
NETCONF E. Voit
Internet-Draft Cisco Systems
Intended status: Standards Track A. Clemm
Expires: August 17, 2019 Huawei
 A. Gonzalez Prieto
 Microsoft
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 February 13, 2019

Subscription to YANG Event Notifications
draft-ietf-netconf-subscribed-notifications-23

Abstract

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher's event
 streams. Applying these elements allows a subscriber to request for
 and receive a continuous, custom feed of publisher generated
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Voit, et al. Expires August 17, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Subscribed Notifications February 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Motivation . 3
1.2. Terminology . 3
1.3. Solution Overview . 5
1.4. Relationship to RFC 5277 6

2. Solution . 7
2.1. Event Streams . 7
2.2. Event Stream Filters 8
2.3. QoS . 8
2.4. Dynamic Subscriptions 9
2.5. Configured Subscriptions 17
2.6. Event Record Delivery 25
2.7. Subscription state change notifications 26
2.8. Subscription Monitoring 31
2.9. Advertisement . 32

3. YANG Data Model Trees . 32
3.1. Event Streams Container 32
3.2. Filters Container . 33
3.3. Subscriptions Container 33

4. Data Model . 35
5. Considerations . 62
5.1. IANA Considerations 62
5.2. Implementation Considerations 63
5.3. Transport Requirements 64
5.4. Security Considerations 64

6. Acknowledgments . 68
7. References . 68
7.1. Normative References 68
7.2. Informative References 70

Appendix A. Example Configured Transport Augmentation 71
Appendix B. Changes between revisions 72

 Authors' Addresses . 78

1. Introduction

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher's event
 streams. Effectively this enables a 'subscribe then publish'
 capability where the customized information needs and access

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 2]

Internet-Draft Subscribed Notifications February 2019

 permissions of each target receiver are understood by the publisher
 before subscribed event records are marshaled and pushed. The
 receiver then gets a continuous, custom feed of publisher generated
 information.

 While the functionality defined in this document is transport-
 agnostic, transports like NETCONF [RFC6241] or RESTCONF [RFC8040] can
 be used to configure or dynamically signal subscriptions, and there
 are bindings defined for subscribed event record delivery for NETCONF
 within [I-D.draft-ietf-netconf-netconf-event-notifications], and for
 RESTCONF within [I-D.draft-ietf-netconf-restconf-notif].

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

1.1. Motivation

 Various limitations in [RFC5277] are discussed in [RFC7923].
 Resolving these issues is the primary motivation for this work. Key
 capabilities supported by this document include:

 o multiple subscriptions on a single transport session

 o support for dynamic and configured subscriptions

 o modification of an existing subscription in progress

 o per-subscription operational counters

 o negotiation of subscription parameters (through the use of hints
 returned as part of declined subscription requests)

 o subscription state change notifications (e.g., publisher driven
 suspension, parameter modification)

 o independence from transport

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Client: defined in [RFC8342].

 Configuration: defined in [RFC8342].

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif
https://datatracker.ietf.org/doc/html/rfc8342
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc7923
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8342
https://datatracker.ietf.org/doc/html/rfc8342

Voit, et al. Expires August 17, 2019 [Page 3]

Internet-Draft Subscribed Notifications February 2019

 Configuration datastore: defined in [RFC8342].

 Configured subscription: A subscription installed via configuration
 into a configuration datastore.

 Dynamic subscription: A subscription created dynamically by a
 subscriber via a remote procedure call.

 Event: An occurrence of something that may be of interest. Examples
 include a configuration change, a fault, a change in status, crossing
 a threshold, or an external input to the system.

 Event occurrence time: a timestamp matching the time an originating
 process identified as when an event happened.

 Event record: A set of information detailing an event.

 Event stream: A continuous, chronologically ordered set of events
 aggregated under some context.

 Event stream filter: Evaluation criteria which may be applied against
 event records within an event stream. Event records pass the filter
 when specified criteria are met.

 Notification message: Information intended for a receiver indicating
 that one or more events have occurred.

 Publisher: An entity responsible for streaming notification messages
 per the terms of a subscription.

 Receiver: A target to which a publisher pushes subscribed event
 records. For dynamic subscriptions, the receiver and subscriber are
 the same entity.

 Subscriber: A client able to request and negotiate a contract for the
 generation and push of event records from a publisher. For dynamic
 subscriptions, the receiver and subscriber are the same entity.

 Subscription: A contract with a publisher, stipulating which
 information one or more receivers wish to have pushed from the
 publisher without the need for further solicitation.

 All YANG tree diagrams used in this document follow the notation
 defined in [RFC8340].

https://datatracker.ietf.org/doc/html/rfc8342
https://datatracker.ietf.org/doc/html/rfc8340

Voit, et al. Expires August 17, 2019 [Page 4]

Internet-Draft Subscribed Notifications February 2019

1.3. Solution Overview

 This document describes a transport agnostic mechanism for
 subscribing to and receiving content from an event stream within a
 publisher. This mechanism is through the use of a subscription.

 Two types of subscriptions are supported:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via an RPC. If the
 publisher is able to serve this request, it accepts it, and then
 starts pushing notification messages back to the subscriber. If
 the publisher is not able to serve it as requested, then an error
 response is returned. This response MAY include hints at
 subscription parameters that, had they been present, may have
 enabled the dynamic subscription request to be accepted.

 2. Configured subscriptions, which allow the management of
 subscriptions via a configuration so that a publisher can send
 notification messages to a receiver. Support for configured
 subscriptions is optional, with its availability advertised via a
 YANG feature.

 Additional characteristics differentiating configured from dynamic
 subscriptions include:

 o The lifetime of a dynamic subscription is bound by the transport
 session used to establish it. For connection-oriented stateful
 transports like NETCONF, the loss of the transport session will
 result in the immediate termination of any associated dynamic
 subscriptions. For connectionless or stateless transports like
 HTTP, a lack of receipt acknowledgment of a sequential set of
 notification messages and/or keep-alives can be used to trigger a
 termination of a dynamic subscription. Contrast this to the
 lifetime of a configured subscription. This lifetime is driven by
 relevant configuration being present within the publisher's
 applied configuration. Being tied to configuration operations
 implies configured subscriptions can be configured to persist
 across reboots, and implies a configured subscription can persist
 even when its publisher is fully disconnected from any network.

 o Configured subscriptions can be modified by any configuration
 client with write permission on the configuration of the
 subscription. Dynamic subscriptions can only be modified via an
 RPC request made by the original subscriber, or a change to
 configuration data referenced by the subscription.

Voit, et al. Expires August 17, 2019 [Page 5]

Internet-Draft Subscribed Notifications February 2019

 Note that there is no mixing-and-matching of dynamic and configured
 operations on a single subscription. Specifically, a configured
 subscription cannot be modified or deleted using RPCs defined in this
 document. Similarly, a dynamic subscription cannot be directly
 modified or deleted by configuration operations. It is however
 possible to perform a configuration operation which indirectly
 impacts a dynamic subscription. By changing value of a pre-
 configured filter referenced by an existing dynamic subscription, the
 selected event records passed to a receiver might change.

 Also note that transport specific transport drafts based on this
 specification MUST detail the life cycle of dynamic subscriptions, as
 well as the lifecycle of configured subscriptions (if supported).

 A publisher MAY terminate a dynamic subscription at any time.
 Similarly, it MAY decide to temporarily suspend the sending of
 notification messages for any dynamic subscription, or for one or
 more receivers of a configured subscription. Such termination or
 suspension is driven by internal considerations of the publisher.

1.4. Relationship to RFC 5277

 This document is intended to provide a superset of the subscription
 capabilities initially defined within [RFC5277]. Especially when
 extending an existing [RFC5277] implementation, it is important to
 understand what has been reused and what has been replaced. Key
 relationships between these two documents include:

 o this document defines a transport independent capability,
 [RFC5277] is specific to NETCONF.

 o the data model in this document is used instead of the data model
 in Section 3.4 of [RFC5277] for the new operations.

 o the RPC operations in this draft replace the operation "create-
 subscription" defined in [RFC5277], section 4.

 o the <notification> message of [RFC5277], Section 4 is used.

 o the included contents of the "NETCONF" event stream are identical
 between this document and [RFC5277].

 o a publisher MAY implement both the Notification Management Schema
 and RPCs defined in [RFC5277] and this new document concurrently.

 o unlike [RFC5277], this document enables a single transport session
 to intermix notification messages and RPCs for different
 subscriptions.

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277#section-3.4
https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 6]

Internet-Draft Subscribed Notifications February 2019

 o A subscription "stop-time" can be specified as part of a
 notification replay. This supports an analogous capability to the
 stopTime parameter of [RFC5277]. However in this specification, a
 "stop-time" parameter can also be applied without replay.

2. Solution

 Per the overview provided in Section 1.3, this section details the
 overall context, state machines, and subsystems which may be
 assembled to allow the subscription of events from a publisher.

2.1. Event Streams

 An event stream is a named entity on a publisher which exposes a
 continuously updating set of YANG encoded event records. An event
 record is an instantiation of a "notification" YANG statement. If
 the "notification" is defined as a child to a data node, the
 instantiation includes the hierarchy of nodes that identifies the
 data node in the datastore (see Section 7.16.2 of [RFC7950]). Each
 event stream is available for subscription. It is out of the scope
 of this document to identify a) how event streams are defined (other
 than the NETCONF stream), b) how event records are defined/generated,
 and c) how event records are assigned to event streams.

 There is only one reserved event stream name within this document:
 "NETCONF". The "NETCONF" event stream contains all NETCONF event
 record information supported by the publisher, except where an event
 record has explicitly been excluded from the stream. Beyond the
 "NETCONF" stream, implementations MAY define additional event
 streams.

 As YANG encoded event records are created by a system, they may be
 assigned to one or more streams. The event record is distributed to
 a subscription's receiver(s) where: (1) a subscription includes the
 identified stream, and (2) subscription filtering does not exclude
 the event record from that receiver.

 Access control permissions may be used to silently exclude event
 records from within an event stream for which the receiver has no
 read access. As an example of how this might be accomplished, see

[RFC8341] section 3.4.6. Note that per Section 2.7 of this document,
 subscription state change notifications are never filtered out.

 If no access control permissions are in place for event records on an
 event stream, then a receiver MUST be allowed access to all the event
 records. If subscriber permissions change during the lifecycle of a
 subscription and event stream access is no longer permitted, then the
 subscription MUST be terminated.

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc7950#section-7.16.2
https://datatracker.ietf.org/doc/html/rfc8341#section-3.4.6

Voit, et al. Expires August 17, 2019 [Page 7]

Internet-Draft Subscribed Notifications February 2019

 Event records MUST NOT be delivered to a receiver in a different
 order than they were placed onto an event stream.

2.2. Event Stream Filters

 This document defines an extensible filtering mechanism. The filter
 itself is a boolean test which is placed on the content of an event
 record. A 'false' filtering result causes the event record to be
 excluded from delivery to a receiver. A filter never results in
 information being stripped from within an event record prior to that
 event record being encapsulated within a notification message. The
 two optional event stream filtering syntaxes supported are [XPATH]
 and subtree [RFC6241].

 If no event stream filter is provided within a subscription, all
 event records on an event stream are to be sent.

2.3. QoS

 This document provides for several QoS parameters. These parameters
 indicate the treatment of a subscription relative to other traffic
 between publisher and receiver. Included are:

 o A "dscp" marking to differentiate prioritization of notification
 messages during network transit.

 o A "weighting" so that bandwidth proportional to this weighting can
 be allocated to this subscription relative to other subscriptions.

 o a "dependency" upon another subscription.

 If the publisher supports the "dscp" feature, then a subscription
 with a "dscp" leaf MUST result in a corresponding [RFC2474] DSCP
 marking being placed within the IP header of any resulting
 notification messages and subscription state change notifications.
 Where TCP is used, a publisher which supports the "dscp" feature
 SHOULD ensure that a subscription's notification messages are
 returned within a single TCP transport session where all traffic
 shares the subscription's "dscp" leaf value. Where this cannot be
 guaranteed, any "establish subscription" RPC request SHOULD be
 rejected with a "dscp-unavailable" error

 For the "weighting" parameter, when concurrently dequeuing
 notification messages from multiple subscriptions to a receiver, the
 publisher MUST allocate bandwidth to each subscription proportionally
 to the weights assigned to those subscriptions. "Weighting" is an
 optional capability of the publisher; support for it is identified
 via the "qos" feature.

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc2474

Voit, et al. Expires August 17, 2019 [Page 8]

Internet-Draft Subscribed Notifications February 2019

 If a subscription has the "dependency" parameter set, then any
 buffered notification messages containing event records selected by
 the parent subscription MUST be dequeued prior to the notification
 messages of the dependent subscription. If notification messages
 have dependencies on each other, the notification message queued the
 longest MUST go first. If a "dependency" included within an RPC
 references a subscription which does not exist or is no longer
 accessible to that subscriber, that "dependency" MUST be silently
 removed. "Dependency" is an optional capability of the publisher;
 support for it is identified via the "qos" feature.

