
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-trust-anchors-12

Published: 10 July 2020

Intended Status: Standards Track

Expires: 11 January 2021

Authors: K. Watsen

Watsen Networks

A YANG Data Model for a Truststore

Abstract

This document defines a YANG 1.1 data model for configuring

globally-accessible bags of certificates and public keys that can be

referenced by other data models for trust.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for draft-ietf-netconf-crypto-

types

BBBB --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2020-07-10 --> the publication date of this draft

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

*

¶

* ¶

¶

* ¶

¶

* ¶

¶

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

1.3. Adherence to the NMDA

2. The "ietf-truststore" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Support for Built-in Trust Anchors

4. Security Considerations

4.1. Data at Rest

4.2. The "ietf-truststore" YANG Module

5. IANA Considerations

5.1. The "IETF XML" Registry

5.2. The "YANG Module Names" Registry

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Change Log

A.1. 00 to 01

A.2. 01 to 02

A.3. 02 to 03

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

A.4. 03 to 04

A.5. 04 to 05

A.6. 05 to 06

A.7. 06 to 07

A.8. 07 to 08

A.9. 08 to 09

A.10. 09 to 10

A.11. 10 to 11

A.12. 11 to 12

Acknowledgements

Author's Address

1. Introduction

This document defines a YANG 1.1 [RFC7950] data model for

configuring globally-accessible bags of certificates and public keys

that can be referenced by other data models for trust.

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to define

configuration modules for clients and servers of both the NETCONF

[RFC6241] and RESTCONF [RFC8040] protocols.

The modules have been defined in a modular fashion to enable their

use by other efforts, some of which are known to be in progress at

the time of this writing, with many more expected to be defined in

time.

The relationship between the various RFCs in the collection is

presented in the below diagram. The labels in the diagram represent

the primary purpose provided by each RFC. Links the each RFC are

provided below the diagram.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Label in Diagram Originating RFC

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Adherence to the NMDA

This document in compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. For instance, trust anchors installed

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

¶

during manufacturing (e.g., for trusted well-known services), are

expected to appear in <operational> (see Section 3).

2. The "ietf-truststore" Module

This section defines a YANG 1.1 [RFC7950] module that defines a

"truststore" and groupings supporting downstream modules to

reference the truststore or have locally-defined definitions.

2.1. Data Model Overview

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-truststore" module:

2.1.2. Typedefs

The following diagram lists the "typedef" statements defined in the

"ietf-truststore" module:

Comments:

All of the typedefs defined in the "ietf-truststore" module

extend the base "leafref" type defined in [RFC7950].

The leafrefs refer to certificates, public keys, and bags. These

typedefs are provided primarily as an aid to downstream modules

that import the "ietf-truststore" module.

2.1.3. Groupings

The following diagram lists all the "grouping" statements defined in

the "ietf-truststore" module:

¶

¶

¶

Features:

 +-- truststore-supported

 +-- local-definitions-supported

 +-- certificates

 +-- public-keys

¶

¶

Typedefs:

 leafref

 +-- certificate-bag-ref

 +-- certificate-ref

 +-- public-key-bag-ref

 +-- public-key-ref

¶

¶

*

¶

*

¶

¶

Each of these groupings are presented in the following subsections.

2.1.3.1. The "local-or-truststore-certs-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

truststore-certs-grouping" grouping:

Comments:

The "local-or-truststore-certs-grouping" grouping is provided

soley as convenience to downstream modules that wish to offer an

option as to if a bag of certificates can be defined locally or

as a reference to a bag in the truststore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a bag in an alternate location.

For the "local-definition" option, the "certificate" node uses

the "trust-anchor-cert-grouping" grouping discussed in

Section 2.1.3.6 of [I-D.ietf-netconf-crypto-types].

For the "truststore" option, the "truststore-reference" is an

instance of the "certificate-bag-ref" discussed in Section 2.1.2.

2.1.3.2. The "local-or-truststore-public-keys-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "local-or-

truststore-public-keys-grouping" grouping:

Groupings:

 +-- local-or-truststore-certs-grouping

 +-- local-or-truststore-public-keys-grouping

 +-- truststore-grouping

¶

¶

¶

 grouping local-or-truststore-certs-grouping

 +-- (local-or-truststore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +-- certificate* [name]

 | +-- name? string

 | +---u ct:trust-anchor-cert-grouping

 +--:(truststore) {truststore-supported,certificates}?

 +-- truststore-reference? ts:certificate-bag-ref

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15#section-2.1.3.6

Comments:

The "local-or-truststore-public-keys-grouping" grouping is

provided soley as convenience to downstream modules that wish to

offer an option as to if a bag of public keys can be defined

locally or as a reference to a bag in the truststore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a bag in an alternate location.

