
NETCONF E. Voit
Internet-Draft Cisco Systems
Intended status: Standards Track A. Clemm
Expires: April 30, 2018 Huawei
 A. Gonzalez Prieto
 VMWare
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 October 27, 2017

Custom Subscription to Event Streams
draft-ietf-netconf-subscribed-notifications-06

Abstract

 This document defines capabilities and operations for the customized
 establishment of subscriptions upon a publisher's event streams.
 Also defined are delivery mechanisms for instances of the resulting
 notification messages. Effectively this allows a subscriber to
 request and receive a continuous, custom feed of publisher generated
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Voit, et al. Expires April 30, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Subscribed Notifications October 2017

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Motivation . 3
1.2. Terminology . 4
1.3. Solution Overview . 5
1.4. Relationship to RFC-5277 6

2. Solution . 6
2.1. Event Streams . 6
2.2. Event Stream Filters 7
2.3. Subscription State Model at the Publisher 7

3. Data Model Trees . 9
4. Dynamic Subscriptions . 14
4.1. Establishing a Subscription 14
4.2. Modifying a Subscription 16
4.3. Deleting a Subscription 16
4.4. Killing a Subscription 16

5. Configured Subscriptions 17
5.1. Creating a Configured Subscription 17
5.2. Modifying a Configured Subscription 18
5.3. Deleting a Configured Subscription 19

6. Deleting a Configured Subscription 19
7. Asynchronous Subscribed Event Delivery 19
8. Subscription State Notifications 20
8.1. subscription-started 20
8.2. subscription-modified 21
8.3. subscription-terminated 21
8.4. subscription-suspended 21
8.5. subscription-resumed 21
8.6. subscription-completed 22
8.7. replay-completed . 22

9. Administrative Functions 22
9.1. Subscription Monitoring 22
9.2. Advertisement . 23
9.3. Event Stream Discovery 23

10. Data Model . 23
11. Considerations . 46
11.1. Implementation Considerations 46
11.2. Security Considerations 46

12. Acknowledgments . 47

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires April 30, 2018 [Page 2]

Internet-Draft Subscribed Notifications October 2017

13. References . 48
13.1. Normative References 48
13.2. Informative References 48

Appendix A. Changes between revisions 49
 Authors' Addresses . 52

1. Introduction

 This document defines capabilities and operations for the customized
 establishment of subscriptions upon system generated event streams.
 Effectively this enables a "Subscribe then Publish" capability where
 the customized information needs of each target receiver are
 understood by the publisher before subscribed event records are
 marshalled and pushed. The receiver then gets a continuous, custom
 feed of publisher generated information.

 While the functionality defined in this document is transport-
 agnostic, protocols like NETCONF [RFC6241] or RESTCONF [RFC8040] can
 be used to configure or dynamically signal subscriptions, and there
 are bindings defined for subscribed event record delivery for NETCONF
 within [I-D.draft-ietf-netconf-netconf-event-notifications], and for
 HTTP2 or HTTP1.1 within [I-D.draft-ietf-netconf-restconf-notif].

1.1. Motivation

 There are various [RFC5277] limitations, many of which have been
 exposed in [RFC7923] which needed to be solved. Key capabilities
 supported by this document include:

 o multiple subscriptions on a single transport session

 o support for dynamic and statically configured subscriptions

 o modification of an existing subscription

 o operational counters and instrumentation

 o negotiation of subscription parameters (through the use of hints
 returned as part of declined subscription requests)

 o state change notifications (e.g., publisher driven suspension,
 parameter modification)

 o independence from transport protocol

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc7923

Voit, et al. Expires April 30, 2018 [Page 3]

Internet-Draft Subscribed Notifications October 2017

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Configured subscription: A subscription installed via a configuration
 interface which persists across reboots.

 Dynamic subscription: A subscription agreed between subscriber and
 publisher created via RPC subscription state signaling messages.

 Event: An occurrence of something that may be of interest. (e.g., a
 configuration change, a fault, a change in status, crossing a
 threshold, or an external input to the system.)

 Event record: A set of information detailing an event.

 NACM: NETCONF Access Control Model.

 Notification message: A set of transport encapsulated information
 intended for a receiver indicating that one or more event(s) have
 occurred. A notification message may include event records.

 Publisher: An entity responsible for streaming notification messages
 per the terms of a Subscription.

 Receiver: A target to which a publisher pushes subscribed event
 records. For dynamic subscriptions, the receiver and subscriber are
 the same entity.

 Stream (also referred to as "event stream"): A continuous ordered set
 of events aggregated under some context.

 Stream filter: Evaluation criteria which may be applied against a
 event records within a stream. Event records pass the filter when
 specified criteria are met.

 Subscribed event records: Event records which have met the terms of
 the subscription. This include terms (such as security checks)
 enforced by the publisher.

 Subscriber: An entity able to request and negotiate a contract for
 the generation and push of event records from a publisher.

 Subscription: A contract with a publisher, stipulating which
 information one or more receivers wish to have pushed from the
 publisher without the need for further solicitation.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Voit, et al. Expires April 30, 2018 [Page 4]

Internet-Draft Subscribed Notifications October 2017

1.3. Solution Overview

 This document describes a transport agnostic mechanism for
 subscribing to and receiving content from a stream instantiated
 within a publisher. This mechanism is through the use of a
 subscription.

 Two types of subscriptions are supported:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via RPC. If the
 publisher wants to serve this request, it accepts it, and then
 starts pushing notification messages. If the publisher does not
 wish to serve it as requested, then an error response is
 returned. This response MAY include hints at subscription
 parameters which would have been accepted.

 2. Configured subscriptions, which allow the management of
 subscriptions via a configuration interface so that a publisher
 can send notification messages to configured receiver(s).
 Support for this capability is optional.

 Additional characteristics differentiating configured from dynamic
 subscriptions include:

 o The lifetime of a dynamic subscription is bounded by the transport
 session used to establish it. For connection-oriented stateful
 transport like NETCONF, the loss of the transport session will
 result in the immediate termination of associated dynamic
 subscriptions. For connectionless or stateless transports like
 HTTP, it is the lack of receipt acknowledgement of a sequential
 set of notification messages and/or keep-alives which will
 terminate dynamic subscriptions. The lifetime of a configured
 subscription is driven by relevant configuration being present on
 the running configuration. This implies configured subscriptions
 persist across reboots, and persist even when transport is
 unavailable.

 o Configured subscriptions can be modified by any configuration
 client with write permission on the configuration of the
 subscription. Dynamic subscriptions can only be modified via an
 RPC request made upon the original subscribing transport session.

 Note that there is no mixing-and-matching of dynamic and configured
 subscriptions. Specifically, a configured subscription cannot be
 modified or deleted using RPC. Similarly, a subscription established
 via RPC cannot be modified through configuration operations (if
 needed, an operator may use a kill RPC however).

Voit, et al. Expires April 30, 2018 [Page 5]

Internet-Draft Subscribed Notifications October 2017

 The publisher MAY decide to terminate a dynamic subscription at any
 time. Similarly, it MAY decide to temporarily suspend the sending of
 notification messages for either configured or dynamic subscriptions.
 Such termination or suspension MAY be driven by the publisher running
 out of resources to serve the subscription, or by internal errors on
 the publisher.

1.4. Relationship to RFC-5277

 This document is intended to provide a superset of the subscription
 capabilities initially defined within [RFC5277]. Especially when
 extending an existing [RFC5277] implementation, it is important to
 understand what has been reused and what has been replaced. Key
 realtionships between these two documents include:

 o the data model in this document replaces the data model in
 [RFC5277].

 o the RPC operations in this draft replaces the symetrical
 operations of [RFC5277], section 4.

 o the one way operation of [RFC5277] is still used. However this
 operation will no longer be required with the availability of
 [I.D.draft-ietf-netconf-notification-messages].

 o the definition and contents of the NETCONF stream are identical
 between this document and [RFC5277].

 o a publisher MAY implement both the data model and RPCs defined in
 [RFC5277] and this new document concurrently, in order to support
 old clients. However the use of both alternatives on a single
 transport session is prohibited.

2. Solution

2.1. Event Streams

 An event stream is a named entity on a publisher which exposes a
 continuously updating set of events. Each event stream is available
 for subscription. It is out of the scope of this document to
 identify a) how streams are defined, b) how events are defined/
 generated, and c) how events are assigned to streams.

 There is only one reserved event stream within this document:
 NETCONF. The NETCONF event stream contains all NETCONF XML event
 record information supported by the publisher, except for where it
 has been explicitly indicated that this the event record MUST be

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires April 30, 2018 [Page 6]

Internet-Draft Subscribed Notifications October 2017

 excluded from the NETCONF stream. Beyond NETCONF, implementations
 are free to add additional event streams.