2.4. Dynamic Subscriptions

 Dynamic subscriptions are managed via protocol operations (in the
 form of [RFC7950], Section 7.14 RPCs) made against targets located
 within the publisher. These RPCs have been designed extensibly so
 that they may be augmented for subscription targets beyond event
 streams. For examples of such augmentations, see the RPC
 augmentations within [I-D.ietf-netconf-yang-push]'s YANG model.

2.4.1. Dynamic Subscription State Model

 Below is the publisher's state machine for a dynamic subscription.
 Each state is shown in its own box. It is important to note that
 such a subscription doesn't exist at the publisher until an
 "establish-subscription" RPC is accepted. The mere request by a
 subscriber to establish a subscription is insufficient for that
 subscription to be externally visible. Start and end states are
 depicted to reflect subscription creation and deletion events.

https://datatracker.ietf.org/doc/html/rfc7950#section-7.14

Voit, et al. Expires August 17, 2019 [Page 9]

Internet-Draft Subscribed Notifications February 2019

 : start :
 :.......:
 |
 establish-subscription
 |
 | .-------modify-subscription--------.
 v v |
 .-----------. .-----------.
 .--------. | receiver |--insufficient CPU, b/w-->| receiver |
 modify- '| active | | suspended |
 subscription | |<----CPU, b/w sufficient--| |
 ---------->'-----------' '-----------'
 | |
 delete/kill-subscription delete/kill-
 | subscription
 v |
 |
 : end :<---------------------------------'
 :.......:

 Figure 1: Publisher's state for a dynamic subscription

 Of interest in this state machine are the following:

 o Successful "establish-subscription" or "modify-subscription" RPCs
 put the subscription into the active state.

 o Failed "modify-subscription" RPCs will leave the subscription in
 its previous state, with no visible change to any streaming
 updates.

 o A "delete-subscription" or "kill-subscription" RPC will end the
 subscription, as will the reaching of a "stop-time".

 o A publisher may choose to suspend a subscription when there is
 insufficient CPU or bandwidth available to service the
 subscription. This is notified to a subscriber with a
 "subscription-suspended" subscription state change notification.

 o A suspended subscription may be modified by the subscriber (for
 example in an attempt to use fewer resources). Successful
 modification returns the subscription to the active state.

 o Even without a "modify-subscription" request, a publisher may
 return a subscription to the active state should the resource
 constraints become sufficient again. This is announced to the

Voit, et al. Expires August 17, 2019 [Page 10]

Internet-Draft Subscribed Notifications February 2019

 subscriber via the "subscription-resumed" subscription state
 change notification.

2.4.2. Establishing a Dynamic Subscription

 The "establish-subscription" RPC allows a subscriber to request the
 creation of a subscription.

 The input parameters of the operation are:

 o A "stream" name which identifies the targeted event stream against
 which the subscription is applied.

 o An event stream filter which may reduce the set of event records
 pushed.

 o Where the transport used by the RPC supports multiple encodings,
 an optional "encoding" for the event records pushed. If no
 "encoding" is included, the encoding of the RPC MUST be used.

 o An optional "stop-time" for the subscription. If no "stop-time"
 is present, notification messages will continue to be sent until
 the subscription is terminated.

 o An optional "replay-start-time" for the subscription. The
 "replay-start-time" MUST be in the past and indicates that the
 subscription is requesting a replay of previously generated
 information from the event stream. For more on replay, see

Section 2.4.2.1. Where there is no "replay-start-time", the
 subscription starts immediately.

 If the publisher can satisfy the "establish-subscription" request, it
 replies with an identifier for the subscription, and then immediately
 starts streaming notification messages.

 Below is a tree diagram for "establish-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires August 17, 2019 [Page 11]

Internet-Draft Subscribed Notifications February 2019

 +---x establish-subscription
 +---w input
 | +---w (target)
 | | +--:(stream)
 | | +---w (stream-filter)?
 | | | +--:(by-reference)
 | | | | +---w stream-filter-name
 | | | | stream-filter-ref
 | | | +--:(within-subscription)
 | | | +---w (filter-spec)?
 | | | +--:(stream-subtree-filter)
 | | | | +---w stream-subtree-filter? <anydata>
 | | | | {subtree}?
 | | | +--:(stream-xpath-filter)
 | | | +---w stream-xpath-filter?
 | | | yang:xpath1.0 {xpath}?
 | | +---w stream stream-ref
 | | +---w replay-start-time?
 | | yang:date-and-time {replay}?
 | +---w stop-time?
 | | yang:date-and-time
 | +---w dscp? inet:dscp
 | | {dscp}?
 | +---w weighting? uint8
 | | {qos}?
 | +---w dependency?
 | | subscription-id {qos}?
 | +---w encoding? encoding
 +--ro output
 +--ro id subscription-id
 +--ro replay-start-time-revision? yang:date-and-time
 {replay}?

 Figure 2: establish-subscription RPC tree diagram

 A publisher MAY reject the "establish-subscription" RPC for many
 reasons as described in Section 2.4.6. The contents of the resulting
 RPC error response MAY include details on input parameters which if
 considered in a subsequent "establish-subscription" RPC, may result
 in a successful subscription establishment. Any such hints MUST be
 transported within a yang-data "establish-subscription-stream-error-
 info" container included within the RPC error response.

Voit, et al. Expires August 17, 2019 [Page 12]

Internet-Draft Subscribed Notifications February 2019

 yang-data establish-subscription-stream-error-info
 +--ro establish-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 3: establish-subscription RPC yang-data tree diagram

2.4.2.1. Requesting a replay of event records

 Replay provides the ability to establish a subscription which is also
 capable of passing recently generated event records. In other words,
 as the subscription initializes itself, it sends any event records
 within the target event stream which meet the filter criteria, which
 have an event time which is after the "replay-start-time", and which
 have an event time before the "stop-time" should this "stop-time"
 exist. The end of these historical event records is identified via a
 "replay-completed" subscription state change notification. Any event
 records generated since the subscription establishment may then
 follow. For a particular subscription, all event records will be
 delivered in the order they are placed into the event stream.

 Replay is an optional feature which is dependent on an event stream
 supporting some form of logging. This document puts no restrictions
 on the size or form of the log, where it resides within the
 publisher, or when event record entries in the log are purged.

 The inclusion of a "replay-start-time" within an "establish-
 subscription" RPC indicates a replay request. If the "replay-start-
 time" contains a value that is earlier than what a publisher's
 retained history supports, then if the subscription is accepted, the
 actual publisher's revised start time MUST be set in the returned
 "replay-start-time-revision" object.

 A "stop-time" parameter may be included in a replay subscription.
 For a replay subscription, the "stop-time" MAY be earlier than the
 current time, but MUST be later than the "replay-start-time".

 If the given "replay-start-time" is later than the time marked within
 any event records retained within the replay buffer, then the
 publisher MUST send a "replay-completed" notification immediately
 after a successful establish-subscription RPC response.

 If an event stream supports replay, the "replay-support" leaf is
 present in the "/streams/stream" list entry for the event stream. An
 event stream that does support replay is not expected to have an
 unlimited supply of saved notifications available to accommodate any
 given replay request. To assess the timeframe available for replay,
 subscribers can read the leafs "replay-log-creation-time" and

Voit, et al. Expires August 17, 2019 [Page 13]

Internet-Draft Subscribed Notifications February 2019

 "replay-log-aged-time". See Figure 18 for the YANG tree, and
Section 4 for the YANG model describing these elements. The actual

 size of the replay log at any given time is a publisher specific
 matter. Control parameters for the replay log are outside the scope
 of this document.

2.4.3. Modifying a Dynamic Subscription

 The "modify-subscription" operation permits changing the terms of an
 existing dynamic subscription. Dynamic subscriptions can be modified
 any number of times. Dynamic subscriptions can only be modified via
 this RPC using a transport session connecting to the subscriber. If
 the publisher accepts the requested modifications, it acknowledges
 success to the subscriber, then immediately starts sending event
 records based on the new terms.

 Subscriptions created by configuration cannot be modified via this
 RPC. However configuration may be used to modify objects referenced
 by the subscription (such as a referenced filter).

 Below is a tree diagram for "modify-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---x modify-subscription
 +---w input
 +---w id
 | subscription-id
 +---w (target)
 | +--:(stream)
 | +---w (stream-filter)?
 | +--:(by-reference)
 | | +---w stream-filter-name
 | | stream-filter-ref
 | +--:(within-subscription)
 | +---w (filter-spec)?
 | +--:(stream-subtree-filter)
 | | +---w stream-subtree-filter? <anydata>
 | | {subtree}?
 | +--:(stream-xpath-filter)
 | +---w stream-xpath-filter?
 | yang:xpath1.0 {xpath}?
 +---w stop-time?
 yang:date-and-time

 Figure 4: modify-subscription RPC tree diagram

Voit, et al. Expires August 17, 2019 [Page 14]

Internet-Draft Subscribed Notifications February 2019

 If the publisher accepts the requested modifications on a currently
 suspended subscription, the subscription will immediately be resumed
 (i.e., the modified subscription is returned to the active state.)
 The publisher MAY immediately suspend this newly modified
 subscription through the "subscription-suspended" notification before
 any event records are sent.

 If the publisher rejects the RPC request, the subscription remains as
 prior to the request. That is, the request has no impact whatsoever.
 Rejection of the RPC for any reason is indicated by via RPC error as
 described in Section 2.4.6. The contents of such a rejected RPC MAY
 include hints on inputs which (if considered) may result in a
 successfully modified subscription. These hints MUST be transported
 within a yang-data "modify-subscription-stream-error-info" container
 inserted into the RPC error response.

 Below is a tree diagram for "modify-subscription-RPC-yang-data". All
 objects contained in this tree are described within the included YANG
 model within Section 4.

 yang-data modify-subscription-stream-error-info
 +--ro modify-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 5: modify-subscription RPC yang-data tree diagram

2.4.4. Deleting a Dynamic Subscription

 The "delete-subscription" operation permits canceling an existing
 subscription. If the publisher accepts the request, and the
 publisher has indicated success, the publisher MUST NOT send any more
 notification messages for this subscription.

 Below is a tree diagram for "delete-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---x delete-subscription
 +---w input
 +---w id subscription-id

 Figure 6: delete-subscription RPC tree diagram

 Dynamic subscriptions can only be deleted via this RPC using a
 transport session connecting to the subscriber. Configured
 subscriptions cannot be deleted using RPCs.

Voit, et al. Expires August 17, 2019 [Page 15]

Internet-Draft Subscribed Notifications February 2019

2.4.5. Killing a Dynamic Subscription

 The "kill-subscription" operation permits an operator to end a
 dynamic subscription which is not associated with the transport
 session used for the RPC. A publisher MUST terminate any dynamic
 subscription identified by the "id" parameter in the RPC request, if
 such a subscription exists.

 Configured subscriptions cannot be killed using this RPC. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to kill a
 configured subscription.

 Below is a tree diagram for "kill-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---x kill-subscription
 +---w input
 +---w id subscription-id

 Figure 7: kill-subscription RPC tree diagram

2.4.6. RPC Failures

 Whenever an RPC is unsuccessful, the publisher returns relevant
 information as part of the RPC error response. Transport level error
 processing MUST be done before RPC error processing described in this
 section. In all cases, RPC error information returned will use
 existing transport layer RPC structures, such as those seen with
 NETCONF in [RFC6241] Appendix A, or with RESTCONF in [RFC8040]
 Section 7.1. These structures MUST be able to encode subscription
 specific errors identified below and defined within this document's
 YANG model.

 As a result of this mixture, how subscription errors are encoded
 within an RPC error response is transport dependent. Following are
 valid errors which can occur for each RPC:

https://datatracker.ietf.org/doc/html/rfc6241#appendix-A
https://datatracker.ietf.org/doc/html/rfc8040#section-7.1
https://datatracker.ietf.org/doc/html/rfc8040#section-7.1

Voit, et al. Expires August 17, 2019 [Page 16]

Internet-Draft Subscribed Notifications February 2019

 establish-subscription modify-subscription
 ---------------------- -------------------
 dscp-unavailable filter-unsupported
 encoding-unsupported insufficient-resources
 filter-unsupported no-such-subscription
 insufficient-resources
 replay-unsupported

 delete-subscription kill-subscription
 ---------------------- ----------------------
 no-such-subscription no-such-subscription

 To see a NETCONF based example of an error response from above, see
 [I-D.draft-ietf-netconf-netconf-event-notifications], Figure 10.

 There is one final set of transport independent RPC error elements
 included in the YANG model. These are three yang-data structures
 which enable the publisher to provide to the receiver that error
 information which does not fit into existing transport layer RPC
 structures. These three yang-data structures are:

 1. "establish-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed
 "establish-subscription" RPC response. This MUST be sent if
 hints on how to overcome the RPC error are included.

