
Network Working Group A. Bierman
Internet-Draft YumaWorks
Intended status: Standards Track M. Bjorklund
Expires: October 14, 2016 Tail-f Systems
 K. Watsen
 Juniper Networks
 April 12, 2016

RESTCONF Protocol
draft-ietf-netconf-restconf-12

Abstract

 This document describes an HTTP-based protocol that provides a
 programmatic interface for accessing data defined in YANG, using the
 datastores defined in NETCONF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 14, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Bierman, et al. Expires October 14, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RESTCONF April 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Terminology . 5
1.1.1. NETCONF . 5
1.1.2. HTTP . 6
1.1.3. YANG . 7
1.1.4. Terms . 7
1.1.5. URI Template . 9
1.1.6. Tree Diagrams . 9

1.2. Subset of NETCONF Functionality 9
1.3. Data Model Driven API 10
1.4. Coexistence with NETCONF 11
1.5. RESTCONF Extensibility 12

2. Transport Protocol Requirements 13
2.1. Integrity and Confidentiality 13
2.2. HTTPS with X.509v3 Certificates 13
2.3. Certificate Validation 13
2.4. Authenticated Server Identity 14
2.5. Authenticated Client Identity 14

3. Resources . 14
3.1. Root Resource Discovery 15
3.2. RESTCONF Media Types 17
3.3. API Resource . 17
3.3.1. {+restconf}/data 18
3.3.2. {+restconf}/operations 18
3.3.3. {+restconf}/yang-library-version 19

3.4. Datastore Resource 19
3.4.1. Edit Collision Detection 20

3.5. Data Resource . 21
 3.5.1. Encoding Data Resource Identifiers in the Request URI 22

3.5.2. Defaults Handling 25
3.6. Operation Resource 25
3.6.1. Encoding Operation Resource Input Parameters 26
3.6.2. Encoding Operation Resource Output Parameters 29
3.6.3. Encoding Operation Resource Errors 31

3.7. Schema Resource . 32
3.8. Event Stream Resource 33

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Bierman, et al. Expires October 14, 2016 [Page 2]

Internet-Draft RESTCONF April 2016

3.9. Errors Media Type . 34
4. Operations . 34
4.1. OPTIONS . 35
4.2. HEAD . 35
4.3. GET . 35
4.4. POST . 37
4.4.1. Create Resource Mode 37
4.4.2. Invoke Operation Mode 38

4.5. PUT . 39
4.6. PATCH . 41
4.6.1. Plain Patch . 41

4.7. DELETE . 42
4.8. Query Parameters . 43
4.8.1. The "content" Query Parameter 44
4.8.2. The "depth" Query Parameter 45
4.8.3. The "fields" Query Parameter 45
4.8.4. The "filter" Query Parameter 46
4.8.5. The "insert" Query Parameter 47
4.8.6. The "point" Query Parameter 48
4.8.7. The "start-time" Query Parameter 48
4.8.8. The "stop-time" Query Parameter 49
4.8.9. The "with-defaults" Query Parameter 50

5. Messages . 51
5.1. Request URI Structure 51
5.2. Message Encoding . 52
5.3. RESTCONF Meta-Data 53
5.3.1. XML MetaData Encoding Example 53
5.3.2. JSON MetaData Encoding Example 54

5.4. Return Status . 54
5.5. Message Caching . 54

6. Notifications . 55
6.1. Server Support . 55
6.2. Event Streams . 55
6.3. Subscribing to Receive Notifications 57
6.3.1. NETCONF Event Stream 58

6.4. Receiving Event Notifications 58
7. Error Reporting . 60
7.1. Error Response Message 62

8. RESTCONF module . 64
9. RESTCONF Monitoring . 70
9.1. restconf-state/capabilities 70
9.1.1. Query Parameter URIs 71
9.1.2. The "defaults" Protocol Capability URI 71

9.2. restconf-state/streams 72
9.3. RESTCONF Monitoring Module 72

10. YANG Module Library . 76
10.1. modules . 76
10.1.1. modules/module 77

Bierman, et al. Expires October 14, 2016 [Page 3]

Internet-Draft RESTCONF April 2016

11. IANA Considerations . 77
11.1. The "restconf" Relation Type 77
11.2. YANG Module Registry 77
11.3. application/yang Media Sub Types 78
11.4. RESTCONF Capability URNs 79

12. Security Considerations 79
13. Acknowledgements . 80
14. References . 81
14.1. Normative References 81
14.2. Informative References 83

Appendix A. Change Log . 84
A.1. v11 - v12 . 84
A.2. v10 - v11 . 84
A.3. v09 - v10 . 85
A.4. v08 - v09 . 87
A.5. v07 - v08 . 87
A.6. v06 - v07 . 88
A.7. v05 - v06 . 88
A.8. v04 - v05 . 88
A.9. v03 - v04 . 89
A.10. v02 - v03 . 90
A.11. v01 - v02 . 90
A.12. v00 - v01 . 91
A.13. bierman:restconf-04 to ietf:restconf-00 92

Appendix B. Open Issues . 92
Appendix C. Example YANG Module 92
C.1. example-jukebox YANG Module 93

Appendix D. RESTCONF Message Examples 98
D.1. Resource Retrieval Examples 98
D.1.1. Retrieve the Top-level API Resource 98
D.1.2. Retrieve The Server Module Information 99
D.1.3. Retrieve The Server Capability Information 101

D.2. Edit Resource Examples 102
D.2.1. Create New Data Resources 102
D.2.2. Detect Resource Entity Tag Change 103
D.2.3. Edit a Datastore Resource 103

D.3. Query Parameter Examples 104
D.3.1. "content" Parameter 104
D.3.2. "depth" Parameter 107
D.3.3. "fields" Parameter 110
D.3.4. "insert" Parameter 111
D.3.5. "point" Parameter 111
D.3.6. "filter" Parameter 112
D.3.7. "start-time" Parameter 113
D.3.8. "stop-time" Parameter 113
D.3.9. "with-defaults" Parameter 113

 Authors' Addresses . 115

Bierman, et al. Expires October 14, 2016 [Page 4]

Internet-Draft RESTCONF April 2016

1. Introduction

 There is a need for standard mechanisms to allow Web applications to
 access the configuration data, state data, data-model specific
 protocol operations, and event notifications within a networking
 device, in a modular and extensible manner.

 This document defines an HTTP [RFC7230] based protocol called
 RESTCONF, for configuring data defined in YANG version 1 [RFC6020] or
 YANG version 1.1 [I-D.ietf-netmod-rfc6020bis], using datastores
 defined in NETCONF [RFC6241].

 NETCONF defines configuration datastores and a set of Create,
 Retrieve, Update, Delete (CRUD) operations that can be used to access
 these datastores. The YANG language defines the syntax and semantics
 of datastore content, state data, protocol operations, and event
 notifications.

 RESTCONF uses HTTP operations to provide CRUD operations on a
 conceptual datastore containing YANG-defined data, which is
 compatible with a server which implements NETCONF datastores.

 If a RESTCONF server is co-located with a NETCONF server, then there
 are protocol interactions to be considered, as described in

Section 1.4. The server MAY provide access to specific datastores
 using operation resources, as described in Section 3.6.

 Configuration data and state data are exposed as resources that can
 be retrieved with the GET method. Resources representing
 configuration data can be modified with the DELETE, PATCH, POST, and
 PUT methods. Data is encoded with either XML [W3C.REC-xml-20081126]
 or JSON [RFC7159].

 Data-model specific operations defined with the YANG "rpc" or
 "action" statements can be invoked with the POST method. Data-model
 specific event notifications defined with the YANG "notification"
 statement can be accessed.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

1.1.1. NETCONF

 The following terms are defined in [RFC6241]:

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6241

Bierman, et al. Expires October 14, 2016 [Page 5]

Internet-Draft RESTCONF April 2016

 o candidate configuration datastore

 o client

 o configuration data

 o datastore

 o configuration datastore

 o protocol operation

 o running configuration datastore

 o server

 o startup configuration datastore

 o state data

 o user

1.1.2. HTTP

 The following terms are defined in [RFC3986]:

 o fragment

 o path

 o query

 The following terms are defined in [RFC7230]:

 o header

 o message-body

 o request-line

 o request URI

 o status-line

 The following terms are defined in [RFC7231]:

 o method

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231

Bierman, et al. Expires October 14, 2016 [Page 6]

Internet-Draft RESTCONF April 2016

 o request

 o resource

 The following terms are defined in [RFC7232]:

 o entity tag

1.1.3. YANG

 The following terms are defined in [I-D.ietf-netmod-rfc6020bis]:

 o action

 o container

 o data node

 o key leaf

 o leaf

 o leaf-list

 o list

 o non-presence container (or NP-container)

 o ordered-by user

 o presence container (or P-container)

 o RPC operation

 o top-level data node

1.1.4. Terms

 The following terms are used within this document:

 o API resource: a resource with the media type "application/
 yang.api+xml" or "application/yang.api+json".

 o data resource: a resource with the media type "application/
 yang.data+xml" or "application/yang.data+json". Containers,
 leafs, list entries, anydata and anyxml nodes can be data
 resources.

https://datatracker.ietf.org/doc/html/rfc7232

Bierman, et al. Expires October 14, 2016 [Page 7]

Internet-Draft RESTCONF April 2016

 o datastore resource: a resource with the media type "application/
 yang.datastore+xml" or "application/yang.datastore+json".
 Represents a datastore.

 o edit operation: a RESTCONF operation on a data resource using
 either a POST, PUT, PATCH, or DELETE method.

 o event stream resource: This resource represents an SSE (Server-
 Sent Events) event stream. The content consists of text using the
 media type "text/event-stream", as defined by the HTML5
 [W3C.REC-html5-20141028] specification. Each event represents one
 <notification> message generated by the server. It contains a
 conceptual system or data-model specific event that is delivered
 within an event notification stream. Also called a "stream
 resource".

 o media-type: HTTP uses Internet media types [RFC2046] in the
 Content-Type and Accept header fields in order to provide open and
 extensible data typing and type negotiation.

 o operation: the conceptual RESTCONF operation for a message,
 derived from the HTTP method, request URI, headers, and message-
 body.

 o operation resource: a resource with the media type "application/
 yang.operation+xml" or "application/yang.operation+json".

 o patch: a generic PATCH request on the target datastore or data
 resource. The media type of the message-body content will
 identify the patch type in use.

 o plain patch: a specific PATCH request type that can be used for
 simple merge operations.

 o query parameter: a parameter (and its value if any), encoded
 within the query component of the request URI.

 o RESTCONF capability: An optional RESTCONF protocol feature
 supported by the server, which is identified by an IANA registered
 NETCONF Capability URI, and advertised with an entry in the
 "capability" leaf-list in Section 9.3.

 o retrieval request: a request using the GET or HEAD methods.

 o target resource: the resource that is associated with a particular
 message, identified by the "path" component of the request URI.

https://datatracker.ietf.org/doc/html/rfc2046

Bierman, et al. Expires October 14, 2016 [Page 8]

Internet-Draft RESTCONF April 2016

 o schema resource: a resource with the media type "application/
 yang". The YANG representation of the schema can be retrieved by
 the client with the GET method.

 o stream list: the set of data resource instances that describe the
 event stream resources available from the server. This
 information is defined in the "ietf-restconf-monitoring" module as
 the "stream" list. It can be retrieved using the target resource
 "{+restconf}/data/ietf-restconf-monitoring:restconf-state/streams/
 stream". The stream list contains information about each stream,
 such as the URL to retrieve the event stream data.

1.1.5. URI Template

 Throughout this document, the URI template [RFC6570] syntax
 "{+restconf}" is used to refer to the RESTCONF API entry point
 outside of an example. See Section 3.1 for details.

 For simplicity, all of the examples in this document assume "/
 restconf" as the discovered RESTCONF API root path.

1.1.6. Tree Diagrams

 A simplified graphical representation of the data model is used in
 this document. The meaning of the symbols in these diagrams is as
 follows:

 o Brackets "[" and "]" enclose list keys.

 o Abbreviations before data node names: "rw" means configuration
 data (read-write) and "ro" state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

1.2. Subset of NETCONF Functionality

 RESTCONF does not need to mirror the full functionality of the
 NETCONF protocol, but it does need to be compatible with NETCONF.
 RESTCONF achieves this by implementing a subset of the interaction
 capabilities provided by the NETCONF protocol, for instance, by
 eliminating datastores and explicit locking.

https://datatracker.ietf.org/doc/html/rfc6570

Bierman, et al. Expires October 14, 2016 [Page 9]

Internet-Draft RESTCONF April 2016

 RESTCONF uses HTTP methods to implement the equivalent of NETCONF
 operations, enabling basic CRUD operations on a hierarchy of
 conceptual resources.

 The HTTP POST, PUT, PATCH, and DELETE methods are used to edit data
 resources represented by YANG data models. These basic edit
 operations allow the running configuration to be altered in an all-
 or-none fashion.

 RESTCONF is not intended to replace NETCONF, but rather provide an
 additional interface that follows Representational State Transfer
 (REST) principles [rest-dissertation], and is compatible with a
 resource-oriented device abstraction.

 The following figure shows the system components if a RESTCONF server
 is co-located with a NETCONF server:

 +-----------+ +-----------------+
 | Web app | <-------> | |
 +-----------+ HTTP | network device |
 | |
 +-----------+ | +-----------+ |
 | NMS app | <-------> | | datastore | |
 +-----------+ NETCONF | +-----------+ |
 +-----------------+

 The following figure shows the system components if a RESTCONF server
 is implemented in a device that does not have a NETCONF server:

 +-----------+ +-----------------+
 | Web app | <-------> | |
 +-----------+ HTTP | network device |
 | |
 +-----------------+

1.3. Data Model Driven API

 RESTCONF combines the simplicity of the HTTP protocol with the
 predictability and automation potential of a schema-driven API.
 Using YANG, a client can predict all management resources, much like
 using URI Templates [RFC6570], but in a more holistic manner. This
 strategy obviates the need for responses provided by the server to
 contain Hypermedia as the Engine of Application State (HATEOAS)
 links, originally described in Roy Fielding's doctoral dissertation
 [rest-dissertation].

 RESTCONF provides the YANG module capability information supported by
 the server, in case the client wants to use it. The URIs for custom

https://datatracker.ietf.org/doc/html/rfc6570

Bierman, et al. Expires October 14, 2016 [Page 10]

Internet-Draft RESTCONF April 2016

 protocol operations and datastore content are predictable, based on
 the YANG module definitions.

 The RESTCONF protocol operates on a conceptual datastore defined with
 the YANG data modeling language. The server lists each YANG module
 it supports using the "ietf-yang-library" YANG module, defined in
 [I-D.ietf-netconf-yang-library]. The server MUST implement the
 "ietf-yang-library" module, which MUST identify all the YANG modules
 used by the server.

 The conceptual datastore contents, data-model-specific operations and
 event notifications are identified by this set of YANG modules.

 The classification of data as configuration or non-configuration is
 derived from the YANG "config" statement. Data ordering behavior is
 derived from the YANG "ordered-by" statement.

 The RESTCONF datastore editing model is simple and direct, similar to
 the behavior of the :writable-running capability in NETCONF. Each
 RESTCONF edit of a datastore resource is activated upon successful
 completion of the transaction.

1.4. Coexistence with NETCONF

 RESTCONF can be implemented on a device that supports NETCONF.

 If the device supports :writable-running, all edits to configuration
 nodes in {+restconf}/data are performed in the running configuration
 datastore. The URI template "{+restconf}" is defined in

Section 1.1.5.

 Otherwise, if the device supports :candidate, all edits to
 configuration nodes in {+restconf}/data are performed in the
 candidate configuration datastore. The candidate MUST be
 automatically committed to running immediately after each successful
 edit. Any edits from other sources that are in the candidate
 datastore will also be committed. If a confirmed-commit procedure is
 in progress, then this commit will act as the confirming commit. If
 the server is expecting a "persist-id" parameter to complete the
 confirmed commit procedure then the RESTCONF edit operation MUST fail
 with a "409 Conflict" status-line.

 If the device supports :startup, the device MUST automatically update
 the non-volatile "startup datastore", after the running datastore has
 been updated as a consequence of a RESTCONF edit operation.

Bierman, et al. Expires October 14, 2016 [Page 11]

Internet-Draft RESTCONF April 2016

 If a datastore that would be modified by a RESTCONF operation has an
 active lock, the RESTCONF edit operation MUST fail with a "409
 Conflict" status-line.

1.5. RESTCONF Extensibility

 There are two extensibility mechanisms built into RESTCONF:

 o protocol version

 o optional capabilities

 This document defines version 1 of the RESTCONF protocol. If a
 future version of this protocol is defined, then that document will
 specify how the new version of RESTCONF is identified. It is
 expected that a different entry point {+restconf2} would be defined.
 The server will advertise all protocol versions that it supports in
 its host-meta data.

 In this example, the server supports both RESTCONF version 1 and a
 fictitious version 2.

 Request

 GET /.well-known/host-meta HTTP/1.1
 Host: example.com
 Accept: application/xrd+xml

 Response

 HTTP/1.1 200 OK
 Content-Type: application/xrd+xml
 Content-Length: nnn

 <XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'>
 <Link rel='restconf' href='/restconf'/>
 <Link rel='restconf2' href='/restconf2'/>
 </XRD>

 RESTCONF also supports a server-defined list of optional
 capabilities, which are listed by a server using the
 "ietf-restconf-monitoring" module defined in Section 9.3. For
 example, this document defines several query parameters in

Section 4.8. Each optional parameter has a corresponding capability
 URI defined in Section 9.1.1 that is advertised by the server if
 supported.

Bierman, et al. Expires October 14, 2016 [Page 12]

Internet-Draft RESTCONF April 2016

 The "capabilities" list can identify any sort of server extension.
 Typically this extension mechanism is used to identify optional query
 parameters but it is not limited to that purpose. For example, the
 "defaults" URI defined in Section 9.1.2 specifies a mandatory URI
 identifying server defaults handling behavior.

 A new sub-resource type could be identified with a capability if it
 is optional to implement. Mandatory protocol features and new
 resource types require a new revision of the RESTCONF protocol.

2. Transport Protocol Requirements

2.1. Integrity and Confidentiality

 HTTP [RFC7230] is an application layer protocol that may be layered
 on any reliable transport-layer protocol. RESTCONF is defined on top
 of HTTP, but due to the sensitive nature of the information conveyed,
 RESTCONF requires that the transport-layer protocol provides both
 data integrity and confidentiality. A RESTCONF server MUST support
 the TLS protocol [RFC5246]. The RESTCONF protocol MUST NOT be used
 over HTTP without using the TLS protocol.

 HTTP/1.1 pipelining MUST be supported by the server. Responses MUST
 be sent in the same order that requests are received. No other
 versions of HTTP are supported for use with RESTCONF.

2.2. HTTPS with X.509v3 Certificates

 Given the nearly ubiquitous support for HTTP over TLS [RFC7230],
 RESTCONF implementations MUST support the "https" URI scheme, which
 has the IANA assigned default port 443.

 RESTCONF servers MUST present an X.509v3 based certificate when
 establishing a TLS connection with a RESTCONF client. The use the
 X.509v3 based certificates is consistent with NETCONF over TLS
 [RFC7589].

