
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-tls-client-server-22

Published: 20 August 2020

Intended Status: Standards Track

Expires: 21 February 2021

Authors: K. Watsen

Watsen Networks

YANG Groupings for TLS Clients and TLS Servers

Abstract

This document defines three YANG modules: the first defines

groupings for a generic TLS client, the second defines groupings for

a generic TLS server, and the third defines common identities and

groupings used by both the client and the server. It is intended

that these groupings will be used by applications using the TLS

protocol.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for draft-ietf-netconf-crypto-

types

BBBB --> the assigned RFC value for draft-ietf-netconf-trust-

anchors

CCCC --> the assigned RFC value for draft-ietf-netconf-keystore

DDDD --> the assigned RFC value for draft-ietf-netconf-tcp-

client-server

FFFF --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2020-08-20 --> the publication date of this draft

¶

¶

¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

* ¶

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 February 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

1.3. Adherence to the NMDA

2. The "ietf-tls-common" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. The "ietf-tls-client" Module

3.1. Data Model Overview

3.2. Example Usage

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

3.3. YANG Module

4. The "ietf-tls-server" Module

4.1. Data Model Overview

4.2. Example Usage

4.3. YANG Module

5. Security Considerations

5.1. The "ietf-tls-common" YANG Module

5.2. The "ietf-tls-client" YANG Module

5.3. The "ietf-tls-server" YANG Module

6. IANA Considerations

6.1. The "IETF XML" Registry

6.2. The "YANG Module Names" Registry

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Change Log

A.1. 00 to 01

A.2. 01 to 02

A.3. 02 to 03

A.4. 03 to 04

A.5. 04 to 05

A.6. 05 to 06

A.7. 06 to 07

A.8. 07 to 08

A.9. 08 to 09

A.10. 09 to 10

A.11. 10 to 11

A.12. 11 to 12

A.13. 12 to 13

A.14. 12 to 13

A.15. 13 to 14

A.16. 14 to 15

A.17. 15 to 16

A.18. 16 to 17

A.19. 17 to 18

A.20. 18 to 19

A.21. 19 to 20

A.22. 20 to 21

A.23. 21 to 22

Acknowledgements

Author's Address

1. Introduction

This document defines three YANG 1.1 [RFC7950] modules: the first

defines a grouping for a generic TLS client, the second defines a

grouping for a generic TLS server, and the third defines identities

and groupings common to both the client and the server (TLS is

defined in [RFC5246]). It is intended that these groupings will be

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

used by applications using the TLS protocol. For instance, these

groupings could be used to help define the data model for an HTTPS

[RFC2818] server or a NETCONF over TLS [RFC7589] based server.

The client and server YANG modules in this document each define one

grouping, which is focused on just TLS-specific configuration, and

specifically avoids any transport-level configuration, such as what

ports to listen-on or connect-to. This affords applications the

opportunity to define their own strategy for how the underlying TCP

connection is established. For instance, applications supporting

NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"

grouping for the TLS parts it provides, while adding data nodes for

the TCP-level call-home configuration.

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to define

configuration modules for clients and servers of both the NETCONF

[RFC6241] and RESTCONF [RFC8040] protocols.

The modules have been defined in a modular fashion to enable their

use by other efforts, some of which are known to be in progress at

the time of this writing, with many more expected to be defined in

time.

The normative dependency relationship between the various RFCs in

the collection is presented in the below diagram. The labels in the

diagram represent the primary purpose provided by each RFC.

Hyperlinks to each RFC are provided below the diagram.

¶

¶

¶

¶

¶

Label in Diagram Originating RFC

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Adherence to the NMDA

This document in compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. For instance, as described in [I-

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

¶

D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore], trust

anchors and keys installed during manufacturing are expected to

appear in <operational>.

2. The "ietf-tls-common" Module

The TLS common model presented in this section contains identities

and groupings common to both TLS clients and TLS servers. The

"hello-params-grouping" grouping can be used to configure the list

of TLS algorithms permitted by the TLS client or TLS server. The

lists of algorithms are ordered such that, if multiple algorithms

are permitted by the client, the algorithm that appears first in its

list that is also permitted by the server is used for the TLS

transport layer connection. The ability to restrict the algorithms

allowed is provided in this grouping for TLS clients and TLS servers

that are capable of doing so and may serve to make TLS clients and

TLS servers compliant with local security policies. This model

supports both TLS1.2 [RFC5246] and TLS 1.3 [RFC8446].

TLS 1.2 and TLS 1.3 have different ways defining their own supported

cryptographic algorithms, see TLS and DTLS IANA registries page

(https://www.iana.org/assignments/tls-parameters/tls-

parameters.xhtml):

TLS 1.2 defines four categories of registries for cryptographic

algorithms: TLS Cipher Suites, TLS SignatureAlgorithm, TLS

HashAlgorithm, TLS Supported Groups. TLS Cipher Suites plays the

role of combining all of them into one set, as each value of the

set represents a unique and feasible combination of all the

cryptographic algorithms, and thus the other three registry

categories do not need to be considered here. In this document,

the TLS common model only chooses those TLS1.2 algorithms in TLS

Cipher Suites which are marked as recommended:

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, and so on. All chosen

algorithms are enumerated in Table 1-1 below;

TLS 1.3 defines its supported algorithms differently. Firstly, it

defines three categories of registries for cryptographic

algorithms: TLS Cipher Suites, TLS SignatureScheme, TLS Supported

Groups. Secondly, all three of these categories are useful, since

they represent different parts of all the supported algorithms

respectively. Thus, all of these registries categories are

considered here. In this draft, the TLS common model chooses only

those TLS1.3 algorithms specified in B.4, 4.2.3, 4.2.7 of

[RFC8446].

¶

¶

¶

*

¶

*

¶

Thus, in order to support both TLS1.2 and TLS1.3, the cipher-suites

part of the "hello-params-grouping" grouping should include three

parameters for configuring its permitted TLS algorithms, which are:

TLS Cipher Suites, TLS SignatureScheme, TLS Supported Groups. Note

that TLS1.2 only uses TLS Cipher Suites.

Features are defined for algorithms that are OPTIONAL or are not

widely supported by popular implementations. Note that the list of

algorithms is not exhaustive.

2.1. Data Model Overview

This section provides an overview of the "ietf-tls-common" module in

terms of its features, identitiesm and groupings.

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-tls-common" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

2.1.2. Identities

The following diagram illustrates the relationship amongst the

"identity" statements defined in the "ietf-tls-common" module:

¶

¶

¶

¶

Features:

 +-- tls-1_0

 +-- tls-1_1

 +-- tls-1_2

 +-- tls-1_3

 +-- tls-ecc

 +-- tls-dhe

 +-- tls-3des

 +-- tls-gcm

 +-- tls-sha2

¶

¶

¶

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Comments:

The diagram shows that there are two base identities.

One base identity is used to specific TLS versions, while the

other is used to specify cipher-suites.

These base identities are "abstract", in the object orientied

programming sense, in that they only define a "class" of things,

rather than a specific thing.