For the "local-definition" option, the "public-key" node uses the

"public-key-grouping" grouping discussed in Section 2.1.3.3 of

[I-D.ietf-netconf-crypto-types].

For the "truststore" option, the "truststore-reference" is an

instance of the "certificate-bag-ref" discussed in Section 2.1.2.

2.1.3.3. The "truststore-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "truststore-

grouping" grouping:

 grouping local-or-truststore-public-keys-grouping

 +-- (local-or-truststore)

 +--:(local) {local-definitions-supported}?

 | +-- local-definition

 | +-- public-key* [name]

 | +-- name? string

 | +---u ct:public-key-grouping

 +--:(truststore) {truststore-supported,public-keys}?

 +-- truststore-reference? ts:public-key-bag-ref

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

 grouping truststore-grouping

 +-- certificate-bags! {certificates}?

 | +-- certificate-bag* [name]

 | +-- name? string

 | +-- description? string

 | +-- certificate* [name]

 | +-- name? string

 | +---u ct:trust-anchor-cert-grouping

 +-- public-key-bags! {public-keys}?

 +-- public-key-bag* [name]

 +-- name? string

 +-- description? string

 +-- public-key* [name]

 +-- name? string

 +---u ct:public-key-grouping

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15#section-2.1.3.3

Comments:

The "truststore-grouping" grouping is defines a truststore

instance as being composed of certificates and/or public keys,

both of which are enabled by "feature" statements. The stucture

supporting certificates and public keys is essentially the same,

having an outer list of "bags" containing in inner list of

objects (certificates or public keys). The bags enable trust

anchors serving a common purpose to be grouped referenced

together.

For certificates, each certificate is defined by the "trust-

anchor-cert-grouping" grouping Section 2.1.3.6 of [I-D.ietf-

netconf-crypto-types]. Thus the "cert-data" node is a CMS

structure that can be composed of a chain of one or more

certificates. Additionally, the "certificate-expiration"

notification enables the server to alert clients when

certificates are nearing or have already expired.

For public keys, each public key is defined by the "public-key-

grouping" grouping Section 2.1.3.3 of [I-D.ietf-netconf-crypto-

types]. Thus the "public-key" node can be one of any number of

structures specified by the "public-key-format" identity node.

2.1.4. Protocol-accessible Nodes

The following diagram lists all the protocol-accessible nodes

defined in the "ietf-truststore" module:

¶

*

¶

*

¶

*

¶

¶

module: ietf-truststore

 +--rw truststore

 +--rw certificate-bags! {certificates}?

 | +--rw certificate-bag* [name]

 | +--rw name string

 | +--rw description? string

 | +--rw certificate* [name]

 | +--rw name string

 | +--rw cert-data trust-anchor-cert-cms

 | +---n certificate-expiration

 | +-- expiration-date yang:date-and-time

 +--rw public-key-bags! {public-keys}?

 +--rw public-key-bag* [name]

 +--rw name string

 +--rw description? string

 +--rw public-key* [name]

 +--rw name string

 +--rw public-key-format identityref

 +--rw public-key binary

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15#section-2.1.3.6
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15#section-2.1.3.3

Comments:

Protocol-accessible nodes are those nodes that are accessible

when the module is "implemented", as described in Section 5.6.5

of [RFC7950].

For the "ietf-truststore" module, the protcol-accessible nodes

are an instance of the "truststore-grouping" discussed in Section

2.1.3.3 grouping.

The reason for why "truststore-grouping" exists separate from the

protocol-accessible nodes definition is so as to enable instances

of the truststore to be instantiated in other locations, as may

be needed or desired by some modules.

2.2. Example Usage

The examples in this section are encoded using XML, such as might be

the case when using the NETCONF protocol. Other encodings MAY be

used, such as JSON when using the RESTCONF protocol.

2.2.1. A Truststore Instance

This section presents an example illustrating trust anchors in

<intended>, as per Section 2.1.4. Please see Section 3 for an

example illustrating built-in values in <operational>.

