
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-ssh-client-server-21

Published: 10 July 2020

Intended Status: Standards Track

Expires: 11 January 2021

Authors: K. Watsen

Watsen Networks

G. Wu

Cisco Systems

YANG Groupings for SSH Clients and SSH Servers

Abstract

This document defines three YANG modules: the first defines

groupings for a generic SSH client, the second defines groupings for

a generic SSH server, and the third defines common identities and

groupings used by both the client and the server. It is intended

that these groupings will be used by applications using the SSH

protocol.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for draft-ietf-netconf-crypto-

types

BBBB --> the assigned RFC value for draft-ietf-netconf-trust-

anchors

CCCC --> the assigned RFC value for draft-ietf-netconf-keystore

DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-

client-server

EEEE --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2020-07-10 --> the publication date of this draft

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

* ¶

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

1.3. Adherence to the NMDA

2. The "ietf-ssh-common" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. The "ietf-ssh-client" Module

3.1. Data Model Overview

3.2. Example Usage

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

3.3. YANG Module

4. The "ietf-ssh-server" Module

4.1. Data Model Overview

4.2. Example Usage

4.3. YANG Module

5. Security Considerations

5.1. The "ietf-ssh-common" YANG Module

5.2. The "ietf-ssh-client" YANG Module

5.3. The "ietf-ssh-server" YANG Module

6. IANA Considerations

6.1. The "IETF XML" Registry

6.2. The "YANG Module Names" Registry

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Change Log

A.1. 00 to 01

A.2. 01 to 02

A.3. 02 to 03

A.4. 03 to 04

A.5. 04 to 05

A.6. 05 to 06

A.7. 06 to 07

A.8. 07 to 08

A.9. 08 to 09

A.10. 09 to 10

A.11. 10 to 11

A.12. 11 to 12

A.13. 12 to 13

A.14. 13 to 14

A.15. 14 to 15

A.16. 15 to 16

A.17. 16 to 17

A.18. 17 to 18

A.19. 18 to 19

A.20. 19 to 20

A.21. 20 to 21

Acknowledgements

Authors' Addresses

1. Introduction

This document defines three YANG 1.1 [RFC7950] modules: the first

defines a grouping for a generic SSH client, the second defines a

grouping for a generic SSH server, and the third defines identities

and groupings common to both the client and the server. It is

intended that these groupings will be used by applications using the

SSH protocol [RFC4252], [RFC4253], and [RFC4254]. For instance,

these groupings could be used to help define the data model for an

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

OpenSSH [OPENSSH] server or a NETCONF over SSH [RFC6242] based

server.

The client and server YANG modules in this document each define one

grouping, which is focused on just SSH-specific configuration, and

specifically avoids any transport-level configuration, such as what

ports to listen on or connect to. This affords applications the

opportunity to define their own strategy for how the underlying TCP

connection is established. For instance, applications supporting

NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"

grouping for the SSH parts it provides, while adding data nodes for

the TCP-level call-home configuration.

The modules defined in this document use groupings defined in [I-

D.ietf-netconf-keystore] enabling keys to be either locally defined

or a reference to globally configured values.

The modules defined in this document optionally support [RFC6187]

enabling X.509v3 certificate based host keys and public keys.

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to define

configuration modules for clients and servers of both the NETCONF

[RFC6241] and RESTCONF [RFC8040] protocols.

The modules have been defined in a modular fashion to enable their

use by other efforts, some of which are known to be in progress at

the time of this writing, with many more expected to be defined in

time.

The relationship between the various RFCs in the collection is

presented in the below diagram. The labels in the diagram represent

the primary purpose provided by each RFC. Links the each RFC are

provided below the diagram.

¶

¶

¶

¶

¶

¶

¶

Label in Diagram Originating RFC

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Adherence to the NMDA

This document in compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. For instance, as described in [I-

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

¶

D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore], trust

anchors and keys installed during manufacturing are expected to

appear in <operational>.

2. The "ietf-ssh-common" Module

The SSH common model presented in this section contains identities

and groupings common to both SSH clients and SSH servers. The

"transport-params-grouping" grouping can be used to configure the

list of SSH transport algorithms permitted by the SSH client or SSH

server. The lists of algorithms are ordered such that, if multiple

algorithms are permitted by the client, the algorithm that appears

first in its list that is also permitted by the server is used for

the SSH transport layer connection. The ability to restrict the

algorithms allowed is provided in this grouping for SSH clients and

SSH servers that are capable of doing so and may serve to make SSH

clients and SSH servers compliant with security policies.

Features are defined for algorithms that are OPTIONAL or are not

widely supported by popular implementations. Note that the list of

algorithms is not exhaustive. As well, some algorithms that are

REQUIRED by [RFC4253] are missing, notably "ssh-dss" and "diffie-

hellman-group1-sha1" due to their weak security and there being

alternatives that are widely supported.

2.1. Data Model Overview

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-ssh-common" module:

2.1.2. Identities

The following diagram illustrates the relationship amongst the

"identity" statements defined in the "ietf-ssh-common" module:

¶

¶

¶

¶

Features:

 +-- ssh-ecc

 +-- ssh-x509-certs

 +-- ssh-dh-group-exchange

 +-- ssh-ctr

 +-- ssh-sha2

¶

¶

Comments:

The diagram shows that there are four base identities.

These identities are used by this module to define algorithms for

public-key, key-exchange, encryption, and MACs.

These base identities are "abstract", in the object orientied

programming sense, in that they only define a "class" of

algorithms, rather than a specific algorithm.

2.1.3. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-ssh-common" module:

Identities:

 +-- public-key-alg-base

 | +-- ssh-dss

 | +-- ssh-rsa

 | +-- ecdsa-sha2-nistp256

 | +-- ecdsa-sha2-nistp384

 | +-- ecdsa-sha2-nistp521

 | +-- x509v3-ssh-rsa

 | +-- x509v3-rsa2048-sha256

 | +-- x509v3-ecdsa-sha2-nistp256

 | +-- x509v3-ecdsa-sha2-nistp384

 | +-- x509v3-ecdsa-sha2-nistp521

 +-- key-exchange-alg-base

 | +-- diffie-hellman-group14-sha1

 | +-- diffie-hellman-group-exchange-sha1

 | +-- diffie-hellman-group-exchange-sha256

 | +-- ecdh-sha2-nistp256

 | +-- ecdh-sha2-nistp384

 | +-- ecdh-sha2-nistp521

 +-- encryption-alg-base

 | +-- triple-des-cbc

 | +-- aes128-cbc

 | +-- aes192-cbc

 | +-- aes256-cbc

 | +-- aes128-ctr

 | +-- aes192-ctr

 | +-- aes256-ctr

 +-- mac-alg-base

 +-- hmac-sha1

 +-- hmac-sha2-256

 +-- hmac-sha2-512

¶

¶

* ¶

*

¶

*

¶

¶

Groupings:

 +-- transport-params-grouping

¶

Each of these groupings are presented in the following subsections.

2.1.3.1. The "transport-params-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "transport-

params-grouping" grouping:

Comments:

This grouping is used by both the "ssh-client-grouping" and the

"ssh-server-grouping" groupings defined in Section 3.1.2.1 and

Section 4.1.2.1, respectively.

This grouping enables client and server configurations to specify

the algorithms that are to be used when establishing SSH

sessions.

Each list is "ordered-by user".

2.1.4. Protocol-accessible Nodes

The "ietf-ssh-common" module does not contain any protocol-

accessible nodes, but the module needs to be "implemented", as

described in Section 5.6.5 of [RFC7950], in order for the identities

in Section 2.1.2 to be defined.

2.2. Example Usage

This following example illustrates how the "transport-params-

grouping' grouping appears when populated with some data.