 As events are raised by a system, they may be assigned to one or more
 streams. The event record is distributed to receivers where: (1) a
 subscription includes the identified stream, and (2) subscription
 filtering does not exclude the event record from that receiver.

 If access control permissions are in use to secure publisher content,
 then for notification messages to be sent to a receiver, that
 receiver MUST be allowed access to all the event records on the
 stream. If subscriber permissions change during the lifecycle of a
 subscription, then the subscription MUST be continued or terminated
 accordingly.

2.2. Event Stream Filters

 This document defines an extensible filtering mechanism. Two
 optional stream filtering syntaxes supported are [XPATH] and subtree
 [RFC6241]. The subsets of these filtering syntaxes supported are
 left to each implementation. A subset of information is never
 stripped from within the event record.

 If no stream filter is provided, all event records on a stream are to
 be sent.

2.3. Subscription State Model at the Publisher

 Below is the state machine of a subscription for the publisher for a
 dynamic subscription. It is important to note that such a
 subscription doesn't exist at the publisher until it is accepted and
 made active. The mere request by a subscriber to establish a
 subscription is insufficient for that asserted subscription to be
 externally visible via this state machine.

https://datatracker.ietf.org/doc/html/rfc6241

Voit, et al. Expires April 30, 2018 [Page 7]

Internet-Draft Subscribed Notifications October 2017

 .-------.
 | start |
 '-------'
 |
 establish
 |
 | .----------modify------------.
 v v '
 .-----------. .-----------.
 .--------. | |-----suspend------->| |
 modify '| active | | suspended |
 '--------->| |<----resume---------| |
 '-----------' '-----------'
 | |
 delete/kill delete/kill
 | |
 v |
 .-------. |
 | end |<---------------------------'
 '-------'

 Figure 1: Dynamic subscription states

 Of interest in this state machine are the following:

 o Successful establish or modify RPCs put the subscription into an
 active state.

 o Failed modify RPCs will leave the subscription in its previous
 state, with no visible change to any streaming updates.

 o A delete or kill RPC will end the subscription.

 o Suspend and resume state changes are driven by internal process
 and prioritization. There are no external controls over suspend
 and resume.

 As shown below, a very similar state machine exists for configured
 subscriptions. Creation, modification, and deletion is via
 configuration operations rather than via RPC. When a subscription is
 created, the operational status of each receiver is initially set to
 intializing. Individual are receivers are moved to an active status
 when a subscription-started state change notification is successfully
 delivered. From there, the status of each receiver is managed
 internally within the publisher. Individual receivers are provided
 no information about other receivers from the publisher.

Voit, et al. Expires April 30, 2018 [Page 8]

Internet-Draft Subscribed Notifications October 2017

 .-------.
 | start |
 '-------'
 |
 create
 |
 v
 .---.
 .--------. | Subscription |
 modify '| .---------------------. |
 '--------->| .--|initializing receiver|--. |
 | | '---------------------' | |
 | V ^ ^ V |
 | .---------------. -suspend-> .------------------. |
 | |active receiver| |suspended receiver| |
 | '---------------' <--resume- '------------------' |
 '---'
 |
 delete
 |
 v
 .-------.
 | end |
 '-------'

 Figure 2: Configured subscription and receiver states

 The interaction model described in this section is mirrored in the
 RPCs and Notifications later in the document. It should be noted
 that these RPCs and Notifications have been designed to be extensible
 and allow subscriptions into targets other than event streams.
 [I-D.ietf-netconf-yang-push] provides an example of such an
 extension.

3. Data Model Trees

module: ietf-subscribed-notifications
 +--ro streams
 | +--ro stream* [name]
 | +--ro name stream
 | +--ro description string
 | +--ro replay-support? empty {replay}?
 | +--ro replay-log-creation-time? yang:date-and-time {replay}?
 | +--ro replay-log-aged-time? yang:date-and-time {replay}?
 +--rw filters
 | +--rw stream-filter* [identifier]
 | +--rw identifier filter-id
 | +--rw (filter-spec)?

Voit, et al. Expires April 30, 2018 [Page 9]

Internet-Draft Subscribed Notifications October 2017

 | +--:(subtree-filter)
 | | +--rw subtree-filter? {subtree}?
 | +--:(xpath-filter)
 | +--rw xpath-filter? yang:xpath1.0 {xpath}?
 +--rw subscription-config {configured}?
 | +--rw subscription* [identifier]
 | +--rw identifier subscription-id
 | +--rw encoding encoding
 | +--rw (target)
 | | +--:(stream)
 | | +--rw (stream-filter)?
 | | | +--:(by-reference)
 | | | | +--rw stream-filter-ref stream-filter-ref
 | | | +--:(within-subscription)
 | | | +--rw (filter-spec)?
 | | | +--:(subtree-filter)
 | | | | +--rw subtree-filter? {subtree}?
 | | | +--:(xpath-filter)
 | | | +--rw xpath-filter? yang:xpath1.0 {xpath}?
 | | +--rw stream stream
 | | +--rw replay-start-time? yang:date-and-time {replay}?
 | +--rw stop-time? yang:date-and-time
 | +--rw receivers
 | | +--rw receiver* [address port]
 | | +--rw address inet:host
 | | +--rw port inet:port-number
 | | +--rw protocol transport
 | | +--rw status? enumeration
 | +--rw (notification-message-origin)?
 | +--:(interface-originated)
 | | +--rw source-interface? if:interface-ref
 | +--:(address-originated)
 | +--rw source-vrf? string
 | +--rw source-address? inet:ip-address-no-zone
 +--ro subscriptions
 +--ro subscription* [identifier]
 +--ro identifier subscription-id
 +--ro configured-subscription? empty {configured}?
 +--ro encoding encoding
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-ref stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(subtree-filter)
 | | | +--ro subtree-filter? {subtree}?

Voit, et al. Expires April 30, 2018 [Page 10]

Internet-Draft Subscribed Notifications October 2017

 | | +--:(xpath-filter)
 | | +--ro xpath-filter? yang:xpath1.0 {xpath}?
 | +--ro stream stream
 | +--ro replay-start-time? yang:date-and-time {replay}?
 +--ro stop-time? yang:date-and-time
 +--ro (notification-message-origin)?
 | +--:(interface-originated)
 | | +--ro source-interface? if:interface-ref
 | +--:(address-originated)
 | +--ro source-vrf? string
 | +--ro source-address? inet:ip-address-no-zone
 +--ro receivers
 +--ro receiver* [address port]
 +--ro address inet:host
 +--ro port inet:port-number
 +--ro protocol transport
 +--ro pushed-notifications? yang:counter64
 +--ro excluded-notifications? yang:counter64
 +--ro status enumeration

 rpcs:
 +---x establish-subscription
 | +---w input
 | | +---w encoding? encoding
 | | +---w (target)
 | | | +--:(stream)
 | | | +---w (stream-filter)?
 | | | | +--:(by-reference)
 | | | | | +---w stream-filter-ref stream-filter-ref
 | | | | +--:(within-subscription)
 | | | | +---w (filter-spec)?
 | | | | +--:(subtree-filter)
 | | | | | +---w subtree-filter? {subtree}?
 | | | | +--:(xpath-filter)
 | | | | +---w xpath-filter? yang:xpath1.0 {xpath}?
 | | | +---w stream stream
 | | | +---w replay-start-time? yang:date-and-time {replay}?
 | | +---w stop-time? yang:date-and-time
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(no-success)
 | | +--ro filter-failure? string
 | | +--ro replay-start-time-hint? yang:date-and-time
 | +--:(success)
 | +--ro identifier subscription-id
 +---x modify-subscription
 | +---w input

Voit, et al. Expires April 30, 2018 [Page 11]

Internet-Draft Subscribed Notifications October 2017

 | | +---w identifier? subscription-id
 | | +---w (target)
 | | | +--:(stream)
 | | | +---w (stream-filter)?
 | | | +--:(by-reference)
 | | | | +---w stream-filter-ref stream-filter-ref
 | | | +--:(within-subscription)
 | | | +---w (filter-spec)?
 | | | +--:(subtree-filter)
 | | | | +---w subtree-filter? {subtree}?
 | | | +--:(xpath-filter)
 | | | +---w xpath-filter? yang:xpath1.0 {xpath}?
 | | +---w stop-time? yang:date-and-time
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(no-success)
 | +--ro filter-failure? string
 +---x delete-subscription
 | +---w input
 | | +---w identifier subscription-id
 | +--ro output
 | +--ro subscription-result subscription-result
 +---x kill-subscription
 +---w input
 | +---w identifier subscription-id
 +--ro output
 +--ro subscription-result subscription-result

 notifications:
 +---n replay-completed {replay}?
 | +--ro identifier subscription-id
 +---n subscription-completed
 | +--ro identifier subscription-id
 +---n subscription-started {configured}?
 | +--ro identifier subscription-id
 | +--ro encoding encoding
 | +--ro (target)
 | | +--:(stream)
 | | +--ro (stream-filter)?
 | | | +--:(by-reference)
 | | | | +--ro stream-filter-ref stream-filter-ref
 | | | +--:(within-subscription)
 | | | +--ro (filter-spec)?
 | | | +--:(subtree-filter)
 | | | | +--ro subtree-filter? {subtree}?
 | | | +--:(xpath-filter)
 | | | +--ro xpath-filter? yang:xpath1.0 {xpath}?