 2. "modify-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed
 "modify-subscription" RPC response. This MUST be sent if hints
 on how to overcome the RPC error are included.

 3. "delete-subscription-error-info": This MUST be returned with the
 leaf "reason" populated if an RPC error reason has not been
 placed elsewhere within the transport portion of a failed
 "delete-subscription" or "kill-subscription" RPC response.

2.5. Configured Subscriptions

 A configured subscription is a subscription installed via
 configuration. Configured subscriptions may be modified by any
 configuration client with the proper permissions. Subscriptions can
 be modified or terminated via configuration at any point of their
 lifetime. Multiple configured subscriptions MUST be supportable over
 a single transport session.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications

Voit, et al. Expires August 17, 2019 [Page 17]

Internet-Draft Subscribed Notifications February 2019

 Configured subscriptions have several characteristics distinguishing
 them from dynamic subscriptions:

 o persistence across publisher reboots,

 o persistence even when transport is unavailable, and

 o an ability to send notification messages to more than one receiver
 (note that receivers are unaware of the existence of any other
 receivers.)

 On the publisher, supporting configured subscriptions is optional and
 advertised using the "configured" feature. On a receiver of a
 configured subscription, support for dynamic subscriptions is
 optional. However if replaying missed event records is required for
 a configured subscription, support for dynamic subscription is highly
 recommended. In this case, a separate dynamic subscription can be
 established to retransmit the missing event records.

 In addition to the subscription parameters available to dynamic
 subscriptions described in Section 2.4.2, the following additional
 parameters are also available to configured subscriptions:

 o A "transport" which identifies the transport protocol to use to
 connect with all subscription receivers.

 o One or more receivers, each intended as the destination for event
 records. Note that each individual receiver is identifiable by
 its "name".

 o Optional parameters to identify where traffic should egress a
 publisher:

 * A "source-interface" which identifies the egress interface to
 use from the publisher. Publisher support for this is optional
 and advertised using the "interface-designation" feature.

 * A "source-address" address, which identifies the IP address to
 stamp on notification messages destined for the receiver.

 * A "source-vrf" which identifies the VRF on which to reach
 receivers. This VRF is a network instance as defined within
 [I-D.draft-ietf-rtgwg-ni-model]. Publisher support for VRFs is
 optional and advertised using the "supports-vrf" feature.

 If none of the above parameters are set, notification messages
 MUST egress the publisher's default interface.

https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model

Voit, et al. Expires August 17, 2019 [Page 18]

Internet-Draft Subscribed Notifications February 2019

 A tree diagram describing these parameters is shown in Figure 20
 within Section 3.3. All parameters are described within the YANG
 model in Section 4.

2.5.1. Configured Subscription State Model

 Below is the state machine for a configured subscription on the
 publisher. This state machine describes the three states (valid,
 invalid, and concluded), as well as the transitions between these
 states. Start and end states are depicted to reflect configured
 subscription creation and deletion events. The creation or
 modification of a configured subscription initiates an evaluation by
 the publisher to determine if the subscription is in valid or invalid
 states. The publisher uses its own criteria in making this
 determination. If in the valid state, the subscription becomes
 operational. See (1) in the diagram below.

 : start :-.
 :.......: |
 create .---modify-----.----------------------------------.
 | | | |
 V V .-------. ---------.
 .----[evaluate]--no--->|invalid|-delete->: end :<-delete-|concluded|
 | '-------' :.....: '---------'
 |-[evaluate]--no-(2). ^ ^ ^
 | ^ | | | |
 yes | '->unsupportable delete stop-time
 | modify (subscription- (subscription- (subscription-
 | | terminated*) terminated*) concluded*)
 | | | | |
 (1) | (3) (4) (5)
 | .---.
 '-->| valid |
 '---'

 Legend:
 dotted boxes: subscription added or removed via configuration
 dashed boxes: states for a subscription
 [evaluate]: decision point on whether the subscription is supportable
 (*): resulting subscription state change notification

 Figure 8: Publisher state model for a configured subscription

 A subscription in the valid state may move to the invalid state in
 one of two ways. First, it may be modified in a way which fails a
 re-evaluation. See (2) in the diagram. Second, the publisher might
 determine that the subscription is no longer supportable. This could

Voit, et al. Expires August 17, 2019 [Page 19]

Internet-Draft Subscribed Notifications February 2019

 be for reasons of an unexpected but sustained increase in an event
 stream's event records, degraded CPU capacity, a more complex
 referenced filter, or other higher priority subscriptions which have
 usurped resources. See (3) in the diagram. No matter the case, a
 "subscription-terminated" notification is sent to any receivers in an
 active or suspended state. A subscription in the valid state may
 also transition to the concluded state via (5) if a configured stop
 time has been reached. In this case, a "subscription-concluded"
 notification is sent to any receivers in active or suspended states.
 Finally, a subscription may be deleted by configuration (4).

 When a subscription is in the valid state, a publisher will attempt
 to connect with all receivers of a configured subscription and
 deliver notification messages. Below is the state machine for each
 receiver of a configured subscription. This receiver state machine
 is fully contained within the state machine of the configured
 subscription, and is only relevant when the configured subscription
 is in the valid state.

 .---.
 | valid |
 | .----------. .------------. |
 | | receiver |---timeout---------------->| receiver | |
 | |connecting|<----------------reset--(c)|disconnected| |
 | | |<-transport '------------' |
 | '----------' loss,reset------------------------------. |
 | (a) | | |
 | subscription- (b) (b) |
 | started* .--------. .---------. |
 | '----->| |(d)-insufficient CPU,------->| | |
 | |receiver| buffer overflow |receiver | |
 | subscription-| active | |suspended| |
 | modified* | |<----CPU, b/w sufficient,-(e)| | |
 | '---->'--------' subscription-modified* '---------' |
 '---'

 Legend:
 dashed boxes which include the word 'receiver' show the possible
 states for an individual receiver of a valid configured subscription.
 * indicates a subscription state change notification

 Figure 9: Receiver state for a configured subscription on a Publisher

 When a configured subscription first moves to the valid state, the
 "state" leaf of each receiver is initialized to the connecting state.
 If transport connectivity is not available to any receiver and there
 are any notification messages to deliver, a transport session is
 established (e.g., through [RFC8071]). Individual receivers are

https://datatracker.ietf.org/doc/html/rfc8071

Voit, et al. Expires August 17, 2019 [Page 20]

Internet-Draft Subscribed Notifications February 2019

 moved to the active state when a "subscription-started" subscription
 state change notification is successfully passed to that receiver
 (a). Event records are only sent to active receivers. Receivers of
 a configured subscription remain active if both transport
 connectivity can be verified to the receiver, and event records are
 not being dropped due to a publisher buffer overflow. The result is
 that a receiver will remain active on the publisher as long as events
 aren't being lost, or the receiver cannot be reached. In addition, a
 configured subscription's receiver MUST be moved to the connecting
 state if the receiver is reset via the "reset" action (b), (c). For
 more on reset, see Section 2.5.5. If transport connectivity cannot
 be achieved while in the connecting state, the receiver MAY be moved
 to the disconnected state.

 A configured subscription's receiver MUST be moved to the suspended
 state if there is transport connectivity between the publisher and
 receiver, but notification messages are failing to be delivered due
 to publisher buffer overflow, or notification messages are not able
 to be generated for that receiver due to insufficient CPU (d). This
 is indicated to the receiver by the "subscription-suspended"
 subscription state change notification.

 A configured subscription receiver MUST be returned to the active
 state from the suspended state when notification messages are able to
 be generated, bandwidth is sufficient to handle the notification
 messages, and a receiver has successfully been sent a "subscription-
 resumed" or "subscription-modified" subscription state change
 notification (e). The choice as to which of these two subscription
 state change notifications is sent is determined by whether the
 subscription was modified during the period of suspension.

 Modification of a configured subscription is possible at any time. A
 "subscription-modified" subscription state change notification will
 be sent to all active receivers, immediately followed by notification
 messages conforming to the new parameters. Suspended receivers will
 also be informed of the modification. However this notification will
 await the end of the suspension for that receiver (e).

 The mechanisms described above are mirrored in the RPCs and
 notifications within the document. It should be noted that these
 RPCs and notifications have been designed to be extensible and allow
 subscriptions into targets other than event streams. For instance,
 the YANG module defined in Section 5 of [I-D.ietf-netconf-yang-push]
 augments "/sn:modify-subscription/sn:input/sn:target".

Voit, et al. Expires August 17, 2019 [Page 21]

Internet-Draft Subscribed Notifications February 2019

2.5.2. Creating a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level "subscriptions" subtree.

 Because there is no explicit association with an existing transport
 session, configuration operations MUST include additional parameters
 beyond those of dynamic subscriptions. These parameters identify
 each receiver, how to connect with that receiver, and possibly
 whether the notification messages need to come from a specific egress
 interface on the publisher. Receiver specific transport connectivity
 parameters MUST be configured via transport specific augmentations to
 this specification. See Section 2.5.7 for details.

 After a subscription is successfully established, the publisher
 immediately sends a "subscription-started" subscription state change
 notification to each receiver. It is quite possible that upon
 configuration, reboot, or even steady-state operations, a transport
 session may not be currently available to the receiver. In this
 case, when there is something to transport for an active
 subscription, transport specific call-home operations will be used to
 establish the connection. When transport connectivity is available,
 notification messages may then be pushed.

 With active configured subscriptions, it is allowable to buffer event
 records even after a "subscription-started" has been sent. However
 if events are lost (rather than just delayed) due to replay buffer
 overflow, a new "subscription-started" must be sent. This new
 "subscription-started" indicates an event record discontinuity.

 To see an example of subscription creation using configuration
 operations over NETCONF, see Appendix A of
 [I-D.draft-ietf-netconf-netconf-event-notifications].

2.5.3. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level "subscriptions" subtree.

 If the modification involves adding receivers, added receivers are
 placed in the connecting state. If a receiver is removed, the
 subscription state change notification "subscription-terminated" is
 sent to that receiver if that receiver is active or suspended.

 If the modification involves changing the policies for the
 subscription, the publisher sends to currently active receivers a
 "subscription-modified" notification. For any suspended receivers, a
 "subscription-modified" notification will be delayed until the

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications

Voit, et al. Expires August 17, 2019 [Page 22]

Internet-Draft Subscribed Notifications February 2019

 receiver is resumed. (Note: in this case, the "subscription-
 modified" notification informs the receiver that the subscription has
 been resumed, so no additional "subscription-resumed" need be sent.
 Also note that if multiple modifications have occurred during the
 suspension, only the "subscription-modified" notification describing
 the latest one need be sent to the receiver.)

2.5.4. Deleting a Configured Subscription

 Subscriptions can be deleted through configuration against the top-
 level "subscriptions" subtree.

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers of that subscription a subscription
 state change notification stating the subscription has ended (i.e.,
 "subscription-terminated").

2.5.5. Resetting a Configured Subscription Receiver

 It is possible that a configured subscription to a receiver needs to
 be reset. This is accomplished via the "reset" action within the
 YANG model at "/subscriptions/subscription/receivers/receiver/reset".
 This action may be useful in cases where a publisher has timed out
 trying to reach a receiver. When such a reset occurs, a transport
 session will be initiated if necessary, and a new "subscription-
 started" notification will be sent. This action does not have any
 effect on transport connectivity if the needed connectivity already
 exists.

2.5.6. Replay for a Configured Subscription

 It is possible to do replay on a configured subscription. This is
 supported via the configuration of the "configured-replay" object on
 the subscription. The setting of this object enables the streaming
 of the buffered event records for the subscribed event stream. All
 buffered event records which have been retained since the last
 publisher restart will be sent to each configured receiver.

 Replay of events records created since restart is useful. It allows
 event records generated before transport connectivity establishment
 to be passed to a receiver. Setting the restart time as the earliest
 configured replay time precludes possibility of resending of event
 records logged prior to publisher restart. It also ensures the same
 records will be sent to each configured receiver, regardless of the
 speed of transport connectivity establishment to each receiver.
 Finally, establishing restart as the earliest potential time for
 event records to be included within notification messages, a well-
 understood timeframe for replay is defined.

Voit, et al. Expires August 17, 2019 [Page 23]

Internet-Draft Subscribed Notifications February 2019

 As a result, when any configured subscription receivers become
 active, buffered event records will be sent immediately after the
 "subscription-started" notification. If the publisher knows the last
 event record sent to a receiver, and the publisher has not rebooted,
 the next event record on the event stream which meets filtering
 criteria will be the leading event record sent. Otherwise, the
 leading event record will be the first event record meeting filtering
 criteria subsequent to the latest of three different times: the
 "replay-log-creation-time", "replay-log-aged-time", or the most
 recent publisher boot time. The "replay-log-creation-time" and
 "replay-log-aged-time" are discussed in Section 2.4.2.1. The most
 recent publisher boot time ensures that duplicate event records are
 not replayed from a previous time the publisher was booted.