2.1.3. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-tls-common" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Identities:

 +-- tls-version-base

 | +-- tls-1.0

 | +-- tls-1.1

 | +-- tls-1.2

 +-- cipher-suite-base

 +-- rsa-with-aes-128-cbc-sha

 +-- rsa-with-aes-256-cbc-sha

 +-- rsa-with-aes-128-cbc-sha256

 +-- rsa-with-aes-256-cbc-sha256

 +-- dhe-rsa-with-aes-128-cbc-sha

 +-- dhe-rsa-with-aes-256-cbc-sha

 +-- dhe-rsa-with-aes-128-cbc-sha256

 +-- dhe-rsa-with-aes-256-cbc-sha256

 +-- ecdhe-ecdsa-with-aes-128-cbc-sha256

 +-- ecdhe-ecdsa-with-aes-256-cbc-sha384

 +-- ecdhe-rsa-with-aes-128-cbc-sha256

 +-- ecdhe-rsa-with-aes-256-cbc-sha384

 +-- ecdhe-ecdsa-with-aes-128-gcm-sha256

 +-- ecdhe-ecdsa-with-aes-256-gcm-sha384

 +-- ecdhe-rsa-with-aes-128-gcm-sha256

 +-- ecdhe-rsa-with-aes-256-gcm-sha384

 +-- rsa-with-3des-ede-cbc-sha

 +-- ecdhe-rsa-with-3des-ede-cbc-sha

 +-- ecdhe-rsa-with-aes-128-cbc-sha

 +-- ecdhe-rsa-with-aes-256-cbc-sha

¶

¶

¶

* ¶

*

¶

*

¶

¶

Groupings:

 +-- hello-params-grouping

¶

¶

Each of these groupings are presented in the following subsections.

2.1.3.1. The "hello-params-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "hello-params-

grouping" grouping:

Comments:

This grouping is used by both the "tls-client-grouping" and the

"tls-server-grouping" groupings defined in Section 3.1.2.1 and

Section 4.1.2.1, respectively.

This grouping enables client and server configurations to specify

the TLS versions and cipher suites that are to be used when

establishing TLS sessions.

The "cipher-suites" list is "ordered-by user".

2.1.4. Protocol-accessible Nodes

The "ietf-tls-common" module does not contain any protocol-

accessible nodes, but the module needs to be "implemented", as

described in Section 5.6.5 of [RFC7950], in order for the identities

in Section 2.1.2 to be defined.

2.2. Example Usage

This section shows how it would appear if the "hello-params-

grouping" grouping were populated with some data.

¶

¶

 grouping hello-params-grouping

 +-- tls-versions

 | +-- tls-version* identityref

 +-- cipher-suites

 +-- cipher-suite* identityref

¶

¶

*

¶

*

¶

* ¶

¶

¶

<hello-params

 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"

 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">

 <tls-versions>

 <tls-version>tlscmn:tls-1.1</tls-version>

 <tls-version>tlscmn:tls-1.2</tls-version>

 </tls-versions>

 <cipher-suites>

 <cipher-suite>tlscmn:dhe-rsa-with-aes-128-cbc-sha</cipher-suite>

 <cipher-suite>tlscmn:rsa-with-aes-128-cbc-sha</cipher-suite>

 <cipher-suite>tlscmn:rsa-with-3des-ede-cbc-sha</cipher-suite>

 </cipher-suites>

</hello-params>

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

2.3. YANG Module

This YANG module has a normative references to [RFC4346], [RFC5246],

[RFC5288], [RFC5289], and [RFC8422].

This YANG module has a informative references to [RFC2246],

[RFC4346], [RFC5246], and [RFC8446].

<CODE BEGINS> file "ietf-tls-common@2020-08-20.yang"

¶

¶

¶

module ietf-tls-common {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";

 prefix tlscmn;

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines a common features, identities, and

 groupings for Transport Layer Security (TLS).

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC FFFF

 (https://www.rfc-editor.org/info/rfcFFFF); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-08-20 {

 description

 "Initial version";

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 // Features

 feature tls-1_0 {

 description

 "TLS Protocol Version 1.0 is supported.";

 reference

 "RFC 2246: The TLS Protocol Version 1.0";

 }

 feature tls-1_1 {

 description

 "TLS Protocol Version 1.1 is supported.";

 reference

 "RFC 4346: The Transport Layer Security (TLS) Protocol

 Version 1.1";

 }

 feature tls-1_2 {

 description

 "TLS Protocol Version 1.2 is supported.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 feature tls-1_3 {

 description

 "TLS Protocol Version 1.2 is supported.";

 reference

 "RFC 8446: The Transport Layer Security (TLS) Protocol

 Version 1.3";

 }

 feature tls-ecc {

 description

 "Elliptic Curve Cryptography (ECC) is supported for TLS.";

 reference

 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites

 for Transport Layer Security (TLS)";

 }

 feature tls-dhe {

 description

 "Ephemeral Diffie-Hellman key exchange is supported for TLS.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 feature tls-3des {

 description

 "The Triple-DES block cipher is supported for TLS.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 feature tls-gcm {

 description

 "The Galois/Counter Mode authenticated encryption mode is

 supported for TLS.";

 reference

 "RFC 5288: AES Galois Counter Mode (GCM) Cipher Suites for

 TLS";

 }

 feature tls-sha2 {

 description

 "The SHA2 family of cryptographic hash functions is supported

 for TLS.";

 reference

 "FIPS PUB 180-4: Secure Hash Standard (SHS)";

 }

 // Identities

 identity tls-version-base {

 description

 "Base identity used to identify TLS protocol versions.";

 }

 identity tls-1.0 {

 if-feature "tls-1_0";

 base tls-version-base;

 description

 "TLS Protocol Version 1.0.";

 reference

 "RFC 2246: The TLS Protocol Version 1.0";

 }

 identity tls-1.1 {

 if-feature "tls-1_1";

 base tls-version-base;

 description

 "TLS Protocol Version 1.1.";

 reference

 "RFC 4346: The Transport Layer Security (TLS) Protocol

 Version 1.1";

 }

 identity tls-1.2 {

 if-feature "tls-1_2";

 base tls-version-base;

 description

 "TLS Protocol Version 1.2.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity cipher-suite-base {

 description

 "Base identity used to identify TLS cipher suites.";

 }

 identity rsa-with-aes-128-cbc-sha {

 base cipher-suite-base;

 description

 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity rsa-with-aes-256-cbc-sha {

 base cipher-suite-base;

 description

 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity rsa-with-aes-128-cbc-sha256 {

 if-feature "tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity rsa-with-aes-256-cbc-sha256 {

 if-feature "tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA256.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity dhe-rsa-with-aes-128-cbc-sha {

 if-feature "tls-dhe";

 base cipher-suite-base;

 description

 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity dhe-rsa-with-aes-256-cbc-sha {

 if-feature "tls-dhe";

 base cipher-suite-base;

 description

 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity dhe-rsa-with-aes-128-cbc-sha256 {

 if-feature "tls-dhe and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA256.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity dhe-rsa-with-aes-256-cbc-sha256 {

 if-feature "tls-dhe and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA256.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity ecdhe-ecdsa-with-aes-128-cbc-sha256 {

 if-feature "tls-ecc and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-ecdsa-with-aes-256-cbc-sha384 {

 if-feature "tls-ecc and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-rsa-with-aes-128-cbc-sha256 {

 if-feature "tls-ecc and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-rsa-with-aes-256-cbc-sha384 {

 if-feature "tls-ecc and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-ecdsa-with-aes-128-gcm-sha256 {

 if-feature "tls-ecc and tls-gcm and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-ecdsa-with-aes-256-gcm-sha384 {

 if-feature "tls-ecc and tls-gcm and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-rsa-with-aes-128-gcm-sha256 {

 if-feature "tls-ecc and tls-gcm and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity ecdhe-rsa-with-aes-256-gcm-sha384 {

 if-feature "tls-ecc and tls-gcm and tls-sha2";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.";

 reference

 "RFC 5289: TLS Elliptic Curve Cipher Suites with

 SHA-256/384 and AES Galois Counter Mode (GCM)";

 }

 identity rsa-with-3des-ede-cbc-sha {

 if-feature "tls-3des";

 base cipher-suite-base;

 description

 "Cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 }

 identity ecdhe-rsa-with-3des-ede-cbc-sha {

 if-feature "tls-ecc and tls-3des";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA.";

 reference

 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites

 for Transport Layer Security (TLS)";

 }

 identity ecdhe-rsa-with-aes-128-cbc-sha {

 if-feature "tls-ecc";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA.";

 reference

 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites

 for Transport Layer Security (TLS)";

 }

 identity ecdhe-rsa-with-aes-256-cbc-sha {

 if-feature "tls-ecc";

 base cipher-suite-base;

 description

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA.";

 reference

 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites

 for Transport Layer Security (TLS)";

 }

 // Groupings

 grouping hello-params-grouping {

 description

 "A reusable grouping for TLS hello message parameters.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2";

 container tls-versions {

 description

 "Parameters regarding TLS versions.";

 leaf-list tls-version {

 type identityref {

 base tls-version-base;

 }

 description

 "Acceptable TLS protocol versions.