¶

¶

 grouping transport-params-grouping

 +-- host-key

 | +-- host-key-alg* identityref

 +-- key-exchange

 | +-- key-exchange-alg* identityref

 +-- encryption

 | +-- encryption-alg* identityref

 +-- mac

 +-- mac-alg* identityref

¶

¶

*

¶

*

¶

* ¶

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

2.3. YANG Module

This YANG module has normative references to [RFC4253], [RFC4344],

[RFC4419], [RFC5656], [RFC6187], and [RFC6668].

<CODE BEGINS> file "ietf-ssh-common@2020-07-10.yang"

<transport-params

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-common"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <host-key>

 <host-key-alg>algs:x509v3-rsa2048-sha256</host-key-alg>

 <host-key-alg>algs:ssh-rsa</host-key-alg>

 </host-key>

 <key-exchange>

 <key-exchange-alg>

 algs:diffie-hellman-group-exchange-sha256

 </key-exchange-alg>

 </key-exchange>

 <encryption>

 <encryption-alg>algs:aes256-ctr</encryption-alg>

 <encryption-alg>algs:aes192-ctr</encryption-alg>

 <encryption-alg>algs:aes128-ctr</encryption-alg>

 <encryption-alg>algs:aes256-cbc</encryption-alg>

 <encryption-alg>algs:aes192-cbc</encryption-alg>

 <encryption-alg>algs:aes128-cbc</encryption-alg>

 </encryption>

 <mac>

 <mac-alg>algs:hmac-sha2-256</mac-alg>

 <mac-alg>algs:hmac-sha2-512</mac-alg>

 </mac>

</transport-params>

¶

¶

¶

module ietf-ssh-common {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-common";

 prefix sshcmn;

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines a common features, identities, and

 groupings for Secure Shell (SSH).

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC EEEE

 (https://www.rfc-editor.org/info/rfcEEEE); see the RFC

 itself for full legal notices.;

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-07-10 {

 description

 "Initial version";

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 // Features

 feature ssh-ecc {

 description

 "Elliptic Curve Cryptography is supported for SSH.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 feature ssh-x509-certs {

 description

 "X.509v3 certificates are supported for SSH per RFC 6187.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 feature ssh-dh-group-exchange {

 description

 "Diffie-Hellman Group Exchange is supported for SSH.";

 reference

 "RFC 4419: Diffie-Hellman Group Exchange for the

 Secure Shell (SSH) Transport Layer Protocol";

 }

 feature ssh-ctr {

 description

 "SDCTR encryption mode is supported for SSH.";

 reference

 "RFC 4344: The Secure Shell (SSH) Transport Layer

 Encryption Modes";

 }

 feature ssh-sha2 {

 description

 "The SHA2 family of cryptographic hash functions is

 supported for SSH.";

 reference

 "FIPS PUB 180-4: Secure Hash Standard (SHS)";

 }

 // Identities

 identity public-key-alg-base {

 description

 "Base identity used to identify public key algorithms.";

 }

 identity ssh-dss {

 base public-key-alg-base;

 description

 "Digital Signature Algorithm using SHA-1 as the

 hashing algorithm.";

 reference

 "RFC 4253:

 The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity ssh-rsa {

 base public-key-alg-base;

 description

 "RSASSA-PKCS1-v1_5 signature scheme using SHA-1 as the

 hashing algorithm.";

 reference

 "RFC 4253:

 The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity ecdsa-sha2-nistp256 {

 if-feature "ssh-ecc and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the

 nistp256 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity ecdsa-sha2-nistp384 {

 if-feature "ssh-ecc and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the

 nistp384 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity ecdsa-sha2-nistp521 {

 if-feature "ssh-ecc and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the

 nistp521 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity x509v3-ssh-rsa {

 if-feature "ssh-x509-certs";

 base public-key-alg-base;

 description

 "RSASSA-PKCS1-v1_5 signature scheme using a public key stored

 in an X.509v3 certificate and using SHA-1 as the hashing

 algorithm.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 identity x509v3-rsa2048-sha256 {

 if-feature "ssh-x509-certs and ssh-sha2";

 base public-key-alg-base;

 description

 "RSASSA-PKCS1-v1_5 signature scheme using a public key stored

 in an X.509v3 certificate and using SHA-256 as the hashing

 algorithm. RSA keys conveyed using this format MUST have a

 modulus of at least 2048 bits.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 identity x509v3-ecdsa-sha2-nistp256 {

 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA)

 using the nistp256 curve with a public key stored in

 an X.509v3 certificate and using the SHA2 family of

 hashing algorithms.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 identity x509v3-ecdsa-sha2-nistp384 {

 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA)

 using the nistp384 curve with a public key stored in

 an X.509v3 certificate and using the SHA2 family of

 hashing algorithms.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 identity x509v3-ecdsa-sha2-nistp521 {

 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";

 base public-key-alg-base;

 description

 "Elliptic Curve Digital Signature Algorithm (ECDSA)

 using the nistp521 curve with a public key stored in

 an X.509v3 certificate and using the SHA2 family of

 hashing algorithms.";

 reference

 "RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication";

 }

 identity key-exchange-alg-base {

 description

 "Base identity used to identify key exchange algorithms.";

 }

 identity diffie-hellman-group14-sha1 {

 base key-exchange-alg-base;

 description

 "Diffie-Hellman key exchange with SHA-1 as HASH and

 Oakley Group 14 (2048-bit MODP Group).";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity diffie-hellman-group-exchange-sha1 {

 if-feature "ssh-dh-group-exchange";

 base key-exchange-alg-base;

 description

 "Diffie-Hellman Group and Key Exchange with SHA-1 as HASH.";

 reference

 "RFC 4419: Diffie-Hellman Group Exchange for the

 Secure Shell (SSH) Transport Layer Protocol";

 }

 identity diffie-hellman-group-exchange-sha256 {

 if-feature "ssh-dh-group-exchange and ssh-sha2";

 base key-exchange-alg-base;

 description

 "Diffie-Hellman Group and Key Exchange with SHA-256 as HASH.";

 reference

 "RFC 4419: Diffie-Hellman Group Exchange for the

 Secure Shell (SSH) Transport Layer Protocol";

 }

 identity ecdh-sha2-nistp256 {

 if-feature "ssh-ecc and ssh-sha2";

 base key-exchange-alg-base;

 description

 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the

 nistp256 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity ecdh-sha2-nistp384 {

 if-feature "ssh-ecc and ssh-sha2";

 base key-exchange-alg-base;

 description

 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the

 nistp384 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity ecdh-sha2-nistp521 {

 if-feature "ssh-ecc and ssh-sha2";

 base key-exchange-alg-base;

 description

 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the

 nistp521 curve and the SHA2 family of hashing algorithms.";

 reference

 "RFC 5656: Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer";

 }

 identity encryption-alg-base {

 description

 "Base identity used to identify encryption algorithms.";

 }

 identity triple-des-cbc {

 base encryption-alg-base;

 description

 "Three-key 3DES in CBC mode.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity aes128-cbc {

 base encryption-alg-base;

 description

 "AES in CBC mode, with a 128-bit key.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity aes192-cbc {

 base encryption-alg-base;

 description

 "AES in CBC mode, with a 192-bit key.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity aes256-cbc {

 base encryption-alg-base;

 description

 "AES in CBC mode, with a 256-bit key.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity aes128-ctr {

 if-feature "ssh-ctr";

 base encryption-alg-base;

 description

 "AES in SDCTR mode, with 128-bit key.";

 reference

 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption

 Modes";

 }

 identity aes192-ctr {

 if-feature "ssh-ctr";

 base encryption-alg-base;

 description

 "AES in SDCTR mode, with 192-bit key.";

 reference

 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption

 Modes";

 }

 identity aes256-ctr {

 if-feature "ssh-ctr";

 base encryption-alg-base;

 description

 "AES in SDCTR mode, with 256-bit key.";

 reference

 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption

 Modes";

 }

 identity mac-alg-base {

 description

 "Base identity used to identify message authentication

 code (MAC) algorithms.";

 }

 identity hmac-sha1 {

 base mac-alg-base;

 description

 "HMAC-SHA1";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 }

 identity hmac-sha2-256 {

 if-feature "ssh-sha2";

 base mac-alg-base;

 description

 "HMAC-SHA2-256";

 reference

 "RFC 6668: SHA-2 Data Integrity Verification for the

 Secure Shell (SSH) Transport Layer Protocol";

 }

 identity hmac-sha2-512 {

 if-feature "ssh-sha2";

 base mac-alg-base;

 description

 "HMAC-SHA2-512";

 reference

 "RFC 6668: SHA-2 Data Integrity Verification for the

 Secure Shell (SSH) Transport Layer Protocol";

 }

 // Groupings

 grouping transport-params-grouping {

 description

 "A reusable grouping for SSH transport parameters.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";

 container host-key {

 description

 "Parameters regarding host key.";

 leaf-list host-key-alg {

 type identityref {

 base public-key-alg-base;

 }

 ordered-by user;

 description

 "Acceptable host key algorithms in order of descending

 preference. The configured host key algorithms should

 be compatible with the algorithm used by the configured

 private key. Please see Section 5 of RFC EEEE for

 valid combinations.

