
Workgroup: NETCONF Working Group

Internet-Draft:

draft-ietf-netconf-trust-anchors-28

Published: 16 March 2024

Intended Status: Standards Track

Expires: 17 September 2024

Authors: K. Watsen

Watsen Networks

A YANG Data Model for a Truststore

Abstract

This document presents a YANG module for configuring bags of

certificates and bags of public keys that can be referenced by other

data models for trust. Notifications are sent when certificates are

about to expire.

Editorial Note (To be removed by RFC Editor)

This draft contains placeholder values that need to be replaced with

finalized values at the time of publication. This note summarizes

all of the substitutions that are needed. No other RFC Editor

instructions are specified elsewhere in this document.

Artwork in this document contains shorthand references to drafts in

progress. Please apply the following replacements:

AAAA --> the assigned RFC value for draft-ietf-netconf-crypto-

types

BBBB --> the assigned RFC value for this draft

Artwork in this document contains placeholder values for the date of

publication of this draft. Please apply the following replacement:

2024-03-16 --> the publication date of this draft

The "Relation to other RFCs" section Section 1.1 contains the text

"one or more YANG modules" and, later, "modules". This text is

sourced from a file in a context where it is unknown how many

modules a draft defines. The text is not wrong as is, but it may be

improved by stating more directly how many modules are defined.

The "Relation to other RFCs" section Section 1.1 contains a self-

reference to this draft, along with a corresponding reference in the

Appendix. Please replace the self-reference in this section with

"This RFC" (or similar) and remove the self-reference in the

"Normative/Informative References" section, whichever it is in.

¶

¶

¶

*

¶

* ¶

¶

* ¶

¶

¶

Tree-diagrams in this draft may use the '\' line-folding mode

defined in RFC 8792. However, nicer-to-the-eye is when the '\\'

line-folding mode is used. The AD suggested suggested putting a

request here for the RFC Editor to help convert "ugly" '\' folded

examples to use the '\\' folding mode. "Help convert" may be

interpreted as, identify what looks ugly and ask the authors to make

the adjustment.

The following Appendix section is to be removed prior to

publication:

Appendix A. Change Log

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Relation to other RFCs

1.2. Specification Language

¶

¶

* ¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

1.3. Adherence to the NMDA

1.4. Conventions

2. The "ietf-truststore" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Support for Built-in Trust Anchors

4. Security Considerations

4.1. Security of Data at Rest

4.2. Unconstrained Public Key Usage

4.3. Considerations for the "ietf-truststore" YANG Module

5. IANA Considerations

5.1. The "IETF XML" Registry

5.2. The "YANG Module Names" Registry

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Change Log

A.1. 00 to 01

A.2. 01 to 02

A.3. 02 to 03

A.4. 03 to 04

A.5. 04 to 05

A.6. 05 to 06

A.7. 06 to 07

A.8. 07 to 08

A.9. 08 to 09

A.10. 09 to 10

A.11. 10 to 11

A.12. 11 to 12

A.13. 12 to 13

A.14. 13 to 14

A.15. 14 to 15

A.16. 15 to 16

A.17. 16 to 17

A.18. 17 to 18

A.19. 18 to 19

A.20. 19 to 20

A.21. 20 to 21

A.22. 21 to 22

A.23. 22 to 23

A.24. 23 to 24

A.25. 24 to 26

A.26. 26 to 28

Acknowledgements

Author's Address

1. Introduction

This document presents a YANG 1.1 [RFC7950] module having the

following characteristics:

Provide a central truststore for storing raw public keys and/or

certificates.

Provide support for storing named bags of raw public keys and/or

named bags of certificates.

Provide types that can be used to reference raw public keys or

certificates stored in the central truststore.

Provide groupings that enable raw public keys and certificates to

be configured inline or as references to truststore instances.

Enable the truststore to be instantiated in other data models, in

addition to or in lieu of the central truststore instance.

1.1. Relation to other RFCs

This document presents one or more YANG modules [RFC7950] that are

part of a collection of RFCs that work together to, ultimately,

support the configuration of both the clients and servers of both

the NETCONF [RFC6241] and RESTCONF [RFC8040] protocols.