 If this leaf-list is not configured (has zero elements)

 the acceptable TLS protocol versions are implementation-

 defined.";

 }

 }

 container cipher-suites {

 description

 "Parameters regarding cipher suites.";

 leaf-list cipher-suite {

 type identityref {

 base cipher-suite-base;

 }

 ordered-by user;

 description

 "Acceptable cipher suites in order of descending

 preference. The configured host key algorithms should

 be compatible with the algorithm used by the configured

 private key. Please see Section 5 of RFC FFFF for

 valid combinations.

 If this leaf-list is not configured (has zero elements)

 the acceptable cipher suites are implementation-

 defined.";

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 }

 }

}

¶

<CODE ENDS>

3. The "ietf-tls-client" Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-tls-

client". A high-level overview of the module is provided in Section

3.1. Examples illustatrating the module's use are provided in

Examples (Section 3.2). The YANG module itself is defined in Section

3.3.

3.1. Data Model Overview

This section provides an overview of the "ietf-tls-client" module in

terms of its features and groupings.

3.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-tls-client" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

3.1.2. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-tls-client" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Each of these groupings are presented in the following subsections.

3.1.2.1. The "tls-client-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "tls-client-

grouping" grouping:

¶

¶

¶

¶

Features:

 +-- tls-client-hello-params-config

 +-- tls-client-keepalives

 +-- x509-certificate-auth

 +-- raw-public-key-auth

 +-- psk-auth

¶

¶

¶

Groupings:

 +-- tls-client-grouping

¶

¶

¶

¶

Comments:

The "client-identity" node, which is optionally configured (as

client authentication MAY occur at a higher protocol layer),

configures identity credentials, each enabled by a "feature"

statement defined in Section 3.1.1.

The "server-authentication" node configures trust anchors for

authenticating the TLS server, with each option enabled by a

"feature" statement.

The "hello-params" node , which must be enabled by a feature,

configures parameters for the TLS sessions established by this

configuration.

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-client-grouping

 +-- client-identity!

 | +-- (auth-type)

 | +--:(certificate) {x509-certificate-auth}?

 | | +-- certificate

 | | +---u ks:local-or-keystore-end-entity-cert-with-key-\

grouping

 | +--:(raw-public-key) {raw-public-key-auth}?

 | | +-- raw-private-key

 | | +---u ks:local-or-keystore-asymmetric-key-grouping

 | +--:(psk) {psk-auth}?

 | +-- psk

 | +---u ks:local-or-keystore-symmetric-key-grouping

 | +-- id?

 | string

 +-- server-authentication

 | +-- ca-certs! {x509-certificate-auth}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- ee-certs! {x509-certificate-auth}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- raw-public-keys! {raw-public-key-auth}?

 | | +---u ts:local-or-truststore-public-keys-grouping

 | +-- psks? empty {psk-auth}?

 +-- hello-params {tls-client-hello-params-config}?

 | +---u tlscmn:hello-params-grouping

 +-- keepalives {tls-client-keepalives}?

 +-- peer-allowed-to-send? empty

 +-- test-peer-aliveness!

 +-- max-wait? uint16

 +-- max-attempts? uint8

¶

¶

*

¶

*

¶

*

¶

The "keepalives" node, which must be enabled by a feature,

configures a "presence" container for testing the aliveness of

the TLS server. The aliveness-test occurs at the TLS protocol

layer.

For the referenced grouping statement(s):

The "local-or-keystore-end-entity-cert-with-key-grouping"

grouping is discussed in Section 2.1.3.6 of [I-D.ietf-netconf-

keystore].

The "local-or-keystore-asymmetric-key-grouping" grouping is

discussed in Section 2.1.3.4 of [I-D.ietf-netconf-keystore].

The "local-or-keystore-symmetric-key-grouping" grouping is

discussed in Section 2.1.3.3 of [I-D.ietf-netconf-keystore].

The "local-or-truststore-certs-grouping" grouping is discussed

in Section 2.1.3.1 of [I-D.ietf-netconf-trust-anchors].

The "local-or-truststore-public-keys-grouping" grouping is

discussed in Section 2.1.3.2 of [I-D.ietf-netconf-trust-

anchors].

The "hello-params-grouping" grouping is discussed in Section

2.1.3.1 in this document.

3.1.3. Protocol-accessible Nodes

The "ietf-tls-client" module does not contain any protocol-

accessible nodes.

3.2. Example Usage

This section presents two examples showing the "tls-client-grouping"

grouping populated with some data. These examples are effectively

the same except the first configures the client identity using a

local key while the second uses a key configured in a keystore. Both

examples are consistent with the examples presented in Section 2 of

[I-D.ietf-netconf-trust-anchors] and Section 3.2 of [I-D.ietf-

netconf-keystore].

The following configuration example uses local-definitions for the

client identity and server authentication:

*

¶

* ¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.6
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.4
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.3
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12#section-2.1.3.1
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12#section-2.1.3.2

=============== NOTE: '\' line wrapping per RFC 8792 ================

<tls-client

 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this client will authenticate itself to the server -->

 <client-identity>

 <certificate>

 <local-definition>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-f\

ormat>

 <cleartext-private-key>base64encodedvalue==</cleartext-priva\

te-key>

 <cert-data>base64encodedvalue==</cert-data>

 </local-definition>

 </certificate>

 <!-- TESTED, BUT COMMENTED OUT DUE TO ONLY ONE ALLOWED AT A TIME

 <raw-private-key>

 <local-definition>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-f\

ormat>

 <cleartext-private-key>base64encodedvalue==</cleartext-priva\

te-key>

 </local-definition>

 </raw-private-key>

 <psk>

 <local-definition>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>base64encodedvalue==</cleartext-key>

 </local-definition>

 </psk>

 -->

 </client-identity>

 <!-- which certificates will this client trust -->

 <server-authentication>

 <ca-certs>

 <local-definition>

 <certificate>

 <name>Server Cert Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Server Cert Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ca-certs>

 <ee-certs>

 <local-definition>

 <certificate>

 <name>My Application #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>My Application #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ee-certs>

 <raw-public-keys>

 <local-definition>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>ct:subject-public-key-info-format</publ\

ic-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>ct:subject-public-key-info-format</publ\

ic-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </local-definition>

 </raw-public-keys>

 <psks/>

 </server-authentication>

 <keepalives>

 <test-peer-aliveness>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </test-peer-aliveness>

 </keepalives>

</tls-client>

¶

The following configuration example uses keystore-references for the

client identity and truststore-references for server authentication:

from the keystore:¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!-- how this client will authenticate itself to the server -->