2.3. Certificate Validation

 The RESTCONF client MUST either use X.509 certificate path validation
 [RFC5280] to verify the integrity of the RESTCONF server's TLS
 certificate, or match the presented X.509 certificate with locally
 configured certificate fingerprints.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7589
https://datatracker.ietf.org/doc/html/rfc5280

Bierman, et al. Expires October 14, 2016 [Page 13]

Internet-Draft RESTCONF April 2016

 The presented X.509 certificate MUST also be considered valid if it
 matches a locally configured certificate fingerprint. If X.509
 certificate path validation fails and the presented X.509 certificate
 does not match a locally configured certificate fingerprint, the
 connection MUST be terminated as defined in [RFC5246].

2.4. Authenticated Server Identity

 The RESTCONF client MUST check the identity of the server according
 to Section 6 of [RFC6125], including processing the outcome as
 described in Section 6.6 of [RFC6125].

2.5. Authenticated Client Identity

 The RESTCONF server MUST authenticate client access to any protected
 resource. If the RESTCONF client is not authorized to access a
 resource, the server MUST send an HTTP response with "401
 Unauthorized" status-line, as defined in Section 3.1 of [RFC7235].

 To authenticate a client, a RESTCONF server MUST use TLS based client
 certificates (Section 7.4.6 of [RFC5246]), or MUST use any HTTP
 authentication scheme defined in the HTTP Authentication Scheme
 Registry (Section 5.1 in [RFC7235]). A server MAY also support the
 combination of both client certificates and an HTTP client
 authentication scheme, with the determination of how to process this
 combination left as an implementation decision.

 The RESTCONF client identity derived from the authentication
 mechanism used is hereafter known as the "RESTCONF username" and
 subject to the NETCONF Access Control Module (NACM) [RFC6536]. When
 a client certificate is presented, the RESTCONF username MUST be
 derived using the algorithm defined in Section 7 of [RFC7589]. For
 all other cases, when HTTP authentication is used, the RESTCONF
 username MUST be provided by the HTTP authentication scheme used.

3. Resources

 The RESTCONF protocol operates on a hierarchy of resources, starting
 with the top-level API resource itself (Section 3.1). Each resource
 represents a manageable component within the device.

 A resource can be considered a collection of data and the set of
 allowed methods on that data. It can contain nested child resources.
 The child resource types and methods allowed on them are data-model
 specific.

 A resource has a media type identifier, represented by the
 "Content-Type" header in the HTTP response message. A resource can

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6125#section-6
https://datatracker.ietf.org/doc/html/rfc6125#section-6.6
https://datatracker.ietf.org/doc/html/rfc7235#section-3.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.6
https://datatracker.ietf.org/doc/html/rfc7235#section-5.1
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7589#section-7

Bierman, et al. Expires October 14, 2016 [Page 14]

Internet-Draft RESTCONF April 2016

 contain zero or more nested resources. A resource can be created and
 deleted independently of its parent resource, as long as the parent
 resource exists.

 All RESTCONF resource types are defined in this document except
 specific datastore contents, protocol operations, and event
 notifications. The syntax and semantics for these resource types are
 defined in YANG modules.

 The RESTCONF resources are accessed via a set of URIs defined in this
 document. The set of YANG modules supported by the server will
 determine the data model specific operations, top-level data nodes,
 and event notification messages supported by the server.

 The RESTCONF protocol does not include a data resource discovery
 mechanism. Instead, the definitions within the YANG modules
 advertised by the server are used to construct a predictable
 operation or data resource identifier.

3.1. Root Resource Discovery

 In line with the best practices defined by [RFC7320], RESTCONF
 enables deployments to specify where the RESTCONF API is located.
 When first connecting to a RESTCONF server, a RESTCONF client MUST
 determine the root of the RESTCONF API. There MUST be exactly one
 "restconf" link relation returned by the device.

 The client discovers this by getting the "/.well-known/host-meta"
 resource ([RFC6415]) and using the <Link> element containing the
 "restconf" attribute :

 Example returning /restconf:

 Request

 GET /.well-known/host-meta HTTP/1.1
 Host: example.com
 Accept: application/xrd+xml

 Response

 HTTP/1.1 200 OK
 Content-Type: application/xrd+xml
 Content-Length: nnn

 <XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'>
 <Link rel='restconf' href='/restconf'/>
 </XRD>

https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc6415

Bierman, et al. Expires October 14, 2016 [Page 15]

Internet-Draft RESTCONF April 2016

 After discovering the RESTCONF API root, the client MUST prepend it
 to any subsequent request to a RESTCONF resource. In this example,
 the client would use the path "/restconf" as the RESTCONF entry
 point.

 Example returning /top/restconf:

 Request

 GET /.well-known/host-meta HTTP/1.1
 Host: example.com
 Accept: application/xrd+xml

 Response

 HTTP/1.1 200 OK
 Content-Type: application/xrd+xml
 Content-Length: nnn

 <XRD xmlns='http://docs.oasis-open.org/ns/xri/xrd-1.0'>
 <Link rel='restconf' href='/top/restconf'/>
 </XRD>

 In this example, the client would use the path "/top/restconf" as the
 RESTCONF entry point.

 The client can now determine the operation resources supported by the
 the server. In this example a custom "play" operation is supported:

 Request

 GET /top/restconf/operations HTTP/1.1
 Host: example.com
 Accept: application/yang.api+json

 Response

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Last-Modified: Sun, 22 Apr 2012 01:00:14 GMT
 Content-Type: application/yang.api+json

 { "operations" : { "example-jukebox:play" : {} } }

Bierman, et al. Expires October 14, 2016 [Page 16]

Internet-Draft RESTCONF April 2016

 If the XRD contains more than one link relation, then only the
 relation named "restconf" is relevant to this specification.

3.2. RESTCONF Media Types

 The RESTCONF protocol defines a set of application specific media
 types to identify each of the available resource types. The
 following resource types are defined in RESTCONF:

 +-----------+---------------------------------+
 | Resource | Media Type |
 +-----------+---------------------------------+
 | API | application/yang.api+xml |
 | | application/yang.api+json |
 | Datastore | application/yang.datastore+xml |
 | | application/yang.datastore+json |
 | Data | application/yang.data+xml |
 | | application/yang.data+json |
 | [none] | application/yang.errors+xml |
 | | application/yang.errors+json |
 | Operation | application/yang.operation+xml |
 | | application/yang.operation+json |
 | Schema | application/yang |
 +-----------+---------------------------------+

 RESTCONF Media Types

3.3. API Resource

 The API resource contains the entry points for the RESTCONF datastore
 and operation resources. It is the top-level resource located at
 {+restconf} and has the media type "application/yang.api+xml" or
 "application/yang.api+json".

 YANG Tree Diagram for an API Resource:

 +--rw restconf
 +--rw data
 +--rw operations
 +--ro yang-library-version

 The "application/yang.api" restconf-media-type extension in the
 "ietf-restconf" module defined in Section 8 is used to specify the
 structure and syntax of the conceptual child resources within the API
 resource.

 The API resource can be retrieved with the GET method.

Bierman, et al. Expires October 14, 2016 [Page 17]

Internet-Draft RESTCONF April 2016

 This resource has the following child resources:

 +----------------------+--------------------------------+
 | Child Resource | Description |
 +----------------------+--------------------------------+
 | data | Contains all data resources |
 | operations | Data-model specific operations |
 | yang-library-version | ietf-yang-library module date |
 +----------------------+--------------------------------+

 RESTCONF API Resource

3.3.1. {+restconf}/data

 This mandatory resource represents the combined configuration and
 state data resources that can be accessed by a client. It cannot be
 created or deleted by the client. The datastore resource type is
 defined in Section 3.4.

 Example:

 This example request by the client would retrieve only the non-
 configuration data nodes that exist within the "library" resource,
 using the "content" query parameter (see Section 4.8.1).

 GET /restconf/data/example-jukebox:jukebox/library
 ?content=nonconfig HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+xml

 <library xmlns="https://example.com/ns/example-jukebox">
 <artist-count>42</artist-count>
 <album-count>59</album-count>
 <song-count>374</song-count>
 </library>

3.3.2. {+restconf}/operations

Bierman, et al. Expires October 14, 2016 [Page 18]

Internet-Draft RESTCONF April 2016

 This optional resource is a container that provides access to the
 data-model specific protocol operations supported by the server. The
 server MAY omit this resource if no data-model specific operations
 are advertised.

 Any data-model specific protocol operations defined in the YANG
 modules advertised by the server MUST be available as child nodes of
 this resource.

 Operation resources are defined in Section 3.6.

3.3.3. {+restconf}/yang-library-version

 This mandatory leaf identifies the revision date of the
 "ietf-yang-library" YANG module that is implemented by this server.

 Example:

 GET /restconf/yang-library-version HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might respond (response wrapped for display purposes):

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+xml

 <yang-library-version
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
 2016-04-09
 </yang-library-version>

3.4. Datastore Resource

 The "{+restconf}/data" subtree represents the datastore resource
 type, which is a collection of configuration data and state data
 nodes.

 This resource type is an abstraction of the system's underlying
 datastore implementation. It is used to simplify resource editing
 for the client. The RESTCONF datastore resource is a conceptual
 collection of all configuration and state data that is present on the
 device.

Bierman, et al. Expires October 14, 2016 [Page 19]

Internet-Draft RESTCONF April 2016

 Configuration edit transaction management and configuration
 persistence are handled by the server and not controlled by the
 client. A datastore resource can be written directly with the POST
 and PATCH methods. Each RESTCONF edit of a datastore resource is
 saved to non-volatile storage by the server, if the server supports
 non-volatile storage of configuration data.

3.4.1. Edit Collision Detection

 Two "edit collision detection" mechanisms are provided in RESTCONF,
 for datastore and data resources.

3.4.1.1. Timestamp

 The last change time is maintained and the "Last-Modified"
 ([RFC7232], Section 2.2) header is returned in the response for a
 retrieval request. The "If-Unmodified-Since" header can be used in
 edit operation requests to cause the server to reject the request if
 the resource has been modified since the specified timestamp.

 The server SHOULD maintain a last-modified timestamp for the top-
 level {+restconf}/data resource. This timestamp is only affected by
 configuration data resources, and MUST NOT be updated for changes to
 non-configuration data.

3.4.1.2. Entity tag

 A unique opaque string is maintained and the "ETag" ([RFC7232],
 Section 2.3) header is returned in the response for a retrieval
 request. The "If-Match" header can be used in edit operation
 requests to cause the server to reject the request if the resource
 entity tag does not match the specified value.

 The server MUST maintain an entity tag for the top-level {+restconf}/
 data resource. This entity tag is only affected by configuration
 data resources, and MUST NOT be updated for changes to non-
 configuration data.

3.4.1.3. Update Procedure

 Changes to configuration data resources affect the timestamp and
 entity tag to that resource, any ancestor data resources, and the
 datastore resource.

 For example, an edit to disable an interface might be done by setting
 the leaf "/interfaces/interface/enabled" to "false". The "enabled"
 data node and its ancestors (one "interface" list instance, and the
 "interfaces" container) are considered to be changed. The datastore

https://datatracker.ietf.org/doc/html/rfc7232#section-2.2
https://datatracker.ietf.org/doc/html/rfc7232#section-2.3
https://datatracker.ietf.org/doc/html/rfc7232#section-2.3

Bierman, et al. Expires October 14, 2016 [Page 20]

Internet-Draft RESTCONF April 2016

 is considered to be changed when any top-level configuration data
 node is changed (e.g., "interfaces").

3.5. Data Resource

 A data resource represents a YANG data node that is a descendant node
 of a datastore resource. Each YANG-defined data node can be uniquely
 targeted by the request-line of an HTTP operation. Containers,
 leafs, leaf-list entries, list entries, anydata and anyxml nodes are
 data resources.

 The representation maintained for each data resource is the YANG
 defined subtree for that node. HTTP operations on a data resource
 affect both the targeted data node and all its descendants, if any.

 For configuration data resources, the server MAY maintain a last-
 modified timestamp for the resource, and return the "Last-Modified"
 header when it is retrieved with the GET or HEAD methods.

 The "Last-Modified" header information can be used by a RESTCONF
 client in subsequent requests, within the "If-Modified-Since" and
 "If-Unmodified-Since" headers.

 If maintained, the resource timestamp MUST be set to the current time
 whenever the resource or any configuration resource within the
 resource is altered. If not maintained, then the resource timestamp
 for the datastore MUST be used instead.

 This timestamp is only affected by configuration data resources, and
 MUST NOT be updated for changes to non-configuration data.

 For configuration data resources, the server SHOULD maintain a
 resource entity tag for the resource, and return the "ETag" header
 when it is retrieved as the target resource with the GET or HEAD
 methods. If maintained, the resource entity tag MUST be updated
 whenever the resource or any configuration resource within the
 resource is altered. If not maintained, then the resource entity tag
 for the datastore MUST be used instead.

 The "ETag" header information can be used by a RESTCONF client in
 subsequent requests, within the "If-Match" and "If-None-Match"
 headers.

 This entity tag is only affected by configuration data resources, and
 MUST NOT be updated for changes to non-configuration data.

Bierman, et al. Expires October 14, 2016 [Page 21]

Internet-Draft RESTCONF April 2016

 A data resource can be retrieved with the GET method. Data resources
 are accessed via the "{+restconf}/data" entry point. This sub-tree
 is used to retrieve and edit data resources.

 A configuration data resource can be altered by the client with some
 or all of the edit operations, depending on the target resource and
 the specific operation. Refer to Section 4 for more details on edit
 operations.

3.5.1. Encoding Data Resource Identifiers in the Request URI

 In YANG, data nodes are identified with an absolute XPath expression,
 defined in [XPath], starting from the document root to the target
 resource. In RESTCONF, URI-encoded path expressions are used
 instead.

 A predictable location for a data resource is important, since
 applications will code to the YANG data model module, which uses
 static naming and defines an absolute path location for all data
 nodes.

 A RESTCONF data resource identifier is not an XPath expression. It
 is encoded from left to right, starting with the top-level data node,
 according to the "api-path" rule in Section 3.5.1.1. The node name
 of each ancestor of the target resource node is encoded in order,
 ending with the node name for the target resource. If a node in the
 path is defined in another module than its parent node, then module
 name followed by a colon character (":") is prepended to the node
 name in the resource identifier. See Section 3.5.1.1 for details.

 If a data node in the path expression is a YANG leaf-list node, then
 the leaf-list value MUST be encoded according to the following rules:

 o The instance-identifier for the leaf-list MUST be encoded using
 one path segment [RFC3986].

 o The path segment is constructed by having the leaf-list name,
 followed by an "=" character, followed by the leaf-list value.
 (e.g., /restconf/data/top-leaflist=fred).

 If a data node in the path expression is a YANG list node, then the
 key values for the list (if any) MUST be encoded according to the
 following rules:

 o The key leaf values for a data resource representing a YANG list
 MUST be encoded using one path segment [RFC3986].

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Bierman, et al. Expires October 14, 2016 [Page 22]

Internet-Draft RESTCONF April 2016

 o If there is only one key leaf value, the path segment is
 constructed by having the list name, followed by an "=" character,
 followed by the single key leaf value.

 o If there are multiple key leaf values, the path segment is
 constructed by having the list name, followed by the value of each
 leaf identified in the "key" statement, encoded in the order
 specified in the YANG "key" statement. Each key leaf value except
 the last one is followed by a comma character.

 o The key value is specified as a string, using the canonical
 representation for the YANG data type. Any reserved characters
 MUST be percent-encoded, according to [RFC3986], section 2.1.

 o All the components in the "key" statement MUST be encoded.
 Partial instance identifiers are not supported.

 o Since missing key values are not allowed, two consecutive commas
 are interpreted as a zero-length string. (example:
 list=foo,,baz).

 o The "list-instance" ABNF rule defined in Section 3.5.1.1
 represents the syntax of a list instance identifier.

 o Resource URI values returned in Location headers for data
 resources MUST identify the module name, even if there are no
 conflicting local names when the resource is created. This
 ensures the correct resource will be identified even if the server
 loads a new module that the old client does not know about.

 Examples:

 container top {
 list list1 {
 key "key1 key2 key3";
 ...
 list list2 {
 key "key4 key5";
 ...
 leaf X { type string; }
 }
 }
 leaf-list Y {
 type uint32;
 }
 }

https://datatracker.ietf.org/doc/html/rfc3986#section-2.1

Bierman, et al. Expires October 14, 2016 [Page 23]

Internet-Draft RESTCONF April 2016

 For the above YANG definition, a target resource URI for leaf "X"
 would be encoded as follows (line wrapped for display purposes only):

 /restconf/data/example-top:top/list1=key1,key2,key3/
 list2=key4,key5/X

 For the above YANG definition, a target resource URI for leaf-list
 "Y" would be encoded as follows:

 /restconf/data/example-top:top/Y=instance-value

 The following example shows how reserved characters are percent-
 encoded within a key value. The value of "key1" contains a comma,
 single-quote, double-quote, colon, double-quote, space, and forward
 slash. (,'":" /). Note that double-quote is not a reserved
 characters and does not need to be percent-encoded. The value of
 "key2" is the empty string, and the value of "key3" is the string
 "foo".

 Example URL:

 /restconf/data/example-top:top/list1=%2C%27"%3A"%20%2F,,foo

3.5.1.1. ABNF For Data Resource Identifiers

 The "api-path" Augmented Backus-Naur Form (ABNF) syntax is used to
 construct RESTCONF path identifiers:

 api-path = "/" |
 ("/" api-identifier
 0*("/" (api-identifier | list-instance)))

 api-identifier = [module-name ":"] identifier ;; note 1

 module-name = identifier

 list-instance = api-identifier "=" key-value ["," key-value]*

 key-value = string ;; note 1

 string = <a quoted or unquoted string>

 ;; An identifier MUST NOT start with
 ;; (('X'|'x') ('M'|'m') ('L'|'l'))
 identifier = (ALPHA / "_")
 *(ALPHA / DIGIT / "_" / "-" / ".")

Bierman, et al. Expires October 14, 2016 [Page 24]

Internet-Draft RESTCONF April 2016

 Note 1: The syntax for "api-identifier" and "key-value" MUST conform
 to the JSON identifier encoding rules in Section 4 of
 [I-D.ietf-netmod-yang-json].

3.5.2. Defaults Handling

 RESTCONF requires that a server report its default handling mode (see
Section 9.1.2 for details). If the optional "with-defaults" query

 parameter is supported by the server, a client may use it to control
 retrieval of default values (see Section 4.8.9 for details).

 If a leaf or leaf-list is missing from the configuration and there is
 a YANG-defined default for that data resource, then the server MUST
 use the YANG-defined default as the configured value.

 If the target of a GET method is a data node that represents a leaf
 that has a default value, and the leaf has not been configured yet,
 the server MUST return the default value that is in use by the
 server.

 If the target of a GET method is a data node that represents a
 container or list that has any child resources with default values,
 for the child resources that have not been given value yet, the
 server MAY return the default values that are in use by the server,
 in accordance with its reported default handing mode and query
 parameters passed by the client.

3.6. Operation Resource

 An operation resource represents a protocol operation defined with
 the YANG "rpc" statement or a data-model specific action defined with
 a YANG "action" statement. It is invoked using a POST method on the
 operation resource.

 An RPC operation is invoked as:

 POST {+restconf}/operations/<operation>

 The <operation> field identifies the module name and rpc identifier
 string for the desired operation.

 For example, if "module-A" defined a "reset" rpc operation, then
 invoking the operation from "module-A" would be requested as follows:

 POST /restconf/operations/module-A:reset HTTP/1.1
 Server example.com

 An action is invoked as:

Bierman, et al. Expires October 14, 2016 [Page 25]

Internet-Draft RESTCONF April 2016

 POST {+restconf}/data/<data-resource-identifier>/<action>

 where <data-resource-identifier> contains the path to the data node
 where the action is defined, and <action> is the name of the action.