 If this leaf-list is not configured (has zero elements)

 the acceptable host key algorithms are implementation-

 defined.";

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 }

 container key-exchange {

 description

 "Parameters regarding key exchange.";

 leaf-list key-exchange-alg {

 type identityref {

 base key-exchange-alg-base;

 }

 ordered-by user;

 description

 "Acceptable key exchange algorithms in order of descending

 preference.

 If this leaf-list is not configured (has zero elements)

 the acceptable key exchange algorithms are implementation

 defined.";

 }

 }

 container encryption {

 description

 "Parameters regarding encryption.";

 leaf-list encryption-alg {

 type identityref {

 base encryption-alg-base;

 }

 ordered-by user;

 description

 "Acceptable encryption algorithms in order of descending

 preference.

 If this leaf-list is not configured (has zero elements)

 the acceptable encryption algorithms are implementation

 defined.";

 }

 }

 container mac {

 description

 "Parameters regarding message authentication code (MAC).";

 leaf-list mac-alg {

 type identityref {

 base mac-alg-base;

 }

 ordered-by user;

 description

 "Acceptable MAC algorithms in order of descending

 preference.

 If this leaf-list is not configured (has zero elements)

 the acceptable MAC algorithms are implementation-

 defined.";

 }

 }

 }

}

¶

<CODE ENDS>

3. The "ietf-ssh-client" Module

3.1. Data Model Overview

3.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-ssh-client" module:

3.1.2. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-ssh-client" module:

Each of these groupings are presented in the following subsections.

3.1.2.1. The "ssh-client-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "ssh-client-

grouping" grouping:

¶

¶

Features:

 +-- ssh-client-transport-params-config

 +-- ssh-client-keepalives

 +-- client-identity-password

 +-- client-identity-publickey

 +-- client-identity-hostbased

 +-- client-identity-none

¶

¶

Groupings:

 +-- ssh-client-grouping

¶

¶

¶

Comments:

The "client-identity" node configures a "username" and

credentials, each enabled by a "feature" statement defined in

Section 3.1.1.

The "server-authentication" node configures trust anchors for

authenticating the SSH server, with each option enabled by a

"feature" statement.

The "transport-params" node, which must be enabled by a feature,

configures parameters for the SSH sessions established by this

configuration.

The "keepalives" node, which must be enabled by a feature,

configures a "presence" container for testing the aliveness of

the SSH server. The aliveness-test occurs at the SSH protocol

layer.

For the referenced grouping statement(s):

The "local-or-keystore-asymmetric-key-grouping" grouping is

discussed in Section 2.1.3.4 of [I-D.ietf-netconf-keystore].

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping ssh-client-grouping

 +-- client-identity

 | +-- username? string

 | +-- public-key! {client-identity-publickey}?

 | | +---u ks:local-or-keystore-asymmetric-key-grouping

 | +-- password? string {client-identity-password}?

 | +-- hostbased! {client-identity-hostbased}?

 | | +---u ks:local-or-keystore-asymmetric-key-grouping

 | +-- none? empty {client-identity-none}?

 | +-- certificate! {sshcmn:ssh-x509-certs}?

 | +---u ks:local-or-keystore-end-entity-cert-with-key-groupi\

ng

 +-- server-authentication

 | +-- ssh-host-keys!

 | | +---u ts:local-or-truststore-public-keys-grouping

 | +-- ca-certs! {sshcmn:ssh-x509-certs}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- ee-certs! {sshcmn:ssh-x509-certs}?

 | +---u ts:local-or-truststore-certs-grouping

 +-- transport-params {ssh-client-transport-params-config}?

 | +---u sshcmn:transport-params-grouping

 +-- keepalives! {ssh-client-keepalives}?

 +-- max-wait? uint16

 +-- max-attempts? uint8

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

-

¶

https://tools.ietf.org/html/draft-ietf-netconf-keystore-17#section-2.1.3.4

The "local-or-keystore-end-entity-cert-with-key-grouping"

grouping is discussed in Section 2.1.3.6 of [I-D.ietf-netconf-

keystore].

The "local-or-truststore-public-keys-grouping" grouping is

discussed in Section 2.1.3.2 of [I-D.ietf-netconf-trust-

anchors].

The "local-or-truststore-certs-grouping" grouping is discussed

in Section 2.1.3.1 of [I-D.ietf-netconf-trust-anchors].

The "transport-params-grouping" grouping is discussed in

Section 2.1.3.1 in this document.

3.2. Example Usage

This section presents two examples showing the "ssh-client-grouping"

grouping populated with some data. These examples are effectively

the same except the first configures the client identity using a

local key while the second uses a key configured in a keystore. Both

examples are consistent with the examples presented in Section 2 of

[I-D.ietf-netconf-trust-anchors] and Section 3.2 of [I-D.ietf-

netconf-keystore].

The following configuration example uses local-definitions for the

client identity and server authentication:

-

¶

-

¶

-

¶

-

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-keystore-17#section-2.1.3.6
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10#section-2.1.3.2
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10#section-2.1.3.1

=============== NOTE: '\\' line wrapping per RFC 8792 ===============

<ssh-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- how this client will authenticate itself to the server -->

 <client-identity>

 <username>foobar</username>

 <public-key>

 <local-definition>

 <public-key-format>ct:ssh-public-key-format</public-key-form\

\at>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-f\

\ormat>

 <cleartext-private-key>base64encodedvalue==</cleartext-priva\

\te-key>

 </local-definition>

 </public-key>

 </client-identity>

 <!-- which host keys will this client trust -->

 <server-authentication>

 <ssh-host-keys>

 <local-definition> <!-- FIXME: float 'local-def' down to each?\

\ -->

 <!--<ssh-public-key>-->

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>ct:ssh-public-key-format</public-key-fo\

\rmat>

 <public-key>base64encodedvalue==</public-key>

 <!--

 </ssh-public-key>

 <ssh-public-key>

 -->

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>ct:ssh-public-key-format</public-key-fo\

\rmat>

 <public-key>base64encodedvalue==</public-key>

 <!--</ssh-public-key>-->

 </public-key>

 </local-definition>

 </ssh-host-keys>

 <ca-certs>

 <local-definition>

 <certificate>

 <name>Server Cert Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Server Cert Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ca-certs>

 <ee-certs>

 <local-definition>

 <certificate>

 <name>My Application #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>My Application #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ee-certs>

 </server-authentication>

 <keepalives>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </keepalives>

</ssh-client>

¶

The following configuration example uses keystore-references for the

client identity and truststore-references for server authentication:

from the keystore:¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<ssh-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- how this client will authenticate itself to the server -->

 <client-identity>

 <username>foobar</username>

 <!-- can an SSH client have move than one key?