 It is quite possible that a receiver might want to retrieve event
 records from an event stream prior to the latest boot. If such
 records exist where there is a configured replay, the publisher MUST
 send the time of the event record immediately preceding the "replay-
 start-time" within the "replay-previous-event-time" leaf. Through
 the existence of the "replay-previous-event-time", the receiver will
 know that earlier events prior to reboot exist. In addition, if the
 subscriber was previously receiving event records with the same
 subscription "id", the receiver can determine if there was a timegap
 where records generated on the publisher were not successully
 received. And with this information, the receiver may choose to
 dynamically subscribe to retrieve any event records placed into the
 event stream before the most recent boot time.

 All other replay functionality remains the same as with dynamic
 subscriptions as described in Section 2.4.2.1.

2.5.7. Transport Connectivity for a Configured Subscription

 This specification is transport independent. However supporting a
 configured subscription will often require the establishment of
 transport connectivity. And the parameters used for this transport
 connectivity establishment are transport specific. As a result, the
 YANG model defined within Section 4 is not able to directly define
 and expose these transport parameters.

 It is necessary for an implementation to support the connection
 establishment process. To support this function, the YANG model does
 include a node where transport specific parameters for a particular
 receiver may be augmented. This node is
 "/subscriptions/subscription/receivers/receiver". By augmenting
 transport parameters from this node, system developers are able to
 incorporate the YANG objects necessary to support the transport
 connectivity establishment process.

Voit, et al. Expires August 17, 2019 [Page 24]

Internet-Draft Subscribed Notifications February 2019

 The result of this is the following requirement. A publisher
 supporting the feature "configured" MUST also support least one YANG
 model which augments transport connectivity parameters on
 "/subscriptions/subscription/receivers/receiver". For an example of
 such an augmentation, see Appendix A.

2.6. Event Record Delivery

 Whether dynamic or configured, once a subscription has been set up,
 the publisher streams event records via notification messages per the
 terms of the subscription. For dynamic subscriptions, notification
 messages are sent over the session used to establish the
 subscription. For configured subscriptions, notification messages
 are sent over the connections specified by the transport and each
 receiver of a configured subscription.

 A notification message is sent to a receiver when an event record is
 not blocked by either the specified filter criteria or receiver
 permissions. This notification message MUST include an "eventTime"
 object as defined per [RFC5277] Section 4. This "eventTime" MUST be
 at the top level of YANG structured event record.

 The following example within [RFC7950] section 7.16.3 is an example
 of a compliant message:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 10: subscribed notification message

 When a dynamic subscription has been started or modified, with
 "establish-subscription" or "modify-subscription" respectively, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the RPC reply has been sent.

 When a configured subscription has been started or modified, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the "subscription-started" or "subscription-modified"
 notifications has been sent, respectively.

https://datatracker.ietf.org/doc/html/rfc5277#section-4
https://datatracker.ietf.org/doc/html/rfc7950#section-7.16.3

Voit, et al. Expires August 17, 2019 [Page 25]

Internet-Draft Subscribed Notifications February 2019

2.7. Subscription state change notifications

 In addition to sending event records to receivers, a publisher MUST
 also send subscription state change notifications when events related
 to subscription management have occurred.

 Subscription state change notifications are unlike other
 notifications in that they are never included in any event stream.
 Instead, they are inserted (as defined in this section) within the
 sequence of notification messages sent to a particular receiver.
 subscription state change notifications cannot be dropped or filtered
 out, they cannot be stored in replay buffers, and they are delivered
 only to impacted receivers of a subscription. The identification of
 subscription state change notifications is easy to separate from
 other notification messages through the use of the YANG extension
 "subscription-state-notif". This extension tags a notification as a
 subscription state change notification.

 The complete set of subscription state change notifications is
 described in the following subsections.

2.7.1. subscription-started

 This notification indicates that a configured subscription has
 started, and event records may be sent. Included in this
 subscription state change notification are all the parameters of the
 subscription, except for the receiver(s) transport connection
 information and origin information indicating where notification
 messages will egress the publisher. Note that if a referenced filter
 from the "filters" container has been used within the subscription,
 the notification still provides the contents of that referenced
 filter under the "within-subscription" subtree.

 Note that for dynamic subscriptions, no "subscription-started"
 notifications are ever sent.

 Below is a tree diagram for "subscription-started". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires August 17, 2019 [Page 26]

Internet-Draft Subscribed Notifications February 2019

 +---n subscription-started {configured}?
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--ro replay-previous-event-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 11: subscription-started notification tree diagram

2.7.2. subscription-modified

 This notification indicates that a subscription has been modified by
 configuration operations. It is delivered directly after the last
 event records processed using the previous subscription parameters,
 and before any event records processed after the modification.

 Below is a tree diagram for "subscription-modified". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires August 17, 2019 [Page 27]

Internet-Draft Subscribed Notifications February 2019

 +---n subscription-modified
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 12: subscription-modified notification tree diagram

 A publisher most often sends this notification directly after the
 modification of any configuration parameters impacting a configured
 subscription. But it may also be sent at two other times:

 1. Where a configured subscription has been modified during the
 suspension of a receiver, the notification will be delayed until
 the receiver's suspension is lifted. In this situation, the
 notification indicates that the subscription has been both
 modified and resumed.

 2. A "subscription-modified" subscription state change notification
 MUST be sent if the contents of the filter identified by the
 subscription's "stream-filter-ref" leaf has changed. This state

Voit, et al. Expires August 17, 2019 [Page 28]

Internet-Draft Subscribed Notifications February 2019

 change notification is to be sent for a filter change impacting
 any active receiver of a configured or dynamic subscription.

2.7.3. subscription-terminated

 This notification indicates that no further event records for this
 subscription should be expected from the publisher. A publisher may
 terminate the sending event records to a receiver for the following
 reasons:

 1. Configuration which removes a configured subscription, or a
 "kill-subscription" RPC which ends a dynamic subscription. These
 are identified via the reason "no-such-subscription".

 2. A referenced filter is no longer accessible. This is identified
 by "filter-unavailable".

 3. The event stream referenced by a subscription is no longer
 accessible by the receiver. This is identified by "stream-
 unavailable".

 4. A suspended subscription has exceeded some timeout. This is
 identified by "suspension-timeout".

 Each of the reasons above correspond one-to-one with a "reason"
 identityref specified within the YANG model.

 Below is a tree diagram for "subscription-terminated". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-terminated
 +--ro id subscription-id
 +--ro reason identityref

 Figure 13: subscription-terminated notification tree diagram

 Note: this subscription state change notification MUST be sent to a
 dynamic subscription's receiver when the subscription ends
 unexpectedly. The cases when this might happen are when a "kill-
 subscription" RPC is successful, or when some other event not
 including the reaching the subscription's "stop-time" results in a
 publisher choosing to end the subscription.

Voit, et al. Expires August 17, 2019 [Page 29]

Internet-Draft Subscribed Notifications February 2019

2.7.4. subscription-suspended

 This notification indicates that a publisher has suspended the
 sending of event records to a receiver, and also indicates the
 possible loss of events. Suspension happens when capacity
 constraints stop a publisher from serving a valid subscription. The
 two conditions where is this possible are:

 1. "insufficient-resources" when a publisher is unable to produce
 the requested event stream of notification messages, and

 2. "unsupportable-volume" when the bandwidth needed to get generated
 notification messages to a receiver exceeds a threshold.

 These conditions are encoded within the "reason" object. No further
 notification will be sent until the subscription resumes or is
 terminated.

 Below is a tree diagram for "subscription-suspended". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-suspended
 +--ro id subscription-id
 +--ro reason identityref

 Figure 14: subscription-suspended notification tree diagram

2.7.5. subscription-resumed

 This notification indicates that a previously suspended subscription
 has been resumed under the unmodified terms previously in place.
 Subscribed event records generated after the issuance of this
 subscription state change notification may now be sent.

 Below is the tree diagram for "subscription-resumed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-resumed
 +--ro id subscription-id

 Figure 15: subscription-resumed notification tree diagram

Voit, et al. Expires August 17, 2019 [Page 30]

Internet-Draft Subscribed Notifications February 2019

2.7.6. subscription-completed

 This notification indicates that a subscription that includes a
 "stop-time" has successfully finished passing event records upon the
 reaching of that time.

 Below is a tree diagram for "subscription-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-completed {configured}?
 +--ro id subscription-id

 Figure 16: subscription-completed notification tree diagram

2.7.7. replay-completed

 This notification indicates that all of the event records prior to
 the current time have been passed to a receiver. It is sent before
 any notification message containing an event record with a timestamp
 later than (1) the "stop-time" or (2) the subscription's start time.

 If a subscription contains no "stop-time", or has a "stop-time" that
 has not been reached, then after the "replay-completed" notification
 has been sent, additional event records will be sent in sequence as
 they arise naturally on the publisher.

 Below is a tree diagram for "replay-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n replay-completed {replay}?
 +--ro id subscription-id

 Figure 17: replay-completed notification tree diagram

2.8. Subscription Monitoring

 In the operational state datastore, the container "subscriptions"
 maintains the state of all dynamic subscriptions, as well as all
 configured subscriptions. Using datastore retrieval operations, or
 subscribing to the "subscriptions" container
 [I-D.ietf-netconf-yang-push] allows the state of subscriptions and
 their connectivity to receivers to be monitored.

Voit, et al. Expires August 17, 2019 [Page 31]

Internet-Draft Subscribed Notifications February 2019

 Each subscription in the operational state datastore is represented
 as a list element. Included in this list are event counters for each
 receiver, the state of each receiver, as well as the subscription
 parameters currently in effect. The appearance of the leaf
 "configured-subscription-state" indicates that a particular
 subscription came into being via configuration. This leaf also
 indicates if the current state of that subscription is valid,
 invalid, and concluded.

 To understand the flow of event records within a subscription, there
 are two counters available for each receiver. The first counter is
 "sent-event-records" which shows the quantity of events actually
 identified for sending to a receiver. The second counter is
 "excluded-event-records" which shows event records not sent to
 receiver. "excluded-event-records" shows the combined results of
 both access control and per-subscription filtering. For configured
 subscriptions, counters are reset whenever the subscription is
 evaluated to valid (see (1) in Figure 8).

 Dynamic subscriptions are removed from the operational state
 datastore once they expire (reaching stop-time) or when they are
 terminated. While many subscription objects are shown as
 configurable, dynamic subscriptions are only included within the
 operational state datastore and as a result are not configurable.

2.9. Advertisement

 Publishers supporting this document MUST indicate support of the YANG
 model "ietf-subscribed-notifications" within the YANG library of the
 publisher. In addition if supported, the optional features "encode-
 xml", "encode-json", "configured" "supports-vrf", "qos", "xpath",
 "subtree", "interface-designation", "dscp", and "replay" MUST be
 indicated.

3. YANG Data Model Trees

 This section contains tree diagrams for nodes defined in Section 4.
 For tree diagrams of subscription state change notifications, see

Section 2.7. For the tree diagrams for the RPCs, see Section 2.4.

3.1. Event Streams Container

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and vendor-
 specific event streams. This enables subscribers to discover what
 streams a publisher supports.

Voit, et al. Expires August 17, 2019 [Page 32]

Internet-Draft Subscribed Notifications February 2019

 +--ro streams
 +--ro stream* [name]
 +--ro name string
 +--ro description string
 +--ro replay-support? empty {replay}?
 +--ro replay-log-creation-time yang:date-and-time
 | {replay}?
 +--ro replay-log-aged-time? yang:date-and-time
 {replay}?

 Figure 18: Stream Container tree diagram

 Above is a tree diagram for the "streams" container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.2. Filters Container

 The "filters" container maintains a list of all subscription filters
 that persist outside the life-cycle of a single subscription. This
 enables pre-defined filters which may be referenced by more than one
 subscription.

 +--rw filters
 +--rw stream-filter* [name]
 +--rw name string
 +--rw (filter-spec)?
 +--:(stream-subtree-filter)
 | +--rw stream-subtree-filter? <anydata> {subtree}?
 +--:(stream-xpath-filter)
 +--rw stream-xpath-filter? yang:xpath1.0 {xpath}?

 Figure 19: Filter Container tree diagram

 Above is a tree diagram for the filters container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.3. Subscriptions Container

 The "subscriptions" container maintains a list of all subscriptions
 on a publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions which a publisher is
 serving.