 For example, if "module-A" defined a "reset-all" action in the
 container "interfaces", then invoking this action would be requested
 as follows:

 POST /restconf/data/module-A:interfaces/reset-all HTTP/1.1
 Server example.com

 If the "rpc" or "action" statement has an "input" section, then a
 message-body MAY be sent by the client in the request, otherwise the
 request message MUST NOT include a message-body. If the "input"
 objcet tree contains mandatory parameters, then a message-body MUST
 be sent by the client. A mandatory parameter is a leaf or choice
 with a "mandatory" statement set to "true", or a list or leaf-list
 than have a "min-elements" statement value greater than zero.

 If the operation is invoked without errors, and if the "rpc" or
 "action" statement has an "output" section, then a message-body MAY
 be sent by the server in the response, otherwise the response message
 MUST NOT include a message-body in the response message, and MUST
 send a "204 No Content" status-line instead.

 If the operation input is not valid, or the operation is invoked but
 errors occur, then a message-body MUST be sent by the server,
 containing an "errors" resource, as defined in Section 3.9. A
 detailed example of an operation resource error response can be found
 in Section 3.6.3.

 All operation resources representing RPC operations supported by the
 server MUST be identified in the {+restconf}/operations subtree
 defined in Section 3.3.2. Operation resources representing YANG
 actions are not identified in this subtree since they are invoked
 using a URI within the {+restconf}/data subtree.

3.6.1. Encoding Operation Resource Input Parameters

 If the "rpc" or "action" statement has an "input" section, then the
 "input" node is provided in the message-body, corresponding to the
 YANG data definition statements within the "input" section.

 Examples:

 The following YANG module is used for the RPC operation examples in
 this section.

Bierman, et al. Expires October 14, 2016 [Page 26]

Internet-Draft RESTCONF April 2016

 module example-ops {
 namespace "https://example.com/ns/example-ops";
 prefix "ops";
 revision "2016-03-10";

 rpc reboot {
 input {
 leaf delay {
 units seconds;
 type uint32;
 default 0;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }

 rpc get-reboot-info {
 output {
 leaf reboot-time {
 units seconds;
 type uint32;
 }
 leaf message { type string; }
 leaf language { type string; }
 }
 }
 }

 The following YANG module is used for the YANG action examples in
 this section.

 module example-actions {
 yang-version 1.1;
 namespace "https://example.com/ns/example-actions";
 prefix "act";
 import ietf-yang-types { prefix yang; }
 revision "2016-03-10";

 container interfaces {
 list interface {
 key name;
 leaf name { type string; }

 action reset {
 input {
 leaf delay {

Bierman, et al. Expires October 14, 2016 [Page 27]

Internet-Draft RESTCONF April 2016

 units seconds;
 type uint32;
 default 0;
 }
 }
 }

 action get-last-reset-time {
 output {
 leaf last-reset {
 type yang:date-and-time;
 mandatory true;
 }
 }
 }
 }
 }

 }

 RPC Input Example:

 The client might send the following POST request message to invoke
 the "reboot" RPC operation:

 POST /restconf/operations/example-ops:reboot HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+xml

 <input xmlns="https://example.com/ns/example-ops">
 <delay>600</delay>
 <message>Going down for system maintenance</message>
 <language>en-US</language>
 </input>

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 25 Apr 2012 11:01:00 GMT
 Server: example-server

 The same example request message is shown here using JSON encoding:

 POST /restconf/operations/example-ops:reboot HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+json

Bierman, et al. Expires October 14, 2016 [Page 28]

Internet-Draft RESTCONF April 2016

 {
 "example-ops:input" : {
 "delay" : 600,
 "message" : "Going down for system maintenance",
 "language" : "en-US"
 }
 }

 Action Input Example:

 The client might send the following POST request message to invoke
 the "reset" action (text wrap for display purposes):

 POST /restconf/data/example-actions:interfaces/interface=eth0
 /reset HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+xml

 <input xmlns="https://example.com/ns/example-actions">
 <delay>600</delay>
 </input>

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 25 Apr 2012 11:01:00 GMT
 Server: example-server

 The same example request message is shown here using JSON encoding
 (text wrap for display purposes):

 POST /restconf/data/example-actions:interfaces/interface=eth0
 /reset HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+json

 { "example-actions:input" : {
 "delay" : 600
 }
 }

3.6.2. Encoding Operation Resource Output Parameters

 If the "rpc" or "action" statement has an "output" section, then the
 "output" node is provided in the message-body, corresponding to the
 YANG data definition statements within the "output" section.

Bierman, et al. Expires October 14, 2016 [Page 29]

Internet-Draft RESTCONF April 2016

 The request URI is not returned in the response. This URI might have
 context information required to associate the output to the specific
 "rpc" or "action" statement used in the request.

 Examples:

 RPC Output Example:

 The "example-ops" YANG module defined in Section 3.6.1 is used for
 this example.

 The client might send the following POST request message to invoke
 the "get-reboot-info" operation:

 POST /restconf/operations/example-ops:get-reboot-info HTTP/1.1
 Host: example.com
 Accept: application/yang.operation+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.operation+json

 {
 "example-ops:output" : {
 "reboot-time" : 30,
 "message" : "Going down for system maintenance",
 "language" : "en-US"
 }
 }

 The same response is shown here using XML encoding:

 HTTP/1.1 200 OK
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.operation+xml

 <output xmlns="https://example.com/ns/example-ops">
 <reboot-time>30</reboot-time>
 <message>Going down for system maintenance</message>
 <language>en-US</language>
 </output>

 Action Output Example:

Bierman, et al. Expires October 14, 2016 [Page 30]

Internet-Draft RESTCONF April 2016

 The "example-actions" YANG module defined in Section 3.6.1 is used
 for this example.

 The client might send the following POST request message to invoke
 the "get-last-reset-time" action:

 POST /restconf/data/example-actions:interfaces/interface=eth0
 /get-last-reset-time HTTP/1.1
 Host: example.com
 Accept: application/yang.operation+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.operation+json

 {
 "example-actions:output" : {
 "last-reset" : "2015-10-10T02:14:11Z"
 }
 }

3.6.3. Encoding Operation Resource Errors

 If any errors occur while attempting to invoke the operation or
 action, then an "errors" media type is returned with the appropriate
 error status.

 Using the "reboot" operation from the example in Section 3.6.1, the
 client might send the following POST request message:

 POST /restconf/operations/example-ops:reboot HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+xml

 <input xmlns="https://example.com/ns/example-ops">
 <delay>-33</delay>
 <message>Going down for system maintenance</message>
 <language>en-US</language>
 </input>

 The server might respond with an "invalid-value" error:

Bierman, et al. Expires October 14, 2016 [Page 31]

Internet-Draft RESTCONF April 2016

 HTTP/1.1 400 Bad Request
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.errors+xml

 <errors xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <error>
 <error-type>protocol</error-type>
 <error-tag>invalid-value</error-tag>
 <error-path xmlns:ops="https://example.com/ns/example-ops">
 /ops:input/ops:delay
 </error-path>
 <error-message>Invalid input parameter</error-message>
 </error>
 </errors>

 The same response is shown here in JSON encoding:

 HTTP/1.1 400 Bad Request
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.errors+json

 { "ietf-restconf:errors" : {
 "error" : [
 {
 "error-type" : "protocol",
 "error-tag" : "invalid-value",
 "error-path" : "/example-ops:input/delay",
 "error-message" : "Invalid input parameter",
 }
]
 }
 }

3.7. Schema Resource

 The server can optionally support retrieval of the YANG modules it
 supports. If retrieval is supported, then the "schema" leaf MUST be
 present in the associated "module" list entry, defined in
 [I-D.ietf-netconf-yang-library].

 To retrieve a YANG module, a client first needs to get the URL for
 retrieving the schema, which is stored in the "schema" leaf. Note
 that there is no required structure for this URL. The URL value
 shown below is just an example.

 The client might send the following GET request message:

Bierman, et al. Expires October 14, 2016 [Page 32]

Internet-Draft RESTCONF April 2016

 GET /restconf/data/ietf-yang-library:modules/module=
 example-jukebox,2015-04-04/schema HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Thu, 11 Feb 2016 11:10:30 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "ietf-yang-library:schema":
 "https://example.com/mymodules/example-jukebox/2015-04-04"
 }

 Next the client needs to retrieve the actual YANG schema.

 The client might send the following GET request message:

 GET https://example.com/mymodules/example-jukebox/2015-04-04
 HTTP/1.1
 Host: example.com
 Accept: application/yang

 The server might respond:

 HTTP/1.1 200 OK
 Date: Thu, 11 Feb 2016 11:10:31 GMT
 Server: example-server
 Content-Type: application/yang

 module example-jukebox {

 // contents of YANG module deleted for this example...

 }

3.8. Event Stream Resource

 An "event stream" resource represents a source for system generated
 event notifications. Each stream is created and modified by the
 server only. A client can retrieve a stream resource or initiate a
 long-poll server sent event stream, using the procedure specified in

Section 6.3.

Bierman, et al. Expires October 14, 2016 [Page 33]

Internet-Draft RESTCONF April 2016

 A notification stream functions according to the NETCONF
 Notifications specification [RFC5277]. The available streams can be
 retrieved from the stream list, which specifies the syntax and
 semantics of a stream resource.

3.9. Errors Media Type

 An "errors" media type is a collection of error information that is
 sent as the message-body in a server response message, if an error
 occurs while processing a request message. It is not considered a
 resource type because no instances can be retrieved with a GET
 request.

 The "ietf-restconf" YANG module contains the "application/
 yang.errors" restconf-media-type extension which specifies the syntax
 and semantics of an "errors" media type. RESTCONF error handling
 behavior is defined in Section 7.

4. Operations

 The RESTCONF protocol uses HTTP methods to identify the CRUD
 operation requested for a particular resource.

 The following table shows how the RESTCONF operations relate to
 NETCONF protocol operations:

 +----------+--+
 | RESTCONF | NETCONF |
 +----------+--+
 | OPTIONS | none |
 | HEAD | none |
 | GET | <get-config>, <get> |
 | POST | <edit-config> (operation="create") |
 | POST | invoke any operation |
 | PUT | <edit-config> (operation="create/replace") |
 | PATCH | <edit-config> (operation="merge") |
 | DELETE | <edit-config> (operation="delete") |
 +----------+--+

 CRUD Methods in RESTCONF

 The NETCONF "remove" operation attribute is not supported by the HTTP
 DELETE method. The resource must exist or the DELETE method will
 fail. The PATCH method is equivalent to a "merge" operation when
 using a plain patch (see Section 4.6.1); other media-types may
 provide more granular control.

https://datatracker.ietf.org/doc/html/rfc5277

Bierman, et al. Expires October 14, 2016 [Page 34]

Internet-Draft RESTCONF April 2016

 Access control mechanisms MUST be used to limit what operations can
 be used. In particular, RESTCONF is compatible with the NETCONF
 Access Control Model (NACM) [RFC6536], as there is a specific mapping
 between RESTCONF and NETCONF operations, defined in Section 4. The
 resource path needs to be converted internally by the server to the
 corresponding YANG instance-identifier. Using this information, the
 server can apply the NACM access control rules to RESTCONF messages.

 The server MUST NOT allow any operation to any resources that the
 client is not authorized to access.

 Operations are applied to a single data resource instance at once.
 The server MUST NOT allow any operation to be applied to multiple
 instances of a YANG list or leaf-list.

 Implementation of all methods (except PATCH) are defined in
 [RFC7231]. This section defines the RESTCONF protocol usage for each
 HTTP method.

4.1. OPTIONS

 The OPTIONS method is sent by the client to discover which methods
 are supported by the server for a specific resource (e.g., GET, POST,
 DELETE, etc.). The server MUST implement this method.

 If the PATCH method is supported, then the "Accept-Patch" header MUST
 be supported and returned in the response to the OPTIONS request, as
 defined in [RFC5789].

4.2. HEAD

 The HEAD method is sent by the client to retrieve just the headers
 that would be returned for the comparable GET method, without the
 response message-body. It is supported for all resource types,
 except operation resources.

 The request MUST contain a request URI that contains at least the
 entry point. The same query parameters supported by the GET method
 are supported by the HEAD method.

 The access control behavior is enforced as if the method was GET
 instead of HEAD. The server MUST respond the same as if the method
 was GET instead of HEAD, except that no response message-body is
 included.

4.3. GET

https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc5789

Bierman, et al. Expires October 14, 2016 [Page 35]

Internet-Draft RESTCONF April 2016

 The GET method is sent by the client to retrieve data and meta-data
 for a resource. It is supported for all resource types, except
 operation resources. The request MUST contain a request URI that
 contains at least the entry point.

 The server MUST NOT return any data resources for which the user does
 not have read privileges. If the user is not authorized to read the
 target resource, an error response containing a "401 Unauthorized"
 status-line SHOULD be returned. A server MAY return a "404 Not
 Found" status-line, as described in section 6.5.3 in [RFC7231].

 If the user is authorized to read some but not all of the target
 resource, the unauthorized content is omitted from the response
 message-body, and the authorized content is returned to the client.

 If any content is returned to the client, then the server MUST send a
 valid response message-body. More than one element MUST NOT be
 returned for XML encoding.

 If a retrieval request for a data resource representing a YANG leaf-
 list or list object identifies more than one instance, and XML
 encoding is used in the response, then an error response containing a
 "400 Bad Request" status-line MUST be returned by the server.

 If the target resource of a retrieval request is for an operation
 resource then a "405 Method Not Allowed" status-line MUST be returned
 by the server.

 Note that the way that access control is applied to data resources is
 completely incompatible with HTTP caching. The Last-Modified and
 ETag headers maintained for a data resource are not affected by
 changes to the access control rules for that data resource. It is
 possible for the representation of a data resource that is visible to
 a particular client to be changed without detection via the Last-
 Modified or ETag values.

 Example:

 The client might request the response headers for an XML
 representation of the a specific "album" resource:

 GET /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might respond:

https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.3

Bierman, et al. Expires October 14, 2016 [Page 36]

Internet-Draft RESTCONF April 2016

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:02:40 GMT
 Server: example-server
 Content-Type: application/yang.data+xml
 Cache-Control: no-cache
 Pragma: no-cache
 ETag: a74eefc993a2b
 Last-Modified: Mon, 23 Apr 2012 11:02:14 GMT

 <album xmlns="http://example.com/ns/example-jukebox"
 xmlns:jbox="http://example.com/ns/example-jukebox">
 <name>Wasting Light</name>
 <genre>jbox:alternative</genre>
 <year>2011</year>
 </album>

4.4. POST

 The POST method is sent by the client to create a data resource or
 invoke an operation resource. The server uses the target resource
 media type to determine how to process the request.

 +-----------+--+
 | Type | Description |
 +-----------+--+
 | Datastore | Create a top-level configuration data resource |
 | Data | Create a configuration data child resource |
 | Operation | Invoke a protocol operation |
 +-----------+--+

 Resource Types that Support POST

4.4.1. Create Resource Mode

 If the target resource type is a datastore or data resource, then the
 POST is treated as a request to create a top-level resource or child
 resource, respectively. The message-body is expected to contain the
 content of a child resource to create within the parent (target
 resource). The message-body MUST NOT contain more than one instance
 of the expected data resource. The data-model for the child tree is
 the subtree as defined by YANG for the child resource.

 The "insert" and "point" query parameters MUST be supported by the
 POST method for datastore and data resources. These parameters are
 only allowed if the list or leaf-list is ordered-by user.

 If the POST method succeeds, a "201 Created" status-line is returned
 and there is no response message-body. A "Location" header

Bierman, et al. Expires October 14, 2016 [Page 37]

Internet-Draft RESTCONF April 2016

 identifying the child resource that was created MUST be present in
 the response in this case.

 If the data resource already exists, then the POST request MUST fail
 and a "409 Conflict" status-line MUST be returned.

 If the user is not authorized to create the target resource, an error
 response containing a "403 Forbidden" status-line SHOULD be returned.
 A server MAY return a "404 Not Found" status-line, as described in

section 6.5.3 in [RFC7231]. All other error responses are handled
 according to the procedures defined in Section 7.

 Example:

 To create a new "jukebox" resource, the client might send:

 POST /restconf/data HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+json

 { "example-jukebox:jukebox" : {} }

 If the resource is created, the server might respond as follows.
 Note that the "Location" header line is wrapped for display purposes
 only:

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Location: https://example.com/restconf/data/
 example-jukebox:jukebox
 Last-Modified: Mon, 23 Apr 2012 17:01:00 GMT
 ETag: b3a3e673be2

 Refer to Appendix D.2.1 for more resource creation examples.

4.4.2. Invoke Operation Mode

 If the target resource type is an operation resource, then the POST
 method is treated as a request to invoke that operation. The
 message-body (if any) is processed as the operation input parameters.
 Refer to Section 3.6 for details on operation resources.

 If the POST request succeeds, a "200 OK" status-line is returned if
 there is a response message-body, and a "204 No Content" status-line
 is returned if there is no response message-body.

https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.3

Bierman, et al. Expires October 14, 2016 [Page 38]

Internet-Draft RESTCONF April 2016

 If the user is not authorized to invoke the target operation, an
 error response containing a "403 Forbidden" status-line is returned
 to the client. All other error responses are handled according to
 the procedures defined in Section 7.

 Example:

 In this example, the client is invoking the "play" operation defined
 in the "example-jukebox" YANG module.

 A client might send a "play" request as follows:

 POST /restconf/operations/example-jukebox:play HTTP/1.1
 Host: example.com
 Content-Type: application/yang.operation+json

 {
 "example-jukebox:input" : {
 "playlist" : "Foo-One",
 "song-number" : 2
 }
 }

 The server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:50:00 GMT
 Server: example-server

4.5. PUT

 The PUT method is sent by the client to create or replace the target
 data resource. A request message-body MUST be present, representing
 the new data resource, or the server MUST return "400 Bad Request"
 status-line.

 The only target resource media type that supports PUT is the data
 resource. The message-body is expected to contain the content used
 to create or replace the target resource.

 The "insert" (Section 4.8.5) and "point" (Section 4.8.6) query
 parameters MUST be supported by the PUT method for data resources.
 These parameters are only allowed if the list or leaf-list is
 ordered-by user.

 Consistent with [RFC7231], if the PUT request creates a new resource,
 a "201 Created" status-line is returned. If an existing resource is
 modified, a "204 No Content" status-line is returned.

https://datatracker.ietf.org/doc/html/rfc7231

Bierman, et al. Expires October 14, 2016 [Page 39]

Internet-Draft RESTCONF April 2016

 If the user is not authorized to create or replace the target
 resource an error response containing a "403 Forbidden" status-line
 SHOULD be returned. A server MAY return a "404 Not Found" status-
 line, as described in section 6.5.3 in [RFC7231]. All other error
 responses are handled according to the procedures defined in

Section 7.

 If the target resource represents a YANG leaf-list, then the PUT
 method MUST NOT change the value of the leaf-list instance.

 If the target resource represents a YANG list instance, then the PUT
 method MUST NOT change any key leaf values in the message-body
 representation.

 Example:

 An "album" child resource defined in the "example-jukebox" YANG
 module is replaced or created if it does not already exist.