 <public-key>

 <keystore-reference>ssh-rsa-key</keystore-reference>

 </public-key>

 -->

 <certificate>

 <keystore-reference>

 <asymmetric-key>ssh-rsa-key-with-cert</asymmetric-key>

 <certificate>ex-rsa-cert2</certificate>

 </keystore-reference>

 </certificate>

 </client-identity>

 <!-- which host-keys will this client trust -->

 <server-authentication>

 <ssh-host-keys> <!-- FIXME: should 'ts-ref' be to bag or each ke\

y? -->

 <truststore-reference>trusted-ssh-public-keys</truststore-refe\

rence>

 </ssh-host-keys>

 <ca-certs> <!-- FIXME: should 'ts-ref' be to bag or each key? -->

 <truststore-reference>trusted-server-ca-certs</truststore-refe\

rence>

 </ca-certs>

 <ee-certs> <!-- FIXME: should 'ts-ref' be to bag or each key? -->

 <truststore-reference>trusted-server-ee-certs</truststore-refe\

rence>

 </ee-certs>

 </server-authentication>

 <keepalives>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </keepalives>

</ssh-client>

¶

3.3. YANG Module

This YANG module has normative references to [I-D.ietf-netconf-

trust-anchors], and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf-ssh-client@2020-07-10.yang"

¶

¶

module ietf-ssh-client {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-client";

 prefix sshc;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 import ietf-keystore {

 prefix ks;

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 import ietf-ssh-common {

 prefix sshcmn;

 revision-date 2020-07-10; // stable grouping definitions

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines reusable groupings for SSH clients that

 can be used as a basis for specific SSH client instances.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC EEEE

 (https://www.rfc-editor.org/info/rfcEEEE); see the RFC

 itself for full legal notices.;

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-07-10 {

 description

 "Initial version";

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 // Features

 feature ssh-client-transport-params-config {

 description

 "SSH transport layer parameters are configurable on an SSH

 client.";

 }

 feature ssh-client-keepalives {

 description

 "Per socket SSH keepalive parameters are configurable for

 SSH clients on the server implementing this feature.";

 }

 feature client-identity-password {

 description

 "Indicates that the 'password' authentication type

 is supported for client identification.";

 }

 feature client-identity-publickey {

 description

 "Indicates that the 'publickey' authentication type

 is supported for client identification.

 The 'publickey' authentication type is required by

 RFC 4252, but common implementations enable it to

 be disabled.";

 }

 feature client-identity-hostbased {

 description

 "Indicates that the 'hostbased' authentication type

 is supported for client identification.";

 }

 feature client-identity-none {

 description

 "Indicates that the 'none' authentication type is

 supported for client identification.";

 }

 // Groupings

 grouping ssh-client-grouping {

 description

 "A reusable grouping for configuring a SSH client without

 any consideration for how an underlying TCP session is

 established.

 Note that this grouping uses fairly typical descendent

 node names such that a stack of 'uses' statements will

 have name conflicts. It is intended that the consuming

 data model will resolve the issue (e.g., by wrapping

 the 'uses' statement in a container called

 'ssh-client-parameters'). This model purposely does

 not do this itself so as to provide maximum flexibility

 to consuming models.";

 container client-identity {

 nacm:default-deny-write;

 must

 'public-key or password or hostbased or none or certificate';

 description

 "The credentials that the client may use, pending

 the SSH server's requirements, by the SSH client

 to authenticate to the SSH server.";

 leaf username {

 type string;

 description

 "The username of this user. This will be the username

 used, for instance, to log into an SSH server.";

 }

 container public-key {

 if-feature client-identity-publickey;

 presence

 "Indicates that publickey-based authentication

 is configured";

 description

 "A locally-defined or referenced asymmetric key

 pair to be used for client identification.";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 uses ks:local-or-keystore-asymmetric-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format = "ct:ssh-public-key-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 leaf password {

 if-feature client-identity-password;

 nacm:default-deny-all;

 type string;

 description

 "A password to be used for client identification.";

 }

 container hostbased {

 if-feature client-identity-hostbased;

 presence

 "Indicates that hostbased authentication is configured";

 description

 "A locally-defined or referenced asymmetric key

 pair to be used for host identification.";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 uses ks:local-or-keystore-asymmetric-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format = "ct:ssh-public-key-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 leaf none {

 if-feature client-identity-none;

 type empty;

 description

 "Indicates that 'none' algorithm is used for client

 identification.";

 }

 container certificate {

 if-feature "sshcmn:ssh-x509-certs";

 presence

 "Indicates that certificate-based authentication

 is configured";

 description

 "A locally-defined or referenced certificate

 to be used for client identification.";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 uses

 ks:local-or-keystore-end-entity-cert-with-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must

 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference"

 + "/asymmetric-key" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 } // container client-identity

 container server-authentication {

 nacm:default-deny-write;

 must 'ssh-host-keys or ca-certs or ee-certs';

 description

 "Specifies how the SSH client can authenticate SSH servers.

 Any combination of credentials is additive and unordered.";

 container ssh-host-keys {

 presence

 "Indicates that the client can authenticate servers

 using the configured SSH host keys.";

 description

 "A list of SSH host keys used by the SSH client to

 authenticate SSH server host keys. A server host key

 is authenticated if it is an exact match to a

 configured SSH host key.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-public-keys-grouping {

 refine

 "local-or-truststore/local/local-definition/public-key" {

 must 'public-key-format = "ct:ssh-public-key-format"';

 }

 refine

 "local-or-truststore/truststore/truststore-reference" {

 must 'deref(.)/../*/ts:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 container ca-certs {

 if-feature "sshcmn:ssh-x509-certs";

 presence

 "Indicates that the client can authenticate servers

 using the configured trust anchor certificates.";

 description

 "A set of certificate authority (CA) certificates used by

 the SSH client to authenticate SSH servers. A server

 is authenticated if its certificate has a valid chain

 of trust to a configured CA certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container ee-certs {

 if-feature "sshcmn:ssh-x509-certs";

 presence

 "Indicates that the client can authenticate servers

 using the configured end-entity certificates.";

 description

 "A set of end-entity certificates used by the SSH client

 to authenticate SSH servers. A server is authenticated

 if its certificate is an exact match to a configured

 end-entity certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 } // container server-authentication

 container transport-params {

 nacm:default-deny-write;

 if-feature "ssh-client-transport-params-config";

 description

 "Configurable parameters of the SSH transport layer.";

 uses sshcmn:transport-params-grouping;

 } // container transport-parameters

 container keepalives {

 nacm:default-deny-write;

 if-feature "ssh-client-keepalives";

 presence

 "Indicates that the SSH client proactively tests the

 aliveness of the remote SSH server.";

 description

 "Configures the keep-alive policy, to proactively test

 the aliveness of the SSH server. An unresponsive TLS

 server is dropped after approximately max-wait *

 max-attempts seconds. Per Section 4 of RFC 4254,

 the SSH client SHOULD send an SSH_MSG_GLOBAL_REQUEST

 message with a purposely nonexistent 'request name'

 value (e.g., keepalive@ietf.org) and the 'want reply'

 value set to '1'.";

 reference

 "RFC 4254: The Secure Shell (SSH) Connection Protocol";

 leaf max-wait {

 type uint16 {

 range "1..max";

 }

 units "seconds";

 default "30";

 description

 "Sets the amount of time in seconds after which if

 no data has been received from the SSH server, a

 TLS-level message will be sent to test the

 aliveness of the SSH server.";

 }

 leaf max-attempts {

 type uint8;

 default "3";

 description

 "Sets the maximum number of sequential keep-alive

 messages that can fail to obtain a response from

 the SSH server before assuming the SSH server is

 no longer alive.";

 }

 } // container keepalives

 } // grouping ssh-client-grouping

} // module ietf-ssh-client

¶

<CODE ENDS>

4. The "ietf-ssh-server" Module

4.1. Data Model Overview

4.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-ssh-server" module:

4.1.2. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-ssh-server" module:

Each of these groupings are presented in the following subsections.