 +--rw subscriptions

Voit, et al. Expires August 17, 2019 [Page 33]

Internet-Draft Subscribed Notifications February 2019

 +--rw subscription* [id]
 +--rw id
 | subscription-id
 +--rw (target)
 | +--:(stream)
 | +--rw (stream-filter)?
 | | +--:(by-reference)
 | | | +--rw stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--rw (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--rw stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--rw stream-xpath-filter?
 | | yang:xpath1.0 {xpath}?
 | +--rw stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--rw configured-replay? empty
 | {configured,replay}?
 +--rw stop-time?
 | yang:date-and-time
 +--rw dscp? inet:dscp
 | {dscp}?
 +--rw weighting? uint8 {qos}?
 +--rw dependency?
 | subscription-id {qos}?
 +--rw transport? transport
 | {configured}?
 +--rw encoding? encoding
 +--rw purpose? string
 | {configured}?
 +--rw (notification-message-origin)? {configured}?
 | +--:(interface-originated)
 | | +--rw source-interface?
 | | if:interface-ref {interface-designation}?
 | +--:(address-originated)
 | +--rw source-vrf?
 | | -> /ni:network-instances/network-instance/name
 | | {supports-vrf}?
 | +--rw source-address?
 | inet:ip-address-no-zone
 +--ro configured-subscription-state? enumeration
 | {configured}?
 +--rw receivers
 +--rw receiver* [name]

Voit, et al. Expires August 17, 2019 [Page 34]

Internet-Draft Subscribed Notifications February 2019

 +--rw name string
 +--ro sent-event-records?
 | yang:zero-based-counter64
 +--ro excluded-event-records?
 | yang:zero-based-counter64
 +--ro state enumeration
 +---x reset {configured}?
 +--ro output
 +--ro time yang:date-and-time

 Figure 20: Subscriptions tree diagram

 Above is a tree diagram for the subscriptions container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

4. Data Model

 This module imports typedefs from [RFC6991], [RFC8343], and
 [RFC8040], and it references [I-D.draft-ietf-rtgwg-ni-model],
 [XPATH], [RFC6241], [RFC7049], [RFC7540], [RFC7951] , [RFC7950] and
 [RFC8259].

 [note to the RFC Editor - please replace XXXX within this YANG model
 with the number of this document, and XXXY with the number of
 [I-D.draft-ietf-rtgwg-ni-model]]

 [note to the RFC Editor - please replace the two dates within the
 YANG module with the date of publication]

 <CODE BEGINS> file "ietf-subscribed-notifications@2019-01-16.yang"
 module ietf-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications";

 prefix sn;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";

https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc8343
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc8343

Voit, et al. Expires August 17, 2019 [Page 35]

Internet-Draft Subscribed Notifications February 2019

 }
 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-network-instance {
 prefix ni;
 reference
 "draft-ietf-rtgwg-ni-model-12: YANG Model for Network Instances";
 }
 import ietf-restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Eric Voit
 <mailto:evoit@cisco.com>

 Author: Alberto Gonzalez Prieto
 <mailto:alberto.gonzalez@microsoft.com>

 Author: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Author: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>";

 description
 "Contains a YANG specification for subscribing to event records
 and receiving matching content within notification messages.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

https://datatracker.ietf.org/doc/html/rfc8341
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model-12
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc6991

Voit, et al. Expires August 17, 2019 [Page 36]

Internet-Draft Subscribed Notifications February 2019

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section

4.c of the IETF Trust's Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

 revision 2019-01-16 {
 description
 "Initial version";
 reference
 "RFC XXXX:Subscription to YANG Event Notifications";
 }

 /*
 * FEATURES
 */

 feature configured {
 description
 "This feature indicates that configuration of subscriptions is
 supported.";
 }

 feature dscp {
 description
 "This feature indicates a publisher supports the placement of
 suggested prioritization levels for network transport within
 notification messages.";
 }

 feature encode-json {
 description
 "This feature indicates that JSON encoding of notification
 messages is supported.";
 }

 feature encode-xml {
 description
 "This feature indicates that XML encoding of notification
 messages is supported.";
 }

 feature interface-designation {
 description
 "This feature indicates a publisher supports sourcing all

https://trustee.ietf.org/license-info

Voit, et al. Expires August 17, 2019 [Page 37]

Internet-Draft Subscribed Notifications February 2019

 receiver interactions for a configured subscription from a single
 designated egress interface.";
 }

 feature qos {
 description
 "This feature indicates a publisher supports absolute
 dependencies of one subscription's traffic over another, as well
 as weighted bandwidth sharing between subscriptions. Both of
 these are Quality of Service (QoS) features which allow
 differentiated treatment of notification messages between a
 publisher and a specific receiver.";
 }

 feature replay {
 description
 "This feature indicates that historical event record replay is
 supported. With replay, it is possible for past event records to
 be streamed in chronological order.";
 }

 feature subtree {
 description
 "This feature indicates support for YANG subtree filtering.";
 reference "RFC 6241, Section 6.";
 }

 feature supports-vrf {
 description
 "This feature indicates a publisher supports VRF configuration
 for configured subscriptions. VRF support for dynamic
 subscriptions does not require this feature.";
 reference "RFC XXXY, Section 6.";
 }

 feature xpath {
 description
 "This feature indicates support for XPath filtering.";
 reference "http://www.w3.org/TR/1999/REC-xpath-19991116";
 }

 /*
 * EXTENSIONS
 */

 extension subscription-state-notification {
 description
 "This statement applies only to notifications. It indicates that

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Voit, et al. Expires August 17, 2019 [Page 38]

Internet-Draft Subscribed Notifications February 2019

 the notification is a subscription state change notification.
 Therefore it does not participate in a regular event stream and
 does not need to be specifically subscribed to in order to be
 received. This statement can only occur as a substatement to the
 YANG 'notification' statement. This statement is not for use
 outside of this YANG module.";
 }

 /*
 * IDENTITIES
 */

 /* Identities for RPC and Notification errors */

 identity delete-subscription-error {
 description
 "Problem found while attempting to fulfill either a
 'delete-subscription' RPC request or a 'kill-subscription'
 RPC request.";
 }

 identity establish-subscription-error {
 description
 "Problem found while attempting to fulfill an
 'establish-subscription' RPC request.";
 }

 identity modify-subscription-error {
 description
 "Problem found while attempting to fulfill a
 'modify-subscription' RPC request.";
 }

 identity subscription-suspended-reason {
 description
 "Problem condition communicated to a receiver as part of a
 'subscription-terminated' notification.";
 }

 identity subscription-terminated-reason {
 description
 "Problem condition communicated to a receiver as part of a
 'subscription-terminated' notification.";
 }

 identity dscp-unavailable {
 base establish-subscription-error;
 if-feature "dscp";

Voit, et al. Expires August 17, 2019 [Page 39]

Internet-Draft Subscribed Notifications February 2019

 description
 "The publisher is unable mark notification messages with a
 prioritization information in a way which will be respected
 during network transit.";
 }

 identity encoding-unsupported {
 base establish-subscription-error;
 description
 "Unable to encode notification messages in the desired format.";
 }

 identity filter-unavailable {
 base subscription-terminated-reason;
 description
 "Referenced filter does not exist. This means a receiver is
 referencing a filter which doesn't exist, or to which they do not
 have access permissions.";
 }

 identity filter-unsupported {
 base establish-subscription-error;
 base modify-subscription-error;
 description
 "Cannot parse syntax within the filter. This failure can be from
 a syntax error, or a syntax too complex to be processed by the
 publisher.";
 }

 identity insufficient-resources {
 base establish-subscription-error;
 base modify-subscription-error;
 base subscription-suspended-reason;
 description
 "The publisher has insufficient resources to support the
 requested subscription. An example might be that allocated CPU
 is too limited to generate the desired set of notification
 messages.";
 }

 identity no-such-subscription {
 base modify-subscription-error;
 base delete-subscription-error;
 base subscription-terminated-reason;
 description
 "Referenced subscription doesn't exist. This may be as a result of
 a non-existent subscription id, an id which belongs to another
 subscriber, or an id for configured subscription.";

Voit, et al. Expires August 17, 2019 [Page 40]

Internet-Draft Subscribed Notifications February 2019

 }

 identity replay-unsupported {
 base establish-subscription-error;
 if-feature "replay";
 description
 "Replay cannot be performed for this subscription. This means the
 publisher will not provide the requested historic information
 from the event stream via replay to this receiver.";
 }

 identity stream-unavailable {
 base subscription-terminated-reason;
 description
 "Not a subscribable event stream. This means the referenced event
 stream is not available for subscription by the receiver.";
 }

 identity suspension-timeout {
 base subscription-terminated-reason;
 description
 "Termination of previously suspended subscription. The publisher
 has eliminated the subscription as it exceeded a time limit for
 suspension.";
 }

 identity unsupportable-volume {
 base subscription-suspended-reason;
 description
 "The publisher does not have the network bandwidth needed to get
 the volume of generated information intended for a receiver.";
 }

 /* Identities for encodings */

 identity configurable-encoding {
 description
 "If a transport identity derives from this identity, it means
 that it supports configurable encodings. An example of a
 configurable encoding might be a new identity such as
 'encode-cbor'. Such an identity could use
 'configurable-encoding' as its base. This would allow a
 dynamic subscription encoded in JSON [RFC-8259] to request
 notification messages be encoded via CBOR [RFC-7049]. Further
 details for any specific configurable encoding would be
 explored in a transport document based on this specification.";
 }

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7049

Voit, et al. Expires August 17, 2019 [Page 41]

Internet-Draft Subscribed Notifications February 2019

 identity encoding {
 description
 "Base identity to represent data encodings";
 }

 identity encode-xml {
 base encoding;
 if-feature "encode-xml";
 description
 "Encode data using XML as described in RFC 7950";
 reference
 "RFC 7950 - The YANG 1.1 Data Modeling Language";
 }

 identity encode-json {
 base encoding;
 if-feature "encode-json";
 description
 "Encode data using JSON as described in RFC 7951";
 reference
 "RFC 7951 - JSON Encoding of Data Modeled with YANG";
 }

 /* Identities for transports */
 identity transport {
 description
 "An identity that represents the underlying mechanism for
 passing notification messages.";
 }

 /*
 * TYPEDEFs
 */

 typedef encoding {
 type identityref {
 base encoding;
 }
 description
 "Specifies a data encoding, e.g. for a data subscription.";
 }

 typedef stream-filter-ref {
 type leafref {
 path "/sn:filters/sn:stream-filter/sn:name";
 }
 description
 "This type is used to reference an event stream filter.";

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc7951

Voit, et al. Expires August 17, 2019 [Page 42]

Internet-Draft Subscribed Notifications February 2019

 }

 typedef stream-ref {
 type leafref {
 path "/sn:streams/sn:stream/sn:name";
 }
 description
 "This type is used to reference a system-provided event stream.";
 }

 typedef subscription-id {
 type uint32;
 description
 "A type for subscription identifiers.";
 }

 typedef transport {
 type identityref {
 base transport;
 }
 description
 "Specifies transport used to send notification messages to a
 receiver.";
 }

 /*
 * GROUPINGS
 */

 grouping stream-filter-elements {
 description
 "This grouping defines the base for filters applied to event
 streams.";
 choice filter-spec {
 description
 "The content filter specification for this request.";
 anydata stream-subtree-filter {
 if-feature "subtree";
 description
 "Event stream evaluation criteria encoded in the syntax of a
 subtree filter as defined in RFC 6241, Section 6.

 The subtree filter is applied to the representation of
 individual, delineated event records as contained within the
 event stream.

 If the subtree filter returns a non-empty node set, the
 filter matches the event record, and the event record is

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Voit, et al. Expires August 17, 2019 [Page 43]

Internet-Draft Subscribed Notifications February 2019

 included in the notification message sent to the receivers.";
 reference "RFC 6241, Section 6.";
 }
 leaf stream-xpath-filter {
 if-feature "xpath";
 type yang:xpath1.0;
 description
 "Event stream evaluation criteria encoded in the syntax of
 an XPath 1.0 expression.

 The XPath expression is evaluated on the representation of
 individual, delineated event records as contained within
 the event stream.

 The result of the XPath expression is converted to a
 boolean value using the standard XPath 1.0 rules. If the
 boolean value is 'true', the filter matches the event
 record, and the event record is included in the notification
 message sent to the receivers.

 The expression is evaluated in the following XPath context:

 o The set of namespace declarations is the set of prefix
 and namespace pairs for all YANG modules implemented
 by the server, where the prefix is the YANG module
 name and the namespace is as defined by the
 'namespace' statement in the YANG module.

 If the leaf is encoded in XML, all namespace
 declarations in scope on the 'stream-xpath-filter'
 leaf element are added to the set of namespace
 declarations. If a prefix found in the XML is
 already present in the set of namespace declarations,
 the namespace in the XML is used.

 o The set of variable bindings is empty.

 o The function library is the core function library, and
 the XPath functions defined in section 10 in RFC 7950.

 o The context node is the root node.";
 reference
 "http://www.w3.org/TR/1999/REC-xpath-19991116

RFC 7950, Section 10.";

 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc6241#section-6
https://datatracker.ietf.org/doc/html/rfc7950#section-10
https://datatracker.ietf.org/doc/html/rfc7950#section-10

Voit, et al. Expires August 17, 2019 [Page 44]

Internet-Draft Subscribed Notifications February 2019

 grouping update-qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower
 layers for transport prioritization and treatment";
 leaf dscp {
 if-feature "dscp";
 type inet:dscp;
 default "0";
 description
 "The desired network transport priority level. This is the
 priority set on notification messages encapsulating the
 results of the subscription. This transport priority is
 shared for all receivers of a given subscription.";
 }
 leaf weighting {
 if-feature "qos";
 type uint8 {
 range "0 .. 255";
 }
 description
 "Relative weighting for a subscription. Allows an underlying
 transport layer perform informed load balance allocations
 between various subscriptions";
 reference
 "RFC-7540, section 5.3.2";
 }
 leaf dependency {
 if-feature "qos";
 type subscription-id;
 description
 "Provides the 'subscription-id' of a parent subscription which
 has absolute precedence should that parent have push updates
 ready to egress the publisher. In other words, there should be
 no streaming of objects from the current subscription if
 the parent has something ready to push.