The example contained in this secton defines eight bags of trust

anchors. There are four certificate-based bags and four public key

based bags. The following diagram provides an overview of contents

in the example:

Following is the full example:

¶

*

¶

*

¶

*

¶

¶

¶

¶

Certificate Bags

 +-- CA certificates for authenticating a set a remote servers

 +-- EE certificates for authenticating a set a remote servers

 +-- CA certificates for authenticating a set a remote clients

 +-- EE certificates for authenticating a set a remote clients

Public Key Bags

 +-- SSH keys to authenticate a set of remote SSH server

 +-- SSH keys to authenticate a set of remote SSH clients

 +-- Raw public keys to authenticate a set of remote SSH server

 +-- Raw public keys to authenticate a set of remote SSH clients

¶

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

<truststore

 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- A bag of Certificate Bags -->

 <certificate-bags>

 <!-- CA Certs for Authenticating Servers Using Private PKIs -->

 <certificate-bag>

 <name>trusted-server-ca-certs</name>

 <description>

 Trust anchors (i.e. CA certs) used to authenticate server

 certificates. A server certificate is authenticated if its

 end-entity certificate has a chain of trust to one of these

 certificates.

 </description>

 <certificate>

 <name>Server Cert Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Server Cert Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 <!-- End Entity Certs for Authenticating Servers -->

 <certificate-bag>

 <name>trusted-server-ee-certs</name>

 <description>

 Specific end-entity certificates used to authenticate server

 certificates. A server certificate is authenticated if its

 end-entity certificate is an exact match to one of these

 certificates.

 </description>

 <certificate>

 <name>My Application #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>My Application #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 <!-- CA Certs for Authenticating Clients -->

 <certificate-bag>

 <name>trusted-client-ca-certs</name>

 <description>

 Trust anchors (i.e. CA certs) used to authenticate client

 certificates. A client certificate is authenticated if its

 end-entity certificate has a chain of trust to one of these

 certificates.

 </description>

 <certificate>

 <name>Client Identity Issuer #1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Client Identity Issuer #2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 <!-- Entity Certs for Authenticating Clients -->

 <certificate-bag>

 <name>trusted-client-ee-certs</name>

 <description>

 Specific end-entity certificates used to authenticate client

 certificates. A client certificate is authenticated if its

 end-entity certificate is an exact match to one of these

 certificates.

 </description>

 <certificate>

 <name>George Jetson</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Fred Flintstone</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 </certificate-bags>

 <!-- A List of Public Key Bags -->

 <public-key-bags>

 <!-- Public Keys for Authenticating SSH Servers -->

 <public-key-bag>

 <name>trusted-ssh-public-keys</name>

 <description>

 Specific SSH public keys used to authenticate SSH server

 public keys. An SSH server public key is authenticated if

 its public key is an exact match to one of these public keys.

 This list of SSH public keys is analogous to OpenSSH's

 "/etc/ssh/ssh_known_hosts" file.

 </description>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </public-key-bag>

 <!-- SSH Public Keys for Authenticating Application A -->

 <public-key-bag>

 <name>SSH Public Keys for Application A</name>

 <description>

 SSH public keys used to authenticate application A's SSH

 public keys. An SSH public key is authenticated if it

 is an exact match to one of these public keys.

 </description>

 <public-key>

 <name>Application Instance #1</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>Application Instance #2</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </public-key-bag>

 <!-- Raw Public Keys for TLS Servers -->

 <public-key-bag>

 <name>Raw Public Keys for TLS Servers</name>

 <public-key>

 <name>Raw Public Key #1</name>

 <public-key-format>

 ct:subject-public-key-info-format</public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>Raw Public Key #2</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </public-key-bag>

 <!-- Raw Public Keys for TLS Clients -->

 <public-key-bag>

 <name>Raw Public Keys for TLS Clients</name>

 <public-key>

 <name>Raw Public Key #1</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>Raw Public Key #2</name>

 <public-key-format>

 ct:subject-public-key-info-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </public-key-bag>

 </public-key-bags>

</truststore>

¶

2.2.2. A Certificate Expiration Notification

The following example illustrates the "certificate-expiration"

notification (per Section 2.1.3.4 of [I-D.ietf-netconf-crypto-

types]) for a certificate configured in the truststore in Section

2.2.1.

2.2.3. The "Local or Truststore" Groupings

This section illustrates the various "local-or-truststore" groupings

defined in the "ietf-truststore" module, specifically the "local-or-

truststore-certs-grouping" (Section 2.1.3.1) and "local-or-

truststore-public-keys-grouping" (Section 2.1.3.2), groupings.