 To replace the "album" resource contents, the client might send as
 follows. Note that the request-line is wrapped for display purposes
 only:

 PUT /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+json

 {
 "example-jukebox:album" : {
 "name" : "Wasting Light",
 "genre" : "example-jukebox:alternative",
 "year" : 2011
 }
 }

 If the resource is updated, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:04:00 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:04:00 GMT
 ETag: b27480aeda4c

 The same request is shown here using XML encoding:

 PUT /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1

https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.3

Bierman, et al. Expires October 14, 2016 [Page 40]

Internet-Draft RESTCONF April 2016

 Host: example.com
 Content-Type: application/yang.data+xml

 <album xmlns="http://example.com/ns/example-jukebox"
 xmlns:jbox="http://example.com/ns/example-jukebox">
 <name>Wasting Light</name>
 <genre>jbox:alternative</genre>
 <year>2011</year>
 </album>

4.6. PATCH

 RESTCONF uses the HTTP PATCH method defined in [RFC5789] to provide
 an extensible framework for resource patching mechanisms. It is
 optional to implement by the server. Each patch mechanism needs a
 unique media type. Zero or more patch media types MAY be supported
 by the server. The media types supported by a server can be
 discovered by the client by sending an OPTIONS request (see

Section 4.1).

 This document defines one patch mechanism (Section 4.6.1). The YANG
 PATCH mechanism is defined in [I-D.ietf-netconf-yang-patch]. Other
 patch mechanisms may be defined by future specifications.

 If the target resource instance does not exist, the server MUST NOT
 create it.

 If the PATCH request succeeds, a "200 OK" status-line is returned if
 there is a message-body, and "204 No Content" is returned if no
 response message-body is sent.

 If the user is not authorized to alter the target resource an error
 response containing a "403 Forbidden" status-line SHOULD be returned.
 A server MAY return a "404 Not Found" status-line, as described in

section 6.5.3 in [RFC7231]. All other error responses are handled
 according to the procedures defined in Section 7.

4.6.1. Plain Patch

 The plain patch mechanism merges the contents of the message body
 with the target resource. If the target resource is a datastore
 resource (see Section 3.4), the message body MUST be either
 application/yang.datastore+xml or application/yang.datastore+json.
 If then the target resource is a data resource (see Section 3.5),
 then the message body MUST be either application/yang.data+xml or
 application/yang.data+json.

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.3

Bierman, et al. Expires October 14, 2016 [Page 41]

Internet-Draft RESTCONF April 2016

 Plain patch can be used to create or update, but not delete, a child
 resource within the target resource. Please see
 [I-D.ietf-netconf-yang-patch] for an alternate media-type supporting
 more granular control. The YANG Patch Media Type allows multiple
 sub-operations (e.g., merge, delete) within a single PATCH operation.

 If the target resource represents a YANG leaf-list, then the PATCH
 method MUST not change the value of the leaf-list instance.

 If the target resource represents a YANG list instance, then the
 PATCH method MUST NOT change any key leaf values in the message-body
 representation.

 Example:

 To replace just the "year" field in the "album" resource (instead of
 replacing the entire resource with the PUT method), the client might
 send a plain patch as follows. Note that the request-line is wrapped
 for display purposes only:

 PATCH /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com
 If-Match: b8389233a4c
 Content-Type: application/yang.data+xml

 <album xmlns="http://example.com/ns/example-jukebox">
 <year>2011</year>
 </album>

 If the field is updated, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:49:30 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:49:30 GMT
 ETag: b2788923da4c

4.7. DELETE

 The DELETE method is used to delete the target resource. If the
 DELETE request succeeds, a "204 No Content" status-line is returned,
 and there is no response message-body.

Bierman, et al. Expires October 14, 2016 [Page 42]

Internet-Draft RESTCONF April 2016

 If the user is not authorized to delete the target resource then an
 error response containing a "403 Forbidden" status-line SHOULD be
 returned. A server MAY return a "404 Not Found" status-line, as
 described in section 6.5.3 in [RFC7231]. All other error responses
 are handled according to the procedures defined in Section 7.

 If the target resource represents a YANG leaf-list or list, then the
 PATCH method SHOULD NOT delete more than one such instance. The
 server MAY delete more than one instance if a query parameter is used
 requesting this behavior. (Definition of this query parameter is
 outside the scope of this document.)

 Example:

 To delete a resource such as the "album" resource, the client might
 send:

 DELETE /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com

 If the resource is deleted, the server might respond:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 17:49:40 GMT
 Server: example-server

4.8. Query Parameters

 Each RESTCONF operation allows zero or more query parameters to be
 present in the request URI. The specific parameters that are allowed
 depends on the resource type, and sometimes the specific target
 resource used, in the request.

 o Query parameters can be given in any order.

 o Each parameter can appear at most once in a request URI.

 o A default value may apply if the parameter is missing.

 o Query parameter names and values are case-sensitive

 o A server MUST return an error with a '400 Bad Request' status-line
 if a query parameter is unexpected.

 +-------------------+-------------+---------------------------------+
 | Name | Methods | Description |
 +-------------------+-------------+---------------------------------+

https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.3

Bierman, et al. Expires October 14, 2016 [Page 43]

Internet-Draft RESTCONF April 2016

content	GET	Select config and/or non-config
		data resources
depth	GET	Request limited sub-tree depth
		in the reply content
fields	GET	Request a subset of the target
		resource contents
filter	GET	Boolean notification filter for
		event stream resources
insert	POST, PUT	Insertion mode for ordered-by
		user data resources
point	POST, PUT	Insertion point for ordered-yb
		user data resources
start-time	GET	Replay buffer start time for
		event stream resources
stop-time	GET	Replay buffer stop time for
		event stream resources
with-defaults	GET	Control retrieval of default
		values
 +-------------------+-------------+---------------------------------+

 RESTCONF Query Parameters

 Refer to Appendix D.3 for examples of query parameter usage.

 If vendors define additional query parameters, they SHOULD use a
 prefix (such as the enterprise or organization name) for query
 parameter names in order to avoid collisions with other parameters.

4.8.1. The "content" Query Parameter

 The "content" parameter controls how descendant nodes of the
 requested data nodes will be processed in the reply.

 The allowed values are:

 +-----------+---+
 | Value | Description |
 +-----------+---+
 | config | Return only configuration descendant data nodes |
 | nonconfig | Return only non-configuration descendant data nodes |
 | all | Return all descendant data nodes |
 +-----------+---+

 This parameter is only allowed for GET methods on datastore and data
 resources. A "400 Bad Request" status-line is returned if used for
 other methods or resource types.

Bierman, et al. Expires October 14, 2016 [Page 44]

Internet-Draft RESTCONF April 2016

 If this query parameter is not present, the default value is "all".
 This query parameter MUST be supported by the server.

4.8.2. The "depth" Query Parameter

 The "depth" parameter is used to specify the number of nest levels
 returned in a response for a GET method. The first nest-level
 consists of the requested data node itself. If the "fields"
 parameter (Section 4.8.3) is used to select descendant data nodes,
 these nodes all have a depth value of 1. This has the effect of
 including the nodes specified by the fields, even if the "depth"
 value is less than the actual depth level of the specified fields.
 Any child nodes which are contained within a parent node have a depth
 value that is 1 greater than its parent.

 The value of the "depth" parameter is either an integer between 1 and
 65535, or the string "unbounded". "unbounded" is the default.

 This parameter is only allowed for GET methods on API, datastore, and
 data resources. A "400 Bad Request" status-line is returned if it
 used for other methods or resource types.

 More than one "depth" query parameter MUST NOT appear in a request.
 If more than one instance is present, then a "400 Bad Request"
 status-line MUST be returned by the server.

 By default, the server will include all sub-resources within a
 retrieved resource, which have the same resource type as the
 requested resource. Only one level of sub-resources with a different
 media type than the target resource will be returned. The exception
 is the datastore resource. If this resource type is retrieved then
 by default the datastore and all child data resources are returned.

 If the "depth" query parameter URI is listed in the "capability"
 leaf-list in Section 9.3, then the server supports the "depth" query
 parameter.

4.8.3. The "fields" Query Parameter

 The "fields" query parameter is used to optionally identify data
 nodes within the target resource to be retrieved in a GET method.
 The client can use this parameter to retrieve a subset of all nodes
 in a resource.

 A value of the "fields" query parameter matches the following rule:

 fields-expr = path '(' fields-expr ')' /
 path ';' fields-expr /

Bierman, et al. Expires October 14, 2016 [Page 45]

Internet-Draft RESTCONF April 2016

 path
 path = api-identifier ['/' path]

 "api-identifier" is defined in Section 3.5.1.1.

 ";" is used to select multiple nodes. For example, to retrieve only
 the "genre" and "year" of an album, use: "fields=genre;year".

 Parentheses are used to specify sub-selectors of a node.

 For example, assume the target resource is the "album" list. To
 retrieve only the "label" and "catalogue-number" of the "admin"
 container within an album, use:
 "fields=admin(label;catalogue-number)".

 "/" is used in a path to retrieve a child node of a node. For
 example, to retrieve only the "label" of an album, use: "fields=admin
 /label".

 This parameter is only allowed for GET methods on api, datastore, and
 data resources. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 More than one "fields" query parameter MUST NOT appear in a request.
 If more than one instance is present, then a "400 Bad Request"
 status-line MUST be returned by the server.

 If the "fields" query parameter URI is listed in the "capability"
 leaf-list in Section 9.3, then the server supports the "fields"
 parameter.

4.8.4. The "filter" Query Parameter

 The "filter" parameter is used to indicate which subset of all
 possible events are of interest. If not present, all events not
 precluded by other parameters will be sent.

 This parameter is only allowed for GET methods on a text/event-stream
 data resource. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 The format of this parameter is an XPath 1.0 expression, and is
 evaluated in the following context:

 o The set of namespace declarations is the set of prefix and
 namespace pairs for all supported YANG modules, where the prefix
 is the YANG module name, and the namespace is as defined by the
 "namespace" statement in the YANG module.

Bierman, et al. Expires October 14, 2016 [Page 46]

Internet-Draft RESTCONF April 2016

 o The function library is the core function library defined in XPath
 1.0.

 o The set of variable bindings is empty.

 o The context node is the root node.

 More than one "filter" query parameter MUST NOT appear in a request.
 If more than one instance is present, then a "400 Bad Request"
 status-line MUST be returned by the server.

 The filter is used as defined in [RFC5277], Section 3.6. If the
 boolean result of the expression is true when applied to the
 conceptual "notification" document root, then the event notification
 is delivered to the client.

 If the "filter" query parameter URI is listed in the "capability"
 leaf-list in Section 9.3, then the server supports the "filter" query
 parameter.

4.8.5. The "insert" Query Parameter

 The "insert" parameter is used to specify how a resource should be
 inserted within a ordered-by user list.

 The allowed values are:

 +-----------+---+
 | Value | Description |
 +-----------+---+
first	Insert the new data as the new first entry.
last	Insert the new data as the new last entry.
before	Insert the new data before the insertion point, as
	specified by the value of the "point" parameter.
after	Insert the new data after the insertion point, as
	specified by the value of the "point" parameter.
 +-----------+---+

 The default value is "last".

 This parameter is only supported for the POST and PUT methods. It is
 also only supported if the target resource is a data resource, and
 that data represents a YANG list or leaf-list that is ordered-by
 user.

 More than one "insert" query parameter MUST NOT appear in a request.
 If more than one instance is present, then a "400 Bad Request"
 status-line MUST be returned by the server.

https://datatracker.ietf.org/doc/html/rfc5277#section-3.6

Bierman, et al. Expires October 14, 2016 [Page 47]

Internet-Draft RESTCONF April 2016

 If the values "before" or "after" are used, then a "point" query
 parameter for the insertion parameter MUST also be present, or a "400
 Bad Request" status-line is returned.

 The "insert" query parameter MUST be supported by the server.

4.8.6. The "point" Query Parameter

 The "point" parameter is used to specify the insertion point for a
 data resource that is being created or moved within an ordered-by
 user list or leaf-list.

 The value of the "point" parameter is a string that identifies the
 path to the insertion point object. The format is the same as a
 target resource URI string.

 This parameter is only supported for the POST and PUT methods. It is
 also only supported if the target resource is a data resource, and
 that data represents a YANG list or leaf-list that is ordered-by
 user.

 If the "insert" query parameter is not present, or has a value other
 than "before" or "after", then a "400 Bad Request" status-line is
 returned.

 More than one "point" query parameter MUST NOT appear in a request.
 If more than one instance is present, then a "400 Bad Request"
 status-line MUST be returned by the server.

 This parameter contains the instance identifier of the resource to be
 used as the insertion point for a POST or PUT method.

 The "point" query parameter MUST be supported by the server.

4.8.7. The "start-time" Query Parameter

 The "start-time" parameter is used to trigger the notification replay
 feature and indicate that the replay should start at the time
 specified. If the stream does not support replay, per the
 "replay-support" attribute returned by stream list entry for the
 stream resource, then the server MUST return a "400 Bad Request"
 status-line.

 The value of the "start-time" parameter is of type "date-and-time",
 defined in the "ietf-yang" YANG module [RFC6991].

https://datatracker.ietf.org/doc/html/rfc6991

Bierman, et al. Expires October 14, 2016 [Page 48]

Internet-Draft RESTCONF April 2016

 This parameter is only allowed for GET methods on a text/event-stream
 data resource. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 More than one "start-time" query parameter MUST NOT appear in a
 request. If more than one instance is present, then a "400 Bad
 Request" status-line MUST be returned by the server.

 If this parameter is not present, then a replay subscription is not
 being requested. It is not valid to specify start times that are
 later than the current time. If the value specified is earlier than
 the log can support, the replay will begin with the earliest
 available notification.

 If this query parameter is supported by the server, then the "replay"
 query parameter URI MUST be listed in the "capability" leaf-list in

Section 9.3. The "stop-time" query parameter MUST also be supported
 by the server.

 If the "replay-support" leaf has the value 'true' in the "stream"
 entry (defined in Section 9.3) then the server MUST support the
 "start-time" and "stop-time" query parameters for that stream.

4.8.8. The "stop-time" Query Parameter

 The "stop-time" parameter is used with the replay feature to indicate
 the newest notifications of interest. This parameter MUST be used
 with and have a value later than the "start-time" parameter.

 The value of the "stop-time" parameter is of type "date-and-time",
 defined in the "ietf-yang" YANG module [RFC6991].

 This parameter is only allowed for GET methods on a text/event-stream
 data resource. A "400 Bad Request" status-line is returned if used
 for other methods or resource types.

 More than one "stop-time" query parameter MUST NOT appear in a
 request. If more than one instance is present, then a "400 Bad
 Request" status-line MUST be returned by the server.

 If this parameter is not present, the notifications will continue
 until the subscription is terminated. Values in the future are
 valid.

 If this query parameter is supported by the server, then the "replay"
 query parameter URI MUST be listed in the "capability" leaf-list in

Section 9.3. The "start-time" query parameter MUST also be supported
 by the server.

https://datatracker.ietf.org/doc/html/rfc6991

Bierman, et al. Expires October 14, 2016 [Page 49]

Internet-Draft RESTCONF April 2016

 If the "replay-support" leaf is present in the "stream" entry
 (defined in Section 9.3) then the server MUST support the
 "start-time" and "stop-time" query parameters for that stream.

4.8.9. The "with-defaults" Query Parameter

 The "with-defaults" parameter is used to specify how information
 about default data nodes should be returned in response to GET
 requests on data resources.

 If the server supports this capability, then it MUST implement the
 behavior in Section 4.5.1 of [RFC6243], except applied to the
 RESTCONF GET operation, instead of the NETCONF operations.

 +---------------------------+---------------------------------------+
 | Value | Description |
 +---------------------------+---------------------------------------+
report-all	All data nodes are reported
trim	Data nodes set to the YANG default
	are not reported
explicit	Data nodes set to the YANG default by
	the client are reported
report-all-tagged	All data nodes are reported and
	defaults are tagged
 +---------------------------+---------------------------------------+

 If the "with-defaults" parameter is set to "report-all" then the
 server MUST adhere to the defaults reporting behavior defined in

Section 3.1 of [RFC6243].

 If the "with-defaults" parameter is set to "trim" then the server
 MUST adhere to the defaults reporting behavior defined in Section 3.2
 of [RFC6243].

 If the "with-defaults" parameter is set to "explicit" then the server
 MUST adhere to the defaults reporting behavior defined in Section 3.3
 of [RFC6243].

 If the "with-defaults" parameter is set to "report-all-tagged" then
 the server MUST adhere to the defaults reporting behavior defined in

Section 3.4 of [RFC6243].

 More than one "with-defaults" query parameter MUST NOT appear in a
 request. If more than one instance is present, then a "400 Bad
 Request" status-line MUST be returned by the server.

 If the "with-defaults" parameter is not present then the server MUST
 adhere to the defaults reporting behavior defined in its "basic-mode"

https://datatracker.ietf.org/doc/html/rfc6243#section-4.5.1
https://datatracker.ietf.org/doc/html/rfc6243#section-3.1
https://datatracker.ietf.org/doc/html/rfc6243#section-3.2
https://datatracker.ietf.org/doc/html/rfc6243#section-3.2
https://datatracker.ietf.org/doc/html/rfc6243#section-3.3
https://datatracker.ietf.org/doc/html/rfc6243#section-3.3
https://datatracker.ietf.org/doc/html/rfc6243#section-3.4

Bierman, et al. Expires October 14, 2016 [Page 50]

Internet-Draft RESTCONF April 2016

 parameter for the "defaults" protocol capability URI, defined in
Section 9.1.2.

 If the server includes the "with-defaults" query parameter URI in the
 "capability" leaf-list in Section 9.3, then the "with-defaults" query
 parameter MUST be supported.

5. Messages

 The RESTCONF protocol uses HTTP entities for messages. A single HTTP
 message corresponds to a single protocol method. Most messages can
 perform a single task on a single resource, such as retrieving a
 resource or editing a resource. The exception is the PATCH method,
 which allows multiple datastore edits within a single message.

5.1. Request URI Structure

 Resources are represented with URIs following the structure for
 generic URIs in [RFC3986].

 A RESTCONF operation is derived from the HTTP method and the request
 URI, using the following conceptual fields:

 <OP> /<restconf>/<path>?<query>#<fragment>

 ^ ^ ^ ^ ^
 | | | | |
 method entry resource query fragment

 M M O O I

 M=mandatory, O=optional, I=ignored

 where:

 <OP> is the HTTP method
 <restconf> is the RESTCONF entry point
 <path> is the Target Resource URI
 <query> is the query parameter list
 <fragment> is not used in RESTCONF

 o method: the HTTP method identifying the RESTCONF operation
 requested by the client, to act upon the target resource specified
 in the request URI. RESTCONF operation details are described in

Section 4.

https://datatracker.ietf.org/doc/html/rfc3986

Bierman, et al. Expires October 14, 2016 [Page 51]

Internet-Draft RESTCONF April 2016

 o entry: the root of the RESTCONF API configured on this HTTP
 server, discovered by getting the "/.well-known/host-meta"
 resource, as described in Section 3.1.

 o resource: the path expression identifying the resource that is
 being accessed by the operation. If this field is not present,
 then the target resource is the API itself, represented by the
 media type "application/yang.api".

 o query: the set of parameters associated with the RESTCONF message.
 These have the familiar form of "name=value" pairs. Most query
 parameters are optional to implement by the server and optional to
 use by the client. Each optional query parameter is identified by
 a URI. The server MUST list the optional query parameter URIs it
 supports in the "capabilities" list defined in Section 9.3.

 There is a specific set of parameters defined, although the server
 MAY choose to support query parameters not defined in this document.
 The contents of the any query parameter value MUST be encoded
 according to [RFC3986], Section 3.4. Any reserved characters MUST be
 percent-encoded, according to [RFC3986], section 2.1.

 o fragment: This field is not used by the RESTCONF protocol.