 <client-identity>

 <certificate>

 <keystore-reference>

 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>

 <certificate>ex-rsa-cert</certificate>

 </keystore-reference>

 </certificate>

 <!-- TESTED, BUT COMMENTED OUT DUE TO ONLY ONE ALLOWED AT A TIME

 <raw-private-key>

 <keystore-reference>raw-private-key</keystore-reference>

 </raw-private-key>

 <psk>

 <keystore-reference>encrypted-symmetric-key</keystore-referenc\

e>

 </psk>

 -->

 </client-identity>

 <!-- which certificates will this client trust -->

 <server-authentication>

 <ca-certs>

 <truststore-reference>trusted-server-ca-certs</truststore-refe\

rence>

 </ca-certs>

 <ee-certs>

 <truststore-reference>trusted-server-ee-certs</truststore-refe\

rence>

 </ee-certs>

 <raw-public-keys>

 <truststore-reference>Raw Public Keys for TLS Servers</trustst\

ore-reference>

 </raw-public-keys>

 <psks/>

 </server-authentication>

 <keepalives>

 <test-peer-aliveness>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </test-peer-aliveness>

 </keepalives>

</tls-client>

¶

3.3. YANG Module

This YANG module has normative references to [I-D.ietf-netconf-

trust-anchors] and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf-tls-client@2020-08-20.yang"

¶

¶

module ietf-tls-client {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";

 prefix tlsc;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 import ietf-keystore {

 prefix ks;

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 import ietf-tls-common {

 prefix tlscmn;

 revision-date 2020-08-20; // stable grouping definitions

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines reusable groupings for TLS clients that

 can be used as a basis for specific TLS client instances.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC FFFF

 (https://www.rfc-editor.org/info/rfcFFFF); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-08-20 {

 description

 "Initial version";

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 // Features

 feature tls-client-hello-params-config {

 description

 "TLS hello message parameters are configurable on a TLS

 client.";

 }

 feature tls-client-keepalives {

 description

 "Per socket TLS keepalive parameters are configurable for

 TLS clients on the server implementing this feature.";

 }

 feature x509-certificate-auth {

 description

 "Indicates that the client supports authenticating servers

 using X.509 certificates.";

 }

 feature raw-public-key-auth {

 description

 "Indicates that the client supports authenticating servers

 using ray public keys.";

 }

 feature psk-auth {

 description

 "Indicates that the client supports authenticating servers

 using PSKs (pre-shared or pairwise-symmetric keys).";

 }

 // Groupings

 grouping tls-client-grouping {

 description

 "A reusable grouping for configuring a TLS client without

 any consideration for how an underlying TCP session is

 established.

 Note that this grouping uses fairly typical descendent

 node names such that a stack of 'uses' statements will

 have name conflicts. It is intended that the consuming

 data model will resolve the issue (e.g., by wrapping

 the 'uses' statement in a container called

 'tls-client-parameters'). This model purposely does

 not do this itself so as to provide maximum flexibility

 to consuming models.";

 container client-identity {

 nacm:default-deny-write;

 presence

 "Indicates that TLS-level client authentication

 is sent. Present so that the 'choice' node's

 mandatory true doesn't imply that a client

 identity must be configured.";

 description

 "Identity credentials the TLS client MAY present when

 establishing a connection to a TLS server. If not

 configured, then client authentication is presumed to

 occur a protocol layer above TLS. When configured,

 and requested by the TLS server when establishing a

 TLS session, these credentials are passed in the

 Certificate message defined in Section 7.4.2 of

 RFC 5246.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2

 RFC CCCC: A YANG Data Model for a Keystore";

 choice auth-type {

 mandatory true;

 description

 "A choice amongst available authentication types.";

 case certificate {

 if-feature x509-certificate-auth;

 container certificate {

 description

 "Specifies the client identity using a certificate.";

 uses

 ks:local-or-keystore-end-entity-cert-with-key-grouping{

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference"

 + "/asymmetric-key" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 }

 case raw-public-key {

 if-feature raw-public-key-auth;

 container raw-private-key {

 description

 "Specifies the client identity using a raw

 private key.";

 uses ks:local-or-keystore-asymmetric-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore"

 + "/keystore-reference" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 }

 case psk {

 if-feature psk-auth;

 container psk {

 description

 "Specifies the client identity using a PSK (pre-shared

 or pairwise-symmetric key).";

 uses ks:local-or-keystore-symmetric-key-grouping;

 leaf id {

 type string;

 description

 "The key 'psk_identity' value used in the TLS

 'ClientKeyExchange' message.";

 reference

 "RFC 4279: Pre-Shared Key Ciphersuites for

 Transport Layer Security (TLS)";

 }

 }

 }

 }

 } // container client-identity

 container server-authentication {

 nacm:default-deny-write;

 must 'ca-certs or ee-certs or raw-public-keys or psks';

 description

 "Specifies how the TLS client can authenticate TLS servers.

 Any combination of credentials is additive and unordered.

 Note that no configuration is required for PSK (pre-shared

 or pairwise-symmetric key) based authentication as the key

 is necessarily the same as configured in the '../client-

 identity' node.";

 container ca-certs {

 if-feature "x509-certificate-auth";

 presence

 "Indicates that the TLS client can authenticate TLS servers

 using configured certificate authority certificates.";

 description

 "A set of certificate authority (CA) certificates used by

 the TLS client to authenticate TLS server certificates.

 A server certificate is authenticated if it has a valid

 chain of trust to a configured CA certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container ee-certs {

 if-feature "x509-certificate-auth";

 presence

 "Indicates that the TLS client can authenticate TLS

 servers using configured server certificates.";

 description

 "A set of server certificates (i.e., end entity

 certificates) used by the TLS client to authenticate

 certificates presented by TLS servers. A server

 certificate is authenticated if it is an exact

 match to a configured server certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container raw-public-keys {

 if-feature "raw-public-key-auth";

 presence

 "Indicates that the TLS client can authenticate TLS

 servers using configured server certificates.";

 description

 "A set of raw public keys used by the TLS client to

 authenticate raw public keys presented by the TLS

 server. A raw public key is authenticated if it

 is an exact match to a configured raw public key.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-public-keys-grouping {

 refine "local-or-truststore/local/local-definition"

 + "/public-key" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-truststore/truststore"

 + "/truststore-reference" {

 must 'deref(.)/../*/ts:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 leaf psks {

 if-feature "psk-auth";

 type empty;

 description

 "Indicates that the TLS client can authenticate TLS servers

 using configure PSKs (pre-shared or pairwise-symmetric

 keys).

 No configuration is required since the PSK value is the

 same as PSK value configured in the 'client-identity'

 node.";

 }

 } // container server-authentication

 container hello-params {

 nacm:default-deny-write;

 if-feature "tls-client-hello-params-config";

 uses tlscmn:hello-params-grouping;

 description

 "Configurable parameters for the TLS hello message.";

 } // container hello-params

 container keepalives {

 nacm:default-deny-write;

 if-feature "tls-client-keepalives";

 description

 "Configures the keepalive policy for the TLS client.";

 leaf peer-allowed-to-send {

 type empty;

 description

 "Indicates that the remote TLS server is allowed to send

 HeartbeatRequest messages, as defined by RFC 6520

 to this TLS client.";

 reference

 "RFC 6520: Transport Layer Security (TLS) and Datagram

 Transport Layer Security (DTLS) Heartbeat Extension";

 }

 container test-peer-aliveness {

 presence

 "Indicates that the TLS client proactively tests the

 aliveness of the remote TLS server.";

 description

 "Configures the keep-alive policy to proactively test

 the aliveness of the TLS server. An unresponsive

 TLS server is dropped after approximately max-wait

 * max-attempts seconds. The TLS client MUST send

 HeartbeatRequest messages, as defined by RFC 6520.";

 reference

 "RFC 6520: Transport Layer Security (TLS) and Datagram

 Transport Layer Security (DTLS) Heartbeat Extension";

 leaf max-wait {

 type uint16 {

 range "1..max";

 }

 units "seconds";

 default "30";

 description

 "Sets the amount of time in seconds after which if

 no data has been received from the TLS server, a

 TLS-level message will be sent to test the

 aliveness of the TLS server.";

 }

 leaf max-attempts {

 type uint8;

 default "3";

 description

 "Sets the maximum number of sequential keep-alive

 messages that can fail to obtain a response from

 the TLS server before assuming the TLS server is

 no longer alive.";

 }

 }

 }

 } // grouping tls-client-grouping

} // module ietf-tls-client

¶

<CODE ENDS>

4. The "ietf-tls-server" Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-tls-

server". A high-level overview of the module is provided in Section

4.1. Examples illustatrating the module's use are provided in

Examples (Section 4.2). The YANG module itself is defined in Section

4.3.

