protocol must provide
 an indication of session type (manager or agent) to the NETCONF
 layer.

F.6 draft-ietf-netconf-prot-02

 Refer to the NETCONF issue list for futher detail on the issue
 numbers below. The issue list is found at

http://www.nextbeacon.com/netconf/.

 o Remove <rpc-abort>, <rpc-abort-reply>, and <rpc-progress> (issues
 12.1, 12.2, 12.3).

 o Remove channels (issues 3.*).

 o Remove notifications (issues 2.*, 4.2, 13.9, 13.10, 13.11).

 o Move version number to last component of the capability URI (issue
 11.1.1).

 o Remove format parameter from <get-config> (issue 13.3.3).

 o Remove mention of #lock capability from Appendix D. Locking is a
 mandatory NETCONF operation.

 o Added text indicating that attributes received in <rpc> should be
 echoed on <rpc-reply> (issue 16.1).

 o Reworded Section 7.3 to encourage always prefixing attributes with
 namespaces.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-prot-02
http://www.nextbeacon.com/netconf/

Enns Expires December 31, 2005 [Page 95]

Internet-Draft NETCONF Protocol June 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Enns Expires December 31, 2005 [Page 96]