 When new resources are created by the client, a "Location" header is
 returned, which identifies the path of the newly created resource.
 The client uses this exact path identifier to access the resource
 once it has been created.

 The "target" of an operation is a resource. The "path" field in the
 request URI represents the target resource for the operation.

 Refer to Appendix D for examples of RESTCONF Request URIs.

5.2. Message Encoding

 RESTCONF messages are encoded in HTTP according to [RFC7230]. The
 "utf-8" character set is used for all messages. RESTCONF message
 content is sent in the HTTP message-body.

 Content is encoded in either JSON or XML format. A server MUST
 support XML or JSON encoding. XML encoding rules for data nodes are
 defined in [I-D.ietf-netmod-rfc6020bis]. The same encoding rules are
 used for all XML content. JSON encoding rules are defined in
 [I-D.ietf-netmod-yang-json]. JSON encoding of meta-data is defined
 in [I-D.ietf-netmod-yang-metadata]. This encoding is valid JSON, but
 also has special encoding rules to identify module namespaces and
 provide consistent type processing of YANG data.

https://datatracker.ietf.org/doc/html/rfc3986#section-3.4
https://datatracker.ietf.org/doc/html/rfc3986#section-2.1
https://datatracker.ietf.org/doc/html/rfc7230

Bierman, et al. Expires October 14, 2016 [Page 52]

Internet-Draft RESTCONF April 2016

 Request input content encoding format is identified with the Content-
 Type header. This field MUST be present if a message-body is sent by
 the client.

 The server MUST support the "Accept" header and "406 Not Acceptable"
 status-line, as defined in [RFC7231]. Response output content
 encoding format is identified with the Accept header in the request.
 If it is not specified, the request input encoding format SHOULD be
 used, or the server MAY choose any supported content encoding format.

 If there was no request input, then the default output encoding is
 XML or JSON, depending on server preference. File extensions encoded
 in the request are not used to identify format encoding.

5.3. RESTCONF Meta-Data

 The RESTCONF protocol needs to retrieve the same meta-data that is
 used in the NETCONF protocol. Information about default leafs, last-
 modified timestamps, etc. are commonly used to annotate
 representations of the datastore contents. This meta-data is not
 defined in the YANG schema because it applies to the datastore, and
 is common across all data nodes.

 This information is encoded as attributes in XML. JSON encoding of
 meta-data is defined in [I-D.ietf-netmod-yang-metadata].

 The following examples are based on the example in Appendix D.3.9.
 The "report-all-tagged" mode for the "with-defaults" query parameter
 requires that a "default" attribute be returned for default nodes.
 This example shows that attribute for the "mtu" leaf .

5.3.1. XML MetaData Encoding Example

 GET /restconf/data/interfaces/interface=eth1
 ?with-defaults=report-all-tagged HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might respond as follows.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+xml

 <interface
 xmlns="urn:example.com:params:xml:ns:yang:example-interface">
 <name>eth1</name>

https://datatracker.ietf.org/doc/html/rfc7231

Bierman, et al. Expires October 14, 2016 [Page 53]

Internet-Draft RESTCONF April 2016

 <mtu xmlns:wd="urn:ietf:params:xml:ns:netconf:default:1.0"
 wd:default="true">1500</mtu>
 <status>up</status>
 </interface>

5.3.2. JSON MetaData Encoding Example

 Note that RFC 6243 defines the "default" attribute with XSD, not
 YANG, so the YANG module name has to be assigned manually. The value
 "ietf-netconf-with-defaults" is assigned for JSON meta-data encoding.

 GET /restconf/data/interfaces/interface=eth1
 ?with-defaults=report-all-tagged HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond as follows.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "example:interface": [
 {
 "name" : "eth1",
 "mtu" : 1500,
 "@mtu": {
 "ietf-netconf-with-defaults:default" : true
 },
 "status" : "up"
 }
]
 }

5.4. Return Status

 Each message represents some sort of resource access. An HTTP
 "status-line" header line is returned for each request. If a 4xx or
 5xx range status code is returned in the status-line, then the error
 information will be returned in the response, according to the format
 defined in Section 7.1.

5.5. Message Caching

 Since the datastore contents change at unpredictable times, responses
 from a RESTCONF server generally SHOULD NOT be cached.

https://datatracker.ietf.org/doc/html/rfc6243

Bierman, et al. Expires October 14, 2016 [Page 54]

Internet-Draft RESTCONF April 2016

 The server SHOULD include a "Cache-Control" header in every response
 that specifies whether the response should be cached. A "Pragma"
 header specifying "no-cache" MAY also be sent in case the
 "Cache-Control" header is not supported.

 Instead of relying on HTTP caching, the client SHOULD track the
 "ETag" and/or "Last-Modified" headers returned by the server for the
 datastore resource (or data resource if the server supports it). A
 retrieval request for a resource can include the "If-None-Match" and/
 or "If-Modified-Since" headers, which will cause the server to return
 a "304 Not Modified" status-line if the resource has not changed.
 The client MAY use the HEAD method to retrieve just the message
 headers, which SHOULD include the "ETag" and "Last-Modified" headers,
 if this meta-data is maintained for the target resource.

6. Notifications

 The RESTCONF protocol supports YANG-defined event notifications. The
 solution preserves aspects of NETCONF Event Notifications [RFC5277]
 while utilizing the Server-Sent Events [W3C.CR-eventsource-20121211]
 transport strategy.

6.1. Server Support

 A RESTCONF server MAY support RESTCONF notifications. Clients may
 determine if a server supports RESTCONF notifications by using the
 HTTP operation OPTIONS, HEAD, or GET on the stream list. The server
 does not support RESTCONF notifications if an HTTP error code is
 returned (e.g., "404 Not Found" status-line).

6.2. Event Streams

 A RESTCONF server that supports notifications will populate a stream
 resource for each notification delivery service access point. A
 RESTCONF client can retrieve the list of supported event streams from
 a RESTCONF server using the GET operation on the stream list.

 The "restconf-state/streams" container definition in the
 "ietf-restconf-monitoring" module (defined in Section 9.3) is used to
 specify the structure and syntax of the conceptual child resources
 within the "streams" resource.

 For example:

 The client might send the following request:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams HTTP/1.1

https://datatracker.ietf.org/doc/html/rfc5277

Bierman, et al. Expires October 14, 2016 [Page 55]

Internet-Draft RESTCONF April 2016

 Host: example.com
 Accept: application/yang.data+xml

 The server might send the following response:

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml

 <streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 <stream>
 <name>NETCONF</name>
 <description>default NETCONF event stream
 </description>
 <replay-support>true</replay-support>
 <replay-log-creation-time>
 2007-07-08T00:00:00Z
 </replay-log-creation-time>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/NETCONF
 </location>
 </access>
 <access>
 <encoding>json</encoding>
 <location>https://example.com/streams/NETCONF-JSON
 </location>
 </access>
 </stream>
 <stream>
 <name>SNMP</name>
 <description>SNMP notifications</description>
 <replay-support>false</replay-support>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/SNMP</location>
 </access>
 </stream>
 <stream>
 <name>syslog-critical</name>
 <description>Critical and higher severity
 </description>
 <replay-support>true</replay-support>
 <replay-log-creation-time>
 2007-07-01T00:00:00Z
 </replay-log-creation-time>
 <access>
 <encoding>xml</encoding>

Bierman, et al. Expires October 14, 2016 [Page 56]

Internet-Draft RESTCONF April 2016

 <location>
 https://example.com/streams/syslog-critical
 </location>
 </access>
 </stream>
 </streams>

6.3. Subscribing to Receive Notifications

 RESTCONF clients can determine the URL for the subscription resource
 (to receive notifications) by sending an HTTP GET request for the
 "location" leaf with the stream list entry. The value returned by
 the server can be used for the actual notification subscription.

 The client will send an HTTP GET request for the URL returned by the
 server with the "Accept" type "text/event-stream".

 The server will treat the connection as an event stream, using the
 Server Sent Events [W3C.CR-eventsource-20121211] transport strategy.

 The server MAY support query parameters for a GET method on this
 resource. These parameters are specific to each notification stream.

 For example:

 The client might send the following request:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams/stream=NETCONF/access=xml/location HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might send the following response:

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml

 <location
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 https://example.com/streams/NETCONF
 </location>

 The RESTCONF client can then use this URL value to start monitoring
 the event stream:

 GET /streams/NETCONF HTTP/1.1
 Host: example.com
 Accept: text/event-stream

Bierman, et al. Expires October 14, 2016 [Page 57]

Internet-Draft RESTCONF April 2016

 Cache-Control: no-cache
 Connection: keep-alive

 A RESTCONF client MAY request the server compress the events using
 the HTTP header field "Accept-Encoding". For instance:

 GET /streams/NETCONF HTTP/1.1
 Host: example.com
 Accept: text/event-stream
 Cache-Control: no-cache
 Connection: keep-alive
 Accept-Encoding: gzip, deflate

6.3.1. NETCONF Event Stream

 The server SHOULD support the "NETCONF" notification stream defined
 in [RFC5277]. For this stream, RESTCONF notification subscription
 requests MAY specify parameters indicating the events it wishes to
 receive. These query parameters are optional to implement, and only
 available if the server supports them.

 +------------+---------+-------------------------+
 | Name | Section | Description |
 +------------+---------+-------------------------+
 | start-time | 4.8.7 | replay event start time |
 | stop-time | 4.8.8 | replay event stop time |
 | filter | 4.8.4 | boolean content filter |
 +------------+---------+-------------------------+

 NETCONF Stream Query Parameters

 The semantics and syntax for these query parameters are defined in
 the sections listed above. The YANG definition MUST be converted to
 a URI-encoded string for use in the request URI.

 Refer to Appendix D.3.6 for filter parameter examples.

6.4. Receiving Event Notifications

 RESTCONF notifications are encoded according to the definition of the
 event stream. The NETCONF stream defined in [RFC5277] is encoded in
 XML format.

 The structure of the event data is based on the "notification"
 element definition in Section 4 of [RFC5277]. It MUST conform to the
 schema for the "notification" element in Section 4 of [RFC5277],
 except the XML namespace for this element is defined as:

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc5277#section-4

Bierman, et al. Expires October 14, 2016 [Page 58]

Internet-Draft RESTCONF April 2016

 urn:ietf:params:xml:ns:yang:ietf-restconf

 For JSON encoding purposes, the module name for the "notification"
 element is "ietf-restconf".

 Two child nodes within the "notification" container are expected,
 representing the event time and the event payload. The "event-time"
 node is defined within the "ietf-restconf" module namespace. The
 name and namespace of the payload element are determined by the YANG
 module containing the notification-stmt.

 In the following example, the YANG module "example-mod" is used:

 module example-mod {
 namespace "http://example.com/event/1.0";
 prefix ex;

 notification event {
 leaf event-class { type string; }
 container reporting-entity {
 leaf card { type string; }
 }
 leaf severity { type string; }
 }
 }

 An example SSE event notification encoded using XML:

 data: <notification
 data: xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 data: <event-time>2013-12-21T00:01:00Z</event-time>
 data: <event xmlns="http://example.com/event/1.0">
 data: <event-class>fault</event-class>
 data: <reporting-entity>
 data: <card>Ethernet0</card>
 data: </reporting-entity>
 data: <severity>major</severity>
 data: </event>
 data: </notification>

 An example SSE event notification encoded using JSON:

 data: {
 data: "ietf-restconf:notification": {
 data: "event-time": "2013-12-21T00:01:00Z",
 data: "example-mod:event": {
 data: "event-class": "fault",
 data: "reporting-entity": { "card": "Ethernet0" },

Bierman, et al. Expires October 14, 2016 [Page 59]

Internet-Draft RESTCONF April 2016

 data: "severity": "major"
 data: }
 data: }
 data: }

 Alternatively, since neither XML nor JSON are whitespace sensitive,
 the above messages can be encoded onto a single line. For example:

 For example: ('\' line wrapping added for formatting only)

 XML:

 data: <notification xmlns="urn:ietf:params:xml:ns:yang:ietf-rest\
 conf"><event-time>2013-12-21T00:01:00Z</event-time><event xmlns="\
 http://example.com/event/1.0"><event-class>fault</event-class><re\
 portingEntity><card>Ethernet0</card></reporting-entity><severity>\
 major</severity></event></notification>

 JSON:

 data: {"ietf-restconf:notification":{"event-time":"2013-12-21\
 T00:01:00Z","example-mod:event":{"event-class": "fault","repor\
 tingEntity":{"card":"Ethernet0"},"severity":"major"}}}

 The SSE specifications supports the following additional fields:
 event, id and retry. A RESTCONF server MAY send the "retry" field
 and, if it does, RESTCONF clients SHOULD use it. A RESTCONF server
 SHOULD NOT send the "event" or "id" fields, as there are no
 meaningful values that could be used for them that would not be
 redundant to the contents of the notification itself. RESTCONF
 servers that do not send the "id" field also do not need to support
 the HTTP header "Last-Event-Id". RESTCONF servers that do send the
 "id" field MUST still support the "startTime" query parameter as the
 preferred means for a client to specify where to restart the event
 stream.

7. Error Reporting

 HTTP status-lines are used to report success or failure for RESTCONF
 operations. The <rpc-error> element returned in NETCONF error
 responses contains some useful information. This error information
 is adapted for use in RESTCONF, and error information is returned for
 "4xx" class of status codes.

 The following table summarizes the return status codes used
 specifically by RESTCONF operations:

Bierman, et al. Expires October 14, 2016 [Page 60]

Internet-Draft RESTCONF April 2016

 +----------------------------+--------------------------------------+
 | Status-Line | Description |
 +----------------------------+--------------------------------------+
100 Continue	POST accepted, 201 should follow
200 OK	Success with response message-body
201 Created	POST to create a resource success
204 No Content	Success without response message-
	body
304 Not Modified	Conditional operation not done
400 Bad Request	Invalid request message
401 Unauthorized	Client cannot be authenticated
403 Forbidden	Access to resource denied
404 Not Found	Resource target or resource node not
	found
405 Method Not Allowed	Method not allowed for target
	resource
409 Conflict	Resource or lock in use
412 Precondition Failed	Conditional method is false
413 Request Entity Too	too-big error
Large	
414 Request-URI Too Large	too-big error
415 Unsupported Media Type	non RESTCONF media type
500 Internal Server Error	operation-failed
501 Not Implemented	unknown-operation
503 Service Unavailable	Recoverable server error
 +----------------------------+--------------------------------------+

 HTTP Status Codes used in RESTCONF

 Since an operation resource is defined with a YANG "rpc" statement,
 and an action is defined with a YANG "action" statement, a mapping
 between the NETCONF <error-tag> value and the HTTP status code is
 needed. The specific error condition and response code to use are
 data-model specific and might be contained in the YANG "description"
 statement for the "action" or "rpc" statement.

 +-------------------------+-------------+
 | <error‑tag> | status code |
 +-------------------------+-------------+
 | in-use | 409 |
 | invalid-value | 400 |
 | too-big | 413 |
 | missing-attribute | 400 |
 | bad-attribute | 400 |
 | unknown-attribute | 400 |
 | bad-element | 400 |
 | unknown-element | 400 |
 | unknown-namespace | 400 |

Bierman, et al. Expires October 14, 2016 [Page 61]

Internet-Draft RESTCONF April 2016

 | access-denied | 403 |
 | lock-denied | 409 |
 | resource-denied | 409 |
 | rollback-failed | 500 |
 | data-exists | 409 |
 | data-missing | 409 |
 | operation-not-supported | 501 |
 | operation-failed | 500 |
 | partial-operation | 500 |
 | malformed-message | 400 |
 +-------------------------+-------------+

 Mapping from error-tag to status code

7.1. Error Response Message

 When an error occurs for a request message on any resource type, and
 a "4xx" class of status codes will be returned (except for status
 code "403 Forbidden"), then the server SHOULD send a response
 message-body containing the information described by the "errors"
 container definition within the YANG module Section 8. The Content-
 Type of this response message MUST be a subtype of application/
 yang.errors (see example below).

 The client SHOULD specify the desired encoding for error messages by
 specifying the appropriate media-type in the Accept header. If no
 error media is specified, then the media subtype (e.g., XML or JSON)
 of the request message SHOULD be used, or the server MAY choose any
 supported message encoding format. If there is no request message
 the server MUST select "application/yang.errors+xml" or "application/
 yang.errors+json", depending on server preference. All of the
 examples in this document, except for the one below, assume that XML
 encoding will be returned if there is an error.

 YANG Tree Diagram for <errors> data:

 +--ro errors
 +--ro error*
 +--ro error-type enumeration
 +--ro error-tag string
 +--ro error-app-tag? string
 +--ro error-path? instance-identifier
 +--ro error-message? string
 +--ro error-info

 The semantics and syntax for RESTCONF error messages are defined in
 the "application/yang.errors" restconf-media-type extension in

Section 8.

Bierman, et al. Expires October 14, 2016 [Page 62]

Internet-Draft RESTCONF April 2016

 Examples:

 The following example shows an error returned for an "lock-denied"
 error that can occur if a NETCONF client has locked a datastore. The
 RESTCONF client is attempting to delete a data resource. Note that
 an Accept header is used to specify the desired encoding for the
 error message. No response message-body content is expected by the
 client in this example.

 DELETE /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light HTTP/1.1
 Host: example.com
 Accept: application/yang.errors+json

 The server might respond:

 HTTP/1.1 409 Conflict
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+json

 {
 "ietf-restconf:errors": {
 "error": [
 {
 "error-type": "protocol",
 "error-tag": "lock-denied",
 "error-message": "Lock failed, lock already held"
 }
]
 }
 }

 The following example shows an error returned for a "data-exists"
 error on a data resource. The "jukebox" resource already exists so
 it cannot be created.

 The client might send:

 POST /restconf/data/example-jukebox:jukebox HTTP/1.1
 Host: example.com

 The server might respond (some lines wrapped for display purposes):

 HTTP/1.1 409 Conflict
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+xml

Bierman, et al. Expires October 14, 2016 [Page 63]

Internet-Draft RESTCONF April 2016

 <errors xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <error>
 <error-type>protocol</error-type>
 <error-tag>data-exists</error-tag>
 <error-path
 xmlns:rc="urn:ietf:params:xml:ns:yang:ietf-restconf"
 xmlns:jbox="https://example.com/ns/example-jukebox">
 /rc:restconf/rc:data/jbox:jukebox
 </error-path>
 <error-message>
 Data already exists, cannot create new resource
 </error-message>
 </error>
 </errors>

8. RESTCONF module

 The "ietf-restconf" module defines conceptual definitions within an
 extension and two groupings, which are not meant to be implemented as
 datastore contents by a server. E.g., the "restconf" container is
 not intended to be implemented as a top-level data node (under the "/
 restconf/data" entry point).

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-restconf@2016-03-16.yang"

 module ietf-restconf {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf";
 prefix "rc";

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

http://tools.ietf.org/wg/netconf/

Bierman, et al. Expires October 14, 2016 [Page 64]

Internet-Draft RESTCONF April 2016

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains conceptual YANG specifications
 for basic RESTCONF media type definitions used in
 RESTCONF protocol messages.

 Note that the YANG definitions within this module do not
 represent configuration data of any kind.
 The 'restconf-media-type' YANG extension statement
 provides a normative syntax for XML and JSON message
 encoding purposes.