4.1. Data Model Overview

This section provides an overview of the "ietf-tls-server" module in

terms of its features and groupings.

4.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-tls-server" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

4.1.2. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-tls-server" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Each of these groupings are presented in the following subsections.

4.1.2.1. The "tls-server-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "tls-server-

grouping" grouping:

¶

¶

¶

¶

Features:

 +-- tls-server-hello-params-config

 +-- tls-server-keepalives

 +-- client-auth-config-supported

 +-- x509-certificate-auth

 +-- raw-public-key-auth

 +-- psk-auth

¶

¶

¶

Groupings:

 +-- tls-server-grouping

¶

¶

¶

¶

Comments:

The "server-identity" node configures identity credentials, each

of which is enabled by a "feature".

The "client-authentication" node, which is optionally configured

(as client authentication MAY occur at a higher protocol layer),

configures trust anchors for authenticating the TLS client, with

each option enabled by a "feature" statement.

The "hello-params" node, which must be enabled by a feature,

configures parameters for the TLS sessions established by this

configuration.

The "keepalives" node, which must be enabled by a feature,

configures a flag enabling the TLS client to test the aliveness

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-server-grouping

 +-- server-identity

 | +-- (auth-type)

 | +--:(certificate) {x509-certificate-auth}?

 | | +-- certificate

 | | +---u ks:local-or-keystore-end-entity-cert-with-key-\

grouping

 | +--:(raw-private-key) {raw-public-key-auth}?

 | | +-- raw-private-key

 | | +---u ks:local-or-keystore-asymmetric-key-grouping

 | +--:(psk) {psk-auth}?

 | +-- psk

 | +---u ks:local-or-keystore-symmetric-key-grouping

 | +-- id_hint?

 | string

 +-- client-authentication! {client-auth-config-supported}?

 | +-- ca-certs! {x509-certificate-auth}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- ee-certs! {x509-certificate-auth}?

 | | +---u ts:local-or-truststore-certs-grouping

 | +-- raw-public-keys! {raw-public-key-auth}?

 | | +---u ts:local-or-truststore-public-keys-grouping

 | +-- psks? empty {psk-auth}?

 +-- hello-params {tls-server-hello-params-config}?

 | +---u tlscmn:hello-params-grouping

 +-- keepalives {tls-server-keepalives}?

 +-- peer-allowed-to-send? empty

 +-- test-peer-aliveness!

 +-- max-wait? uint16

 +-- max-attempts? uint8

¶

¶

*

¶

*

¶

*

¶

*

of the TLS server, as well as a "presence" container for testing

the aliveness of the TLSi client. The aliveness-tests occurs at

the TLS protocol layer.

For the referenced grouping statement(s):

The "local-or-keystore-end-entity-cert-with-key-grouping"

grouping is discussed in Section 2.1.3.6 of [I-D.ietf-netconf-

keystore].

The "local-or-keystore-asymmetric-key-grouping" grouping is

discussed in Section 2.1.3.4 of [I-D.ietf-netconf-keystore].

The "local-or-keystore-symmetric-key-grouping" grouping is

discussed in Section 2.1.3.3 of [I-D.ietf-netconf-keystore].

The "local-or-truststore-public-keys-grouping" grouping is

discussed in Section 2.1.3.2 of [I-D.ietf-netconf-trust-

anchors].

The "local-or-truststore-certs-grouping" grouping is discussed

in Section 2.1.3.1 of [I-D.ietf-netconf-trust-anchors].

The "hello-params-grouping" grouping is discussed in Section

2.1.3.1 in this document.

4.1.3. Protocol-accessible Nodes

The "ietf-tls-server" module does not contain any protocol-

accessible nodes.

4.2. Example Usage

This section presents two examples showing the "tls-server-grouping"

grouping populated with some data. These examples are effectively

the same except the first configures the server identity using a

local key while the second uses a key configured in a keystore. Both

examples are consistent with the examples presented in Section 2 of

[I-D.ietf-netconf-trust-anchors] and Section 3.2 of [I-D.ietf-

netconf-keystore].

The following configuration example uses local-definitions for the

server identity and client authentication:

¶

* ¶

-

¶

-

¶

-

¶

-

¶

-

¶

-

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.6
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.4
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19#section-2.1.3.3
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12#section-2.1.3.2
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12#section-2.1.3.1

=============== NOTE: '\' line wrapping per RFC 8792 ================

<tls-server

 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this server will authenticate itself to the client -->

 <server-identity>

 <certificate>

 <local-definition>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-f\

ormat>

 <cleartext-private-key>base64encodedvalue==</cleartext-priva\

te-key>

 <cert-data>base64encodedvalue==</cert-data>

 </local-definition>

 </certificate>

 <!-- TESTED, BUT COMMENTED OUT DUE TO ONLY ONE ALLOWED AT A TIME

 <raw-private-key>

 <local-definition>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>base64encodedvalue==</public-key>

 <private-key-format>ct:rsa-private-key-format</private-key-f\

ormat>

 <cleartext-private-key>base64encodedvalue==</cleartext-priva\

te-key>

 </local-definition>

 </raw-private-key>

 <psk>

 <local-definition>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>base64encodedvalue==</cleartext-key>

 </local-definition>

 </psk>

 -->

 </server-identity>

 <!-- which certificates will this server trust -->

 <client-authentication>

 <ca-certs>

 <local-definition>

 <certificate>

 <name>Identity Cert Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Identity Cert Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ca-certs>

 <ee-certs>

 <local-definition>

 <certificate>

 <name>Application #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Application #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </local-definition>

 </ee-certs>

 <raw-public-keys>

 <local-definition>

 <public-key>

 <name>User A</name>

 <public-key-format>ct:subject-public-key-info-format</publ\

ic-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>User B</name>

 <public-key-format>ct:subject-public-key-info-format</publ\

ic-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </local-definition>

 </raw-public-keys>

 <psks/>

 </client-authentication>

 <keepalives>

 <peer-allowed-to-send/>

 </keepalives>

</tls-server>

¶

The following configuration example uses keystore-references for the

server identity and truststore-references for client authentication:

from the keystore:¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!-- how this server will authenticate itself to the client -->

 <server-identity>

 <certificate>

 <keystore-reference>

 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>

 <certificate>ex-rsa-cert</certificate>

 </keystore-reference>

 </certificate>

 <!-- TESTED, BUT COMMENTED OUT DUE TO ONLY ONE ALLOWED AT A TIME

 <raw-private-key>

 <keystore-reference>raw-private-key</keystore-reference>

 </raw-private-key>

 <psk>

 <keystore-reference>encrypted-symmetric-key</keystore-referenc\

e>

 </psk>

 -->

 </server-identity>

 <!-- which certificates will this server trust -->

 <client-authentication>

 <ca-certs>

 <truststore-reference>trusted-client-ca-certs</truststore-refe\

rence>

 </ca-certs>

 <ee-certs>

 <truststore-reference>trusted-client-ee-certs</truststore-refe\

rence>

 </ee-certs>

 <raw-public-keys>

 <truststore-reference>Raw Public Keys for TLS Clients</trustst\

ore-reference>

 </raw-public-keys>

 <psks/>

 </client-authentication>

 <keepalives>

 <peer-allowed-to-send/>

 </keepalives>

</tls-server>

¶

4.3. YANG Module

This YANG module has a normative references to [RFC5246], [I-D.ietf-

netconf-trust-anchors] and [I-D.ietf-netconf-keystore].