Voit, et al. Expires April 30, 2018 [Page 12]

Internet-Draft Subscribed Notifications October 2017

 | | +--ro stream stream
 | | +--ro replay-start-time? yang:date-and-time {replay}?
 | +--ro stop-time? yang:date-and-time
 +---n subscription-resumed
 | +--ro identifier subscription-id
 +---n subscription-modified {configured}?
 | +--ro identifier subscription-id
 | +--ro encoding encoding
 | +--ro (target)
 | | +--:(stream)
 | | +--ro (stream-filter)?
 | | | +--:(by-reference)
 | | | | +--ro stream-filter-ref stream-filter-ref
 | | | +--:(within-subscription)
 | | | +--ro (filter-spec)?
 | | | +--:(subtree-filter)
 | | | | +--ro subtree-filter? {subtree}?
 | | | +--:(xpath-filter)
 | | | +--ro xpath-filter? yang:xpath1.0 {xpath}?
 | | +--ro stream stream
 | | +--ro replay-start-time? yang:date-and-time {replay}?
 | +--ro stop-time? yang:date-and-time
 +---n subscription-terminated
 | +--ro identifier subscription-id
 | +--ro error-id subscription-errors
 | +--ro filter-failure? string
 +---n subscription-suspended
 +--ro identifier subscription-id
 +--ro error-id subscription-errors
 +--ro filter-failure? string

 The top-level decompositions of data model are as follows:

 o "Streams" contains a list of event streams that are supported by
 the publisher and against which subscription is allowed.

 o "Filters" contains a configurable list of filters that can be
 applied to a subscription. This allows users to reference an
 existing filter definition as an alternative to defining a filter
 inline for each subscription.

 o "Subscription-config" contains the configuration of configured
 subscriptions. The parameters of each configured subscription are
 a superset of the parameters of a dynamic subscription and use the
 same groupings. In addition, the configured subscriptions MUST
 also specify intended receivers and MAY specify the push source
 from which to send the stream of notification messages.

Voit, et al. Expires April 30, 2018 [Page 13]

Internet-Draft Subscribed Notifications October 2017

 o "Subscriptions" contains a list of all subscriptions on a
 publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions which a publisher is
 serving.

 The data model also contains a number of YANG Notifications that
 allow a publisher to signal information about a subscription.
 Finally, the data model contains a number of RPC definitions that are
 used to manage dynamic subscriptions.

4. Dynamic Subscriptions

 Dynamic subscriptions are managed via RPC, and are made against
 targets located within the publisher. These RPCs have been designed
 extensibly so that they may be augmented for targets beyond event
 streams.

4.1. Establishing a Subscription

 The "establish-subscription" operation allows a subscriber to request
 the creation of a subscription via RPC. Multiple establish
 subscription RPC requests can be made within the same transport
 session.

 The input parameters of the operation are:

 o A stream name which identifies the continuous feed of events
 against which the subscription is applied.

 o A filter which may reduce the set of event records pushed.

 o The desired encoding for the notification message.

 o An optional stop time for the subscription.

 o An optional start time which indicates that this subscription is
 requesting a replay of previously generated information from the
 event stream.

 If the publisher cannot satisfy the "establish-subscription" request,
 it sends a negative "subscription-result" element. If the subscriber
 has no authorization to establish the subscription, the
 "subscription-result" indicates an authorization error. Optionally,
 the "subscription-result" MAY include one or more hints on
 alternative input parameters and value which would have resulted in
 an accepted subscription.

Voit, et al. Expires April 30, 2018 [Page 14]

Internet-Draft Subscribed Notifications October 2017

 Subscription requests MUST fail if a filter with invalid syntax is
 provided or if a non-existent stream is referenced.

4.1.1. Replay Subscription

 Replay provides the ability to establish an subscription which is
 also capable of passing along recently generated event records. In
 other words, as the subscription initializes itself, it sends any
 previously generated content from within target event stream which
 meet the filter and timeframe criteria. These historical event
 records would then be followed by event records generated after the
 subscription has been established. All event records will be
 delivered in the order generated. Replay is only viable for dynamic
 subscriptions. Replay is an optional feature. Replay is dependent
 on an event stream supporting some form of logging, although it puts
 no restrictions on the size or form of the log, or where it resides
 within the device.

 The inclusion of a replay-start-time within an "establish-
 subscription" RPC indicates a replay request. If the "replay-start-
 time" contains a value that is earlier than content stored within the
 publisher's replay buffer, then the subscription MUST be rejected,
 and the leaf "replay-start-time-hint" MUST be set in the reply.

 An end time MAY be specified using the optional stop-time parameter,
 which only in the case of replay MAY also be earlier than the current
 time. If no stop-time is present, notification messages will
 continue to be sent until the subscription is terminated. The
 publisher MUST NOT accept a replay-start-time for a future time.

 If the replay-start-time is later than any information stored in the
 replay buffer, then the publisher MUST send a "replay-completed"
 notification immediately after the "subscription-started"
 notification.

 Not all streams will support replay. Those that do MUST include they
 do via the "replay-support" object. In addition, a event stream that
 does support replay is not expected to have an unlimited supply of
 saved notifications available to accommodate any given replay
 request. Subscribers MAY do a get on "replay-log-creation-time" and
 "replay-log-aged-time" to assess the availability of replay. The
 actual size of the replay log at any given time is a publisher
 specific matter. Control parameters for this aspect of the feature
 are outside the scope of this document.

Voit, et al. Expires April 30, 2018 [Page 15]

Internet-Draft Subscribed Notifications October 2017

4.2. Modifying a Subscription

 The "modify-subscription" operation permits changing the terms of an
 existing dynamic subscription previously established on that
 transport session. Subscriptions created by configuration operations
 cannot be modified via this RPC. Dynamic subscriptions can be
 modified one or multiple times. If the publisher accepts the
 requested modifications, it replies that this change has been made,
 then immediately starts sending event records based on the new terms.
 If the publisher rejects the request, the subscription remains as
 prior to the request. That is, the request has no impact whatsoever.
 The contents of a such a rejected modification MAY include one or
 more hints on alternative input parameters and value which would have
 resulted in a successfully modified subscription.

 Dynamic subscriptions established via RPC can only be modified via
 RPC using the same transport session used to establish that
 subscription.

4.3. Deleting a Subscription

 The "delete-subscription" operation permits canceling an existing
 subscription previously established on that transport session. If
 the publisher accepts the request, and the publisher has indicated
 this successful reply has been sent, the publisher MUST NOT send any
 more notification messages for this subscription. If the publisher
 rejects the request, all subscriptions remain as prior to the
 request. That is, the request has no impact whatsoever.

 Subscriptions established via RPC can only be deleted via RPC using
 the same transport session used for subscription establishment.
 Configured subscriptions cannot be deleted using RPCs.

4.4. Killing a Subscription

 The "kill-subscription" operation permits an operator to end a
 dynamic subscription which is not associated the transport session
 used for the RPC. This operation MUST be secured so that only
 connections with sufficiently privileged access rights are able to
 invoke this RPC. A publisher MUST terminate any dynamic subscription
 identified by RPC request. An operator may find subscription
 identifiers which may be used with "kill-subscription" by searching
 for the ip address of a receiver within the yang tree.

 Configured subscriptions cannot be killed using this RPC. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to kill a
 configured subscription.

Voit, et al. Expires April 30, 2018 [Page 16]

Internet-Draft Subscribed Notifications October 2017

5. Configured Subscriptions

 A configured subscription is a subscription installed via a
 configuration interface.

 Configured subscriptions persist across reboots, and persist even
 when transport is unavailable.

 Configured subscriptions can be modified by any configuration client
 with write permissions for the configuration of the subscription.
 Subscriptions can be modified or terminated via the configuration
 interface at any point of their lifetime.