 Copyright (c) 2016 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-ietf-netconf-restconf-12.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2016-03-16 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: RESTCONF Protocol.";
 }

 extension restconf-media-type {
 argument media-type-id {
 yin-element true;

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-12.txt

Bierman, et al. Expires October 14, 2016 [Page 65]

Internet-Draft RESTCONF April 2016

 }
 // RFC Ed.: replace draft-ietf-netmod-yang-json with RFC number
 // in the description below, and remove this note.
 description
 "This extension is used to specify a YANG data structure which
 represents a conceptual RESTCONF media type.
 Data definition statements within this extension specify
 the generic syntax for the specific media type.

 YANG is mapped to specific encoding formats outside the
 scope of this extension statement. RFC 6020 defines XML
 encoding rules for all RESTCONF media types that use
 the '+xml' suffix. draft-ietf-netmod-yang-json defines
 JSON encoding rules for all RESTCONF media types that
 use the '+json' suffix.

 The 'media-type-id' parameter value identifies the media type
 that is being defined. It contains the string associated
 with the generic media type, i.e., no suffix is specified.

 This extension is ignored unless it appears as a top-level
 statement. It SHOULD contain data definition statements
 that result in exactly one container data node definition.
 This allows compliant translation to an XML instance
 document for each media type.

 The module name and namespace value for the YANG module using
 the extension statement is assigned to instance document data
 conforming to the data definition statements within
 this extension.

 The sub-statements of this extension MUST follow the
 'data-def-stmt' rule in the YANG ABNF.

 The XPath document root is the extension statement itself,
 such that the child nodes of the document root are
 represented by the data-def-stmt sub-statements within
 this extension. This conceptual document is the context
 for the following YANG statements:

 - must-stmt
 - when-stmt
 - path-stmt
 - min-elements-stmt
 - max-elements-stmt
 - mandatory-stmt
 - unique-stmt
 - ordered-by

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-json
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-json

Bierman, et al. Expires October 14, 2016 [Page 66]

Internet-Draft RESTCONF April 2016

 - instance-identifier data type

 The following data-def-stmt sub-statements have special
 meaning when used within a restconf-resource extension
 statement.

 - The list-stmt is not required to have a key-stmt defined.
 - The if-feature-stmt is ignored if present.
 - The config-stmt is ignored if present.
 - The available identity values for any 'identityref'
 leaf or leaf-list nodes is limited to the module
 containing this extension statement, and the modules
 imported into that module.
 ";
 }

 rc:restconf-media-type "application/yang.errors" {
 uses errors;
 }

 rc:restconf-media-type "application/yang.api" {
 uses restconf;
 }

 grouping errors {
 description
 "A grouping that contains a YANG container
 representing the syntax and semantics of a
 YANG Patch errors report within a response message.";

 container errors {
 description
 "Represents an error report returned by the server if
 a request results in an error.";

 list error {
 description
 "An entry containing information about one
 specific error that occurred while processing
 a RESTCONF request.";
 reference "RFC 6241, Section 4.3";

 leaf error-type {
 type enumeration {
 enum transport {
 description "The transport layer";
 }
 enum rpc {

https://datatracker.ietf.org/doc/html/rfc6241#section-4.3

Bierman, et al. Expires October 14, 2016 [Page 67]

Internet-Draft RESTCONF April 2016

 description "The rpc or notification layer";
 }
 enum protocol {
 description "The protocol operation layer";
 }
 enum application {
 description "The server application layer";
 }
 }
 mandatory true;
 description
 "The protocol layer where the error occurred.";
 }

 leaf error-tag {
 type string;
 mandatory true;
 description
 "The enumerated error tag.";
 }

 leaf error-app-tag {
 type string;
 description
 "The application-specific error tag.";
 }

 leaf error-path {
 type instance-identifier;
 description
 "The YANG instance identifier associated
 with the error node.";
 }

 leaf error-message {
 type string;
 description
 "A message describing the error.";
 }

 anydata error-info {
 description
 "This anydata value MUST represent a container with
 zero or more data nodes representing additional
 error information.";
 }
 }
 }

Bierman, et al. Expires October 14, 2016 [Page 68]

Internet-Draft RESTCONF April 2016

 }

 grouping restconf {
 description
 "Conceptual container representing the
 application/yang.api resource type.";

 container restconf {
 description
 "Conceptual container representing the
 application/yang.api resource type.";

 container data {
 description
 "Container representing the application/yang.datastore
 resource type. Represents the conceptual root of all
 state data and configuration data supported by
 the server. The child nodes of this container can be
 any data resource (application/yang.data), which are
 defined as top-level data nodes from the YANG modules
 advertised by the server in the ietf-restconf-monitoring
 module.";
 }

 container operations {
 description
 "Container for all operation resources
 (application/yang.operation),

 Each resource is represented as an empty leaf with the
 name of the RPC operation from the YANG rpc statement.

 E.g.;

 POST /restconf/operations/show-log-errors

 leaf show-log-errors {
 type empty;
 }
 ";
 }

 leaf yang-library-version {
 type string {
 pattern '\d{4}-\d{2}-\d{2}';
 }
 config false;
 mandatory true;

Bierman, et al. Expires October 14, 2016 [Page 69]

Internet-Draft RESTCONF April 2016

 description
 "Identifies the revision date of the ietf-yang-library
 module that is implemented by this RESTCONF server.
 Indicates the year, month, and day in YYYY-MM-DD
 numeric format.";
 }
 }
 }

 }

 <CODE ENDS>

9. RESTCONF Monitoring

 The "ietf-restconf-monitoring" module provides information about the
 RESTCONF protocol capabilities and event notification streams
 available from the server. A RESTCONF server MUST implement the "/
 restconf-state/capabilities" container in this module.

 YANG Tree Diagram for "ietf-restconf-monitoring" module:

 +--ro restconf-state
 +--ro capabilities
 | +--ro capability* inet:uri
 +--ro streams
 +--ro stream* [name]
 +--ro name string
 +--ro description? string
 +--ro replay-support? boolean
 +--ro replay-log-creation-time? yang:date-and-time
 +--ro access* [encoding]
 +--ro encoding string
 +--ro location inet:uri

9.1. restconf-state/capabilities

 This mandatory container holds the RESTCONF protocol capability URIs
 supported by the server.

 The server MUST maintain a last-modified timestamp for this
 container, and return the "Last-Modified" header when this data node
 is retrieved with the GET or HEAD methods.

 The server SHOULD maintain an entity-tag for this container, and
 return the "ETag" header when this data node is retrieved with the
 GET or HEAD methods.

Bierman, et al. Expires October 14, 2016 [Page 70]

Internet-Draft RESTCONF April 2016

 The server MUST include a "capability" URI leaf-list entry for the
 "defaults" mode used by the server, defined in Section 9.1.2.

 The server MUST include a "capability" URI leaf-list entry
 identifying each supported optional protocol feature. This includes
 optional query parameters and MAY include other capability URIs
 defined outside this document.

9.1.1. Query Parameter URIs

 A new set of RESTCONF Capability URIs are defined to identify the
 specific query parameters (defined in Section 4.8) supported by the
 server.

 The server MUST include a "capability" leaf-list entry for each
 optional query parameter that it supports.

 +-------------+-------+---+
 | Name | Secti | URI |
 | | on | |
 +-------------+-------+---+
depth	4.8.2	urn:ietf:params:restconf:capability:depth:1
		.0
fields	4.8.3	urn:ietf:params:restconf:capability:fields:
		1.0
filter	4.8.4	urn:ietf:params:restconf:capability:filter:
		1.0
replay	4.8.7	urn:ietf:params:restconf:capability:replay:
	4.8.8	1.0
with-	4.8.9	urn:ietf:params:restconf:capability:with-
defaults		defaults:1.0
 +-------------+-------+---+

 RESTCONF Query Parameter URIs

9.1.2. The "defaults" Protocol Capability URI

 This URI identifies the defaults handling mode that is used by the
 server for processing default leafs in requests for data resources.
 A parameter named "basic-mode" is required for this capability URI.
 The "basic-mode" definitions are specified in the "With-Defaults
 Capability for NETCONF" [RFC6243].

 +----------+--+
 | Name | URI |
 +----------+--+
 | defaults | urn:ietf:params:restconf:capability:defaults:1.0 |
 +----------+--+

https://datatracker.ietf.org/doc/html/rfc6243

Bierman, et al. Expires October 14, 2016 [Page 71]

Internet-Draft RESTCONF April 2016

 RESTCONF defaults capability URI

 This protocol capability URI MUST be supported by the server, and
 MUST be listed in the "capability" leaf-list in Section 9.3.

 +------------------+--+
 | Value | Description |
 +------------------+--+
report-all	No data nodes are considered default
trim	Values set to the YANG default-stmt value are
	default
explicit	Values set by the client are never considered
	default
 +------------------+--+

 If the "basic-mode" is set to "report-all" then the server MUST
 adhere to the defaults handling behavior defined in Section 2.1 of
 [RFC6243].

 If the "basic-mode" is set to "trim" then the server MUST adhere to
 the defaults handling behavior defined in Section 2.2 of [RFC6243].

 If the "basic-mode" is set to "explicit" then the server MUST adhere
 to the defaults handling behavior defined in Section 2.3 of
 [RFC6243].

 Example: (split for display purposes only)

 urn:ietf:params:restconf:capability:defaults:1.0?
 basic-mode=explicit

9.2. restconf-state/streams

 This optional container provides access to the event notification
 streams supported by the server. The server MAY omit this container
 if no event notification streams are supported.

 The server will populate this container with a stream list entry for
 each stream type it supports. Each stream contains a leaf called
 "events" which contains a URI that represents an event stream
 resource.

 Stream resources are defined in Section 3.8. Notifications are
 defined in Section 6.

9.3. RESTCONF Monitoring Module

https://datatracker.ietf.org/doc/html/rfc6243#section-2.1
https://datatracker.ietf.org/doc/html/rfc6243#section-2.1
https://datatracker.ietf.org/doc/html/rfc6243#section-2.2
https://datatracker.ietf.org/doc/html/rfc6243#section-2.3
https://datatracker.ietf.org/doc/html/rfc6243#section-2.3

Bierman, et al. Expires October 14, 2016 [Page 72]

Internet-Draft RESTCONF April 2016

 The "ietf-restconf-monitoring" module defines monitoring information
 for the RESTCONF protocol.

 The "ietf-yang-types" and "ietf-inet-types" modules from [RFC6991]
 are used by this module for some type definitions.

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-restconf-monitoring@2016-03-16.yang"

 module ietf-restconf-monitoring {
 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring";
 prefix "rcmon";

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Editor: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module contains monitoring information for the
 RESTCONF protocol.

 Copyright (c) 2016 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

https://datatracker.ietf.org/doc/html/rfc6991
http://tools.ietf.org/wg/netconf/

Bierman, et al. Expires October 14, 2016 [Page 73]

Internet-Draft RESTCONF April 2016

 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: remove this note
 // Note: extracted from draft-ietf-netconf-restconf-12.txt

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2016-03-16 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: RESTCONF Protocol.";
 }

 container restconf-state {
 config false;
 description
 "Contains RESTCONF protocol monitoring information.";

 container capabilities {
 description
 "Contains a list of protocol capability URIs";

 leaf-list capability {
 type inet:uri;
 description "A RESTCONF protocol capability URI.";
 }
 }

 container streams {
 description
 "Container representing the notification event streams
 supported by the server.";
 reference
 "RFC 5277, Section 3.4, <streams> element.";

 list stream {
 key name;

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-12.txt
https://datatracker.ietf.org/doc/html/rfc5277#section-3.4

Bierman, et al. Expires October 14, 2016 [Page 74]

Internet-Draft RESTCONF April 2016

 description
 "Each entry describes an event stream supported by
 the server.";

 leaf name {
 type string;
 description "The stream name";
 reference "RFC 5277, Section 3.4, <name> element.";
 }

 leaf description {
 type string;
 description "Description of stream content";
 reference
 "RFC 5277, Section 3.4, <description> element.";
 }

 leaf replay-support {
 type boolean;
 description
 "Indicates if replay buffer supported for this stream.
 If 'true', then the server MUST support the 'start-time'
 and 'stop-time' query parameters for this stream.";
 reference
 "RFC 5277, Section 3.4, <replaySupport> element.";
 }

 leaf replay-log-creation-time {
 when "../replay-support" {
 description
 "Only present if notification replay is supported";
 }
 type yang:date-and-time;
 description
 "Indicates the time the replay log for this stream
 was created.";
 reference
 "RFC 5277, Section 3.4, <replayLogCreationTime>
 element.";
 }

 list access {
 key encoding;
 min-elements 1;
 description
 "The server will create an entry in this list for each
 encoding format that is supported for this stream.
 The media type 'application/yang.stream' is expected

https://datatracker.ietf.org/doc/html/rfc5277#section-3.4
https://datatracker.ietf.org/doc/html/rfc5277#section-3.4
https://datatracker.ietf.org/doc/html/rfc5277#section-3.4
https://datatracker.ietf.org/doc/html/rfc5277#section-3.4

Bierman, et al. Expires October 14, 2016 [Page 75]

Internet-Draft RESTCONF April 2016

 for all event streams. This list identifies the
 sub-types supported for this stream.";

 leaf encoding {
 type string;
 description
 "This is the secondary encoding format within the
 'text/event-stream' encoding used by all streams.
 The type 'xml' is supported for the media type
 'application/yang.stream+xml'. The type 'json'
 is supported for the media type
 'application/yang.stream+json'.";

 }

 leaf location {
 type inet:uri;
 mandatory true;
 description
 "Contains a URL that represents the entry point
 for establishing notification delivery via server
 sent events.";
 }
 }
 }
 }
 }

 }

 <CODE ENDS>

10. YANG Module Library

 The "ietf-yang-library" module defined in
 [I-D.ietf-netconf-yang-library] provides information about the YANG
 modules and submodules used by the RESTCONF server. Implementation
 is mandatory for RESTCONF servers. All YANG modules and submodules
 used by the server MUST be identified in the YANG module library.

10.1. modules

 This mandatory container holds the identifiers for the YANG data
 model modules supported by the server.

 The server MUST maintain a last-modified timestamp for this
 container, and return the "Last-Modified" header when this data node
 is retrieved with the GET or HEAD methods.

Bierman, et al. Expires October 14, 2016 [Page 76]

Internet-Draft RESTCONF April 2016

 The server SHOULD maintain an entity-tag for this container, and
 return the "ETag" header when this data node is retrieved with the
 GET or HEAD methods.

10.1.1. modules/module

 This mandatory list contains one entry for each YANG data model
 module supported by the server. There MUST be an instance of this
 list for every YANG module that is used by the server.

 The contents of this list are defined in the "module" YANG list
 statement in [I-D.ietf-netconf-yang-library].

 The server SHOULD maintain a last-modified timestamp for each
 instance of this list entry, and return the "Last-Modified" header
 when this data node is retrieved with the GET or HEAD methods.

 The server SHOULD maintain an entity-tag for each instance of this
 list entry, and return the "ETag" header when this data node is
 retrieved with the GET or HEAD methods.

11. IANA Considerations

11.1. The "restconf" Relation Type

 This specification registers the "restconf" relation type in the Link
 Relation Type Registry defined by [RFC5988]:

 Relation Name: restconf

 Description: Identifies the root of RESTCONF API as configured
 on this HTTP server. The "restconf" relation
 defines the root of the API defined in RFCXXXX.
 Subsequent revisions of RESTCONF will use alternate
 relation values to support protocol versioning.

 Reference: RFCXXXX

 `

11.2. YANG Module Registry

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf
 Registrant Contact: The NETMOD WG of the IETF.

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688

Bierman, et al. Expires October 14, 2016 [Page 77]

Internet-Draft RESTCONF April 2016

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring
 Registrant Contact: The NETMOD WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020].

 name: ietf-restconf
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf
 prefix: rc
 // RFC Ed.: replace XXXX with RFC number and remove this note
 reference: RFCXXXX

 name: ietf-restconf-monitoring
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring
 prefix: rcmon
 // RFC Ed.: replace XXXX with RFC number and remove this note
 reference: RFCXXXX

11.3. application/yang Media Sub Types

 The parent MIME media type for RESTCONF resources is application/
 yang, which is defined in [RFC6020]. This document defines the
 following sub-types for this media type.

 - api
 - data
 - datastore
 - errors
 - operation
 - stream

 Type name: application

 Subtype name: yang.xxx, where "xxx" is 1 of "api",
 "data", "datastore", "errors", "operation", or "stream"

 Required parameters: none

 Optional parameters: See section 4.8 in RFC XXXX

 Encoding considerations: 8-bit

 Security considerations: See Section 12 in RFC XXXX

 Interoperability considerations: none

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020

Bierman, et al. Expires October 14, 2016 [Page 78]

Internet-Draft RESTCONF April 2016

 // RFC Ed.: replace XXXX with RFC number and remove this note
 Published specification: RFC XXXX

11.4. RESTCONF Capability URNs

 [Note to RFC Editor:
 The RESTCONF Protocol Capability Registry does not yet exist;
 Need to ask IANA to create it; remove this note for publication
]

 This document defines a registry for RESTCONF capability identifiers.
 The name of the registry is "RESTCONF Capability URNs". The review
 policy for this registry is "IETF Review". The registry shall record
 for each entry:

 o the name of the RESTCONF capability. By convention, this name is
 prefixed with the colon ':' character.

 o the URN for the RESTCONF capability.

 This document registers several capability identifiers in "RESTCONF
 Capability URNs" registry:

 Index
 Capability Identifier

 :defaults
 urn:ietf:params:restconf:capability:defaults:1.0

 :depth
 urn:ietf:params:restconf:capability:depth:1.0

 :fields
 urn:ietf:params:restconf:capability:fields:1.0

 :filter
 urn:ietf:params:restconf:capability:filter:1.0

 :replay
 urn:ietf:params:restconf:capability:replay:1.0

 :with-defaults
 urn:ietf:params:restconf:capability:with-defaults:1.0

12. Security Considerations

Bierman, et al. Expires October 14, 2016 [Page 79]

Internet-Draft RESTCONF April 2016

 This section provides security considerations for the resources
 defined by the RESTCONF protocol. Security considerations for HTTPS
 are defined in [RFC2818]. RESTCONF does not specify which YANG
 modules a server needs to support. Security considerations for the
 YANG-defined content manipulated by RESTCONF can be found in the
 documents defining those YANG modules.

 This document does not require use of a specific client
 authentication mechanism or authorization model, but it does require
 that a client authentication mechanism and authorization model is
 used whenever a client accesses a protected resource. Client
 authentication MUST be implemented using client certificates or MUST
 be implemented using an HTTP authentication scheme. Client
 authorization MAY be configured using the NETCONF Access Control
 Model (NACM) [RFC6536].

 Configuration information is by its very nature sensitive. Its
 transmission in the clear and without integrity checking leaves
 devices open to classic eavesdropping and false data injection
 attacks. Configuration information often contains passwords, user
 names, service descriptions, and topological information, all of
 which are sensitive. Because of this, this protocol SHOULD be
 implemented carefully with adequate attention to all manner of attack
 one might expect to experience with other management interfaces.

 Different environments may well allow different rights prior to and
 then after authentication. When an operation is not properly
 authorized, the RESTCONF server MUST return a "401 Unauthorized"
 status-line. Note that authorization information can be exchanged in
 the form of configuration information, which is all the more reason
 to ensure the security of the connection.

13. Acknowledgements

 The authors would like to thank the following people for their
 contributions to this document: Ladislav Lhotka, Juergen
 Schoenwaelder, Rex Fernando, Robert Wilton, and Jonathan Hansford.