<CODE BEGINS> file "ietf-tls-server@2020-08-20.yang"

¶

¶

module ietf-tls-server {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";

 prefix tlss;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 import ietf-keystore {

 prefix ks;

 reference

 "RFC CCCC: A YANG Data Model for a Keystore";

 }

 import ietf-tls-common {

 prefix tlscmn;

 revision-date 2020-08-20; // stable grouping definitions

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen <mailto:kent+ietf@watsen.net>

 Author: Gary Wu <mailto:garywu@cisco.com>";

 description

 "This module defines reusable groupings for TLS servers that

 can be used as a basis for specific TLS server instances.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC FFFF

 (https://www.rfc-editor.org/info/rfcFFFF); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-08-20 {

 description

 "Initial version";

 reference

 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";

 }

 // Features

 feature tls-server-hello-params-config {

 description

 "TLS hello message parameters are configurable on a TLS

 server.";

 }

 feature tls-server-keepalives {

 description

 "Per socket TLS keepalive parameters are configurable for

 TLS servers on the server implementing this feature.";

 }

 feature client-auth-config-supported {

 description

 "Indicates that the configuration for how to authenticate

 clients can be configured herein, as opposed to in an

 application specific location. That is, to support the

 consuming data models that prefer to place client

 authentication with client definitions, rather then

 in a data model principally concerned with configuring

 the transport.";

 }

 feature x509-certificate-auth {

 description

 "Indicates that the server supports authenticating clients

 using X.509 certificates.";

 }

 feature raw-public-key-auth {

 description

 "Indicates that the server supports authenticating clients

 using ray public keys.";

 }

 feature psk-auth {

 description

 "Indicates that the server supports authenticating clients

 using PSKs (pre-shared or pairwise-symmetric keys).";

 }

 // Groupings

 grouping tls-server-grouping {

 description

 "A reusable grouping for configuring a TLS server without

 any consideration for how underlying TCP sessions are

 established.

 Note that this grouping uses fairly typical descendent

 node names such that a stack of 'uses' statements will

 have name conflicts. It is intended that the consuming

 data model will resolve the issue (e.g., by wrapping

 the 'uses' statement in a container called

 'tls-server-parameters'). This model purposely does

 not do this itself so as to provide maximum flexibility

 to consuming models.";

 container server-identity {

 nacm:default-deny-write;

 description

 "A locally-defined or referenced end-entity certificate,

 including any configured intermediate certificates, the

 TLS server will present when establishing a TLS connection

 in its Certificate message, as defined in Section 7.4.2

 in RFC 5246.";

 reference

 "RFC 5246: The Transport Layer Security (TLS) Protocol

 Version 1.2

 RFC CCCC: A YANG Data Model for a Keystore";

 choice auth-type {

 mandatory true;

 description

 "A choice amongst authentication types.";

 case certificate {

 if-feature x509-certificate-auth;

 container certificate {

 description

 "Specifies the server identity using a certificate.";

 uses

 ks:local-or-keystore-end-entity-cert-with-key-grouping{

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference"

 + "/asymmetric-key" {

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 }

 case raw-private-key {

 if-feature raw-public-key-auth;

 container raw-private-key {

 description

 "Specifies the server identity using a raw

 private key.";

 uses ks:local-or-keystore-asymmetric-key-grouping {

 refine "local-or-keystore/local/local-definition" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-keystore/keystore/keystore-reference"{

 must 'deref(.)/../ks:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 }

 case psk {

 if-feature psk-auth;

 container psk {

 description

 "Specifies the server identity using a PSK (pre-shared

 or pairwise-symmetric key).";

 uses ks:local-or-keystore-symmetric-key-grouping;

 leaf id_hint {

 type string;

 description

 "The key 'psk_identity_hint' value used in the TLS

 'ServerKeyExchange' message.";

 reference

 "RFC 4279: Pre-Shared Key Ciphersuites for

 Transport Layer Security (TLS)";

 }

 }

 }

 }

 } // container server-identity

 container client-authentication {

 if-feature "client-auth-config-supported";

 nacm:default-deny-write;

 must 'ca-certs or ee-certs or raw-public-keys or psks';

 presence

 "Indicates that client authentication is supported (i.e.,

 that the server will request clients send certificates).

 If not configured, the TLS server SHOULD NOT request the

 TLS clients provide authentication credentials.";

 description

 "Specifies how the TLS server can authenticate TLS clients.

 Any combination of credentials is additive and unordered.

 Note that no configuration is required for PSK (pre-shared

 or pairwise-symmetric key) based authentication as the key

 is necessarily the same as configured in the '../server-

 identity' node.";

 container ca-certs {

 if-feature "x509-certificate-auth";

 presence

 "Indicates that the TLS server can authenticate TLS clients

 using configured certificate authority certificates.";

 description

 "A set of certificate authority (CA) certificates used by

 the TLS server to authenticate TLS client certificates. A

 client certificate is authenticated if it has a valid

 chain of trust to a configured CA certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container ee-certs {

 if-feature "x509-certificate-auth";

 presence

 "Indicates that the TLS server can authenticate TLS

 clients using configured client certificates.";

 description

 "A set of client certificates (i.e., end entity

 certificates) used by the TLS server to authenticate

 certificates presented by TLS clients. A client

 certificate is authenticated if it is an exact

 match to a configured client certificate.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-certs-grouping;

 }

 container raw-public-keys {

 if-feature "raw-public-key-auth";

 presence

 "Indicates that the TLS server can authenticate TLS

 clients using raw public keys.";

 description

 "A set of raw public keys used by the TLS server to

 authenticate raw public keys presented by the TLS

 client. A raw public key is authenticated if it

 is an exact match to a configured raw public key.";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 uses ts:local-or-truststore-public-keys-grouping {

 refine "local-or-truststore/local/local-definition"

 + "/public-key" {

 must 'public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 refine "local-or-truststore/truststore"

 + "/truststore-reference" {

 must 'deref(.)/../*/ts:public-key-format'

 + ' = "ct:subject-public-key-info-format"';

 }

 }

 }

 leaf psks {

 if-feature "psk-auth";

 type empty;

 description

 "Indicates that the TLS server can authenticate TLS clients

 using configured PSKs (pre-shared or pairwise-symmetric

 keys).

 No configuration is required since the PSK value is the

 same as PSK value configured in the 'server-identity'

 node.";

 }

 } // container client-authentication

 container hello-params {

 nacm:default-deny-write;

 if-feature "tls-server-hello-params-config";

 uses tlscmn:hello-params-grouping;

 description

 "Configurable parameters for the TLS hello message.";

 } // container hello-params

 container keepalives {

 nacm:default-deny-write;

 if-feature "tls-server-keepalives";

 description

 "Configures the keepalive policy for the TLS server.";

 leaf peer-allowed-to-send {

 type empty;

 description

 "Indicates that the remote TLS client is allowed to send

 HeartbeatRequest messages, as defined by RFC 6520

 to this TLS server.";

 reference

 "RFC 6520: Transport Layer Security (TLS) and Datagram

 Transport Layer Security (DTLS) Heartbeat Extension";

 }

 container test-peer-aliveness {

 presence

 "Indicates that the TLS server proactively tests the

 aliveness of the remote TLS client.";

 description

 "Configures the keep-alive policy to proactively test

 the aliveness of the TLS client. An unresponsive

 TLS client is dropped after approximately max-wait

 * max-attempts seconds.";

 leaf max-wait {

 type uint16 {

 range "1..max";

 }

 units "seconds";

 default "30";

 description

 "Sets the amount of time in seconds after which if

 no data has been received from the TLS client, a

 TLS-level message will be sent to test the

 aliveness of the TLS client.";

 }

 leaf max-attempts {

 type uint8;

 default "3";

 description

 "Sets the maximum number of sequential keep-alive

 messages that can fail to obtain a response from

 the TLS client before assuming the TLS client is

 no longer alive.";

 }

 }

 } // container keepalives

 } // grouping tls-server-grouping

} // module ietf-tls-server

¶

<CODE ENDS>

5. Security Considerations

5.1. The "ietf-tls-common" YANG Module

The "ietf-tls-common" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

None of the writable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-write" extension has not been set for any data nodes

defined in this module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

5.2. The "ietf-tls-client" YANG Module

The "ietf-tls-client" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

Please be aware that this module uses the "key" and "private-key"

nodes from the "ietf-crypto-types" module [I-D.ietf-netconf-crypto-

types], where said nodes have the NACM extension "default-deny-all"

set, thus preventing unrestricted read-access to the cleartext key

values.