 Configured subscriptions are considered active as long event records
 are not being dropped due to buffer overflow. A configured
 subscription MUST be moved to a suspended state if a buffer is
 overflowing and notification messages are being lost. A configured
 subscription SHOULD be returned to an active state as soon as
 transport connectivity is re-established, and a receiver acknowledges
 receipt of a "subscription-resumed".

 Supporting configured subscriptions is optional and advertised using
 the "configured-subscriptions" feature.

 In addition to subscription parameters that apply to dynamic
 subscriptions, the following additional parameters apply to
 configured subscriptions:

 o One or more receiver IP addresses (and corresponding ports)
 intended as the destination for notification messages for each
 subscription. In addition, the transport for each destination MAY
 be defined.

 o Optional parameters to identify an egress interface, a host IP
 address, a VRF, or an IP address plus VRF out of which
 notification messages should be pushed from the publisher. Where
 any of this info is not explicitly included, or where just the VRF
 is provided, notification messages MUST egress the publisher's
 default interface towards that receiver.

5.1. Creating a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level subtree subscription-config. There
 are two key differences between RPCs and configuration operations for
 subscription creation. Firstly, configuration operations install a
 subscription without question, while RPCs are designed to the support
 negotiation and rejection of requests. Secondly, while RPCs mandate

Voit, et al. Expires April 30, 2018 [Page 17]

Internet-Draft Subscribed Notifications October 2017

 that the subscriber establishing the subscription is the only
 receiver of the notification messages, configuration operations
 permit specifying receivers independent of any tracked subscriber.
 Because there is no explicit association with an existing transport
 session, configuration operations require additional parameters
 beyond those of dynamic subscriptions to indicate receivers, and
 possibly whether the notification messages need to come from a
 specific egress interface on the publisher.

 After a subscription is successfully created, the publisher
 immediately sends a subscription-started state change notification to
 each receiver. It is quite possible that upon configuration, reboot,
 or even steady-state operations, a transport session may not be
 currently available to the receiver. In this case, when there is
 something to transport for an active subscription, transport specific
 call-home operations will be used to establish the connection. When
 transport connectivity is available, as successful receipt of the
 subscription start change notification by a particular receiver
 indicated, notification messages may then be pushed.

 To see an example at subscription creation using configuration
 operations over NETCONF, see Appendix A of
 [I-D.draft-ietf-netconf-netconf-event-notifications].

 Note that is possible to configure replay on a configured
 subscription. This is to allows a configured subscription to exist
 on a system so that event records generated during boot can be
 buffered and pushed as soon as the transport session is established.

5.2. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level subtree subscription-config.

 Immediately after a subscription is successfully modified, the
 publisher sends to the existing receivers a state change notification
 stating the subscription has been modified (i.e., subscription-
 modified).

 If the modification involved adding and/or removing receivers, those
 modified receivers are sent state change notifications, indicating
 they have been added (i.e, subscription-started to a specific
 receiver) or removed (i.e., subscription-terminated to a specific
 receiver.)

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications

Voit, et al. Expires April 30, 2018 [Page 18]

Internet-Draft Subscribed Notifications October 2017

5.3. Deleting a Configured Subscription

 Subscriptions can be deleted using configuration operations against
 the top-level subtree subscription-config. For example, in RESTCONF:

 DELETE /subscription-config/subscription=1922 HTTP/1.1
 Host: example.com

 HTTP/1.1 204 No Content
 Date: Sun, 24 Jul 2016 11:23:40 GMT
 Server: example-server

 Figure 3: Deleting a configured subscription

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers of that subscription a state change
 notification stating the subscription has been terminated (i.e.,
 subscription-terminated).

6. Deleting a Configured Subscription

 Configured subscriptions can be deleted using configuration
 operations against the top-level subtree subscription-config.

 Immediately after a subscription is successfully deleted, the
 publisher sends to the existing receivers a state change notification
 stating the subscription has been terminated (i.e., subscription-
 terminated).

7. Asynchronous Subscribed Event Delivery

 Once a subscription has been set up, the publisher streams subscribed
 event records via notification messages per the terms of the
 subscription. For dynamic subscriptions set up via RPC operations,
 notification messages are sent over the session used to establish the
 subscription. For configured subscriptions, notification messages
 are sent over the specified connections.

 A notification message is sent to a receiver when something of
 interest occurs which is able to traverse all specified filtering and
 access control criteria.

 This notification message MUST be encoded as one-way notification
 element of [RFC5277], Section 4. The following example within

[RFC7950] section 7.16.3 is an example of a compliant message:

https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc7950#section-7.16.3

Voit, et al. Expires April 30, 2018 [Page 19]

Internet-Draft Subscribed Notifications October 2017

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 4: subscribed notification message

 This [RFC5277] section 4 one-way operation has the drawback of not
 including useful header information such as a subscription
 identifier. When using this mechanism, it is left up to
 implementations or augmentations to this document to determine which
 event records belong to which subscription.

 These drawbacks, along with other useful common headers and the
 ability to bundle multiple event records together is being explored
 within [I.D.draft-ietf-netconf-notification-messages]. When the
 notification-messages is supported, this document will be updated to
 indicate support.

8. Subscription State Notifications

 In addition to subscribed event records, a publisher will send
 subscription state notifications to indicate to receivers that an
 event related to the subscription management has occurred.

 Subscription state notifications are unlike other notifications which
 might be found in the event stream. They cannot be filtered out, and
 they are delivered only to directly impacted receiver(s) of a
 subscription. The definition of subscription state notifications is
 distinct from other notification messages by making use of a YANG
 extension tagging them as subscription state notification.

 Subscription state notifications include indications that a replay of
 event records has been completed, that a subscription is done because
 an end time has been reached, and that a subscription has started,
 been modified, been terminated, or been suspended. They are
 described in the following subsections.

8.1. subscription-started

 This indicates that a configured subscription has started and data
 updates are beginning to be sent. This state change notification
 includes the parameters of the subscription, except for the

https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages

Voit, et al. Expires April 30, 2018 [Page 20]

Internet-Draft Subscribed Notifications October 2017

 receiver(s) addressing information and origin information indicating
 where notification messages will egress the publisher. Note that for
 RPC-based subscriptions, no "subscription-started" notifications are
 sent.

8.2. subscription-modified

 This indicates that a configured subscription has been modified
 successfully. This state change notification includes the parameters
 of the subscription, except for the receiver(s) addressing
 information and origin information indicating where notification
 messages will egress the publisher. Note that for RPC-based
 subscriptions, no "subscription-modified" state change notifications
 are sent.

8.3. subscription-terminated

 This indicates that a subscription has been terminated by the
 publisher. The state change notification includes the reason for the
 termination. The publisher MAY decide to terminate a subscription
 when it is running out of resources for serving it, an internal error
 occurs, etc. Publisher-driven terminations are notified to all
 receivers. Northbound systems MAY also terminate configured
 subscriptions using configuration operations.

 Subscribers can terminate via RPC subscriptions established via a
 delete-subscription RPC. In such cases, no subscription-terminated
 state change notifications are sent. However if a kill-subscription
 RPC is sent, or some other event other than reaching the
 subscription's stop time results in the end of a subscription, then
 there MUST be this state change notification that the subscription
 has been ended.

8.4. subscription-suspended

 This indicates that a publisher has suspended a subscription. The
 state change notification includes the reason for the suspension. A
 possible reason is the lack of resources to serve it. No further
 subscribed event records will be sent until the subscription resumes.
 Suspensions are notified to the subscriber (in the case of dynamic
 subscriptions) and all receivers (in the case of configured
 subscriptions).

8.5. subscription-resumed

 This indicates that a previously suspended subscription has been
 resumed. Subscribed event records generated after the generation of
 this state change notification will be sent. These state change

Voit, et al. Expires April 30, 2018 [Page 21]

Internet-Draft Subscribed Notifications October 2017

 notifications go to the subscriber (in the case of dynamic
 subscriptions) and all receivers (in the case of configured
 subscriptions).

8.6. subscription-completed

 This indicates that a subscription, which includes a stop time, has
 successfully finished passing event records upon the reaching of that
 stop time.

8.7. replay-completed

 This indicates that all of the event records prior to the current
 time have been sent. This includes new event records generated since
 the start of the subscription. This notification MUST NOT be sent
 for any other reason.

 If subscription contains no stop time, or has a stop time which has
 not been reached, then after the replay-completed notification has
 been sent event records will be sent in sequence as they arise
 naturally within the system.

9. Administrative Functions

9.1. Subscription Monitoring

 Container "subscriptions" in the YANG module below contains the state
 of all known subscriptions. This includes subscriptions that were
 established (and have not yet been deleted) using RPCs, as well as
 subscriptions that have been configured as part of configuration.
 Using the "get" operation with NETCONF, or subscribing to this
 information via [I-D.ietf-netconf-yang-push] allows the status of
 subscriptions to be monitored.