 If a dependency is asserted via configuration or via RPC, but
 the referenced 'subscription-id' does not exist, the
 dependency is silently discarded. If a referenced
 subscription is deleted this dependency is removed.";
 reference
 "RFC-7540, section 5.3.1";
 }
 }

 grouping subscription-policy-modifiable {
 description

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.1

Voit, et al. Expires August 17, 2019 [Page 45]

Internet-Draft Subscribed Notifications February 2019

 "This grouping describes all objects which may be changed
 in a subscription.";
 choice target {
 mandatory true;
 description
 "Identifies the source of information against which a
 subscription is being applied, as well as specifics on the
 subset of information desired from that source.";
 case stream {
 choice stream-filter {
 description
 "An event stream filter can be applied to a subscription.
 That filter will come either referenced from a global list,
 or be provided within the subscription itself.";
 case by-reference {
 description
 "Apply a filter that has been configured separately.";
 leaf stream-filter-name {
 type stream-filter-ref;
 mandatory true;
 description
 "References an existing event stream filter which is to
 be applied to an event stream for the subscription.";
 }
 }
 case within-subscription {
 description
 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses stream-filter-elements;
 }
 }
 }
 }
 leaf stop-time {
 type yang:date-and-time;
 description
 "Identifies a time after which notification messages for a
 subscription should not be sent. If 'stop-time' is not
 present, the notification messages will continue until the
 subscription is terminated. If 'replay-start-time' exists,
 'stop-time' must be for a subsequent time. If
 'replay-start-time' doesn't exist, 'stop-time' when established
 must be for a future time.";
 }
 }

 grouping subscription-policy-dynamic {

Voit, et al. Expires August 17, 2019 [Page 46]

Internet-Draft Subscribed Notifications February 2019

 description
 "This grouping describes the only information concerning a
 subscription which can be passed over the RPCs defined in this
 model.";
 uses subscription-policy-modifiable {
 augment target/stream {
 description
 "Adds additional objects which can be modified by RPC.";
 leaf stream {
 type stream-ref {
 require-instance false;
 }
 mandatory true;
 description
 "Indicates the event stream to be considered for
 this subscription.";
 }
 leaf replay-start-time {
 if-feature "replay";
 type yang:date-and-time;
 config false;
 description
 "Used to trigger the replay feature for a dynamic
 subscription, with event records being selected needing to
 be at or after the start at the time specified. If
 'replay-start-time' is not present, this is not a replay
 subscription and event record push should start
 immediately. It is never valid to specify start times that
 are later than or equal to the current time.";
 }
 }
 }
 uses update-qos;
 }

 grouping subscription-policy {
 description
 "This grouping describes the full set of policy information
 concerning both dynamic and configured subscriptions, with the
 exclusion of both receivers and networking information specific
 to the publisher such as what interface should be used to
 transmit notification messages.";
 uses subscription-policy-dynamic;
 leaf transport {
 if-feature "configured";
 type transport;
 description
 "For a configured subscription, this leaf specifies the

Voit, et al. Expires August 17, 2019 [Page 47]

Internet-Draft Subscribed Notifications February 2019

 transport used to deliver messages destined to all receivers
 of that subscription.";
 }
 leaf encoding {
 when 'not(../transport) or derived-from(../transport,
 "sn:configurable-encoding")';
 type encoding;
 description
 "The type of encoding for notification messages. For a
 dynamic subscription, if not included as part of an establish-
 subscription RPC, the encoding will be populated with the
 encoding used by that RPC. For a configured subscription, if
 not explicitly configured the encoding with be the default
 encoding for an underlying transport.";
 }
 leaf purpose {
 if-feature "configured";
 type string;
 description
 "Open text allowing a configuring entity to embed the
 originator or other specifics of this subscription.";
 }
 }

 /*
 * RPCs
 */

 rpc establish-subscription {
 description
 "This RPC allows a subscriber to create (and possibly negotiate)
 a subscription on its own behalf. If successful, the
 subscription remains in effect for the duration of the
 subscriber's association with the publisher, or until the
 subscription is terminated. In case an error occurs, or the
 publisher cannot meet the terms of a subscription, an RPC error
 is returned, the subscription is not created. In that case, the
 RPC reply's 'error-info' MAY include suggested parameter
 settings that would have a higher likelihood of succeeding in a
 subsequent 'establish-subscription' request.";
 input {
 uses subscription-policy-dynamic;
 leaf encoding {
 type encoding;
 description
 "The type of encoding for the subscribed data. If not
 included as part of the RPC, the encoding MUST be set by the
 publisher to be the encoding used by this RPC.";

Voit, et al. Expires August 17, 2019 [Page 48]

Internet-Draft Subscribed Notifications February 2019

 }
 }
 output {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier used for this subscription.";
 }
 leaf replay-start-time-revision {
 if-feature "replay";
 type yang:date-and-time;
 description
 "If a replay has been requested, this represents the
 earliest time covered by the event buffer for the requested
 event stream. The value of this object is the
 'replay-log-aged-time' if it exists. Otherwise it is the
 'replay-log-creation-time'. All buffered event records
 after this time will be replayed to a receiver. This
 object will only be sent if the starting time has been
 revised to be later than the time requested by the
 subscriber.";
 }
 }
 }

 rc:yang-data establish-subscription-stream-error-info {
 container establish-subscription-stream-error-info {
 description
 "If any 'establish-subscription' RPC parameters are
 unsupportable against the event stream, a subscription is not
 created and the RPC error response MUST indicate the reason
 why the subscription failed to be created. This yang-data MAY
 be inserted as structured data within a subscription's RPC
 error response to indicate the failure reason. This yang-data
 MUST be inserted if hints are to be provided back to the
 subscriber.";
 leaf reason {
 type identityref {
 base establish-subscription-error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted event stream.";
 }
 leaf filter-failure-hint {
 type string;
 description

Voit, et al. Expires August 17, 2019 [Page 49]

Internet-Draft Subscribed Notifications February 2019

 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 }
 }

 rpc modify-subscription {
 description
 "This RPC allows a subscriber to modify a dynamic subscription's
 parameters. If successful, the changed subscription
 parameters remain in effect for the duration of the
 subscription, until the subscription is again modified, or until
 the subscription is terminated. In case of an error or an
 inability to meet the modified parameters, the subscription is
 not modified and the original subscription parameters remain in
 effect. In that case, the RPC error MAY include 'error-info'
 suggested parameter hints that would have a high likelihood of
 succeeding in a subsequent 'modify-subscription' request. A
 successful 'modify-subscription' will return a suspended
 subscription to an 'active' state.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-policy-modifiable;
 }
 }

 rc:yang-data modify-subscription-stream-error-info {
 container modify-subscription-stream-error-info {
 description
 "This yang-data MAY be provided as part of a subscription's RPC
 error response when there is a failure of a
 'modify-subscription' RPC which has been made against an event
 stream. This yang-data MUST be used if hints are to be
 provided back to the subscriber.";
 leaf reason {
 type identityref {
 base modify-subscription-error;
 }
 description
 "Information in a 'modify-subscription' RPC error response
 which indicates the reason why the subscription to an event
 stream has failed to be modified.";
 }

Voit, et al. Expires August 17, 2019 [Page 50]

Internet-Draft Subscribed Notifications February 2019

 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 }
 }

 rpc delete-subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created from by that same subscriber using the
 'establish-subscription' RPC.

 If an error occurs, the server replies with an 'rpc-error' where
 the 'error-info' field MAY contain an
 'delete-subscription-error-info' structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 'establish-subscription' from the same origin as this RPC
 can be deleted via this RPC.";
 }
 }
 }

 rpc kill-subscription {
 nacm:default-deny-all;
 description
 "This RPC allows an operator to delete a dynamic subscription
 without restrictions on the originating subscriber or underlying
 transport session.

 If an error occurs, the server replies with an 'rpc-error' where
 the 'error-info' field MAY contain an
 'delete-subscription-error-info' structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted. Only
 subscriptions that were created using

Voit, et al. Expires August 17, 2019 [Page 51]

Internet-Draft Subscribed Notifications February 2019

 'establish-subscription' can be deleted via this RPC.";
 }
 }
 }

 rc:yang-data delete-subscription-error-info {
 container delete-subscription-error-info {
 description
 "If a 'delete-subscription' RPC or a 'kill-subscription' RPC
 fails, the subscription is not deleted and the RPC error
 response MUST indicate the reason for this failure. This
 yang-data MAY be inserted as structured data within a
 subscription's RPC error response to indicate the failure
 reason.";
 leaf reason {
 type identityref {
 base delete-subscription-error;
 }
 mandatory true;
 description
 "Indicates the reason why the subscription has failed to be
 deleted.";
 }
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification replay-completed {
 sn:subscription-state-notification;
 if-feature "replay";
 description
 "This notification is sent to indicate that all of the replay
 notifications have been sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-completed {
 sn:subscription-state-notification;
 if-feature "configured";
 description

Voit, et al. Expires August 17, 2019 [Page 52]

Internet-Draft Subscribed Notifications February 2019

 "This notification is sent to indicate that a subscription has
 finished passing event records, as the 'stop-time' has been
 reached.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the gracefully completed subscription.";
 }
 }

 notification subscription-modified {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been
 modified. Notification messages sent from this point on will
 conform to the modified terms of the subscription. For
 completeness, this subscription state change notification
 includes both modified and non-modified aspects of a
 subscription.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 'stream-filter-name' is populated, the filter within the
 subscription came from the 'filters' container. Otherwise it
 is populated in-line as part of the subscription.";
 }
 }
 }

 notification subscription-resumed {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications will once
 again be sent. In addition, a 'subscription-resumed' indicates
 that no modification of parameters has occurred since the last
 time event records have been sent.";
 leaf id {
 type subscription-id;
 mandatory true;

Voit, et al. Expires August 17, 2019 [Page 53]

Internet-Draft Subscribed Notifications February 2019

 description
 "This references the affected subscription.";
 }
 }

 notification subscription-started {
 sn:subscription-state-notification;
 if-feature "configured";
 description
 "This notification indicates that a subscription has started and
 notifications are beginning to be sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/replay-start-time" {
 description
 "Indicates the time that a replay is using for the streaming
 of buffered event records. This will be populated with the
 most recent of the following: the event time of the previous
 event record sent to a receiver, the
 'replay-log-creation-time', the 'replay-log-aged-time',
 or the most recent publisher boot time.";
 }
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 'stream-filter-name' is populated, the filter within the
 subscription came from the 'filters' container. Otherwise it
 is populated in-line as part of the subscription.";
 }
 augment "target/stream" {
 description
 "This augmentation adds additional parameters specific to a
 subscription-started notification.";
 leaf replay-previous-event-time {
 when "../replay-start-time";
 if-feature "replay";
 type yang:date-and-time;
 description
 "If there is at least one event in the replay buffer prior
 to 'replay-start-time', this gives the time of the event
 generated immediately prior to the 'replay-start-time'.