The following non-normative module is defined to illustrate these

groupings:

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification

 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2018-05-25T00:01:00Z</eventTime>

 <truststore xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore">

 <certificate-bags>

 <certificate-bag>

 <name>trusted-client-ee-certs</name>

 <certificate>

 <name>George Jetson</name>

 <certificate-expiration>

 <expiration-date>2018-08-05T14:18:53-05:00</expiration-d\

ate>

 </certificate-expiration>

 </certificate>

 </certificate-bag>

 </certificate-bags>

 </truststore>

</notification>

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15#section-2.1.3.4

module ex-truststore-usage {

 yang-version 1.1;

 namespace "http://example.com/ns/example-truststore-usage";

 prefix "etu";

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 organization

 "Example Corporation";

 contact

 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description

 "This module illustrates notable groupings defined in

 the 'ietf-truststore' module.";

 revision "2020-07-10" {

 description

 "Initial version";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 container truststore-usage {

 description

 "An illustration of the various truststore groupings.";

 list cert {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this cert.";

 }

 uses ts:local-or-truststore-certs-grouping;

 description

 "An cert that may be configured locally or be

 a reference to a cert in the truststore.";

 }

 list public-key {

 key name;

 leaf name {

 type string;

 description

 "An arbitrary name for this cert.";

 }

 uses ts:local-or-truststore-public-keys-grouping;

 description

 "An public key that may be configured locally or be

 a reference to a public key in the truststore.";

 }

 }

}

¶

The tree diagram [RFC8340] for this example module follows:

The following example provides two equivalent instances of each

grouping, the first being a reference to a truststore and the second

being locally-defined. The instance having a reference to a

truststore is consistent with the truststore defined in Section

2.2.1. The two instances are equivalent, as the locally-defined

instance example contains the same values defined by the truststore

instance referenced by its sibling example.

¶

module: ex-truststore-usage

 +--rw truststore-usage

 +--rw cert* [name]

 | +--rw name string

 | +--rw (local-or-truststore)

 | +--:(local) {local-definitions-supported}?

 | | +--rw local-definition

 | | +--rw certificate* [name]

 | | +--rw name string

 | | +--rw cert-data

 | | | trust-anchor-cert-cms

 | | +---n certificate-expiration

 | | +-- expiration-date yang:date-and-time

 | +--:(truststore) {truststore-supported,certificates}?

 | +--rw truststore-reference? ts:certificate-bag-ref

 +--rw public-key* [name]

 +--rw name string

 +--rw (local-or-truststore)

 +--:(local) {local-definitions-supported}?

 | +--rw local-definition

 | +--rw public-key* [name]

 | +--rw name string

 | +--rw public-key-format identityref

 | +--rw public-key binary

 +--:(truststore) {truststore-supported,public-keys}?

 +--rw truststore-reference? ts:public-key-bag-ref

¶

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<truststore-usage

 xmlns="http://example.com/ns/example-truststore-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate -->

 <!-- the "local-or-truststore-certs-grouping" grouping: -->

 <cert>

 <name>example 1a</name>

 <truststore-reference>trusted-client-ca-certs</truststore-refere\

nce>

 </cert>

 <cert>

 <name>example 1b</name>

 <local-definition>

 <name>my-trusted-client-ca-certs</name>

 <certificate>

 <name>Client Identity Issuer #1</name>

 <cert>base64encodedvalue==</cert>

 </certificate>

 <certificate>

 <name>Client Identity Issuer #2</name>

 <cert>base64encodedvalue==</cert>

 </certificate>

 </local-definition>

 </cert>

 <!-- The following two equivalent examples illustrate the -->

 <!-- "local-or-truststore-public-keys-grouping" grouping: -->

 <public-key>

 <name>example 2a</name>

 <truststore-reference>trusted-ssh-public-keys</truststore-refere\

nce>

 </public-key>

 <public-key>

 <name>example 2b</name>

 <local-definition>

 <name>trusted-ssh-public-keys</name>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>base64encodedvalue==</public-key>

 </public-key>

 </local-definition>

 </public-key>

</truststore-usage>

¶

2.3. YANG Module

This YANG module imports modules from [RFC8341] and [I-D.ietf-

netconf-crypto-types].

<CODE BEGINS> file "ietf-truststore@2020-07-10.yang"

¶

¶

module ietf-truststore {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-truststore";

 prefix ts;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web : <http://datatracker.ietf.org/wg/netconf/>

 WG List : <mailto:netconf@ietf.org>

 Author : Kent Watsen <kent+ietf@watsen.net>";

 description

 "This module defines a Truststore to centralize management

 of trust anchors including certificates and public keys.