 Each subscription is represented as a list element. The associated
 information includes an identifier for the subscription, receiver
 counter information, the status of the subscription, as well as the
 various subscription parameters that are in effect. The subscription
 status indicates the subscription's state with each receiver (e.g.,
 is currently active or suspended). Leaf "configured-subscription"
 indicates whether the subscription came into being via configuration
 or via RPC.

 Subscriptions that were established by RPC are removed from the list
 once they expire (reaching stop-time) or when they are terminated.
 Subscriptions that were established by configuration need to be
 deleted from the configuration by a configuration editing operation
 even if the stop time has been passed.

Voit, et al. Expires April 30, 2018 [Page 22]

Internet-Draft Subscribed Notifications October 2017

9.2. Advertisement

 Publishers supporting this document MUST indicate support the yang
 model "ietf-subscribed-notifications" within the YANG library of the
 publisher. In addition support for optional features: encode-xml,
 encode-json, configured-subscriptions, and replay MUST also be
 indicated if supported.

 If a publisher supports this specification but not subscriptions via
 [RFC5277], the publisher MUST NOT advertise
 "urn:ietf:params:netconf:capability:notification:1.0". Even without
 this advertisement however, the publisher MUST support the one-way
 notification element of [RFC5277] Section 4.

9.3. Event Stream Discovery

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and vendor-
 specific event streams. A client can retrieve this list like any
 other YANG-defined data.

10. Data Model

<CODE BEGINS> file "ietf-subscribed-notifications.yang"
module ietf-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications";

 prefix sn;

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-inet-types {
 prefix inet;
 }
 import ietf-interfaces {
 prefix if;
 }

 organization "IETF";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277#section-4

Voit, et al. Expires April 30, 2018 [Page 23]

Internet-Draft Subscribed Notifications October 2017

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:agonzalezpri@vmware.com>

 Editor: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>";

 description
 "Contains a YANG specification for subscribing to event records
 and receiving matching content within notification messages.";

 revision 2017-10-27 {
 description
 "Initial version";
 reference
 "draft-ietf-netconf-subscribed-notifications-06";
 }

 /*
 * FEATURES
 */

 feature encode-json {
 description
 "This feature indicates that JSON encoding of notification
 messages is supported.";
 }

 feature encode-xml {
 description
 "This feature indicates that XML encoding of notification
 messages is supported.";
 }

 feature configured {
 description
 "This feature indicates that configuration of subscription is
 supported.";
 }

 feature replay {
 description
 "This feature indicates that historical event record replay is

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-subscribed-notifications-06

Voit, et al. Expires April 30, 2018 [Page 24]

Internet-Draft Subscribed Notifications October 2017

 supported. With replay, it is possible for past event records to
 be streamed in chronological order.";
 }

 feature xpath {
 description
 "This feature indicates support for xpath filtering.";
 reference "http://www.w3.org/TR/1999/REC-xpath-19991116";
 }

 feature subtree {
 description
 "This feature indicates support for YANG subtree filtering.";
 reference "RFC 6241, Section 6.";
 }

 /*
 * EXTENSIONS
 */

 extension subscription-state-notif {
 description
 "This statement applies only to notifications. It indicates that
 the notification is a subscription state notification. Therefore
 it does not participate in a regular event stream and does not
 need to be specifically subscribed to in order to be received.
 This statement can only occur as a substatement to the YANG
 'notification' statement.";
 }

 /*
 * IDENTITIES
 */

 /* Identities for subscription results */
 identity subscription-result {
 description
 "Base identity for RPC responses and State Change Notifications
 providing information on the creation, modification, deletion of
 subscriptions.";
 }

 identity ok {
 base subscription-result;
 description
 "OK - RPC was successful and was performed as requested.";
 }

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Voit, et al. Expires April 30, 2018 [Page 25]

Internet-Draft Subscribed Notifications October 2017

 identity error {
 base subscription-result;
 description
 "Problem with subscription. Base identity for error return
 codes for RPCs and State Change Notifications.";
 }

 /* Identities for subscription errors */

 identity suspension-timeout {
 base error;
 description
 "Termination of previously suspended subscription. The publisher
 has eliminated the subscription as it exceeded a time limit for
 suspension.";
 }

 identity stream-unavailable {
 base error;
 description
 "Stream does not exist or is not available to the receiver.";
 }

 identity encoding-unavailable {
 base error;
 description
 "Encoding not supported";
 }

 identity replay-unsupported {
 base error;
 description
 "Replay cannot be performed for this subscription. The publisher
 does not provide the requested historic information via replay.";
 }

 identity history-unavailable {
 base error;
 description
 "Replay request too far into the past. The publisher does store
 historic information for all parts of requested subscription, but
 not back to the requested timestamp.";
 }

 identity filter-unavailable {
 base error;
 description
 "Referenced filter does not exist";

Voit, et al. Expires April 30, 2018 [Page 26]

Internet-Draft Subscribed Notifications October 2017

 }

 identity filter-type-unsupported {
 base error;
 description
 "Publisher does not support filters constructed using this
 filtering technology syntax.";
 }

 identity filter-unsupported {
 base error;
 description
 "Failure can be from a syntax error, or a syntax too complex to be
 processed by the platform. The supplemental info should include
 the invalid part of the filter.";
 }

 identity namespace-unavailable {
 base error;
 description
 "Referenced namespace doesn't exist or is unavailable
 to the receiver.";
 }

 identity no-such-subscription {
 base error;
 description
 "Referenced subscription doesn't exist. This may be as a result of
 a non-existent subscription ID, an ID which belongs to another
 subscriber, or an ID for acceptable subscription which has been
 statically configured.";
 }

 identity insufficient-resources {
 base error;
 description
 "The publisher has insufficient resources to support the
 subscription as requested by an RPC.";
 }

 identity unsupportable-volume {
 base error;
 description
 "The publisher cannot support the volume of information intended
 to be sent for an existing subscription.";
 }

 identity error-no-such-option {

Voit, et al. Expires April 30, 2018 [Page 27]

Internet-Draft Subscribed Notifications October 2017

 base error;
 description
 "A requested parameter setting is not supported.";
 }

 /* Identities for encodings */
 identity encodings {
 description
 "Base identity to represent data encodings";
 }

 identity encode-xml {
 base encodings;
 if-feature "encode-xml";
 description
 "Encode data using XML";
 }

 identity encode-json {
 base encodings;
 if-feature "encode-json";
 description
 "Encode data using JSON";
 }

 /* Identities for transports */
 identity transport {
 description
 "An identity that represents a the underlying mechanism for
 passing notification messages.";
 }

 identity netconf {
 base transport;
 description
 "Netconf is used a transport for notification messages and state
 change notifications.";
 reference "draft-ietf-netconf-netconf-event-notifications";
 }

 identity http2 {
 base transport;
 description
 "HTTP2 is used a transport for notification messages and state
 change notifications.";
 reference "draft-ietf-netconf-restconf-notif-03, Sections 3.1.1" +
 "3.1.3";
 }

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif-03

Voit, et al. Expires April 30, 2018 [Page 28]

Internet-Draft Subscribed Notifications October 2017

 identity http1.1 {
 base transport;
 description
 "HTTP1.1 is used a transport for notification messages and state
 change notifications.";
 reference "draft-ietf-netconf-restconf-notif-03, Section 3.1.2";
 }
 /*
 * TYPEDEFs
 */

 typedef subscription-id {
 type uint32;
 description
 "A type for subscription identifiers.";
 }

 typedef filter-id {
 type string;
 description
 "A type to identify filters which can be associated with a
 subscription.";
 }

 typedef subscription-result {
 type identityref {
 base subscription-result;
 }
 description
 "The result of a subscription operation";
 }

 typedef subscription-errors {
 type identityref {
 base error;
 }
 description
 "The reason for the failure of an RPC request or the sending
 of a subscription suspension or termination state change
 notification";
 }

 typedef encoding {
 type identityref {
 base encodings;
 }
 description
 "Specifies a data encoding, e.g. for a data subscription.";

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif-03

Voit, et al. Expires April 30, 2018 [Page 29]

Internet-Draft Subscribed Notifications October 2017

 }

 typedef transport {
 type identityref {
 base transport;
 }
 description
 "Specifies protocol used to send notification messages to a
 receiver.";
 }

 typedef stream {
 type string;
 description
 "Specifies a system-provided datastream.";
 }

 typedef stream-filter-ref {
 type leafref {
 path "/sn:filters/sn:stream-filter/sn:identifier";
 }
 description
 "This type is used to reference a stream filter.";
 }