All of the writable data nodes defined by this module may be

considered sensitive or vulnerable in some network environments. For

instance, any modification to a key or reference to a key may

dramatically alter the implemented security policy. For this reason,

the NACM extension "default-deny-write" has been set for all data

nodes defined in this module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

5.3. The "ietf-tls-server" YANG Module

The "ietf-tls-server" YANG module defines "grouping" statements that

are designed to be accessed via YANG based management protocols,

such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these

protocols have mandatory-to-implement secure transport layers (e.g.,

SSH, TLS) with mutual authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Since the module in this document only define groupings, these

considerations are primarily for the designers of other modules that

use these groupings.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

Please be aware that this module uses the "key" and "private-key"

nodes from the "ietf-crypto-types" module [I-D.ietf-netconf-crypto-

types], where said nodes have the NACM extension "default-deny-all"

set, thus preventing unrestricted read-access to the cleartext key

values.

All of the writable data nodes defined by this module may be

considered sensitive or vulnerable in some network environments. For

¶

¶

¶

¶

¶

¶

¶

¶

¶

instance, any modification to a key or reference to a key may

dramatically alter the implemented security policy. For this reason,

the NACM extension "default-deny-write" has been set for all data

nodes defined in this module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

6. IANA Considerations

6.1. The "IETF XML" Registry

This document registers three URIs in the "ns" subregistry of the

IETF XML Registry [RFC3688]. Following the format in [RFC3688], the

following registrations are requested:

6.2. The "YANG Module Names" Registry

This document registers three YANG modules in the YANG Module Names

registry [RFC6020]. Following the format in [RFC6020], the following

registrations are requested:

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-common

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-client

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-server

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-tls-common

 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-common

 prefix: tlscmn

 reference: RFC FFFF

 name: ietf-tls-client

 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-client

 prefix: tlsc

 reference: RFC FFFF

 name: ietf-tls-server

 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-server

 prefix: tlss

 reference: RFC FFFF

¶

[I-D.ietf-netconf-crypto-types]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-trust-anchors]

[RFC2119]

[RFC5288]

[RFC5289]

[RFC6020]

[RFC7589]

[RFC7950]

7. References

7.1. Normative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-17, 10 July 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-crypto-types-17>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-19, 10 July 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-keystore-19>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-12, 10 July 2020, <https://tools.ietf.org/html/

draft-ietf-netconf-trust-anchors-12>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Salowey, J., Choudhury, A., and D. McGrew, "AES Galois

Counter Mode (GCM) Cipher Suites for TLS", RFC 5288, DOI

10.17487/RFC5288, August 2008, <https://www.rfc-

editor.org/info/rfc5288>.

Rescorla, E., "TLS Elliptic Curve Cipher Suites with

SHA-256/384 and AES Galois Counter Mode (GCM)", RFC 5289,

DOI 10.17487/RFC5289, August 2008, <https://www.rfc-

editor.org/info/rfc5289>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the

NETCONF Protocol over Transport Layer Security (TLS) with

Mutual X.509 Authentication", RFC 7589, DOI 10.17487/

RFC7589, June 2015, <https://www.rfc-editor.org/info/

rfc7589>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-17
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-17
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19
https://tools.ietf.org/html/draft-ietf-netconf-keystore-19
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-12
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc7589
https://www.rfc-editor.org/info/rfc7589
https://www.rfc-editor.org/info/rfc7950

[RFC8174]

[RFC8341]

[RFC8422]

[RFC8446]

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-netconf-client-server]

[I-D.ietf-netconf-restconf-client-server]

[I-D.ietf-netconf-ssh-client-server]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Nir, Y., Josefsson, S., and M. Pegourie-Gonnard,

"Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS) Versions 1.2 and Earlier",

RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://

www.rfc-editor.org/info/rfc8422>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-04, 8 July 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-http-client-

server-04>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

client-server-20, 8 July 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-netconf-client-server-20>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-20, 8 July 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-restconf-client-server-20>.

Watsen, K. and G. Wu, "YANG Groupings for SSH Clients and

SSH Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-ssh-client-server-21, 10 July 2020,

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8446
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-04
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-04
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-04
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-20
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-20
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-20
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-20

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

[RFC2246]

[RFC2818]

[RFC3688]

[RFC4346]

[RFC5246]

[RFC6241]

<https://tools.ietf.org/html/draft-ietf-netconf-ssh-

client-server-21>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients

and TCP Servers", Work in Progress, Internet-Draft,

draft-ietf-netconf-tcp-client-server-07, 8 July 2020,

<https://tools.ietf.org/html/draft-ietf-netconf-tcp-

client-server-07>.

Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and

TLS Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-tls-client-server-21, 10 July 2020,

<https://tools.ietf.org/html/draft-ietf-netconf-tls-

client-server-21>.

Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",

RFC 2246, DOI 10.17487/RFC2246, January 1999, <https://

www.rfc-editor.org/info/rfc2246>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.1", RFC 4346, DOI 10.17487/

RFC4346, April 2006, <https://www.rfc-editor.org/info/

rfc4346>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-07
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-07
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-21
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-21
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

[RFC8040]

[RFC8071]

[RFC8340]

[RFC8342]

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Watsen, K., "NETCONF Call Home and RESTCONF Call Home",

RFC 8071, DOI 10.17487/RFC8071, February 2017, <https://

www.rfc-editor.org/info/rfc8071>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

A.1. 00 to 01

Noted that '0.0.0.0' and '::' might have special meanings.

Renamed "keychain" to "keystore".

A.2. 01 to 02

Removed the groupings containing transport-level configuration.

Now modules contain only the transport-independent groupings.

Filled in previously incomplete 'ietf-tls-client' module.

Added cipher suites for various algorithms into new 'ietf-tls-

common' module.

A.3. 02 to 03

Added a 'must' statement to container 'server-auth' asserting

that at least one of the various auth mechanisms must be

specified.

Fixed description statement for leaf 'trusted-ca-certs'.

¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342

A.4. 03 to 04

Updated title to "YANG Groupings for TLS Clients and TLS Servers"

Updated leafref paths to point to new keystore path

Changed the YANG prefix for ietf-tls-common from 'tlscom' to

'tlscmn'.

Added TLS protocol verions 1.0 and 1.1.

Made author lists consistent

Now tree diagrams reference ietf-netmod-yang-tree-diagrams

Updated YANG to use typedefs around leafrefs to common keystore

paths

Now inlines key and certificates (no longer a leafref to

keystore)

A.5. 04 to 05

Merged changes from co-author.

A.6. 05 to 06

Updated to use trust anchors from trust-anchors draft (was

keystore draft)

Now Uses new keystore grouping enabling asymmetric key to be

either locally defined or a reference to the keystore.