 Copyright (c) 2020 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC BBBB

 (https://www.rfc-editor.org/info/rfcBBBB); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2020-07-10 {

 description

 "Initial version";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 /****************/

 /* Features */

 /****************/

 feature truststore-supported {

 description

 "The 'truststore-supported' feature indicates that the

 server supports the Truststore (i.e., implements the

 'ietf-truststore' module).";

 }

 feature local-definitions-supported {

 description

 "The 'local-definitions-supported' feature indicates that

 the server supports locally-defined trust anchors.";

 }

 feature certificates {

 description

 "The 'certificates' feature indicates that the server

 implements the /truststore/certificate-bags subtree.";

 }

 feature public-keys {

 description

 "The 'public-keys' feature indicates that the server

 implements the /truststore/public-key-bags subtree.";

 }

 /****************/

 /* Typedefs */

 /****************/

 typedef certificate-bag-ref {

 type leafref {

 path "/ts:truststore/ts:certificate-bags/"

 + "ts:certificate-bag/ts:name";

 }

 description

 "This typedef defines a reference to a certificate bag

 defined in the Truststore.";

 }

 typedef certificate-ref {

 type leafref {

 path "/ts:truststore/certificate-bags/certificate-bag" +

 "[name = current()/../certificate-bag]/certificate/name";

 }

 description

 "This typedef define a reference to a specific certificate

 in a certificate bag defined in the Truststore. This

 typedef requires that there exist a sibling 'leaf' node

 called 'certificate-bag' that SHOULD have the typedef

 'certificate-bag-ref'.";

 }

 typedef public-key-bag-ref {

 type leafref {

 path "/ts:truststore/ts:public-key-bags/"

 + "ts:public-key-bag/ts:name";

 }

 description

 "This typedef define a reference to a public key bag

 defined in the Truststore.";

 }

 typedef public-key-ref {

 type leafref {

 path "/ts:truststore/public-key-bags/public-key-bag" +

 "[name = current()/../public-key-bag]/" +

 "public-key/name";

 }

 description

 "This typedef define a reference to a specific public key

 in a public key bag defined in the Truststore. This

 typedef requires that there exist a sibling 'leaf' node

 called 'public-key-bag' that SHOULD have the typedef

 'public-key-bag-ref'.";

 }

 /*****************/

 /* Groupings */

 /*****************/

 grouping local-or-truststore-certs-grouping {

 description

 "A grouping that allows the certificates to be either

 configured locally, within the using data model, or be a

 reference to a certificate bag stored in the Truststore.";

 choice local-or-truststore {

 nacm:default-deny-write;

 mandatory true;

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "A container for locally configured trust anchor

 certificates.";

 list certificate {

 key "name";

 min-elements 1;

 description

 "A trust anchor certificate.";

 leaf name {

 type string;

 description

 "An arbitrary name for this certificate.";

 }

 uses ct:trust-anchor-cert-grouping {

 refine "cert-data" {

 mandatory true;

 }

 }

 }

 }

 }

 case truststore {

 if-feature "truststore-supported";

 if-feature "certificates";

 leaf truststore-reference {

 type ts:certificate-bag-ref;

 description

 "A reference to a certificate bag that exists in the

 Truststore.";

 }

 }

 description

 "A choice between an inlined definition and a definition

 that exists in the Truststore.";

 }

 }

 grouping local-or-truststore-public-keys-grouping {

 description

 "A grouping that allows the public keys to be either

 configured locally, within the using data model, or be a

 reference to a public key bag stored in the Truststore.";

 choice local-or-truststore {

 nacm:default-deny-write;

 mandatory true;

 case local {

 if-feature "local-definitions-supported";

 container local-definition {

 description

 "Container to hold local public key definitions.";

 list public-key {

 key name;

 description

 "A public key definition.";

 leaf name {

 type string;

 description

 "An arbitrary name for this public key.";

 }

 uses ct:public-key-grouping;

 }

 }

 }

 case truststore {

 if-feature "truststore-supported";

 if-feature "public-keys";

 leaf truststore-reference {

 type ts:public-key-bag-ref;

 description

 "A reference to a bag of public keys that exist

 in the Truststore.";

 }

 }

 description

 "A choice between an inlined definition and a definition

 that exists in the Truststore.";

 }

 }

 grouping truststore-grouping {

 description

 "Grouping definition enables use in other contexts. Where

 used, implementations SHOULD augment new 'case' statements

 into the local-or-truststore 'choice' statements to supply

 leafrefs to the model-specific location.";

 container certificate-bags {

 nacm:default-deny-write;

 if-feature "certificates";

 presence

 "Indicates that certificate bags have been configured.";

 description

 "A collection of certificate bags.";

 list certificate-bag {

 key "name";

 min-elements 1;

 description

 "A bag of certificates. Each bag of certificates SHOULD

 be for a specific purpose. For instance, one bag could

 be used to authenticate a specific set of servers, while

 another could be used to authenticate a specific set of

 clients.";

 leaf name {

 type string;

 description

 "An arbitrary name for this bag of certificates.";