 /*
 * GROUPINGS
 */

 grouping stream-filter-elements {
 description
 "This grouping defines the base for filters applied to event
 streams.";
 choice filter-spec {
 description
 "The content filter specification for this request.";
 anydata subtree-filter {
 if-feature "subtree";
 description
 "Event stream evaluation criteria encoded in a syntax of a
 supported type of an RFC 6241, Section 6 filter. The subtree
 filter is applied to the representation of individual,
 delineated event records as contained within the event
 stream. For example, if the notification message contains an
 instance of a notification defined in YANG, then the top-
 level element is the name of the YANG notification. If the
 stream filter matches an event record from the stream, the
 event record should be included in a notification message

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Voit, et al. Expires April 30, 2018 [Page 30]

Internet-Draft Subscribed Notifications October 2017

 to the receiver(s).";
 }
 leaf xpath-filter {
 if-feature "xpath";
 type yang:xpath1.0;
 description
 "Event stream evaluation criteria encoded in a syntax of xpath
 1.0 and applied against an event stream. The result of
 applying XPath expression is converted to a boolean value
 using the standard XPath 1.0 rules. If the boolean value is
 'true', the stream filter matches an event record within the
 stream, and the notification message should be sent to the
 receiver(s).";
 }
 }
 }

 grouping subscription-policy-modifiable {
 description
 "This grouping describes all objects which may be changed
 in a subscription via an RPC.";
 choice target {
 mandatory true;
 description
 "Identifies the source of information against which a
 subscription is being applied, as well as specifics on the
 subset of information desired from that source. This choice
 exists so that additional filter types can be added via
 augmentation.";
 case stream {
 choice stream-filter {
 description
 "An event stream filter can be applied to a subscription.
 That filter will come either referenced from a global list,
 or be provided within the subscription itself.";
 case by-reference {
 description
 "Apply a filter that has been configured separately.";
 leaf stream-filter-ref {
 type stream-filter-ref;
 mandatory true;
 description
 "References an existing stream-filter which is to
 be applied to stream for the subscription.";
 }
 }
 case within-subscription {
 description

Voit, et al. Expires April 30, 2018 [Page 31]

Internet-Draft Subscribed Notifications October 2017

 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses stream-filter-elements;
 }
 }
 }
 }
 leaf stop-time {
 type yang:date-and-time;
 description
 "Identifies a time after which notification messages for a
 subscription should not be sent. If stop-time is not present,
 the notification messages will continue until the subscription
 is terminated. If replay-start-time exists, stop-time must be
 for a subsequent time. If replay-start-time doesn't exist,
 stop-time must be for a future time.";
 }
 }

 grouping subscription-policy {
 description
 "This grouping describes information concerning a subscription.";
 leaf encoding {
 type encoding;
 mandatory true;
 description
 "The type of encoding for the subscribed data.";
 }
 uses subscription-policy-modifiable {
 augment target/stream {
 description
 "Adds additional objects which must be set just by RPC.";
 leaf stream {
 type stream;
 mandatory true;
 description
 "Indicates a stream of event records against which to apply
 a stream filter.";
 }
 leaf replay-start-time {
 if-feature "replay";
 type yang:date-and-time;
 description
 "Used to trigger the replay feature and indicate that the
 replay should start at the time specified. If
 replay-start-time is not present, this is not a replay
 subscription and event record push should start immediately.
 It is never valid to specify start times that are later than

Voit, et al. Expires April 30, 2018 [Page 32]

Internet-Draft Subscribed Notifications October 2017

 or equal to the current time.";
 }
 }
 }
 }

 grouping notification-origin-info {
 description
 "Defines the sender source from which notification messages for a
 configured subscription are sent.";
 choice notification-message-origin {
 description
 "Identifies the egress interface on the Publisher from which
 notification messages are to be sent.";
 case interface-originated {
 description
 "When the push source is out of an interface on the
 Publisher established via static configuration.";
 leaf source-interface {
 type if:interface-ref;
 description
 "References the interface for notification messages.";
 }
 }
 case address-originated {
 description
 "When the push source is out of an IP address on the
 Publisher established via static configuration.";
 leaf source-vrf {
 type string;
 description
 "Network instance name for the VRF. This could also have
 been a leafref to draft-ietf-rtgwg-ni-model, but that model
 is not complete, and might not be implemented on a box.";
 }
 leaf source-address {
 type inet:ip-address-no-zone;
 description
 "The source address for the notification messages. If a
 source VRF exists, but this object doesn't, a publisher's
 default address for that VRF must be used.";
 }
 }
 }
 }

 grouping receiver-info {
 description

https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model

Voit, et al. Expires April 30, 2018 [Page 33]

Internet-Draft Subscribed Notifications October 2017

 "Defines where and how to get notification messages for a
 configured subscriptions to one or more targeted recipient. This
 includes specifying the destination addressing as well as a
 transport protocol acceptable to the receiver.";
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "address port";
 min-elements 1;
 description
 "A single host or multipoint address intended as a target
 for the notification messages of a subscription.";
 leaf address {
 type inet:host;
 description
 "Specifies the address for the traffic to reach a remote
 host. One of the following must be specified: an ipv4
 address, an ipv6 address, or a host name.";
 }
 leaf port {
 type inet:port-number;
 description
 "This leaf specifies the port number to use for messages
 destined for a receiver.";
 }
 leaf protocol {
 type transport;
 mandatory true;
 description
 "This leaf specifies the transport protocol used
 to deliver messages destined for the receiver. Each
 protocol may use the address and port information
 differently as applicable.";
 }
 }
 }
 }

 grouping error-identifier {
 description
 "A code passed back within an RPC response to describe why the RFC
 has failed, or within a state change notification to describe why
 the change has occurred.";
 leaf error-id {
 type subscription-errors;
 mandatory true;
 description

Voit, et al. Expires April 30, 2018 [Page 34]

Internet-Draft Subscribed Notifications October 2017

 "Identifies the subscription error condition.";
 }
 }

 grouping hints {
 description
 "Objects passed back within an RPC response to describe why the
 RFC has failed, or within a state change notification to
 describe why the change has occurred.";
 leaf filter-failure {
 type string;
 description
 "Information describing where and/or why a provided filter was
 unsupportable for a subscription.";
 }
 }

 grouping subscription-response-with-hints {
 description
 "Defines the output for the establish-subscription and
 modify-subscription RPCs.";
 leaf subscription-result {
 type subscription-result;
 mandatory true;
 description
 "Indicates whether subscription is operational, or if a problem
 was encountered.";
 }
 choice result {
 description
 "Depending on the subscription result, different data is
 returned.";
 case no-success {
 description
 "This case applies when a subscription request was not
 successful and no subscription was created (or modified) as a
 result. In this case, information MAY be returned that
 indicates suggested parameter settings that would have a
 high likelihood of succeeding in a subsequent establish-
 subscription or modify-subscription request.";
 uses hints;
 }
 }
 }

 /*
 * RPCs
 */

Voit, et al. Expires April 30, 2018 [Page 35]

Internet-Draft Subscribed Notifications October 2017

 rpc establish-subscription {
 description
 "This RPC allows a subscriber to create (and possibly negotiate)
 a subscription on its own behalf. If successful, the
 subscription remains in effect for the duration of the
 subscriber's association with the publisher, or until the
 subscription is terminated. In case an error (as indicated by
 subscription-result) is returned, the subscription is not
 created. In that case, the RPC reply MAY include suggested
 parameter settings that would have a higher likelihood of
 succeeding in a subsequent establish-subscription request.";
 input {
 uses subscription-policy {
 refine "encoding" {
 mandatory false;
 description
 "The type of encoding for the subscribed data. If not
 included as part of the RPC, the encoding MUST be set by the
 publisher to be the encoding used by this RPC.";
 }
 }
 }
 output {
 uses subscription-response-with-hints {
 augment "result" {
 description
 "Allows information to be passed back as part of a
 successful subscription establishment.";
 case success {
 description
 "This case is used when the subscription request was
 successful.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "Identifier used for this subscription.";
 }
 }
 }
 augment "result/no-success" {
 description
 "Contains establish RPC specific objects which can be
 returned as hints for future attempts.";
 leaf replay-start-time-hint {
 type yang:date-and-time;
 description
 "If a replay has been requested, but the requested replay

Voit, et al. Expires April 30, 2018 [Page 36]