 If a receiver previously received event records for this

Voit, et al. Expires August 17, 2019 [Page 54]

Internet-Draft Subscribed Notifications February 2019

 configured subscription, it can compare this time to the
 last event record previously received. If the two are not
 the same (perhaps due to a reboot), then a dynamic replay
 can be initiated to acquire any missing event records.";
 }
 }
 }
 }

 notification subscription-suspended {
 sn:subscription-state-notification;
 description
 "This notification indicates that a suspension of the
 subscription by the publisher has occurred. No further
 notifications will be sent until the subscription resumes.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription-suspended-reason;
 }
 mandatory true;
 description
 "Identifies the condition which resulted in the suspension.";
 }
 }

 notification subscription-terminated {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription-terminated-reason;

Voit, et al. Expires August 17, 2019 [Page 55]

Internet-Draft Subscribed Notifications February 2019

 }
 mandatory true;
 description
 "Identifies the condition which resulted in the termination .";
 }
 }

 /*
 * DATA NODES
 */

 container streams {
 config false;
 description
 "This container contains information on the built-in event
 streams provided by the publisher.";
 list stream {
 key "name";
 description
 "Identifies the built-in event streams that are supported by
 the publisher.";
 leaf name {
 type string;
 description
 "A handle for a system-provided event stream made up of a
 sequential set of event records, each of which is
 characterized by its own domain and semantics.";
 }
 leaf description {
 type string;
 description
 "A description of the event stream, including such
 information as the type of event records that are available
 within this event stream.";
 }
 leaf replay-support {
 if-feature "replay";
 type empty;
 description
 "Indicates that event record replay is available on this
 event stream.";
 }
 leaf replay-log-creation-time {
 when "../replay-support";
 if-feature "replay";
 type yang:date-and-time;
 mandatory true;

Voit, et al. Expires August 17, 2019 [Page 56]

Internet-Draft Subscribed Notifications February 2019

 description
 "The timestamp of the creation of the log used to support the
 replay function on this event stream. This time might be
 earlier than the earliest available information contained in
 the log. This object is updated if the log resets for some
 reason.";
 }
 leaf replay-log-aged-time {
 when "../replay-support";
 if-feature "replay";
 type yang:date-and-time;
 description
 "The timestamp associated with last event record which has
 been aged out of the log. This timestamp identifies how far
 back into history this replay log extends, if it doesn't
 extend back to the 'replay-log-creation-time'. This object
 MUST be present if replay is supported and any event records
 have been aged out of the log.";
 }
 }
 }

 container filters {
 description
 "This container contains a list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 list stream-filter {
 key "name";
 description
 "A list of pre-configured filters that can be applied to
 subscriptions.";
 leaf name {
 type string;
 description
 "An name to differentiate between filters.";
 }
 uses stream-filter-elements;
 }
 }

 container subscriptions {
 description
 "Contains the list of currently active subscriptions, i.e.
 subscriptions that are currently in effect, used for
 subscription management and monitoring purposes. This includes
 subscriptions that have been setup via RPC primitives as well as
 subscriptions that have been established via configuration.";

Voit, et al. Expires August 17, 2019 [Page 57]

Internet-Draft Subscribed Notifications February 2019

 list subscription {
 key "id";
 description
 "The identity and specific parameters of a subscription.
 Subscriptions within this list can be created using a control
 channel or RPC, or be established through configuration.

 If configuration operations or the 'kill-subscription' RPC are
 used to delete a subscription, a 'subscription-terminated'
 message is sent to any active or suspended receivers.";
 leaf id {
 type subscription-id;
 description
 "Identifier of a subscription; unique within a publisher";
 }
 uses subscription-policy {
 refine "target/stream/stream" {
 description
 "Indicates the event stream to be considered for this
 subscription. If an event stream has been removed,
 and no longer can be referenced by an active subscription,
 send a 'subscription-terminated' notification with
 'stream-unavailable' as the reason. If a configured
 subscription refers to a non-existent event stream, move
 that subscription to the 'invalid' state.";
 }
 refine "transport" {
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined to all
 receivers of that subscription. This object is mandatory
 for subscriptions in the configuration datastore. This
 object is not mandatory for dynamic subscriptions within
 the operational state datastore. The object should not
 be present for dynamic subscriptions.";
 }
 augment "target/stream" {
 description
 "Enables objects to added to a configured stream
 subscription";
 leaf configured-replay {
 if-feature "configured";
 if-feature "replay";
 type empty;
 description
 "The presence of this leaf indicates that replay for the
 configured subscription should start at the earliest time
 in the event log, or at the publisher boot time, which

Voit, et al. Expires August 17, 2019 [Page 58]

Internet-Draft Subscribed Notifications February 2019

 ever is later.";
 }
 }
 }
 choice notification-message-origin {
 if-feature "configured";
 description
 "Identifies the egress interface on the publisher from which
 notification messages are to be sent.";
 case interface-originated {
 description
 "When notification messages to egress a specific,
 designated interface on the publisher.";
 leaf source-interface {
 if-feature "interface-designation";
 type if:interface-ref;
 description
 "References the interface for notification messages.";
 }
 }
 case address-originated {
 description
 "When notification messages are to depart from a publisher
 using specific originating address and/or routing context
 information.";
 leaf source-vrf {
 if-feature "supports-vrf";
 type leafref {
 path "/ni:network-instances/ni:network-instance/ni:name";
 }
 description
 "VRF from which notification messages should egress a
 publisher.";
 }
 leaf source-address {
 type inet:ip-address-no-zone;
 description
 "The source address for the notification messages. If a
 source VRF exists, but this object doesn't, a publisher's
 default address for that VRF must be used.";
 }
 }
 }
 leaf configured-subscription-state {
 if-feature "configured";
 type enumeration {
 enum valid {
 value 1;

Voit, et al. Expires August 17, 2019 [Page 59]

Internet-Draft Subscribed Notifications February 2019

 description
 "Subscription is supportable with current parameters.";
 }
 enum invalid {
 value 2;
 description
 "The subscription as a whole is unsupportable with its
 current parameters.";
 }
 enum concluded {
 value 3;
 description
 "A subscription is inactive as it has hit a stop time,
 it no longer has receivers in the 'receiver active' or
 'receiver suspended' state, but not yet been
 removed from configuration.";
 }
 }
 config false;
 description
 "The presence of this leaf indicates that the subscription
 originated from configuration, not through a control channel
 or RPC. The value indicates the system established state
 of the subscription.";
 }
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "name";
 min-elements 1;
 description
 "A host intended as a recipient for the notification
 messages of a subscription. For configured subscriptions,
 transport specific network parameters (or a leafref to
 those parameters) may augmentated to a specific receiver
 within this list.";
 leaf name {
 type string;
 description
 "Identifies a unique receiver for a subscription.";
 }
 leaf sent-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records sent to the receiver. The
 count is initialized when a dynamic subscription is

Voit, et al. Expires August 17, 2019 [Page 60]

Internet-Draft Subscribed Notifications February 2019

 established, or when a configured receiver
 transitions to the valid state.";
 }
 leaf excluded-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records explicitly removed either
 via an event stream filter or an access control filter so
 that they are not passed to a receiver. This count is
 set to zero each time 'sent-event-records' is
 initialized.";
 }
 leaf state {
 type enumeration {
 enum active {
 value 1;
 description
 "Receiver is currently being sent any applicable
 notification messages for the subscription.";
 }
 enum suspended {
 value 2;
 description
 "Receiver state is 'suspended', so the publisher
 is currently unable to provide notification messages
 for the subscription.";
 }
 enum connecting {
 value 3;
 if-feature "configured";
 description
 "A subscription has been configured, but a
 'subscription-started' subscription state change
 notification needs to be successfully received before
 notification messages are sent.

 If the 'reset' action is invoked for a receiver of an
 active configured subscription, the state must be
 moved to 'connecting'.";
 }
 enum disconnected {
 value 4;
 if-feature "configured";
 description
 "A subscription has failed in sending a subscription
 started state change to the receiver.
 Additional attempts at connection attempts are not

Voit, et al. Expires August 17, 2019 [Page 61]

Internet-Draft Subscribed Notifications February 2019

 currently being made.";
 }
 }
 config false;
 mandatory true;
 description
 "Specifies the state of a subscription from the
 perspective of a particular receiver. With this info it
 is possible to determine whether a subscriber is
 currently generating notification messages intended for
 that receiver.";
 }
 action reset {
 if-feature "configured";
 description
 "Allows the reset of this configured subscription
 receiver to the 'connecting' state. This enables the
 connection process to be re-initiated.";
 output {
 leaf time {
 type yang:date-and-time;
 mandatory true;
 description
 "Time a publisher returned the receiver to a
 'connecting' state.";
 }
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

5. Considerations

5.1. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Voit, et al. Expires August 17, 2019 [Page 62]

Internet-Draft Subscribed Notifications February 2019

 Name: ietf-subscribed-notifications
 Namespace: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Prefix: sn
 Reference: draft-ietf-netconf-ietf-subscribed-notifications-11.txt
 (RFC form)

5.2. Implementation Considerations

 To support deployments including both configured and dynamic
 subscriptions, it is recommended to split the subscription "id"
 domain into static and dynamic halves. That way it eliminates the
 possibility of collisions if the configured subscriptions attempt to
 set a subscription-id which might have already been dynamically
 allocated. A best practice is to use lower half the "id" object's
 integer space when that "id" is assigned by an external entity (such
 as with a configured subscription). This leaves the upper half of
 subscription integer space available to be dynamically assigned by
 the publisher.

 If a subscription is unable to marshal a series of filtered event
 records into transmittable notification messages, the receiver should
 be suspended with the reason "unsupportable-volume".

 For configured subscriptions, operations are against the set of
 receivers using the subscription "id" as a handle for that set. But
 for streaming updates, subscription state change notifications are
 local to a receiver. In this specification it is the case that
 receivers get no information from the publisher about the existence
 of other receivers. But if a network operator wants to let the
 receivers correlate results, it is useful to use the subscription
 "id" across the receivers to allow that correlation.

 For configured replay subscriptions, the receiver is protected from
 duplicated events being pushed after a publisher is rebooted.
 However it is possible that a receiver might want to acquire event
 records which failed to be delivered just prior to the reboot.
 Delivering these event records be accomplished by leveraging the
 "eventTime" from the last event record received prior to the receipt
 of a "subscription-started" subscription state change notification.
 With this "eventTime" and the "replay-start-time" from the
 "subscription-started" notification, an independent dynamic
 subscription can be established which retrieves any event records
 which may have been generated but not sent to the receiver.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ietf-subscribed-notifications-11.txt

Voit, et al. Expires August 17, 2019 [Page 63]

Internet-Draft Subscribed Notifications February 2019

5.3. Transport Requirements

 This section provides requirements for any subscribed notification
 transport supporting the solution presented in this document.

 The transport selected by the subscriber to reach the publisher MUST
 be able to support multiple "establish-subscription" requests made
 within the same transport session.

 For both configured and dynamic subscriptions the publisher MUST
 authenticate a receiver via some transport level mechanism before
 sending any event records for which they are authorized to see. In
 addition, the receiver MUST authenticate the publisher at the
 transport level. The result is mutual authentication between the
 two.

 A secure transport is highly recommended and the publisher MUST
 ensure that the receiver has sufficient authorization to perform the
 function they are requesting against the specific subset of content
 involved.

 A specific transport specification built upon this document may or
 may not choose to require the use of the same logical channel for the
 RPCs and the event records. However the event records and the
 subscription state change notifications MUST be sent on the same
 transport session to ensure the properly ordered delivery.

 Additional transport requirements will be dictated by the choice of
 transport used with a subscription. For an example of such
 requirements with NETCONF transport, see
 [I-D.draft-ietf-netconf-netconf-event-notifications].

5.4. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management transports
 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC5246].

 The NETCONF Access Control Model (NACM) [RFC8341] provides the means
 to restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF operations
 and content.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc6242
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8341

Voit, et al. Expires August 17, 2019 [Page 64]

Internet-Draft Subscribed Notifications February 2019

 One subscription "id" can be used for two or more receivers of the
 same configured subscription. But due to the possibility of
 different access control permissions per receiver, it cannot be
 assumed that each receiver is getting identical updates.

 With configured subscriptions, one or more publishers could be used
 to overwhelm a receiver. Notification messages SHOULD NOT be sent to
 any receiver which does not support this specification. Receivers
 that do not want notification messages need only terminate or refuse
 any transport sessions from the publisher.

 When a receiver of a configured subscription gets a new
 "subscription-started" message for a known subscription where it is
 already consuming events, the receiver SHOULD retrieve any event
 records generated since the last event record was received. This can
 be accomplish by establishing a separate dynamic replay subscription
 with the same filtering criteria with the publisher, assuming the
 publisher supports the "replay" feature.

 For dynamic subscriptions, implementations need to protect against
 malicious or buggy subscribers which may send a large number
 "establish-subscription" requests, thereby using up system resources.
 To cover this possibility operators SHOULD monitor for such cases
 and, if discovered, take remedial action to limit the resources used,
 such as suspending or terminating a subset of the subscriptions or,
 if the underlying transport is session based, terminate the
 underlying transport session.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 where there is a specific sensitivity/vulnerability:

 Container: "/filters"

 o "stream-subtree-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 o "stream-xpath-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 Container: "/subscriptions"

 The following considerations are only relevant for configuration
 operations made upon configured subscriptions:

Voit, et al. Expires August 17, 2019 [Page 65]

Internet-Draft Subscribed Notifications February 2019

 o "configured-replay": can be used to send a large number of event
 records to a receiver.

 o "dependency": can be used to force important traffic to be queued
 behind less important updates.

 o "dscp": if unvalidated, can result in the sending of traffic with
 a higher priority marking than warranted.

 o "id": can overwrite an existing subscription, perhaps one
 configured by another entity.

 o "name": adding a new key entry can be used to attempt to send
 traffic to an unwilling receiver.

 o "replay-start-time": can be used to push very large logs, wasting
 resources.

 o "source-address": the configured address might not be able to
 reach a desired receiver.

 o "source-interface": the configured interface might not be able to
 reach a desired receiver.

 o "source-vrf": can place a subscription into a virtual network
 where receivers are not entitled to view the subscribed content.

 o "stop-time": could be used to terminate content at an inopportune
 time.

 o "stream": could set a subscription to an event stream containing
 no content permitted for the targeted receivers.

 o "stream-filter-name": could be set to a filter which is irrelevant
 to the event stream.

 o "stream-subtree-filter": a complex filter can increase the
 computational resources for this subscription.

 o "stream-xpath-filter": a complex filter can increase the
 computational resources for this subscription.

 o "weighting": placing a large weight can overwhelm the dequeuing of
 other subscriptions.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or

Voit, et al. Expires August 17, 2019 [Page 66]

Internet-Draft Subscribed Notifications February 2019

 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/streams"

 o "name": if access control is not properly configured, can expose
 system internals to those who should have no access to this
 information.

 o "replay-support": if access control is not properly configured,
 can expose logs to those who should have no access.