 }

 leaf description {

 type string;

 description

 "A description for this bag of certificates. The

 intended purpose for the bag SHOULD be described.";

 }

 list certificate {

 key "name";

 min-elements 1;

 description

 "A trust anchor certificate.";

 leaf name {

 type string;

 description

 "An arbitrary name for this certificate.";

 }

 uses ct:trust-anchor-cert-grouping {

 refine "cert-data" {

 mandatory true;

 }

 }

 }

 }

 }

 container public-key-bags {

 nacm:default-deny-write;

 if-feature "public-keys";

 presence

 "Indicates that public keys have been configured.";

 description

 "A collection of public key bags.";

 list public-key-bag {

 key "name";

 min-elements 1;

 description

 "A bag of public keys. Each bag of keys SHOULD be for

 a specific purpose. For instance, one bag could be used

 authenticate a specific set of servers, while another

 could be used to authenticate a specific set of clients.";

 leaf name {

 type string;

 description

 "An arbitrary name for this bag of public keys.";

 }

 leaf description {

 type string;

 description

 "A description for this bag public keys. The

 intended purpose for the bag SHOULD be described.";

 }

 list public-key {

 key "name";

 min-elements 1;

 description

 "A public key.";

 leaf name {

 type string;

 description

 "An arbitrary name for this public key.";

 }

 uses ct:public-key-grouping;

 }

 }

 }

 }

 /*********************************/

 /* Protocol accessible nodes */

 /*********************************/

 container truststore {

 nacm:default-deny-write;

 description

 "The Truststore contains bags of certificates and

 public keys.";

 uses truststore-grouping;

 }

}

¶

<CODE ENDS>

3. Support for Built-in Trust Anchors

In some implementations, a server may define some built-in trust

anchors. For instance, there may be built-in trust anchors enabling

the server to securely connect to well-known services (e.g., an SZTP

[RFC8572] bootstrap server) or public CA certificates to connect to

arbitrary services using public PKI.

Built-in trust anchors are expected to be set by a vendor-specific

process. Any ability for operators to modify built-in trust anchors

is outside the scope of this document.

As built-in trust anchors are provided by the system, they are

present in <operational>. The example below illustrates what the

Truststore in <operational> might look like for a server in its

factory default state.

¶

¶

¶

¶

In order for the built-in trust anchors to be referenced by

configuration, the referenced certificates MUST first be copied into

<running>. The certificates SHOULD be copied into <running> using

the same "key" values, so that the server can bind them to the

built-in entries.

<truststore

 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <certificate-bags>

 <certificate-bag or:origin="or:system">

 <name>Built-In Manufacturer CA Certificates</name>

 <description>

 Certificates built into the device for authenticating

 manufacturer-signed objects, such as TLS server certificates,

 vouchers, etc.

 </description>

 <certificate>

 <name>Manufacturer Root CA Cert</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 <certificate-bag or:origin="or:system">

 <name>Built-In Public CA Certificates</name>

 <description>

 Certificates built into the device for authenticating

 certificates issued by public certificate authorities,

 such as the end-entity certificate for web servers.

 </description>

 <certificate>

 <name>Public Root CA Cert 1</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Public Root CA Cert 2</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 <certificate>

 <name>Public Root CA Cert 3</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 </certificate-bags>

</truststore>

¶

¶

Built-in certificates MAY be copied into other parts of the

configuration but, by doing so, they lose their association to the

built-in entries and any assurances afforded by knowing they are the

built-in certificates.

Only the referenced certificates need to be copied; that is, the

certificates in <running> MAY be a subset of the built-in

certificates define in <operational>. No certificates may be added

or changed; that is, the certificates in <running> MUST be a subset

(which includes the whole of the set) of the built-in certificates

define in <operational>.

A server MUST reject attempts to modify any aspect of built-in trust

anchors, both the certificates themselves and the bags that contain

them. That these certificates are "configured" in <running> is an

illusion, as they are strictly a read-only subset of that which must

already exist in <operational>.

The following example illustrates how a single built-in public CA

certificate from the previous example has been propagated to

<running>:

¶

¶

¶

¶

<truststore

 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <certificate-bags>

 <certificate-bag>

 <name>Built-In Public CA Certificates</name>

 <description>

 Certificates built into the device for authenticating

 certificates issued by public certificate authorities,

 such as the end-entity certificate for web servers.

 Only the subset of the certificates that are referenced

 by other configuration nodes need to be copied. For

 instance, only "Public Root CA Cert 3" is present here.

 No new certificates can be added, nor existing certificate

 values changed. Missing certificates have no effect on

 "operational" when the configuration is applied.