 The authors would like to thank the following people for their
 excellent review comments and contributions to this document: Qin Wu,
 Joe Clarke, Bert Wijnen, Ladislav Lhotka, Rodney Cummings, Frank
 Xialiang, Tom Petch, Robert Sparks, Balint Uveges, Randy Presuhn, and
 Sue Hares.

 Contributions to this material by Andy Bierman are based upon work
 supported by the The Space & Terrestrial Communications Directorate
 (S&TCD) under Contract No. W15P7T-13-C-A616. Any opinions, findings
 and conclusions or recommendations expressed in this material are

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6536

Bierman, et al. Expires October 14, 2016 [Page 80]

Internet-Draft RESTCONF April 2016

 those of the author(s) and do not necessarily reflect the views of
 The Space & Terrestrial Communications Directorate (S&TCD).

14. References

14.1. Normative References

 [I-D.ietf-netconf-yang-library]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", draft-ietf-netconf-yang-library-05 (work in
 progress), April 2016.

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",

draft-ietf-netmod-rfc6020bis-11 (work in progress),
 February 2016.

 [I-D.ietf-netmod-yang-json]
 Lhotka, L., "JSON Encoding of Data Modeled with YANG",

draft-ietf-netmod-yang-json-06 (work in progress), October
 2015.

 [I-D.ietf-netmod-yang-metadata]
 Lhotka, L., "Defining and Using Metadata with YANG",

draft-ietf-netmod-yang-metadata-02 (work in progress),
 September 2015.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "The IETF XML Registry", RFC 2818, May 2000.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-library-05
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc6020bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-json-06
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-metadata-02
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5277

Bierman, et al. Expires October 14, 2016 [Page 81]

Internet-Draft RESTCONF April 2016

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and T. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC
5789, March 2010.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, June 2011.

 [RFC6415] Hammer-Lahav, E. and B. Cook, "Web Host Metadata", RFC
6415, October 2011.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, March
 2012.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6243
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6415
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230

Bierman, et al. Expires October 14, 2016 [Page 82]

Internet-Draft RESTCONF April 2016

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

 [RFC7232] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests", RFC 7232, June 2014.

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190, RFC
7320, July 2014.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589, DOI 10.17487/

RFC7589, June 2015,
 <http://www.rfc-editor.org/info/rfc7589>.

 [W3C.CR-eventsource-20121211]
 Hickson, I., "Server-Sent Events", World Wide Web
 Consortium CR CR-eventsource-20121211, December 2012,
 <http://www.w3.org/TR/2012/CR-eventsource-20121211>.

 [W3C.REC-html5-20141028]
 Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
 Navara, E., O'Connor, E., and S. Pfeiffer, "HTML5", World
 Wide Web Consortium Recommendation REC-html5-20141028,
 October 2014,
 <http://www.w3.org/TR/2014/REC-html5-20141028>.

 [W3C.REC-xml-20081126]
 Yergeau, F., Maler, E., Paoli, J., Sperberg-McQueen, C.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [XPath] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium Recommendation
 REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

14.2. Informative References

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-06 (work in
 progress), October 2015.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/rfc7589
https://datatracker.ietf.org/doc/html/rfc7589
http://www.rfc-editor.org/info/rfc7589
http://www.w3.org/TR/2012/CR-eventsource-20121211
http://www.w3.org/TR/2014/REC-html5-20141028
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-patch-06

Bierman, et al. Expires October 14, 2016 [Page 83]

Internet-Draft RESTCONF April 2016

 [rest-dissertation]
 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000.

Appendix A. Change Log

 -- RFC Ed.: remove this section before publication.

 The RESTCONF issue tracker can be found here: https://github.com/
netconf-wg/restconf/issues

A.1. v11 - v12

 o clarify query parameter requirements

 o move filter query section to match table order in sec. 4.8

 o clarify that depth default is entire subtree for datastore
 resource

 o change ietf-restconf to YANG 1.1 to use anydata instead of anyxml

 o made implementation of timestamps optional since ETags are
 mandatory

 o removed confusing text about data resource definition revision
 date

 o clarify that errors should be returned for any resource type

 o clarified media subtype (not type) for error response

 o clarified client SHOULD (not MAY) specify errors format in Accept
 header

 o clarified terminology in many sections

A.2. v10 - v11

 o change term 'operational data' to 'state data'

 o clarify :startup behavior

 o clarify X.509 security text

 o change '403 Forbidden' to '401 Unauthorized' for GET error

 o clarify MUST have one "restconf" link relation

https://github.com/netconf-wg/restconf/issues
https://github.com/netconf-wg/restconf/issues

Bierman, et al. Expires October 14, 2016 [Page 84]

Internet-Draft RESTCONF April 2016

 o clarify that NV-storage is not mandatory

 o clarify how "Last-Modified" and "ETag" header info can be used by
 a client

 o clarify meaning of mandatory parameter

 o fix module name in action examples

 o clarify operation resource request needs to be known to parse the
 output

 o clarify ordered-by user terminology

 o fixed JSON example in D.1.1

A.3. v09 - v10

 o address review comments: github issue #36

 o removed intro text about no knowledge of NETCONF needed

 o clarified candidate and confirmed-commit behavior in sec. 1.3

 o clarified that a RESTCONF server MUST support TLS

 o clarified choice of 403 or 404 error

 o fixed forward references to URI template (w/reference at first
 use)

 o added reference to HTML5

 o made error terminology more consistent

 o clarified that only 1 list or leaf-list instance can be returned
 in an XML response message-body

 o clarified that more than 1 instance must not be created by a POST
 method

 o clarified that PUT cannot be used to change a leaf-list value or
 any list key values

 o clarified that PATCH cannot be used to change a leaf-list value or
 any list key values

Bierman, et al. Expires October 14, 2016 [Page 85]

Internet-Draft RESTCONF April 2016

 o clarified that DELETE should not be used to delete more than one
 instance of a leaf-list or list

 o update JSON RFC reference

 o specified that leaf-list instances are data resources

 o specified how a leaf-list instance identifier is constructed

 o fixed get-schema example

 o clarified that if no Accept header the server SHOULD return the
 type specified in RESTCONF, but MAY return any media-type,
 according to HTTP rules

 o clarified that server SHOULD maintain timestamp and etag for data
 resources

 o clarified default for content query parameter

 o moved terminology section earlier in doc to avoid forward usage

 o clarified intro text wrt/ interactions with NETCONF and access to
 specific datastores

 o clarified server implementation requirements for YANG defaults

 o clarified that Errors is not a resource, just a media type

 o clarified that HTTP without TLS MUST NOT be used

 o add RESTCONF Extensibility section to make it clear how RESTCONF
 will be extended in the future

 o add text warning that NACM does not work with HTTP caching

 o remove sec. 5.2 Message Headers

 o remove 202 Accepted from list of used status-lines -- not allowed

 o made implementation of OPTIONS MUST instead of SHOULD

 o clarified that successful PUT for altering data returns 204

 o fixed "point" parameter example

 o added example of alternate value for root resource discovery

Bierman, et al. Expires October 14, 2016 [Page 86]

Internet-Draft RESTCONF April 2016

 o added YANG action examples

 o fixed some JSON examples

 o changed default value for content query parameter to "all"

 o changed empty container JSON encoding from "[null]" to "{}"

 o added mandatory /restconf/yang-library-version leaf to advertise
 revision-date of the YANG library implemented by the server

 o clarified URI encoding rules for leaf-list

 o clarified sec. 2.2 wrt/ certificates and TLS

 o added update procedure for entity tag and timestamp

A.4. v08 - v09

 o fix introduction text regarding implementation requirements for
 the ietf-yang-library

 o clarified HTTP authentication requirements

 o fix host-meta example

 o changed list key encoding to clarify that quoted strings are not
 allowed. Percent-encoded values are used if quotes would be
 required. A missing key is treated as a zero-length string

 o Fixed example of percent-encoded string to match YANG model

 o Changed streams examples to align with naming already used

A.5. v07 - v08

 o add support for YANG 1.1 action statement

 o changed mandatory encoding from XML to XML or JSON

 o fix syntax in fields parameter definition

 o add meta-data encoding examples for XML and JSON

 o remove RFC 2396 references and update with 3986

https://datatracker.ietf.org/doc/html/rfc2396

Bierman, et al. Expires October 14, 2016 [Page 87]

Internet-Draft RESTCONF April 2016

 o change encoding of a key so quoted string are not used, since they
 are already percent-encoded. A zero-length string is not encoded
 (/list=foo,,baz)

 o Add example of percent-encoded key value

A.6. v06 - v07

 o fixed all issues identified in email from Jernej Tuljak in netconf
 email 2015-06-22

 o fixed error example bug where error-urlpath was still used.
 Changed to error-path.

 o added mention of YANG Patch and informative reference

 o added support for YANG 1.1, specifically support for anydata and
 actions

 o removed the special field value "*", since it is no longer needed

A.7. v05 - v06

 o fixed RESTCONF issue #23 (ietf-restconf-monitoring bug)

A.8. v04 - v05

 o changed term 'notification event' to 'event notification'

 o removed intro text about framework and meta-model

 o removed early mention of API resources

 o removed term unified datastore and cleaned up text about NETCONF
 datastores

 o removed text about not immediate persistence of edits

 o removed RESTCONF-specific data-resource-identifier typedef and its
 usage

 o clarified encoding of key leafs

 o changed several examples from JSON to XML encoding

 o made 'insert' and 'point' query parameters mandatory to implement

 o removed ":insert" capability URI

Bierman, et al. Expires October 14, 2016 [Page 88]

Internet-Draft RESTCONF April 2016

 o renamed stream/encoding to stream/access

 o renamed stream/encoding/type to stream/access/encoding

 o renamed stream/encoding/events to stream/access/location

 o changed XPath from informative to normative reference

 o changed rest-dissertation from normative to informative reference

 o changed example-jukebox playlist 'id' from a data-resource-
 identifier to a leafref pointing at the song name

A.9. v03 - v04

 o renamed 'select' to 'fields' (#1)

 o moved collection resource and page capability to draft-ietf-
netconf-restconf-collection-00 (#3)

 o added mandatory "defaults" protocol capability URI (#4)

 o added optional "with-defaults" query parameter URI (#4)

 o clarified authentication procedure (#9)

 o moved ietf-yang-library module to draft-ietf-netconf-yang-
library-00 (#13)

 o clarified that JSON encoding of module name in a URI MUST follow
 the netmod-yang-json encoding rules (#14)

 o added restconf-media-type extension (#15)

 o remove "content" query parameter URI and made this parameter
 mandatory (#16)

 o clarified datastore usage

 o changed lock-denied error example

 o added with-defaults query parameter example

 o added term "RESTCONF Capability"

 o changed NETCONF Capability URI registry usage to new RESTCONF
 Capability URI Registry usage

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-collection-00
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-collection-00
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-library-00
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-library-00

Bierman, et al. Expires October 14, 2016 [Page 89]

Internet-Draft RESTCONF April 2016

A.10. v02 - v03

 o added collection resource

 o added "page" query parameter capability

 o added "limit" and "offset" query parameters, which are available
 if the "page" capability is supported

 o added "stream list" term

 o fixed bugs in some examples

 o added "encoding" list within the "stream" list to allow different
 <events> URLs for XML and JSON encoding.

 o made XML MUST implement and JSON MAY implement for servers

 o re-add JSON notification examples (previously removed)

 o updated JSON references

A.11. v01 - v02

 o moved query parameter definitions from the YANG module back to the
 plain text sections

 o made all query parameters optional to implement

 o defined query parameter capability URI

 o moved 'streams' to new YANG module (ietf-restconf-monitoring)

 o added 'capabilities' container to new YANG module (ietf-restconf-
 monitoring)

 o moved 'modules' container to new YANG module (ietf-yang-library)

 o added new leaf 'module-set-id' (ietf-yang-library)

 o added new leaf 'conformance' (ietf-yang-library)

 o changed 'schema' leaf to type inet:uri that returns the location
 of the YANG schema (instead of returning the schema directly)

 o changed 'events' leaf to type inet:uri that returns the location
 of the event stream resource (instead of returning events
 directly)

Bierman, et al. Expires October 14, 2016 [Page 90]

Internet-Draft RESTCONF April 2016

 o changed examples for yang.api resource since the monitoring
 information is no longer in this resource

 o closed issue #1 'select parameter' since no objections to the
 proposed syntax

 o closed "encoding of list keys" issue since no objection to new
 encoding of list keys in a target resource URI.

 o moved open issues list to the issue tracker on github

A.12. v00 - v01

 o fixed content=nonconfig example (non-config was incorrect)

 o closed open issue 'message-id'. There is no need for a message-id
 field, and RFC 2392 does not apply.

 o closed open issue 'server support verification'. The headers used
 by RESTCONF are widely supported.

 o removed encoding rules from section on RESTCONF Meta-Data. This
 is now defined in "I-D.lhotka-netmod-yang-json".

 o added media type application/yang.errors to map to errors YANG
 grouping. Updated error examples to use new media type.

 o closed open issue 'additional datastores'. Support may be added
 in the future to identify new datastores.

 o closed open issue 'PATCH media type discovery'. The section on
 PATCH has an added sentence on the Accept-Patch header.

 o closed open issue 'YANG to resource mapping'. Current mapping of
 all data nodes to resources will be used in order to allow
 mandatory DELETE support. The PATCH operation is optional, as
 well as the YANG Patch media type.

 o closed open issue '_self links for HATEOAS support'. It was
 decided that they are redundant because they can be derived from
 the YANG module for the specific data.

 o added explanatory text for the 'select' parameter.

 o added RESTCONF Path Resolution section for discovering the root of
 the RESTCONF API using the /.well-known/host-meta.

 o added an "error" media type to for structured error messages

https://datatracker.ietf.org/doc/html/rfc2392

Bierman, et al. Expires October 14, 2016 [Page 91]

Internet-Draft RESTCONF April 2016

 o added Secure Transport section requiring TLS

 o added Security Considerations section

 o removed all references to "REST-like"

A.13. bierman:restconf-04 to ietf:restconf-00

 o updated open issues section

Appendix B. Open Issues

 -- RFC Ed.: remove this section before publication.

 The RESTCONF issues are tracked on github.com:

https://github.com/netconf-wg/restconf/issues

Appendix C. Example YANG Module

 The example YANG module used in this document represents a simple
 media jukebox interface.

 YANG Tree Diagram for "example-jukebox" Module

 +--rw jukebox!
 +--rw library
 | +--rw artist* [name]
 | | +--rw name string
 | | +--rw album* [name]
 | | +--rw name string
 | | +--rw genre? identityref
 | | +--rw year? uint16
 | | +--rw admin
 | | | +--rw label? string
 | | | +--rw catalogue-number? string
 | | +--rw song* [name]
 | | +--rw name string
 | | +--rw location string
 | | +--rw format? string
 | | +--rw length? uint32
 | +--ro artist-count? uint32
 | +--ro album-count? uint32
 | +--ro song-count? uint32
 +--rw playlist* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw song* [index]

https://github.com/netconf-wg/restconf/issues

Bierman, et al. Expires October 14, 2016 [Page 92]

Internet-Draft RESTCONF April 2016

 | +--rw index uint32
 | +--rw id leafref
 +--rw player
 +--rw gap? decimal64

 rpcs:

 +---x play
 +--ro input
 +--ro playlist string
 +--ro song-number uint32

C.1. example-jukebox YANG Module

 module example-jukebox {

 namespace "http://example.com/ns/example-jukebox";
 prefix "jbox";

 organization "Example, Inc.";
 contact "support at example.com";
 description "Example Jukebox Data Model Module";
 revision "2015-04-04" {
 description "Initial version.";
 reference "example.com document 1-4673";
 }

 identity genre {
 description "Base for all genre types";
 }

 // abbreviated list of genre classifications
 identity alternative {
 base genre;
 description "Alternative music";
 }
 identity blues {
 base genre;
 description "Blues music";
 }
 identity country {
 base genre;
 description "Country music";
 }
 identity jazz {
 base genre;
 description "Jazz music";
 }

Bierman, et al. Expires October 14, 2016 [Page 93]

Internet-Draft RESTCONF April 2016

 identity pop {
 base genre;
 description "Pop music";
 }
 identity rock {
 base genre;
 description "Rock music";
 }

 container jukebox {
 presence
 "An empty container indicates that the jukebox
 service is available";

 description
 "Represents a jukebox resource, with a library, playlists,
 and a play operation.";

 container library {

 description "Represents the jukebox library resource.";

 list artist {
 key name;

 description
 "Represents one artist resource within the
 jukebox library resource.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description "The name of the artist.";
 }

 list album {
 key name;

 description
 "Represents one album resource within one
 artist resource, within the jukebox library.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description "The name of the album.";

Bierman, et al. Expires October 14, 2016 [Page 94]

Internet-Draft RESTCONF April 2016

 }

 leaf genre {
 type identityref { base genre; }
 description
 "The genre identifying the type of music on
 the album.";
 }

 leaf year {
 type uint16 {
 range "1900 .. max";
 }
 description "The year the album was released";
 }

 container admin {
 description
 "Administrative information for the album.";

 leaf label {
 type string;
 description "The label that released the album.";
 }
 leaf catalogue-number {
 type string;
 description "The album's catalogue number.";
 }
 }

 list song {
 key name;

 description
 "Represents one song resource within one
 album resource, within the jukebox library.";

 leaf name {
 type string {
 length "1 .. max";
 }
 description "The name of the song";
 }
 leaf location {
 type string;
 mandatory true;
 description
 "The file location string of the

Bierman, et al. Expires October 14, 2016 [Page 95]

Internet-Draft RESTCONF April 2016

 media file for the song";
 }
 leaf format {
 type string;
 description
 "An identifier string for the media type
 for the file associated with the
 'location' leaf for this entry.";
 }
 leaf length {
 type uint32;
 units "seconds";
 description
 "The duration of this song in seconds.";
 }
 } // end list 'song'
 } // end list 'album'
 } // end list 'artist'

 leaf artist-count {
 type uint32;
 units "songs";
 config false;
 description "Number of artists in the library";
 }
 leaf album-count {
 type uint32;
 units "albums";
 config false;
 description "Number of albums in the library";
 }
 leaf song-count {
 type uint32;
 units "songs";
 config false;
 description "Number of songs in the library";
 }
 } // end library

 list playlist {
 key name;

 description
 "Example configuration data resource";

 leaf name {
 type string;
 description

Bierman, et al. Expires October 14, 2016 [Page 96]

Internet-Draft RESTCONF April 2016

 "The name of the playlist.";
 }
 leaf description {
 type string;
 description
 "A comment describing the playlist.";
 }
 list song {
 key index;
 ordered-by user;

 description
 "Example nested configuration data resource";

 leaf index { // not really needed
 type uint32;
 description
 "An arbitrary integer index for this playlist song.";
 }
 leaf id {
 type leafref {
 path "/jbox:jukebox/jbox:library/jbox:artist/" +
 "jbox:album/jbox:song/jbox:name";
 }
 mandatory true;
 description
 "Song identifier. Must identify an instance of
 /jukebox/library/artist/album/song/name.";
 }
 }
 }

 container player {
 description
 "Represents the jukebox player resource.";

 leaf gap {
 type decimal64 {
 fraction-digits 1;
 range "0.0 .. 2.0";
 }
 units "tenths of seconds";
 description "Time gap between each song";
 }
 }
 }

 rpc play {

Bierman, et al. Expires October 14, 2016 [Page 97]

Internet-Draft RESTCONF April 2016

 description "Control function for the jukebox player";
 input {
 leaf playlist {
 type string;
 mandatory true;
 description "playlist name";
 }
 leaf song-number {
 type uint32;
 mandatory true;
 description "Song number in playlist to play";
 }
 }
 }
 }

Appendix D. RESTCONF Message Examples

 The examples within this document use the normative YANG module
 defined in Section 8 and the non-normative example YANG module
 defined in Appendix C.1.