4.1.2.1. The "ssh-server-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "ssh-server-

grouping" grouping:

¶

¶

Features:

 +-- ssh-server-transport-params-config

 +-- ssh-server-keepalives

 +-- client-auth-config-supported

 +-- client-auth-publickey

 +-- client-auth-password

 +-- client-auth-hostbased

 +-- client-auth-none

¶

¶

Groupings:

 +-- ssh-server-grouping

¶

¶

¶

Comments:

The "server-identity" node configures identity credentials. The

ability to use a certificate is enabled by a "feature".

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping ssh-server-grouping

 +-- server-identity

 | +-- host-key* [name]

 | +-- name? string

 | +-- (host-key-type)

 | +--:(public-key)

 | | +-- public-key

 | | +---u ks:local-or-keystore-asymmetric-key-grouping

 | +--:(certificate)

 | +-- certificate {sshcmn:ssh-x509-certs}?

 | +---u ks:local-or-keystore-end-entity-cert-with-k\

ey-grouping

 +-- client-authentication

 | +-- supported-authentication-methods

 | | +-- publickey? empty

 | | +-- password? empty {client-auth-password}?

 | | +-- hostbased? empty {client-auth-hostbased}?

 | | +-- none? empty {client-auth-none}?

 | +-- users {client-auth-config-supported}?

 | | +-- user* [name]

 | | +-- name? string

 | | +-- public-keys! {client-auth-publickey}?

 | | | +---u ts:local-or-truststore-public-keys-grouping

 | | +-- password? ianach:crypt-hash

 | | | {client-auth-password}?

 | | +-- hostbased! {client-auth-hostbased}?

 | | | +---u ts:local-or-truststore-public-keys-grouping

 | | +-- none? empty {client-auth-none}?

 | +-- ca-certs!

 | | {client-auth-config-supported,sshcmn:ssh-x509-certs}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- ee-certs!

 | {client-auth-config-supported,sshcmn:ssh-x509-certs}?

 | +---u ts:local-or-truststore-certs-grouping

 +-- transport-params {ssh-server-transport-params-config}?

 | +---u sshcmn:transport-params-grouping

 +-- keepalives! {ssh-server-keepalives}?

 +-- max-wait? uint16

 +-- max-attempts? uint8

¶

¶

*

¶

The "client-authentication" node configures trust anchors for

authenticating the SSH client, with each option enabled by a

"feature" statement.

The "transport-params" node, which must be enabled by a feature,

configures parameters for the SSH sessions established by this

configuration.

The "keepalives" node, which must be enabled by a feature,

configures a "presence" container for testing the aliveness of

the SSH client. The aliveness-test occurs at the SSH protocol

layer.

For the referenced grouping statement(s):

The "local-or-keystore-asymmetric-key-grouping" grouping is

discussed in Section 2.1.3.4 of [I-D.ietf-netconf-keystore].

The "local-or-keystore-end-entity-cert-with-key-grouping"

grouping is discussed in Section 2.1.3.6 of [I-D.ietf-netconf-

keystore].

The "local-or-truststore-public-keys-grouping" grouping is

discussed in Section 2.1.3.2 of [I-D.ietf-netconf-trust-

anchors].

The "local-or-truststore-certs-grouping" grouping is discussed

in Section 2.1.3.1 of [I-D.ietf-netconf-trust-anchors].

The "transport-params-grouping" grouping is discussed in

Section 2.1.3.1 in this document.

4.2. Example Usage

This section presents two examples showing the "ssh-server-grouping"

grouping populated with some data. These examples are effectively

the same except the first configures the server identity using a

local key while the second uses a key configured in a keystore. Both

examples are consistent with the examples presented in Section 2 of

[I-D.ietf-netconf-trust-anchors] and Section 3.2 of [I-D.ietf-

netconf-keystore].

The following configuration example uses local-definitions for the

server identity and client authentication:

*

¶

*

¶

*

¶

* ¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-keystore-17#section-2.1.3.4
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17#section-2.1.3.6
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10#section-2.1.3.2
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10#section-2.1.3.1

=============== NOTE: '\' line wrapping per RFC 8792 ================

<ssh-server

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- the host-key this SSH server will present -->

 <server-identity>

 <host-key>

 <name>my-pubkey-based-host-key</name>

 <public-key>

 <local-definition>

 <public-key-format>ct:ssh-public-key-format</public-key-fo\

rmat>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key\

-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-pri\

vate-key>

 </local-definition>

 </public-key>

 </host-key>

 <host-key>

 <name>my-cert-based-host-key</name>

 <certificate>

 <local-definition>

 <public-key-format>ct:subject-public-key-info-format</publ\

ic-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key\

-format>

 <cleartext-private-key>base64encodedvalue==</cleartext-pri\

vate-key>

 <cert-data>base64encodedvalue==</cert-data>

 </local-definition>

 </certificate>

 </host-key>

 </server-identity>

 <!-- the client credentials this SSH server will trust -->

 <client-authentication>

 <supported-authentication-methods>

 <publickey/>

 </supported-authentication-methods>

 <users>

 <user>

 <name>mary</name>

 <password>0secret</password>

 <public-keys>

 <local-definition>

 <!--<ssh-public-key>-->

 <public-key>

 <name>User A</name>

 <public-key-format>ct:ssh-public-key-format</public-ke\

y-format>

 <public-key>base64encodedvalue==</public-key>

 <!--</ssh-public-key>

 <ssh-public-key>-->

 </public-key>

 <public-key>

 <name>User B</name>

 <public-key-format>ct:ssh-public-key-format</public-ke\

y-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <!--</ssh-public-key>-->

 </local-definition>

 </public-keys>

 </user>

 </users>

 <ca-certs>

 <local-definition>

 <certificate>

 <name>Identity Cert Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Identity Cert Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ca-certs>

 <ee-certs>

 <local-definition>

 <certificate>

 <name>Application #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Application #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ee-certs>

 </client-authentication>

 <keepalives>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </keepalives>

</ssh-server>

¶

The following configuration example uses keystore-references for the

server identity and truststore-references for client authentication:

from the keystore:¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<ssh-server

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"

 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- the host-key this SSH server will present -->

 <server-identity>

 <host-key>

 <name>my-pubkey-based-host-key</name>

 <public-key>

 <keystore-reference>ssh-rsa-key</keystore-reference>

 </public-key>

 </host-key>

 <host-key>

 <name>my-cert-based-host-key</name>

 <certificate>

 <keystore-reference>

 <asymmetric-key>ssh-rsa-key-with-cert</asymmetric-key>

 <certificate>ex-rsa-cert2</certificate>

 </keystore-reference>

 </certificate>

 </host-key>

 </server-identity>

 <!-- the client credentials this SSH server will trust -->

 <client-authentication>

 <supported-authentication-methods>

 <publickey/>

 </supported-authentication-methods>

 <users>

 <user>

 <name>mary</name>

 <password>0secret</password>

 <public-keys>

 <truststore-reference>SSH Public Keys for Application A</t\

ruststore-reference>

 </public-keys>

 </user>

 </users>

 <ca-certs>

 <truststore-reference>trusted-client-ca-certs</truststore-refe\

rence>

 </ca-certs>

 <ee-certs>

 <truststore-reference>trusted-client-ee-certs</truststore-refe\

rence>

 </ee-certs>

 </client-authentication>

 <keepalives>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </keepalives>

</ssh-server>

¶

4.3. YANG Module

This YANG module has normative references to [I-D.ietf-netconf-

trust-anchors] and [I-D.ietf-netconf-keystore] and informative

references to [RFC4253] and [RFC7317].