Internet-Draft Subscribed Notifications October 2017

 time cannot be honored, this may provide a hint at an
 alternate time which may be supportable.";
 }
 }
 }
 }
 }

 rpc modify-subscription {
 description
 "This RPC allows a subscriber to modify a subscription that was
 previously created using establish-subscription. If successful,
 the changed subscription remains in effect for the duration of
 the subscriber's association with the publisher, or until the
 subscription is again modified or terminated. In case an error
 is returned (as indicated by subscription-result), the
 subscription is not modified and the original subscription
 parameters remain in effect. In that case, the rpc error
 response MAY include suggested parameter hints that would have
 a high likelihood of succeeding in a subsequent
 modify-subscription request.";
 input {
 leaf identifier {
 type subscription-id;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-policy-modifiable;
 }
 output {
 uses subscription-response-with-hints;
 }
 }

 rpc delete-subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created from by that same subscriber using the
 establish-subscription RPC.";
 input {
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 establish-subscription can be deleted via this RPC.";
 }

Voit, et al. Expires April 30, 2018 [Page 37]

Internet-Draft Subscribed Notifications October 2017

 }
 output {
 leaf subscription-result {
 type subscription-result;
 mandatory true;
 description
 "Indicates whether subscription has been deleted, or if a
 problem was encountered.";
 }
 }
 }

 rpc kill-subscription {
 description
 "This RPC allows an operator to delete a dynamic subscription
 without restrictions on the originating subscriber or underlying
 transport session.";
 input {
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted. Only
 subscriptions that were created using establish-subscription
 can be deleted via this RPC.";
 }
 }
 output {
 leaf subscription-result {
 type subscription-result;
 mandatory true;
 description
 "Indicates whether subscription has been killed, or if a
 problem was encountered.";
 }
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification replay-completed {
 sn:subscription-state-notif;
 if-feature "replay";
 description
 "This notification is sent to indicate that all of the replay
 notifications have been sent. It must not be sent for any other

Voit, et al. Expires April 30, 2018 [Page 38]

Internet-Draft Subscribed Notifications October 2017

 reason.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-completed {
 sn:subscription-state-notif;
 description
 "This notification is sent to indicate that a subscription has
 finished passing event records.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the gracefully completed subscription.";
 }
 }

 notification subscription-started {
 sn:subscription-state-notif;
 if-feature "configured";
 description
 "This notification indicates that a subscription has started and
 notifications are beginning to be sent. This notification shall
 only be sent to receivers of a subscription; it does not
 constitute a general-purpose notification.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/replay-start-time" {
 description
 "Indicates the time that a replay using for the streaming of
 buffered event records. This will be populated with the most
 recent of the following: replay-log-creation-time,
 replay-log-aged-time, replay-start-time, or the most recent
 publisher boot time.";
 }
 }
 }

Voit, et al. Expires April 30, 2018 [Page 39]

Internet-Draft Subscribed Notifications October 2017

 notification subscription-resumed {
 sn:subscription-state-notif;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications will once
 again be sent.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-modified {
 sn:subscription-state-notif;
 if-feature "configured";
 description
 "This notification indicates that a subscription has been
 modified. Notification messages sent from this point on will
 conform to the modified terms of the subscription. For
 completeness, this state change notification includes both
 modified and non-modified aspects of a subscription.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy;
 }

 notification subscription-terminated {
 sn:subscription-state-notif;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses error-identifier;
 uses hints;
 }

 notification subscription-suspended {

Voit, et al. Expires April 30, 2018 [Page 40]

Internet-Draft Subscribed Notifications October 2017

 sn:subscription-state-notif;
 description
 "This notification indicates that a suspension of the
 subscription by the publisher has occurred. No further
 notifications will be sent until the subscription resumes.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf identifier {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses error-identifier;
 uses hints;
 }

 /*
 * DATA NODES
 */

 container streams {
 config false;
 description
 "This container contains information on the built-in streams
 provided by the publisher.";
 list stream {
 key "name";
 description
 "Identifies the built-in streams that are supported by the
 publisher.";
 leaf name {
 type stream;
 description
 "A handle for a sequential set of event records, each of which
 is characterized by its own domain and semantics.";
 }
 leaf description {
 type string;
 mandatory true;
 description
 "A description of the event stream, including such information
 as the type of event records that are available within this
 stream.";
 }
 leaf replay-support {
 if-feature "replay";

Voit, et al. Expires April 30, 2018 [Page 41]

Internet-Draft Subscribed Notifications October 2017

 type empty;
 description
 "Indicates that event record replay is available on this
 stream.";
 }
 leaf replay-log-creation-time {
 if-feature "replay";
 type yang:date-and-time;
 description
 "The timestamp of the creation of the log used to support the
 replay function on this stream. Note that this might be
 earlier then the earliest available information contained in
 the log. This object is updated if the log resets for some
 reason. This object MUST be present if replay is supported.";
 }
 leaf replay-log-aged-time {
 if-feature "replay";
 type yang:date-and-time;
 description
 "The timestamp of the last event record aged out of the log.
 This object MUST be present if replay is supported and any
 event record have been aged out of the log.";
 }
 }
 }

 container filters {
 description
 "This container contains a list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 list stream-filter {
 key "identifier";
 description
 "A list of pre-positioned filters that can be applied to
 subscriptions.";
 leaf identifier {
 type filter-id;
 description
 "An identifier to differentiate between filters.";
 }
 uses stream-filter-elements;
 }
 }

 container subscription-config {
 if-feature "configured";
 description

Voit, et al. Expires April 30, 2018 [Page 42]

Internet-Draft Subscribed Notifications October 2017

 "Contains the list of subscriptions that are configured,
 as opposed to established via RPC or other means.";
 list subscription {
 key "identifier";
 description
 "The identity and specific parameters of a subscription.";
 leaf identifier {
 type subscription-id;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-policy;
 uses receiver-info {
 augment receivers/receiver {
 description
 "include operational data for receivers.";
 leaf status {
 type enumeration {
 enum connecting {
 value 5;
 description
 "A subscription has been configured, and a
 subscription-started state change notification should
 be sent as quickly as possible.";
 }
 enum suspended {
 value 3;
 description
 "The status is suspended, meaning that the publisher is
 currently will not provide notification messages for
 the subscription until some status change.";
 }
 }
 default "connecting";
 description
 "Allows state initialization of a particular receiver.";
 }
 }
 }
 uses notification-origin-info;
 }
 }
 container subscriptions {
 config false;
 description
 "Contains the list of currently active subscriptions, i.e.
 subscriptions that are currently in effect, used for subscription
 management and monitoring purposes. This includes subscriptions

Voit, et al. Expires April 30, 2018 [Page 43]

Internet-Draft Subscribed Notifications October 2017

 that have been setup via RPC primitives as well as subscriptions
 that have been established via configuration.";
 list subscription {
 key "identifier";
 description
 "The identity and specific parameterst of a subscription.
 Subscriptions within this list can be created using a control
 channel or RPC, or be established through configuration.";
 leaf identifier {
 type subscription-id;
 description
 "Identifier of a subscription; unique within a publisher";
 }
 leaf configured-subscription {
 if-feature "configured";
 type empty;
 description
 "The presence of this leaf indicates that the subscription
 originated from configuration, not through a control channel
 or RPC.";
 }
 uses subscription-policy;
 uses notification-origin-info {
 if-feature "configured";
 }
 uses receiver-info {
 augment receivers/receiver {
 description
 "include operational data for receivers.";
 leaf pushed-notifications {
 type yang:counter64;
 description
 "Operational data which provides the number of update
 notification messages pushed to a receiver.";
 }
 leaf excluded-notifications {
 type yang:counter64;
 description
 "Operational data which provides the number of event
 records from a stream explicitly removed via filtering so
 that they are not sent to a receiver.";
 }
 leaf status {
 type enumeration {
 enum active {
 value 1;
 description
 "Connection is active and healthy.";

Voit, et al. Expires April 30, 2018 [Page 44]

Internet-Draft Subscribed Notifications October 2017

 }
 enum concluded {
 value 2;
 description
 "A subscription is inactive as it has hit a stop time,
 but not yet been removed.";
 }
 enum suspended {
 value 3;
 description
 "The status is suspended, meaning that the publisher
 is currently unable to provide notification messages
 for the subscription.";
 }
 enum in-error {
 value 4;
 description
 "The status is in error or degraded, meaning that a
 subscription is unsupportable with its current
 parameters.";
 }
 enum connecting {
 value 5;
 description
 "A subscription has been configured, but a
 subscription-started state change notification has not
 yet been succesfully received.";
 }
 }
 mandatory true;
 description
 "Specifies the status of a subscription from the
 perspective of a particular receiver. With this info it
 is possible to determine whether a subscriber is currently
 generating notification messages intended for that
 receiver.";
 }
 }
 }
 }
 }
}
<CODE ENDS>

Voit, et al. Expires April 30, 2018 [Page 45]

Internet-Draft Subscribed Notifications October 2017

11. Considerations

11.1. Implementation Considerations

 For a deployment including both configured and dynamic subscriptions,
 split subscription identifiers into static and dynamic halves. That
 way it is unlikely there will be collisions if the configured
 subscriptions attempt to set a subscription-id which might have
 already been dynamically allocated. The lower half SHOULD be used
 for subscriptions which will have subscription identifiers provided
 from outside the publisher, and upper half for subscription
 identifiers assigned by the publisher.