 </description>

 <certificate>

 <name>Public Root CA Cert 3</name>

 <cert-data>base64encodedvalue==</cert-data>

 </certificate>

 </certificate-bag>

 </certificate-bags>

</truststore>

¶

4. Security Considerations

4.1. Data at Rest

The YANG module defined in this document defines a mechanism called

a "truststore" that, by its name, suggests that it will protect its

contents from unauthorized modification.

Security controls for the API (i.e., data in motion) are discussed

in Section 4.2, but controls for the data at rest cannot be

specified by the YANG module.

In order to satisfy the expectations of a "truststore", it is

RECOMMENDED that implementations ensure that the truststore contents

are signed when persisted to non-volatile memory, to prevent

unauthorized modifications from being made undetected.

4.2. The "ietf-truststore" YANG Module

The YANG module defined in this document is designed to be accessed

via YANG based management protocols, such as NETCONF [RFC6241] and

RESTCONF [RFC8040]. Both of these protocols have mandatory-to-

implement secure transport layers (e.g., SSH, TLS) with mutual

authentication.

The NETCONF access control model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

None of the readable data nodes defined in this YANG module are

considered sensitive or vulnerable in network environments. The NACM

"default-deny-all" extension has not been set for any data nodes

defined in this module.

All of the writable data nodes defined by this module, both in the

"grouping" statements as well as the protocol-accessible

"truststore" instance, may be considered sensitive or vulnerable in

some network environments. For instance, any modification to a trust

anchor or reference to a trust anchor may dramatically alter the

implemented security policy. For this reason, the NACM extension

"default-deny-write" has been set for all data nodes defined in this

module.

This module does not define any RPCs, actions, or notifications, and

thus the security consideration for such is not provided here.

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-netconf-crypto-types]

[RFC2119]

[RFC7950]

[RFC8174]

[RFC8341]

5. IANA Considerations

5.1. The "IETF XML" Registry

This document registers one URI in the "ns" subregistry of the IETF

XML Registry [RFC3688]. Following the format in [RFC3688], the

following registration is requested:

5.2. The "YANG Module Names" Registry

This document registers one YANG module in the YANG Module Names

registry [RFC6020]. Following the format in [RFC6020], the the

following registration is requested:

6. References

6.1. Normative References

Watsen, K., "Common YANG Data Types for Cryptography",

Work in Progress, Internet-Draft, draft-ietf-netconf-

crypto-types-15, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-crypto-types-15>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-truststore

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-truststore

 namespace: urn:ietf:params:xml:ns:yang:ietf-truststore

 prefix: ts

 reference: RFC BBBB

¶

https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://tools.ietf.org/html/draft-ietf-netconf-crypto-types-15
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-netconf-client-server]

[I-D.ietf-netconf-restconf-client-server]

[I-D.ietf-netconf-ssh-client-server]

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

6.2. Informative References

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-03, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-http-client-

server-03>.

Watsen, K., "A YANG Data Model for a

Keystore", Work in Progress, Internet-Draft, draft-ietf-

netconf-keystore-17, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-keystore-17>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

client-server-19, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-netconf-client-server-19>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-19, 20 May 2020, <https://tools.ietf.org/

html/draft-ietf-netconf-restconf-client-server-19>.

Watsen, K. and G. Wu, "YANG Groupings for SSH Clients and

SSH Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-ssh-client-server-19, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-ssh-client-

server-19>.

Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients

and TCP Servers", Work in Progress, Internet-Draft,

draft-ietf-netconf-tcp-client-server-06, 16 June 2020,

<https://tools.ietf.org/html/draft-ietf-netconf-tcp-

client-server-06>.

Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and

TLS Servers", Work in Progress, Internet-Draft, draft-

ietf-netconf-tls-client-server-19, 20 May 2020, <https://

tools.ietf.org/html/draft-ietf-netconf-tls-client-

server-19>.

https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03
https://tools.ietf.org/html/draft-ietf-netconf-http-client-server-03
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-keystore-17
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-netconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-restconf-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-ssh-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-06
https://tools.ietf.org/html/draft-ietf-netconf-tcp-client-server-06
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19
https://tools.ietf.org/html/draft-ietf-netconf-tls-client-server-19

[I-D.ietf-netconf-trust-anchors]

[RFC3688]

[RFC6020]

[RFC6241]

[RFC8040]

[RFC8340]

[RFC8342]

[RFC8572]

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-10, 20 May 2020, <https://tools.ietf.org/html/

draft-ietf-netconf-trust-anchors-10>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero

Touch Provisioning (SZTP)", RFC 8572, DOI 10.17487/

RFC8572, April 2019, <https://www.rfc-editor.org/info/

rfc8572>.