<CODE BEGINS> file "ietf-ssh-server@2020-07-10.yang"

¶

¶

module ietf-ssh-server {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-server";

 prefix sshs;

 import iana-crypt-hash {

 prefix ianach;

 reference

 "RFC 7317: A YANG Data Model for System Management";

 }

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 import ietf-keystore {

 prefix ks;

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 import ietf-ssh-common {

 prefix sshcmn;

 revision-date 2020-07-10; // stable grouping definitions

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines reusable groupings for SSH servers that

 can be used as a basis for specific SSH server instances.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC EEEE

 (https://www.rfc-editor.org/info/rfcEEEE); see the RFC

 itself for full legal notices.;

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-07-10 {

 description

 "Initial version";

 reference

 "RFC EEEE: YANG Groupings for SSH Clients and SSH Servers";

 }

 // Features

 feature ssh-server-transport-params-config {

 description

 "SSH transport layer parameters are configurable on an SSH

 server.";

 }

 feature ssh-server-keepalives {

 description

 "Per socket SSH keepalive parameters are configurable for

 SSH servers on the server implementing this feature.";

 }

 feature client-auth-config-supported {

 description

 "Indicates that the configuration for how to authenticate

 clients can be configured herein, as opposed to in an

 application specific location. That is, to support the

 consuming data models that prefer to place client

 authentication with client definitions, rather then

 in a data model principally concerned with configuring

 the transport.";

 }

 feature client-auth-publickey {

 description

 "Indicates that the 'publickey' authentication type

 is supported.

 The 'publickey' authentication type is required by

 RFC 4252, but common implementations enable it to

 be disabled.";

 reference

 "RFC 4252:

 The Secure Shell (SSH) Authentication Protocol";

 }

 feature client-auth-password {

 description

 "Indicates that the 'password' authentication type

 is supported.";

 }

 feature client-auth-hostbased {

 description

 "Indicates that the 'hostbased' authentication type

 is supported.";

 }

 feature client-auth-none {

 description

 "Indicates that the 'none' authentication type is

 supported.";

 }

 // Groupings

 grouping ssh-server-grouping {

 description

 "A reusable grouping for configuring a SSH server without

 any consideration for how underlying TCP sessions are

 established.

 Note that this grouping uses fairly typical descendent

 node names such that a stack of 'uses' statements will

 have name conflicts. It is intended that the consuming

 data model will resolve the issue (e.g., by wrapping

 the 'uses' statement in a container called

 'ssh-server-parameters'). This model purposely does

 not do this itself so as to provide maximum flexibility

 to consuming models.";

 container server-identity {

 nacm:default-deny-write;

 description

 "The list of host keys the SSH server will present when

 establishing a SSH connection.";

 list host-key {

 key "name";

 min-elements 1;

 ordered-by user;

 description

 "An ordered list of host keys the SSH server will use to

 construct its ordered list of algorithms, when sending

 its SSH_MSG_KEXINIT message, as defined in Section 7.1

 of RFC 4253.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer

 Protocol";

 leaf name {

 type string;

 description

 "An arbitrary name for this host key";

 }

 choice host-key-type {

 mandatory true;

 description

 "The type of host key being specified";

 container public-key {

 description

 "A locally-defined or referenced asymmetric key pair

 to be used for the SSH server's host key.";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 uses ks:local-or-keystore-asymmetric-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must

 'public-key-format = "ct:ssh-public-key-format"';

 }

 refine "local-or-keystore/keystore/"

 + "keystore-reference" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 container certificate {

 if-feature "sshcmn:ssh-x509-certs";

 description

 "A locally-defined or referenced end-entity

 certificate to be used for the SSH server's

 host key.";

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 uses

 ks:local-or-keystore-end-entity-cert-with-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must

 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference"

 + "/asymmetric-key" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 }

 }

 } // container server-identity

 container client-authentication {

 nacm:default-deny-write;

 description

 "Specifies how the SSH server can authenticate SSH clients.";

 container supported-authentication-methods {

 description

 "Indicates which authentication methods the server

 supports.";

 leaf publickey {

 type empty;

 description

 "Indicates that the 'publickey' method is supported.

 Note that RFC 6187 X.509v3 Certificates for SSH uses

 the 'publickey' method name.";

 reference

 "RFC 4252: The Secure Shell (SSH) Authentication

 Protocol.

 RFC 6187: X.509v3 Certificates for Secure Shell

 Authentication.";

 }

 leaf password {

 if-feature client-auth-password;

 type empty;

 description

 "Indicates that the 'password' method is supported.";

 reference

 "RFC 4252: The Secure Shell (SSH) Authentication

 Protocol.";

 }

 leaf hostbased {

 if-feature client-auth-hostbased;

 type empty;

 description

 "Indicates that the 'hostbased' method is supported.";

 reference

 "RFC 4252: The Secure Shell (SSH) Authentication

 Protocol.";

 }

 leaf none {

 if-feature client-auth-none;

 type empty;

 description

 "Indicates that the 'none' method is supported.";

 reference

 "RFC 4252: The Secure Shell (SSH) Authentication

 Protocol.";

 }

 }

 container users {

 if-feature "client-auth-config-supported";

 description

 "A list of locally configured users.";

 list user {

 key name;

 description

 "The list of local users configured on this device.";

 leaf name {

 type string;

 description

 "The user name string identifying this entry.";

 }

 container public-keys {

 if-feature client-auth-publickey;

 presence

 "Indicates that the server can authenticate this

 user using any of the configured SSH public keys.";

 description

 "A set of SSH public keys may be used by the SSH

 server to authenticate this user. A user is

 authenticated if its public key is an exact

 match to a configured public key.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-public-keys-grouping {

 refine "local-or-truststore/local/local-definition"

 + "/public-key" {

 must 'public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 refine "local-or-truststore/truststore/"

 + "truststore-reference" {

 must 'deref(.)/../*/ts:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 leaf password {

 if-feature client-auth-password;

 type ianach:crypt-hash;

 description

 "The password for this user.";

 }

 container hostbased {

 if-feature client-auth-hostbased;

 presence

 "Indicates that the server can authenticate this

 user's 'host' using any of the configured SSH

 host keys.";

 description

 "A set of SSH host keys may be used by the SSH

 server to authenticate this user's host. A

 user's host is authenticated if its host key

 is an exact match to a configured host key.";

 reference

 "RFC 4253: The Secure Shell (SSH) Transport Layer

 RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-public-keys-grouping {

 refine "local-or-truststore/local/local-definition"

 + "/public-key" {

 must 'public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 refine "local-or-truststore/truststore"

 + "/truststore-reference" {

 must 'deref(.)/../*/ts:public-key-format'

 + ' = "ct:ssh-public-key-format"';

 }

 }

 }

 leaf none {

 if-feature client-auth-none;

 type empty;

 description

 "Indicates that the 'none' method is supported.";

 reference

 "RFC 4252: The Secure Shell (SSH) Authentication

 Protocol.";

 }

 }

 }

 container ca-certs {

 if-feature "client-auth-config-supported";

 if-feature "sshcmn:ssh-x509-certs";

 presence

 "Indicates that the SSH server can authenticate SSH

 clients using configured certificate authority (CA)

 certificates.";

 description

 "A set of certificate authority (CA) certificates used by

 the SSH server to authenticate SSH client certificates.