 No state change notification or nor subscribed event records within
 notification messages may be sent before the transport layer,
 including any requried capabilities exchange, has been established.

 An implementation may choose to transition between active and
 suspended subscription states more frequently than required by this
 specification. However if a subscription is unable to marshal all
 intended updates into a transmittable message in multiple successive
 intervals, the subscription SHOULD be suspended with the reason
 "unsupportable-volume".

 For configured subscriptions, operations are against the set of
 receivers using the subscription identifier as a handle for that set.
 But for streaming up dates, state change notifications are local to a
 receiver. In this specification it is the case that receivers get no
 information from the publisher about the existence of other
 receivers. But if an operator wants to let the receivers correlate
 results, it is useful to use the subscription identifier handle
 across the receivers to allow that correlation.

11.2. Security Considerations

 For dynamic subscriptions the publisher MUST authenticate and
 authorize all RPC requests.

 Subscriptions could overload a publisher's CPU. For this reason, the
 publisher MUST have the ability to decline a dynamic subscription
 request, and provide the appropriate RPC error response to a
 subscriber should the proposed subscription overly deplete the
 publisher's resources.

 A publisher needs to be able to suspend an existing dynamic or
 configured subscription based on capacity constraints. When this
 occurs, the subscription status MUST be updated accordingly and the
 receivers notified with subscription state notifications.

Voit, et al. Expires April 30, 2018 [Page 46]

Internet-Draft Subscribed Notifications October 2017

 If a malicious or buggy subscriber sends an unexpectedly large number
 of RPCs, the result might be an excessive use of system resources.
 In such a situation, subscription interactions MAY be terminated by
 terminating the transport session.

 For both configured and dynamic subscriptions the publisher MUST
 authenticate and authorize a receiver via some transport level
 mechanism before sending any updates.

 A secure transport is highly recommended and the publisher MUST
 ensure that the user has sufficient authorization to perform the
 function they are requesting against the specific subset of content
 involved.

 A publisher MUST NOT include any content in a notification message
 for which the user has not been authorized.

 With configured subscriptions, one or more publishers could be used
 to overwhelm a receiver. No notification messages SHOULD be sent to
 any receiver which doesn't even support subscriptions. Subscribers
 that do not want notification messages need only terminate or refuse
 any transport sessions from the publisher.

 The NETCONF Authorization Control Model [RFC6536bis] SHOULD be used
 to control and restrict authorization of subscription configuration.
 This control models permits specifying per-user permissions to
 receive event records from specific streams.

 Where NACM is available, the NACM "very-secure" tag MUST be placed on
 the "kill-subscription" RPC so that only administrators have access
 to use this.

 One subscription id can be used for two or more receivers of the same
 configured subscription. But due to the possibility of different
 access control permissions per receiver, it SHOULD NOT be assumed
 that each receiver is getting identical updates.

12. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Tim Jenkins, Martin Bjorklund, Kent Watsen,
 Balazs Lengyel, Robert Wilton, Sharon Chisholm, Hector Trevino, Susan
 Hares, Michael Scharf, and Guangying Zheng.

Voit, et al. Expires April 30, 2018 [Page 47]

Internet-Draft Subscribed Notifications October 2017

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6536bis]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", draft-ietf-

netconf-rfc6536bis-01 (work in progress), September 2017.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

13.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., Tripathy, A., Chisholm, S., and H.
 Trevino, "NETCONF support for event notifications",
 October 2016, <https://datatracker.ietf.org/doc/

draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-restconf-notif]
 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", August 2016,
 <https://datatracker.ietf.org/doc/

draft-ietf-netconf-restconf-notif/>.

 [I-D.ietf-netconf-yang-push]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", October 2017,
 <https://datatracker.ietf.org/doc/

draft-ietf-netconf-yang-push/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-rfc6536bis-01
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-rfc6536bis-01
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/draft-ietf-netconf-netconf-event-notifications/
https://datatracker.ietf.org/doc/draft-ietf-netconf-netconf-event-notifications/
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif
https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf-notif/
https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf-notif/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/

Voit, et al. Expires April 30, 2018 [Page 48]

Internet-Draft Subscribed Notifications October 2017

 [I.D.draft-ietf-netconf-notification-messages]
 Voit, Eric., Clemm, Alexander., Bierman, A., and T.
 Jenkins, "YANG Notification Headers and Bundles",
 September 2017, <https://datatracker.ietf.org/doc/

draft-ietf-netconf-notification-messages>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Appendix A. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v05 - v06

 o Made changes proposed by Martin, Kent, and others on the list.
 Most significant of these are Stream returned to string (with the
 SYSLOG identity removed), intro section on 5277 relationship, an
 identity set moved to an enumeration, clean up of definitions/
 terminology, state machine proposed for configured subscriptions
 with a clean-up of susbcription state options.

 o JSON and XML become features. Also Xpath and subtree filtering
 become features

 o Terminology updates with event records, and refinement of filters
 to just stream filters.

 o Encoding refined in establish-subscription so it takes the RPC's
 encoding as the default.

 o Namespaces in examples fixed.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages
https://datatracker.ietf.org/doc/draft-ietf-netconf-notification-messages
https://datatracker.ietf.org/doc/draft-ietf-netconf-notification-messages
https://datatracker.ietf.org/doc/html/rfc5277
https://www.rfc-editor.org/info/rfc5277
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7923
https://www.rfc-editor.org/info/rfc7923
https://datatracker.ietf.org/doc/html/rfc8040
https://www.rfc-editor.org/info/rfc8040

Voit, et al. Expires April 30, 2018 [Page 49]

Internet-Draft Subscribed Notifications October 2017

 v04 - v05

 o Returned to the explicit filter subtyping of v00

 o stream object changed to 'name' from 'stream'

 o Cleaned up examples

 o Clarified that JSON support needs notification-messages draft.

 v03 - v04

 o Moved back to the use of RFC5277 one-way notifications and
 encodings.

 v03 - v04

 o Replay updated

 v02 - v03

 o RPCs and Notification support is identified by the Notification
 2.0 capability.

 o Updates to filtering identities and text

 o New error type for unsupportable volume of updates

 o Text tweaks.

 v01 - v02

 o Subscription status moved under receiver.

 v00 - v01

 o Security considerations updated

 o Intro rewrite, as well as scattered text changes

 o Added Appendix A, to help match this to related drafts in progress

 o Updated filtering definitions, and filter types in yang file, and
 moved to identities for filter types

 o Added Syslog as a stream

 o HTTP2 moved in from YANG-Push as a transport option

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires April 30, 2018 [Page 50]

Internet-Draft Subscribed Notifications October 2017

 o Replay made an optional feature for events. Won't apply to
 datastores

 o Enabled notification timestamp to have different formats.

 o Two error codes added.

 v01 5277bis - v00 subscribed notifications

 o Kill subscription RPC added.

 o Renamed from 5277bis to Subscribed Notifications.

 o Changed the notification capabilities version from 1.1 to 2.0.

 o Extracted create-subscription and other elements of RFC5277.

 o Error conditions added, and made specific in return codes.

 o Simplified yang model structure for removal of 'basic' grouping.

 o Added a grouping for items which cannot be statically configured.

 o Operational counters per receiver.

 o Subscription-id and filter-id renamed to identifier

 o Section for replay added. Replay now cannot be configured.

 o Control plane notification renamed to subscription state
 notification

 o Source address: Source-vrf changed to string, default address
 option added

 o In yang model: 'info' changed to 'policy'

 o Scattered text clarifications

 v00 - v01 of 5277bis

 o YANG Model changes. New groupings for subscription info to allow
 restriction of what is changeable via RPC. Removed notifications
 for adding and removing receivers of configured subscriptions.

 o Expanded/renamed definitions from event server to publisher, and
 client to subscriber as applicable. Updated the definitions to
 include and expand on RFC 5277.

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires April 30, 2018 [Page 51]

Internet-Draft Subscribed Notifications October 2017

 o Removal of redundancy with other drafts

 o Many other clean-ups of wording and terminology

Authors' Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Alberto Gonzalez Prieto
 VMWare

 Email: agonzalezpri@vmware.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

Voit, et al. Expires April 30, 2018 [Page 52]