 This section shows some typical RESTCONF message exchanges.

D.1. Resource Retrieval Examples

D.1.1. Retrieve the Top-level API Resource

 The client may start by retrieving the top-level API resource, using
 the entry point URI "{+restconf}".

 GET /restconf HTTP/1.1
 Host: example.com
 Accept: application/yang.api+json

 The server might respond as follows:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.api+json

 {
 "ietf-restconf:restconf": {
 "data" : {},
 "operations" : {},
 "yang-library-version" : "2016-04-09"

Bierman, et al. Expires October 14, 2016 [Page 98]

Internet-Draft RESTCONF April 2016

 }
 }

 To request that the response content to be encoded in XML, the
 "Accept" header can be used, as in this example request:

 GET /restconf HTTP/1.1
 Host: example.com
 Accept: application/yang.api+xml

 The server will return the same response either way, which might be
 as follows :

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.api+xml

 <restconf xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <data/>
 <operations/>
 <yang-library-version>2016-04-09</yang-library-version>
 </restconf>

D.1.2. Retrieve The Server Module Information

 In this example the client is retrieving the modules information from
 the server in JSON format:

 GET /restconf/data/ietf-yang-library:modules HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond as follows (some strings wrapped for display
 purposes):

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Last-Modified: Sun, 22 Apr 2012 01:00:14 GMT
 Content-Type: application/yang.data+json

 {
 "ietf-yang-library:modules": {

Bierman, et al. Expires October 14, 2016 [Page 99]

Internet-Draft RESTCONF April 2016

 "module": [
 {
 "name" : "foo",
 "revision" : "2012-01-02",
 "schema" : "https://example.com/modules/foo/2012-01-02",
 "namespace" : "http://example.com/ns/foo",
 "feature" : ["feature1", "feature2"],
 "conformance-type" : "implement"
 },
 {
 "name" : "ietf-yang-library",
 "revision" : "2016-04-09",
 "schema" : "https://example.com/modules/ietf-yang-
 library/2016-04-09",
 "namespace" :
 "urn:ietf:params:xml:ns:yang:ietf-yang-library",
 "conformance-type" : "implement"
 },
 {
 "name" : "foo-types",
 "revision" : "2012-01-05",
 "schema" :
 "https://example.com/modules/foo-types/2012-01-05",
 "namespace" : "http://example.com/ns/foo-types",
 "conformance-type" : "import"
 },
 {
 "name" : "bar",
 "revision" : "2012-11-05",
 "schema" : "https://example.com/modules/bar/2012-11-05",
 "namespace" : "http://example.com/ns/bar",
 "feature" : ["bar-ext"],
 "conformance-type" : "implement",
 "submodule" : [
 {
 "name" : "bar-submod1",
 "revision" : "2012-11-05",
 "schema" :
 "https://example.com/modules/bar-submod1/2012-11-05"
 },
 {
 "name" : "bar-submod2",
 "revision" : "2012-11-05",
 "schema" :
 "https://example.com/modules/bar-submod2/2012-11-05"
 }
]
 }

Bierman, et al. Expires October 14, 2016 [Page 100]

Internet-Draft RESTCONF April 2016

]
 }
 }

D.1.3. Retrieve The Server Capability Information

 In this example the client is retrieving the capability information
 from the server in XML format, and the server supports all the
 RESTCONF query parameters, plus one vendor parameter:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 capabilities HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The server might respond as follows. The extra whitespace in
 'capability' elements for display purposes only.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:02:00 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Last-Modified: Sun, 22 Apr 2012 01:00:14 GMT
 Content-Type: application/yang.data+xml

 <capabilities xmlns="">
 <capability>
 urn:ietf:params:restconf:capability:depth:1.0
 </capability>
 <capability>
 urn:ietf:params:restconf:capability:fields:1.0
 </capability>
 <capability>
 urn:ietf:params:restconf:capability:filter:1.0
 </capability>
 <capability>
 urn:ietf:params:restconf:capability:start-time:1.0
 </capability>
 <capability>
 urn:ietf:params:restconf:capability:stop-time:1.0
 </capability>
 <capability>
 http://example.com/capabilities/myparam
 </capability>
 </capabilities>

Bierman, et al. Expires October 14, 2016 [Page 101]

Internet-Draft RESTCONF April 2016

D.2. Edit Resource Examples

D.2.1. Create New Data Resources

 To create a new "artist" resource within the "library" resource, the
 client might send the following request.

 POST /restconf/data/example-jukebox:jukebox/library HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+json

 {
 "example-jukebox:artist" : {
 "name" : "Foo Fighters"
 }
 }

 If the resource is created, the server might respond as follows.
 Note that the "Location" header line is wrapped for display purposes
 only:

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:02:00 GMT
 Server: example-server
 Location: https://example.com/restconf/data/
 example-jukebox:jukebox/library/artist=Foo%20Fighters
 Last-Modified: Mon, 23 Apr 2012 17:02:00 GMT
 ETag: b3830f23a4c

 To create a new "album" resource for this artist within the "jukebox"
 resource, the client might send the following request. Note that the
 request URI header line is wrapped for display purposes only:

 POST /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+xml

 <album xmlns="http://example.com/ns/example-jukebox">
 <name>Wasting Light</name>
 <year>2011</year>
 </album>

 If the resource is created, the server might respond as follows.
 Note that the "Location" header line is wrapped for display purposes
 only:

Bierman, et al. Expires October 14, 2016 [Page 102]

Internet-Draft RESTCONF April 2016

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 17:03:00 GMT
 Server: example-server
 Location: https://example.com/restconf/data/
 example-jukebox:jukebox/library/artist=Foo%20Fighters/
 album=Wasting%20Light
 Last-Modified: Mon, 23 Apr 2012 17:03:00 GMT
 ETag: b8389233a4c

D.2.2. Detect Resource Entity Tag Change

 In this example, the server just supports the mandatory datastore
 last-changed timestamp. The client has previously retrieved the
 "Last-Modified" header and has some value cached to provide in the
 following request to patch an "album" list entry with key value
 "Wasting Light". Only the "genre" field is being updated.

 PATCH /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light/genre
 HTTP/1.1
 Host: example.com
 If-Unmodified-Since: Mon, 23 Apr 2012 17:01:00 GMT
 Content-Type: application/yang.data+json

 { "example-jukebox:genre" : "example-jukebox:alternative" }

 In this example the datastore resource has changed since the time
 specified in the "If-Unmodified-Since" header. The server might
 respond:

 HTTP/1.1 412 Precondition Failed
 Date: Mon, 23 Apr 2012 19:01:00 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 17:45:00 GMT
 ETag: b34aed893a4c

D.2.3. Edit a Datastore Resource

 In this example, the client modifies two different data nodes by
 sending a PATCH to the datastore resource:

 PATCH /restconf/data HTTP/1.1
 Host: example.com
 Content-Type: application/yang.datastore+xml

 <data xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <jukebox xmlns="http://example.com/ns/example-jukebox">
 <library>

Bierman, et al. Expires October 14, 2016 [Page 103]

Internet-Draft RESTCONF April 2016

 <artist>
 <name>Foo Fighters</name>
 <album>
 <name>Wasting Light</name>
 <year>2011</year>
 </album>
 </artist>
 <artist>
 <name>Nick Cave</name>
 <album>
 <name>Tender Prey</name>
 <year>1988</year>
 </album>
 </artist>
 </library>
 </jukebox>
 </data>

D.3. Query Parameter Examples

D.3.1. "content" Parameter

 The "content" parameter is used to select the type of data child
 resources (configuration and/or not configuration) that are returned
 by the server for a GET method request.

 In this example, a simple YANG list that has configuration and non-
 configuration child resources.

 container events
 list event {
 key name;
 leaf name { type string; }
 leaf description { type string; }
 leaf event-count {
 type uint32;
 config false;
 }
 }
 }

 Example 1: content=all

 To retrieve all the child resources, the "content" parameter is set
 to "all". The client might send:

 GET /restconf/data/example-events:events?content=all
 HTTP/1.1

Bierman, et al. Expires October 14, 2016 [Page 104]

Internet-Draft RESTCONF April 2016

 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-events:events" : {
 "event" : [
 {
 "name" : "interface-up",
 "description" : "Interface up notification count",
 "event-count" : 42
 },
 {
 "name" : "interface-down",
 "description" : "Interface down notification count",
 "event-count" : 4
 }
]
 }
 }

 Example 2: content=config

 To retrieve only the configuration child resources, the "content"
 parameter is set to "config" or omitted since this is the default
 value. Note that the "ETag" and "Last-Modified" headers are only
 returned if the content parameter value is "config".

 GET /restconf/data/example-events:events?content=config
 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
 ETag: eeeada438af

Bierman, et al. Expires October 14, 2016 [Page 105]

Internet-Draft RESTCONF April 2016

 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-events:events" : {
 "event" : [
 {
 "name" : "interface-up",
 "description" : "Interface up notification count"
 },
 {
 "name" : "interface-down",
 "description" : "Interface down notification count"
 }
]
 }
 }

 Example 3: content=nonconfig

 To retrieve only the non-configuration child resources, the "content"
 parameter is set to "nonconfig". Note that configuration ancestors
 (if any) and list key leafs (if any) are also returned. The client
 might send:

 GET /restconf/data/example-events:events?content=nonconfig
 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-events:events" : {
 "event" : [
 {
 "name" : "interface-up",
 "event-count" : 42
 },
 {

Bierman, et al. Expires October 14, 2016 [Page 106]

Internet-Draft RESTCONF April 2016

 "name" : "interface-down",
 "event-count" : 4
 }
]
 }
 }

D.3.2. "depth" Parameter

 The "depth" parameter is used to limit the number of levels of child
 resources that are returned by the server for a GET method request.

 The depth parameter starts counting levels at the level of the target
 resource that is specified, so that a depth level of "1" includes
 just the target resource level itself. A depth level of "2" includes
 the target resource level and its child nodes.

 This example shows how different values of the "depth" parameter
 would affect the reply content for retrieval of the top-level
 "jukebox" data resource.

 Example 1: depth=unbounded

 To retrieve all the child resources, the "depth" parameter is not
 present or set to the default value "unbounded". Note that some
 strings are wrapped for display purposes only.

 GET /restconf/data/example-jukebox:jukebox?depth=unbounded
 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-jukebox:jukebox" : {
 "library" : {
 "artist" : [
 {
 "name" : "Foo Fighters",
 "album" : [

Bierman, et al. Expires October 14, 2016 [Page 107]

Internet-Draft RESTCONF April 2016

 {
 "name" : "Wasting Light",
 "genre" : "example-jukebox:alternative",
 "year" : 2011,
 "song" : [
 {
 "name" : "Wasting Light",
 "location" :
 "/media/foo/a7/wasting-light.mp3",
 "format" : "MP3",
 "length" " 286
 },
 {
 "name" : "Rope",
 "location" : "/media/foo/a7/rope.mp3",
 "format" : "MP3",
 "length" " 259
 }
]
 }
]
 }
]
 },
 "playlist" : [
 {
 "name" : "Foo-One",
 "description" : "example playlist 1",
 "song" : [
 {
 "index" : 1,
 "id" : "https://example.com/restconf/data/
 example-jukebox:jukebox/library/artist=
 Foo%20Fighters/album=Wasting%20Light/
 song=Rope"
 },
 {
 "index" : 2,
 "id" : "https://example.com/restconf/data/
 example-jukebox:jukebox/library/artist=
 Foo%20Fighters/album=Wasting%20Light/song=
 Bridge%20Burning"
 }
]
 }
],
 "player" : {
 "gap" : 0.5

Bierman, et al. Expires October 14, 2016 [Page 108]

Internet-Draft RESTCONF April 2016

 }
 }
 }

 Example 2: depth=1

 To determine if 1 or more resource instances exist for a given target
 resource, the value "1" is used.

 GET /restconf/data/example-jukebox:jukebox?depth=1 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-jukebox:jukebox" : {}
 }

 Example 3: depth=3

 To limit the depth level to the target resource plus 2 child resource
 layers the value "3" is used.

 GET /restconf/data/example-jukebox:jukebox?depth=3 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond:

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:11:30 GMT
 Server: example-server
 Cache-Control: no-cache
 Pragma: no-cache
 Content-Type: application/yang.data+json

 {
 "example-jukebox:jukebox" : {
 "library" : {
 "artist" : {}

Bierman, et al. Expires October 14, 2016 [Page 109]

Internet-Draft RESTCONF April 2016

 },
 "playlist" : [
 {
 "name" : "Foo-One",
 "description" : "example playlist 1",
 "song" : {}
 }
],
 "player" : {
 "gap" : 0.5
 }
 }
 }

D.3.3. "fields" Parameter

 In this example the client is retrieving the API resource, but
 retrieving only the "name" and "revision" nodes from each module, in
 JSON format:

 GET /restconf/data?fields=ietf-yang-library:modules/
 module(name;revision) HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond as follows.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "ietf-yang-library:modules": {
 "module": [
 {
 "name" : "example-jukebox",
 "revision" : "2015-06-04"
 },
 {
 "name" : "ietf-inet-types",
 "revision" : "2013-07-15"
 },
 {
 "name" : "ietf-restconf-monitoring",
 "revision" : "2015-06-19"
 },
 {

Bierman, et al. Expires October 14, 2016 [Page 110]

Internet-Draft RESTCONF April 2016

 "name" : "ietf-yang-library",
 "revision" : "2016-04-09"
 },
 {
 "name" : "ietf-yang-types",
 "revision" : "2013-07-15"
 }

]
 }
 }

D.3.4. "insert" Parameter

 In this example, a new first song entry in the "Foo-One" playlist is
 being created.

 Request from client:

 POST /restconf/data/example-jukebox:jukebox/
 playlist=Foo-One?insert=first HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+json

 {
 "example-jukebox:song" : {
 "index" : 1,
 "id" : "/example-jukebox:jukebox/library/
 artist=Foo%20Fighters/album=Wasting%20Light/song=Rope"
 }
 }

 Response from server:

 HTTP/1.1 201 Created
 Date: Mon, 23 Apr 2012 13:01:20 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
 Location: https://example.com/restconf/data/
 example-jukebox:jukebox/playlist=Foo-One/song=1
 ETag: eeeada438af

D.3.5. "point" Parameter

 In this example, the client is inserting a new "song" resource within
 an "album" resource after another song. The request URI is split for
 display purposes only.

Bierman, et al. Expires October 14, 2016 [Page 111]

Internet-Draft RESTCONF April 2016

 Request from client:

 POST /restconf/data/example-jukebox:jukebox/
 library/artist=Foo%20Fighters/album=Wasting%20Light?
 insert=after&point=%2Fexample-jukebox%3Ajukebox%2F
 library%2Fartist%3DFoo%20Fighters%2Falbum%3D
 Wasting%20Light%2Fsong%3DBridge%20Burning HTTP/1.1
 Host: example.com
 Content-Type: application/yang.data+json

 {
 "example-jukebox:song" : {
 "name" : "Rope",
 "location" : "/media/foo/a7/rope.mp3",
 "format" : "MP3",
 "length" : 259
 }
 }

 Response from server:

 HTTP/1.1 204 No Content
 Date: Mon, 23 Apr 2012 13:01:20 GMT
 Server: example-server
 Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
 ETag: abcada438af

D.3.6. "filter" Parameter

 The following URIs show some examples of notification filter
 specifications (lines wrapped for display purposes only):

 // filter = /event/event-class='fault'
 GET /streams/NETCONF?filter=%2Fevent%2Fevent-class%3D'fault'

 // filter = /event/severity<=4
 GET /streams/NETCONF?filter=%2Fevent%2Fseverity%3C%3D4

 // filter = /linkUp|/linkDown
 GET /streams/SNMP?filter=%2FlinkUp%7C%2FlinkDown

 // filter = /*/reporting-entity/card!='Ethernet0'
 GET /streams/NETCONF?
 filter=%2F*%2Freporting-entity%2Fcard%21%3D'Ethernet0'

 // filter = /*/email-addr[contains(.,'company.com')]
 GET /streams/critical-syslog?
 filter=%2F*%2Femail-addr[contains(.%2C'company.com')]

Bierman, et al. Expires October 14, 2016 [Page 112]

Internet-Draft RESTCONF April 2016

 // Note: the module name is used as prefix.
 // filter = (/example-mod:event1/name='joe' and
 // /example-mod:event1/status='online')
 GET /streams/NETCONF?
 filter=(%2Fexample-mod%3Aevent1%2Fname%3D'joe'%20and
 %20%2Fexample-mod%3Aevent1%2Fstatus%3D'online')

 // To get notifications from just two modules (e.g., m1 + m2)
 // filter=(/m1:* or /m2:*)
 GET /streams/NETCONF?filter=(%2Fm1%3A*%20or%20%2Fm2%3A*)

D.3.7. "start-time" Parameter

 // start-time = 2014-10-25T10:02:00Z
 GET /streams/NETCONF?start-time=2014-10-25T10%3A02%3A00Z

D.3.8. "stop-time" Parameter

 // stop-time = 2014-10-25T12:31:00Z
 GET /mystreams/NETCONF?stop-time=2014-10-25T12%3A31%3A00Z

D.3.9. "with-defaults" Parameter

 The following YANG module is assumed for this example.

 module example-interface {
 prefix "exif";
 namespace "urn:example.com:params:xml:ns:yang:example-interface";

 container interfaces {
 list interface {
 key name;
 leaf name { type string; }
 leaf mtu { type uint32; }
 leaf status {
 config false;
 type enumeration {
 enum up;
 enum down;
 enum testing;
 }
 }
 }
 }
 }

 Assume the same data model as defined in Appendix A.1 of [RFC6243].
 Assume the same data set as defined in Appendix A.2 of [RFC6243]. If

https://datatracker.ietf.org/doc/html/rfc6243#appendix-A.1
https://datatracker.ietf.org/doc/html/rfc6243#appendix-A.2

Bierman, et al. Expires October 14, 2016 [Page 113]

Internet-Draft RESTCONF April 2016

 the server defaults-uri basic-mode is "trim", the the following
 request for interface "eth1" might be as follows:

 Without query parameter:

 GET /restconf/data/example:interfaces/interface=eth1 HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond as follows.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "example:interface": [
 {
 "name" : "eth1",
 "status" : "up"
 }
]
 }

 Note that the "mtu" leaf is missing because it is set to the default
 "1500", and the server defaults handling basic-mode is "trim".

 With query parameter:

 GET /restconf/data/example:interfaces/interface=eth1
 ?with-defaults=report-all HTTP/1.1
 Host: example.com
 Accept: application/yang.data+json

 The server might respond as follows.

 HTTP/1.1 200 OK
 Date: Mon, 23 Apr 2012 17:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "example:interface": [
 {
 "name" : "eth1",
 "mtu" : 1500,
 "status" : "up"

Bierman, et al. Expires October 14, 2016 [Page 114]

Internet-Draft RESTCONF April 2016

 }
]
 }

 Note that the server returns the "mtu" leaf because the "report-all"
 mode was requested with the "with-defaults" query parameter.

Authors' Addresses

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Kent Watsen
 Juniper Networks

 Email: kwatsen@juniper.net

Bierman, et al. Expires October 14, 2016 [Page 115]