 A client certificate is authenticated if it has a valid

 chain of trust to a configured CA certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container ee-certs {

 if-feature "client-auth-config-supported";

 if-feature "sshcmn:ssh-x509-certs";

 presence

 "Indicates that the SSH server can authenticate SSH

 clients using configured end-entity certificates.";

 description

 "A set of client certificates (i.e., end entity

 certificates) used by the SSH server to authenticate

 the certificates presented by SSH clients. A client

 certificate is authenticated if it is an exact match

 to a configured end-entity certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 } // container client-authentication

 container transport-params {

 nacm:default-deny-write;

 if-feature "ssh-server-transport-params-config";

 description

 "Configurable parameters of the SSH transport layer.";

 uses sshcmn:transport-params-grouping;

 } // container transport-params

 container keepalives {

 nacm:default-deny-write;

 if-feature "ssh-server-keepalives";

 presence

 "Indicates that the SSH server proactively tests the

 aliveness of the remote SSH client.";

 description

 "Configures the keep-alive policy, to proactively test

 the aliveness of the SSL client. An unresponsive SSL

 client is dropped after approximately max-wait *

 max-attempts seconds. Per Section 4 of RFC 4254,

 the SSH server SHOULD send an SSH_MSG_GLOBAL_REQUEST

 message with a purposely nonexistent 'request name'

 value (e.g., keepalive@ietf.org) and the 'want reply'

 value set to '1'.";

 reference

 "RFC 4254: The Secure Shell (SSH) Connection Protocol";

 leaf max-wait {

 type uint16 {

 range "1..max";

 }

 units "seconds";

 default "30";

 description

 "Sets the amount of time in seconds after which

 if no data has been received from the SSL client,

 a SSL-level message will be sent to test the

 aliveness of the SSL client.";

 }

 leaf max-attempts {

 type uint8;

 default "3";

 description

 "Sets the maximum number of sequential keep-alive

 messages that can fail to obtain a response from

 the SSL client before assuming the SSL client is

 no longer alive.";

 }

 }

 } // grouping ssh-server-grouping

} // module ietf-ssh-server

¶

<CODE ENDS>

5. Security Considerations

5.1. The "ietf-ssh-common" YANG Module

The "ietf-ssh-common" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

None of the writable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-write" extension has not been set for any data nodes

defined in this module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

5.2. The "ietf-ssh-client" YANG Module

The "ietf-ssh-client" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

One readable data node defined in this YANG module may be considered

sensitive or vulnerable in some network environments. This node is

as follows:

The "client-identity/password" node:

The cleartext "password" node defined in the "ssh-client-

grouping" grouping is additionally sensitive to read

operations such that, in normal use cases, it should never be

returned to a client. For this reason, the NACM extension

"default-deny-all" has been applied to it.

Please be aware that this module uses the "key" and "private-key"

nodes from the "ietf-crypto-types" module [I-D.ietf-netconf-crypto-

types], where said nodes have the NACM extension "default-deny-all"

set, thus preventing unrestricted read-access to the cleartext key

values.

All of the writable data nodes defined by this module may be

considered sensitive or vulnerable in some network environments. For

instance, any modification to a key or reference to a key may

dramatically alter the implemented security policy. For this reason,

the NACM extension "default-deny-write" has been set for all data

nodes defined in this module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

5.3. The "ietf-ssh-server" YANG Module

The "ietf-ssh-server" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

Please be aware that this module uses the "key" and "private-key"

nodes from the "ietf-crypto-types" module [I-D.ietf-netconf-crypto-

types], where said nodes have the NACM extension "default-deny-all"

set, thus preventing unrestricted read-access to the cleartext key

values.

All of the writable data nodes defined by this module may be

considered sensitive or vulnerable in some network environments. For

instance, the addition or removal of references to keys,

certificates, trusted anchors, etc., or even the modification of

transport or keepalive parameters can dramatically alter the

implemented security policy. For this reason, the NACM extension

"default-deny-write" has been set for all data nodes defined in this

module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

6. IANA Considerations

6.1. The "IETF XML" Registry

This document registers three URIs in the "ns" subregistry of the

IETF XML Registry [RFC3688]. Following the format in [RFC3688], the

following registrations are requested:

6.2. The "YANG Module Names" Registry

This document registers three YANG modules in the YANG Module Names

registry [RFC6020]. Following the format in [RFC6020], the following

registrations are requested:

¶

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-common

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-client

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-server

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

[I-D.ietf-netconf-crypto-types]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-trust-anchors]

[RFC2119]

[RFC4344]

[RFC4419]

7. References

7.1. Normative References

Watsen, K., "Common YANG Data Types for Cryptography",

Work in Progress, Internet-Draft, draft-ietf-netconf-

crypto-types-15, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-crypto-types-15>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-17, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-keystore-17>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-10, 20 May 2020, <https://tools.ietf.org/html/

draft-ietf-netconf-trust-anchors-10>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bellare, M., Kohno, T., and C. Namprempre, "The Secure

Shell (SSH) Transport Layer Encryption Modes", RFC 4344,

DOI 10.17487/RFC4344, January 2006, <https://www.rfc-

editor.org/info/rfc4344>.

Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman

Group Exchange for the Secure Shell (SSH) Transport Layer

Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,

<https://www.rfc-editor.org/info/rfc4419>.

 name: ietf-ssh-common

 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-common

 prefix: sshcmn

 reference: RFC EEEE

 name: ietf-ssh-client

 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-client

 prefix: sshc

 reference: RFC EEEE

 name: ietf-ssh-server

 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-server

 prefix: sshs

 reference: RFC EEEE

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4344
https://www.rfc-editor.org/info/rfc4344
https://www.rfc-editor.org/info/rfc4419

[RFC5656]

[RFC6020]

[RFC6187]

[RFC6668]

[RFC7950]

[RFC8174]

[RFC8341]

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-netconf-client-server]

Stebila, D. and J. Green, "Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer", RFC

5656, DOI 10.17487/RFC5656, December 2009, <https://

www.rfc-editor.org/info/rfc5656>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure

Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,

March 2011, <https://www.rfc-editor.org/info/rfc6187>.

Bider, D. and M. Baushke, "SHA-2 Data Integrity

Verification for the Secure Shell (SSH) Transport Layer

Protocol", RFC 6668, DOI 10.17487/RFC6668, July 2012,

<https://www.rfc-editor.org/info/rfc6668>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

7.2. Informative References

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-03, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-http-client-

server-03>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc5656
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6187
https://www.rfc-editor.org/info/rfc6668
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03

[I-D.ietf-netconf-restconf-client-server]

[I-D.ietf-netconf-ssh-client-server]

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

[OPENSSH]

[RFC3688]

[RFC4252]

[RFC4253]

[RFC4254]

client-server-19, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-netconf-client-server-19>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-19, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-restconf-client-server-19>.

Watsen, K. and G. Wu, "YANG Groupings for SSH Clients and

SSH Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-ssh-client-server-19, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-ssh-client-

server-19>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients

and TCP Servers", Work in Progress, Internet-Draft,

draft-ietf-netconf-tcp-client-server-06, 16 June 2020,

<https://tools.ietf.org/html/draft-ietf-netconf-tcp-

client-server-06>.

Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and

TLS Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-tls-client-server-19, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-tls-client-

server-19>.

Project, T. O., "OpenSSH", 2016, <http://

www.openssh.com>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,

January 2006, <https://www.rfc-editor.org/info/rfc4252>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Transport Layer Protocol", RFC 4253, DOI 10.17487/

RFC4253, January 2006, <https://www.rfc-editor.org/info/

rfc4253>.

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,

January 2006, <https://www.rfc-editor.org/info/rfc4254>.

https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-06
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-06
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19
http://www.openssh.com
http://www.openssh.com
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4254

[RFC6241]

[RFC6242]

[RFC7317]

[RFC8040]

[RFC8071]

[RFC8340]

[RFC8342]

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Bierman, A. and M. Bjorklund, "A YANG Data Model for

System Management", RFC 7317, DOI 10.17487/RFC7317,

August 2014, <https://www.rfc-editor.org/info/rfc7317>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Watsen, K., "NETCONF Call Home and RESTCONF Call Home",

RFC 8071, DOI 10.17487/RFC8071, February 2017, <https://

www.rfc-editor.org/info/rfc8071>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

A.1. 00 to 01

Noted that '0.0.0.0' and '::' might have special meanings.

Renamed "keychain" to "keystore".

A.2. 01 to 02

Removed the groupings 'listening-ssh-client-grouping' and

'listening-ssh-server-grouping'. Now modules only contain the

transport-independent groupings.

Simplified the "client-auth" part in the ietf-ssh-client module.

It now inlines what it used to point to keystore for.

¶

* ¶

* ¶

*

¶

*

¶

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc7317
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342

Added cipher suites for various algorithms into new 'ietf-ssh-

common' module.

A.3. 02 to 03

Removed 'RESTRICTED' enum from 'password' leaf type.