A.7. 06 to 07

factored the tls-[client|server]-groupings into more reusable

groupings.

added if-feature statements for the new "x509-certificates"

feature defined in draft-ietf-netconf-trust-anchors.

A.8. 07 to 08

Added a number of compatibility matrices to Section 5 (thanks

Frank!)

Clarified that any configured "cipher-suite" values need to be

compatible with the configured private key.

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

A.9. 08 to 09

Updated examples to reflect update to groupings defined in the

keystore draft.

Add TLS keepalives features and groupings.

Prefixed top-level TLS grouping nodes with 'tls-' and support

mashups.

Updated copyright date, boilerplate template, affiliation, and

folding algorithm.

A.10. 09 to 10

Reformatted the YANG modules.

A.11. 10 to 11

Collapsed all the inner groupings into the top-level grouping.

Added a top-level "demux container" inside the top-level

grouping.

Added NACM statements and updated the Security Considerations

section.

Added "presence" statements on the "keepalive" containers, as was

needed to address a validation error that appeared after adding

the "must" statements into the NETCONF/RESTCONF client/server

modules.

Updated the boilerplate text in module-level "description"

statement to match copyeditor convention.

A.12. 11 to 12

In server model, made 'client-authentication' a 'presence' node

indicating that the server supports client authentication.

In the server model, added a 'required-or-optional' choice to

'client-authentication' to better support protocols such as

RESTCONF.

In the server model, added a 'local-or-external' choice to

'client-authentication' to better support consuming data models

that prefer to keep client auth with client definitions than in a

model principally concerned with the "transport".

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

In both models, removed the "demux containers", floating the

nacm:default-deny-write to each descendent node, and adding a

note to model designers regarding the potential need to add their

own demux containers.

Fixed a couple references (section 2 --> section 3)

A.13. 12 to 13

Updated to reflect changes in trust-anchors drafts (e.g., s/

trust-anchors/truststore/g + s/pinned.//)

A.14. 12 to 13

Removed 'container' under 'client-identity' to match server

model.

Updated examples to reflect change grouping in keystore module.

A.15. 13 to 14

Removed the "certificate" container from "client-identity" in the

ietf-tls-client module.

Updated examples to reflect ietf-crypto-types change (e.g.,

identities --> enumerations)

A.16. 14 to 15

Updated "server-authentication" and "client-authentication" nodes

from being a leaf of type "ts:certificates-ref" to a container

that uses "ts:local-or-truststore-certs-grouping".

A.17. 15 to 16

Removed unnecessary if-feature statements in the -client and -

server modules.

Cleaned up some description statements in the -client and -server

modules.

Fixed a canonical ordering issue in ietf-tls-common detected by

new pyang.

A.18. 16 to 17

Removed choice local-or-external by removing the 'external' case

and flattening the 'local' case and adding a "client-auth-config-

supported" feature.

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Removed choice required-or-optional.

Updated examples to include the "*-key-format" nodes.

Augmented-in "must" expressions ensuring that locally-defined

public-key-format are "ct:ssh-public-key-format" (must expr for

ref'ed keys are TBD).

A.19. 17 to 18

Removed the unused "external-client-auth-supported" feature.

Made client-indentity optional, as there may be over-the-top auth

instead.

Added augment to uses of local-or-keystore-symmetric-key-grouping

for a psk "id" node.

Added missing presence container "psks" to ietf-tls-server's

"client-authentication" container.

Updated examples to reflect new "bag" addition to truststore.

Removed feature-limited caseless 'case' statements to improve

tree diagram rendering.

Refined truststore/keystore groupings to ensure the key formats

"must" be particular values.

Switched to using truststore's new "public-key" bag (instead of

separate "ssh-public-key" and "raw-public-key" bags.

Updated client/server examples to cover ALL cases (local/ref x

cert/raw-key/psk).

A.20. 18 to 19

Updated the "keepalives" containers in part to address Michal

Vasko's request to align with RFC 8071, and in part to better

align to RFC 6520.

Removed algorithm-mapping tables from the "TLS Common Model"

section

Removed the 'algorithm' node from the examples.

Renamed both "client-certs" and "server-certs" to "ee-certs"

Added a "Note to Reviewers" note to first page.

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

A.21. 19 to 20

Modified the 'must' expression in the "ietf-tls-client:server-

authention" node to cover the "raw-public-keys" and "psks" nodes

also.

Added a "must 'ca-certs or ee-certs or raw-public-keys or psks'"

statement to the ietf-tls-server:client-authentication" node.

Added "mandatory true" to "choice auth-type" and a "presence"

statement to its ancestor.

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Moved the "ietf-ssh-common" module section to proceed the other

two module sections.

Updated the Security Considerations section.

A.22. 20 to 21

Updated examples to reflect new "cleartext-" prefix in the

crypto-types draft.

A.23. 21 to 22

In both the "client-authentication" and "server-authentication"

subtrees, replaced the "psks" node from being a P-container to a

leaf of type "empty".

Cleaned up examples (e.g., removed FIXMEs)

Fixed issues found by the SecDir review of the "keystore" draft.

Updated the "psk" sections in the "ietf-tls-client" and "ietf-

tls-server" modules to more correctly reflect RFC 4279.

Acknowledgements

The authors would like to thank for following for lively discussions

on list and in the halls (ordered by first name): Alan Luchuk, Andy

Bierman, Balazs Kovacs, Benoit Claise, Bert Wijnen, David Lamparter,

Gary Wu, Henk Birkholz, Juergen Schoenwaelder, Ladislav Lhotka,

Liang Xia, Martin Bjorklund, Mehmet Ersue, Michal Vasko, Phil

Shafer, Radek Krejci, Sean Turner, and Tom Petch.

Special acknowledgement goes to Gary Wu who contributed the "ietf-

tls-common" module.

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

Author's Address

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

mailto:kent+ietf@watsen.net

	YANG Groupings for TLS Clients and TLS Servers
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA

	2. The "ietf-tls-common" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Identities
	2.1.3. Groupings
	2.1.3.1. The "hello-params-grouping" Grouping

	2.1.4. Protocol-accessible Nodes

	2.2. Example Usage
	2.3. YANG Module

	3. The "ietf-tls-client" Module
	3.1. Data Model Overview
	3.1.1. Features
	3.1.2. Groupings
	3.1.2.1. The "tls-client-grouping" Grouping

	3.1.3. Protocol-accessible Nodes

	3.2. Example Usage
	3.3. YANG Module

	4. The "ietf-tls-server" Module
	4.1. Data Model Overview
	4.1.1. Features
	4.1.2. Groupings
	4.1.2.1. The "tls-server-grouping" Grouping

	4.1.3. Protocol-accessible Nodes

	4.2. Example Usage
	4.3. YANG Module

	5. Security Considerations
	5.1. The "ietf-tls-common" YANG Module
	5.2. The "ietf-tls-client" YANG Module
	5.3. The "ietf-tls-server" YANG Module

	6. IANA Considerations
	6.1. The "IETF XML" Registry
	6.2. The "YANG Module Names" Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Change Log
	A.1. 00 to 01
	A.2. 01 to 02
	A.3. 02 to 03
	A.4. 03 to 04
	A.5. 04 to 05
	A.6. 05 to 06
	A.7. 06 to 07
	A.8. 07 to 08
	A.9. 08 to 09
	A.10. 09 to 10
	A.11. 10 to 11
	A.12. 11 to 12
	A.13. 12 to 13
	A.14. 12 to 13
	A.15. 13 to 14
	A.16. 14 to 15
	A.17. 15 to 16
	A.18. 16 to 17
	A.19. 17 to 18
	A.20. 18 to 19
	A.21. 19 to 20
	A.22. 20 to 21
	A.23. 21 to 22
	Acknowledgements
	Author's Address