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

A.1. 00 to 01

Added features "x509-certificates" and "ssh-host-keys".

Added nacm:default-deny-write to "trust-anchors" container.

¶

* ¶

* ¶

https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://tools.ietf.org/html/draft-ietf-netconf-trust-anchors-10
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572

A.2. 01 to 02

Switched "list pinned-certificate" to use the "trust-anchor-cert-

grouping" from crypto-types. Effectively the same definition as

before.

A.3. 02 to 03

Updated copyright date, boilerplate template, affiliation,

folding algorithm, and reformatted the YANG module.

A.4. 03 to 04

Added groupings 'local-or-truststore-certs-grouping' and 'local-

or-truststore-host-keys-grouping', matching similar definitions

in the keystore draft. Note new (and incomplete) "truststore"

usage!

Related to above, also added features 'truststore-supported' and

'local-trust-anchors-supported'.

A.5. 04 to 05

Renamed "trust-anchors" to "truststore"

Removed "pinned." prefix everywhere, to match truststore rename

Moved everything under a top-level 'grouping' to enable use in

other contexts.

Renamed feature from 'local-trust-anchors-supported' to 'local-

definitions-supported' (same name used in keystore)

Removed the "require-instance false" statement from the "*-ref"

typedefs.

Added missing "ssh-host-keys" and "x509-certificates" if-feature

statements

A.6. 05 to 06

Editorial changes only.

A.7. 06 to 07

Added Henk Birkholz as a co-author (thanks Henk!)

Added PSKs and raw public keys to Truststore.

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

A.8. 07 to 08

Added new "Support for Built-in Trust Anchors" section.

Removed spurious "uses ct:trust-anchor-certs-grouping" line.

Removed PSK from model.

A.9. 08 to 09

Removed remaining PSK references from text.

Wrapped each top-level list with a container.

Introduced "bag" term.

Merged "SSH Public Keys" and "Raw Public Keys" in a single

"Public Keys" bag. Consuming downstream modules (i.e., "ietf-

[ssh/tls]-[client/server]) refine the "public-key-format" to be

either SSH or TLS specific as needed.

A.10. 09 to 10

Removed "algorithm" node from examples.

Removed the no longer used statements supporting the old "ssh-

public-key" and "raw-public-key" nodes.

Added a "Note to Reviewers" note to first page.

A.11. 10 to 11

Corrected module prefix registered in the IANA Considerations

section.

Modified 'local-or-truststore-certs-grouping' to use a list (not

a leaf-list).

Added new example section "The Local or Truststore Groupings".

Clarified expected behavior for "built-in" certificates in

<operational>

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Updated the Security Considerations section.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

A.12. 11 to 12

Fixed a copy/paste issue in the "Data at Rest" Security

Considerations section.

Acknowledgements

The authors especially thank Henk Birkholz for contributing YANG to

the ietf-truststore module supporting raw public keys and PSKs (pre-

shared or pairwise-symmetric keys). While these contributions were

eventually replaced by reusing the existing support for asymmetric

and symmetric trust anchors, respectively, it was only thru Henk's

initiative that the WG was able to come to that result.

The authors additionally thank the following for helping give shape

to this work (ordered by first name): Balazs Kovacs, Eric Voit,

Juergen Schoenwaelder, Liang Xia, Martin Bjorklund, and Nick

Hancock.

Author's Address

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

*

¶

¶

¶

mailto:kent+ietf@watsen.net

	A YANG Data Model for a Truststore
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA

	2. The "ietf-truststore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "local-or-truststore-certs-grouping" Grouping
	2.1.3.2. The "local-or-truststore-public-keys-grouping" Grouping
	2.1.3.3. The "truststore-grouping" Grouping

	2.1.4. Protocol-accessible Nodes

	2.2. Example Usage
	2.2.1. A Truststore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Local or Truststore" Groupings

	2.3. YANG Module

	3. Support for Built-in Trust Anchors
	4. Security Considerations
	4.1. Data at Rest
	4.2. The "ietf-truststore" YANG Module

	5. IANA Considerations
	5.1. The "IETF XML" Registry
	5.2. The "YANG Module Names" Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Change Log
	A.1. 00 to 01
	A.2. 01 to 02
	A.3. 02 to 03
	A.4. 03 to 04
	A.5. 04 to 05
	A.6. 05 to 06
	A.7. 06 to 07
	A.8. 07 to 08
	A.9. 08 to 09
	A.10. 09 to 10
	A.11. 10 to 11
	A.12. 11 to 12
	Acknowledgements
	Author's Address