Added a 'must' statement to container 'server-auth' asserting

that at least one of the various auth mechanisms must be

specified.

Fixed description statement for leaf 'trusted-ca-certs'.

A.4. 03 to 04

Change title to "YANG Groupings for SSH Clients and SSH Servers"

Added reference to RFC 6668

Added RFC 8174 to Requirements Language Section.

Enhanced description statement for ietf-ssh-server's "trusted-ca-

certs" leaf.

Added mandatory true to ietf-ssh-client's "client-auth" 'choice'

statement.

Changed the YANG prefix for module ietf-ssh-common from 'sshcom'

to 'sshcmn'.

Removed the compression algorithms as they are not commonly

configurable in vendors' implementations.

Updating descriptions in transport-params-grouping and the

servers's usage of it.

Now tree diagrams reference ietf-netmod-yang-tree-diagrams

Updated YANG to use typedefs around leafrefs to common keystore

paths

Now inlines key and certificates (no longer a leafref to

keystore)

A.5. 04 to 05

Merged changes from co-author.

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

A.6. 05 to 06

Updated to use trust anchors from trust-anchors draft (was

keystore draft)

Now uses new keystore grouping enabling asymmetric key to be

either locally defined or a reference to the keystore.

A.7. 06 to 07

factored the ssh-[client|server]-groupings into more reusable

groupings.

added if-feature statements for the new "ssh-host-keys" and

"x509-certificates" features defined in draft-ietf-netconf-trust-

anchors.

A.8. 07 to 08

Added a number of compatibility matrices to Section 5 (thanks

Frank!)

Clarified that any configured "host-key-alg" values need to be

compatible with the configured private key.

A.9. 08 to 09

Updated examples to reflect update to groupings defined in the

keystore -09 draft.

Add SSH keepalives features and groupings.

Prefixed top-level SSH grouping nodes with 'ssh-' and support

mashups.

Updated copyright date, boilerplate template, affiliation, and

folding algorithm.

A.10. 09 to 10

Reformatted the YANG modules.

A.11. 10 to 11

Reformatted lines causing folding to occur.

A.12. 11 to 12

Collapsed all the inner groupings into the top-level grouping.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

Added a top-level "demux container" inside the top-level

grouping.

Added NACM statements and updated the Security Considerations

section.

Added "presence" statements on the "keepalive" containers, as was

needed to address a validation error that appeared after adding

the "must" statements into the NETCONF/RESTCONF client/server

modules.

Updated the boilerplate text in module-level "description"

statement to match copyeditor convention.

A.13. 12 to 13

Removed the "demux containers", floating the nacm:default-deny-

write to each descendent node, and adding a note to model

designers regarding the potential need to add their own demux

containers.

Fixed a couple references (section 2 --> section 3)

In the server model, replaced <client-cert-auth> with <client-

authentication> and introduced 'local-or-external' choice.

A.14. 13 to 14

Updated to reflect changes in trust-anchors drafts (e.g., s/

trust-anchors/truststore/g + s/pinned.//)

A.15. 14 to 15

Updated examples to reflect ietf-crypto-types change (e.g.,

identities --> enumerations)

Updated "server-authentication" and "client-authentication" nodes

from being a leaf of type "ts:host-keys-ref" or "ts:certificates-

ref" to a container that uses "ts:local-or-truststore-host-keys-

grouping" or "ts:local-or-truststore-certs-grouping".

A.16. 15 to 16

Removed unnecessary if-feature statements in the -client and -

server modules.

Cleaned up some description statements in the -client and -server

modules.

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Fixed a canonical ordering issue in ietf-ssh-common detected by

new pyang.

A.17. 16 to 17

Removed choice local-or-external by removing the 'external' case

and flattening the 'local' case and adding a "client-auth-config-

supported" feature.

Updated examples to include the "*-key-format" nodes.

Augmented-in "must" expressions ensuring that locally-defined

public-key-format are "ct:ssh-public-key-format" (must expr for

ref'ed keys are TBD).

A.18. 17 to 18

Removed leaf-list 'other' from ietf-ssh-server.

Removed unused 'external-client-auth-supported' feature.

Added features client-auth-password, client-auth-hostbased, and

client-auth-none.

Renamed 'host-key' to 'public-key' for when refering to

'publickey' based auth.

Added new feature-protected 'hostbased' and 'none' to the 'user'

node's config.

Added new feature-protected 'hostbased' and 'none' to the

'client-identity' node's config.

Updated examples to reflect new "bag" addition to truststore.

Refined truststore/keystore groupings to ensure the key formats

"must" be particular values.

Switched to using truststore's new "public-key" bag (instead of

separate "ssh-public-key" and "raw-public-key" bags.

Updated client/server examples to cover ALL cases (local/ref x

cert/raw-key/psk).

A.19. 18 to 19

Updated the "keepalives" containers to address Michal Vasko's

request to align with RFC 8071.

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

Removed algorithm-mapping tables from the "SSH Common Model"

section

Removed 'algorithm' node from examples.

Added feature "client-identity-publickey"

Removed "choice auth-type", as auth-types aren't exclusive.

Renamed both "client-certs" and "server-certs" to "ee-certs"

Switch "must" to assert the public-key-format is "subject-public-

key-info-format" when certificates are used.

Added a "Note to Reviewers" note to first page.

A.20. 19 to 20

Added a "must 'public-key or password or hostbased or none or

certificate'" statement to the "user" node in ietf-ssh-client

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Moved the "ietf-ssh-common" module section to proceed the other

two module sections.

Updated the Security Considerations section.

A.21. 20 to 21

Updated examples to reflect new "cleartext-" prefix in the

crypto-types draft.

Acknowledgements

The authors would like to thank for following for lively discussions

on list and in the halls (ordered by last name): Andy Bierman,

Martin Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, Radek

Krejci, David Lamparter, Ladislav Lhotka, Alan Luchuk, Tom Petch,

Juergen Schoenwaelder, Phil Shafer, Sean Turner, Michal Vasko, Bert

Wijnen, and Liang Xia.

Authors' Addresses

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

mailto:kent+ietf@watsen.net

Gary Wu

Cisco Systems

Email: garywu@cisco.com

mailto:garywu@cisco.com

	YANG Groupings for SSH Clients and SSH Servers
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA

	2. The "ietf-ssh-common" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Identities
	2.1.3. Groupings
	2.1.3.1. The "transport-params-grouping" Grouping

	2.1.4. Protocol-accessible Nodes

	2.2. Example Usage
	2.3. YANG Module

	3. The "ietf-ssh-client" Module
	3.1. Data Model Overview
	3.1.1. Features
	3.1.2. Groupings
	3.1.2.1. The "ssh-client-grouping" Grouping

	3.2. Example Usage
	3.3. YANG Module

	4. The "ietf-ssh-server" Module
	4.1. Data Model Overview
	4.1.1. Features
	4.1.2. Groupings
	4.1.2.1. The "ssh-server-grouping" Grouping

	4.2. Example Usage
	4.3. YANG Module

	5. Security Considerations
	5.1. The "ietf-ssh-common" YANG Module
	5.2. The "ietf-ssh-client" YANG Module
	5.3. The "ietf-ssh-server" YANG Module

	6. IANA Considerations
	6.1. The "IETF XML" Registry
	6.2. The "YANG Module Names" Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Change Log
	A.1. 00 to 01
	A.2. 01 to 02
	A.3. 02 to 03
	A.4. 03 to 04
	A.5. 04 to 05
	A.6. 05 to 06
	A.7. 06 to 07
	A.8. 07 to 08
	A.9. 08 to 09
	A.10. 09 to 10
	A.11. 10 to 11
	A.12. 11 to 12
	A.13. 12 to 13
	A.14. 13 to 14
	A.15. 14 to 15
	A.16. 15 to 16
	A.17. 16 to 17
	A.18. 17 to 18
	A.19. 18 to 19
	A.20. 19 to 20
	A.21. 20 to 21
	Acknowledgements
	Authors' Addresses