 Container: "/subscriptions"

 o "excluded-event-records": leaf can provide information about
 filtered event records. A network operator should have
 permissions to know about such filtering.

 o "subscription": different operational teams might have a desire to
 set varying subsets of subscriptions. Access control should be
 designed to permit read access to just the allowed set.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 RPC: all

 o If a malicious or buggy subscriber sends an unexpectedly large
 number of RPCs, the result might be an excessive use of system
 resources on the publisher just to determine that these
 subscriptions should be declined. In such a situation,
 subscription interactions MAY be terminated by terminating the
 transport session.

 RPC: "delete-subscription"

 o No special considerations.

 RPC: "establish-subscription"

 o Subscriptions could overload a publisher's resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

 RPC: "kill-subscription"

Voit, et al. Expires August 17, 2019 [Page 67]

Internet-Draft Subscribed Notifications February 2019

 o The "kill-subscription" RPC MUST be secured so that only
 connections with administrative rights are able to invoke this
 RPC.

 RPC: "modify-subscription"

 o Subscriptions could overload a publisher's resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

6. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Tim Jenkins, Martin Bjorklund, Kent Watsen,
 Balazs Lengyel, Robert Wilton, Sharon Chisholm, Hector Trevino, Susan
 Hares, Michael Scharf, and Guangying Zheng.

7. References

7.1. Normative References

 [I-D.draft-ietf-rtgwg-ni-model]
 Berger, L., Hopps, C., and A. Lindem, "YANG Network
 Instances", draft-ietf-rtgwg-ni-model-12 (work in
 progress), March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ni-model-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2474
https://www.rfc-editor.org/info/rfc2474
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246

Voit, et al. Expires August 17, 2019 [Page 68]

Internet-Draft Subscribed Notifications February 2019

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

https://datatracker.ietf.org/doc/html/rfc5277
https://www.rfc-editor.org/info/rfc5277
https://datatracker.ietf.org/doc/html/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://datatracker.ietf.org/doc/html/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://datatracker.ietf.org/doc/html/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://datatracker.ietf.org/doc/html/rfc8342
https://www.rfc-editor.org/info/rfc8342

Voit, et al. Expires August 17, 2019 [Page 69]

Internet-Draft Subscribed Notifications February 2019

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

7.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., and A. Tripathy, "NETCONF support for
 event notifications", May 2018,
 <https://datatracker.ietf.org/doc/

draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-restconf-notif]
 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", May 2018,
 <https://datatracker.ietf.org/doc/

draft-ietf-netconf-restconf-notif/>.

 [I-D.ietf-netconf-yang-push]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", May 2018,
 <https://datatracker.ietf.org/doc/

draft-ietf-netconf-yang-push/>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
RFC 8071, DOI 10.17487/RFC8071, February 2017,

 <https://www.rfc-editor.org/info/rfc8071>.

https://datatracker.ietf.org/doc/html/rfc8343
https://www.rfc-editor.org/info/rfc8343
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-event-notifications
https://datatracker.ietf.org/doc/draft-ietf-netconf-netconf-event-notifications/
https://datatracker.ietf.org/doc/draft-ietf-netconf-netconf-event-notifications/
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-notif
https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf-notif/
https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf-notif/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7923
https://www.rfc-editor.org/info/rfc7923
https://datatracker.ietf.org/doc/html/rfc8071
https://www.rfc-editor.org/info/rfc8071

Voit, et al. Expires August 17, 2019 [Page 70]

Internet-Draft Subscribed Notifications February 2019

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Example Configured Transport Augmentation

 This appendix provides a non-normative example of how the YANG model
 defined in Section 4 may be enhanced to incorporate the configuration
 parameters needed to support the transport connectivity process. In
 this example, connectivity via an imaginary transport type of "foo"
 is explored. For more on the overall need, see Section 2.5.7.

 The YANG model defined in this section contains two main elements.
 First is a transport identity "foo". This transport identity allows
 a configuration agent to define "foo" as the selected type of
 transport for a subscription. Second is a YANG case augmentation
 "foo" which is made to the "/subscriptions/subscription/receivers/
 receiver" node of Section 4. Within this augmentation are the
 transport configuration parameters "address" and "port" which are
 necessary to make the connect to the receiver.

 module example-foo-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:example:foo-subscribed-notifications";

 prefix fsn;

 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {
 prefix inet;
 }

 description
 "Defines 'foo' as a supported type of configured transport for
 subscribed event notifications.";

 identity foo {
 base sn:transport;
 description
 "Transport type 'foo' is available for use as a configured

https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340

Voit, et al. Expires August 17, 2019 [Page 71]

Internet-Draft Subscribed Notifications February 2019

 subscription transport protocol for subscribed notifications.";
 }

 augment
 "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 when 'derived-from(../../../transport, "fsn:foo")';
 description
 "This augmentation makes 'foo' specific transport parameters
 available for a receiver.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "Specifies the address to use for messages destined to a
 receiver.";
 }
 leaf port {
 type inet:port-number;
 mandatory true;
 description
 "Specifies the port number to use for messages destined to a
 receiver.";
 }
 }
 }

 Figure 21: Example Transport Augmentation for the fictitious protocol
 foo

 This example YANG model for transport "foo" will not be seen in a
 real world deployment. For a real world deployment supporting an
 actual transport technology, a similar YANG model must be defined.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v22 - v23

 o During the YANG Doctor review, feature dscp support was refined to
 avoid the out-of-order delivery of packets in a single TCP
 session.

 v21 - v22

 o YANG Dr definition clarifications. This includes refined text on:
 (a) stop-time can be used without replay, (b) a separate dynamic
 subscription for replay, (c) subscription state change

Voit, et al. Expires August 17, 2019 [Page 72]

Internet-Draft Subscribed Notifications February 2019

 notifications can't be dropped, more details on "enum concluded"
 and (d) more text on configurable-encoding leaf (which adds two
 informative references). There also was one minor tweak in the
 YANG model. The stream description leaf had "mandatory true"
 removed.

 v20 - v21

 o Editorial change in Section 1.3 requested by Qin's Shepherd review
 of NETCONF-Notif and RESTCONF-Notif. Basically extra text was
 added further describing that dynamic subscriptions can have state
 change notifications.

 v18 - v20

 o XPath-stream-filter YANG object definition updated based on NETMOD
 discussions.

 v17 - v18

 o Transport optional in YANG model.

 o Modify subscription must come from the originator of the
 subscription. (Text got dropped somewhere previously.)

 o Title change.

 v16 - v17

 o YANG renaming: Subscription identifier renamed to id. Counters
 renamed. Filters id made into name.

 o Text tweaks.

 v15 - v16

 o Mandatory empty case "transport" removed.

 o Appendix case turned from "netconf" to "foo".

 v14 - v15

 o Text tweaks.

 o Mandatory empty case "transport" added for transport parameters.
 This includes a new section and an appendix explaining it.

 v13 - v14

Voit, et al. Expires August 17, 2019 [Page 73]

Internet-Draft Subscribed Notifications February 2019

 o Removed the 'address' leaf.

 o Replay is now of type 'empty' for configured.

 v12 - v13

 o Tweaks from Kent's comments

 o Referenced in YANG model updated per Tom Petch's comments

 o Added leaf replay-previous-event-time

 o Renamed the event counters, downshifted the subscription states

 v11 - v12

 o Tweaks from Kent's, Tim's, and Martin's comments

 o Clarified dscp text, and made its own feature

 o YANG model tweaks alphabetizing, features.

 v10 - v11

 o access control filtering of events in streams included to match
RFC5277 behavior

 o security considerations updated based on YANG template.

 o dependency QoS made non-normative on HTTP2 QoS

 o tree diagrams referenced for each figure using them

 o reference numbers placed into state machine figures

 o broke configured replay into its own section

 o many tweaks updates based on LC and YANG doctor reviews

 o trees and YANG model reconciled were deltas existed

 o new feature for interface originated.

 o dscp removed from the qos feature

 o YANG model updated in a way which collapses groups only used once
 so that they are part of the 'subscriptions' container.

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 74]

Internet-Draft Subscribed Notifications February 2019

 o alternative encodings only allowed for transports which support
 them.

 v09 - v10

 o Typos and tweaks

 v08 - v09

 o NMDA model supported. Non NMDA version at https://github.com/
netconf-wg/rfc5277bis/

 o Error mechanism revamped to match to embedded implementations.

 o Explicitly identified error codes relevant to each RPC/
 Notification

 v07 - v08

 o Split YANG trees to separate document subsections.

 o Clarified configured state machine based on Balazs comments, and
 moved it into the configured subscription subsections.

 o Normative reference to Network Instance model for VRF

 o One transport for all receivers of configured subscriptions.

 o QoS section moved in from yang-push

 v06 - v07

 o Clarification on state machine for configured subscriptions.

 v05 - v06

 o Made changes proposed by Martin, Kent, and others on the list.
 Most significant of these are stream returned to string (with the
 SYSLOG identity removed), intro section on 5277 relationship, an
 identity set moved to an enumeration, clean up of definitions/
 terminology, state machine proposed for configured subscriptions
 with a clean-up of subscription state options.

 o JSON and XML become features. Also Xpath and subtree filtering
 become features

 o Terminology updates with event records, and refinement of filters
 to just event stream filters.

https://github.com/netconf-wg/rfc5277bis/
https://github.com/netconf-wg/rfc5277bis/

Voit, et al. Expires August 17, 2019 [Page 75]

Internet-Draft Subscribed Notifications February 2019

 o Encoding refined in establish-subscription so it takes the RPC's
 encoding as the default.

 o Namespaces in examples fixed.

 v04 - v05

 o Returned to the explicit filter subtyping of v00

 o stream object changed to 'name' from 'stream'

 o Cleaned up examples

 o Clarified that JSON support needs notification-messages draft.

 v03 - v04

 o Moved back to the use of RFC5277 one-way notifications and
 encodings.

 v03 - v04

 o Replay updated

 v02 - v03

 o RPCs and Notification support is identified by the Notification
 2.0 capability.

 o Updates to filtering identities and text

 o New error type for unsupportable volume of updates

 o Text tweaks.

 v01 - v02

 o Subscription status moved under receiver.

 v00 - v01

 o Security considerations updated

 o Intro rewrite, as well as scattered text changes

 o Added Appendix A, to help match this to related drafts in progress

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 76]

Internet-Draft Subscribed Notifications February 2019

 o Updated filtering definitions, and filter types in yang file, and
 moved to identities for filter types

 o Added Syslog as an event stream

 o HTTP2 moved in from YANG-Push as a transport option

 o Replay made an optional feature for events. Won't apply to
 datastores

 o Enabled notification timestamp to have different formats.

 o Two error codes added.

 v01 5277bis - v00 subscribed notifications

 o Kill subscription RPC added.

 o Renamed from 5277bis to Subscribed Notifications.

 o Changed the notification capabilities version from 1.1 to 2.0.

 o Extracted create-subscription and other elements of RFC5277.

 o Error conditions added, and made specific in return codes.

 o Simplified yang model structure for removal of 'basic' grouping.

 o Added a grouping for items which cannot be statically configured.

 o Operational counters per receiver.

 o Subscription-id and filter-id renamed to identifier

 o Section for replay added. Replay now cannot be configured.

 o Control plane notification renamed to subscription state change
 notification

 o Source address: Source-vrf changed to string, default address
 option added

 o In yang model: 'info' changed to 'policy'

 o Scattered text clarifications

 v00 - v01 of 5277bis

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 77]

Internet-Draft Subscribed Notifications February 2019

 o YANG Model changes. New groupings for subscription info to allow
 restriction of what is changeable via RPC. Removed notifications
 for adding and removing receivers of configured subscriptions.

 o Expanded/renamed definitions from event server to publisher, and
 client to subscriber as applicable. Updated the definitions to
 include and expand on RFC 5277.

 o Removal of redundancy with other drafts

 o Many other clean-ups of wording and terminology

Authors' Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Alberto Gonzalez Prieto
 Microsoft

 Email: alberto.gonzalez@microsoft.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

https://datatracker.ietf.org/doc/html/rfc5277

Voit, et al. Expires August 17, 2019 [Page 78]