The dependency relationship between the primary YANG groupings

defined in the various RFCs is presented in the below diagram. In

some cases, a draft may define secondary groupings that introduce

dependencies not illustrated in the diagram. The labels in the

diagram are a shorthand name for the defining RFC. The citation

reference for shorthand name is provided below the diagram.

Please note that the arrows in the diagram point from referencer to

referenced. For example, the "crypto-types" RFC does not have any

dependencies, whilst the "keystore" RFC depends on the "crypto-

types" RFC.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Label in Diagram Originating RFC

crypto-types [I-D.ietf-netconf-crypto-types]

truststore [I-D.ietf-netconf-trust-anchors]

keystore [I-D.ietf-netconf-keystore]

tcp-client-server [I-D.ietf-netconf-tcp-client-server]

ssh-client-server [I-D.ietf-netconf-ssh-client-server]

tls-client-server [I-D.ietf-netconf-tls-client-server]

http-client-server [I-D.ietf-netconf-http-client-server]

netconf-client-server [I-D.ietf-netconf-netconf-client-server]

restconf-client-server [I-D.ietf-netconf-restconf-client-server]

Table 1: Label in Diagram to RFC Mapping

1.2. Specification Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Adherence to the NMDA

This document is compliant with the Network Management Datastore

Architecture (NMDA) [RFC8342]. For instance, trust anchors installed

 crypto-types

 ^ ^

 / \

 / \

 truststore keystore

 ^ ^ ^ ^

 | +---------+ | |

 | | | |

 | +------------+ |

tcp-client-server | / | |

 ^ ^ ssh-client-server | |

 | | ^ tls-client-server

 | | | ^ ^ http-client-server

 | | | | | ^

 | | | +-----+ +---------+ |

 | | | | | |

 | +-----------|--------|--------------+ | |

 | | | | | |

 +-----------+ | | | | |

 | | | | | |

 | | | | | |

 netconf-client-server restconf-client-server

¶

¶

during manufacturing (e.g., for trusted well-known services), are

expected to appear in <operational> (see Section 3).

1.4. Conventions

Various examples in this document use "BASE64VALUE=" as a

placeholder value for binary data that has been base64 encoded (see

Section 4 in [RFC4648]). This placeholder value is used because real

base64 encoded structures are often many lines long and hence

distracting to the example being presented.

This document uses the adjective "central" to the word "truststore"

to refer to the top-level instance of the "truststore-grouping",

when the "central-truststore-supported" feature is enabled. Please

be aware that consuming YANG modules MAY instantiate the

"truststore-grouping" in other locations. All such other instances

are not the "central" instance.

2. The "ietf-truststore" Module

This section defines a YANG 1.1 [RFC7950] module called "ietf-

truststore". A high-level overview of the module is provided in

Section 2.1. Examples illustrating the module's use are provided in

Examples (Section 2.2). The YANG module itself is defined in

Section 2.3.

2.1. Data Model Overview

This section provides an overview of the "ietf-truststore" module in

terms of its features, typedefs, groupings, and protocol-accessible

nodes.

2.1.1. Features

The following diagram lists all the "feature" statements defined in

the "ietf-truststore" module:

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

2.1.2. Typedefs

The following diagram lists the "typedef" statements defined in the

"ietf-truststore" module:

¶

¶

¶

¶

¶

¶

Features:

 +-- central-truststore-supported

 +-- inline-definitions-supported

 +-- certificates

 +-- public-keys

¶

¶

¶

The diagram above uses syntax that is similar to but not defined in

[RFC8340].

Comments:

All the typedefs defined in the "ietf-truststore" module extend

the base "leafref" type defined in [RFC7950].

The leafrefs refer to certificates, public keys, and bags in the

central truststore, when this module is implemented.

These typedefs are provided as an aid to consuming modules that

import the "ietf-truststore" module.

2.1.3. Groupings

The "ietf-truststore" module defines the following "grouping"

statements:

central-certificate-ref-grouping

central-public-key-ref-grouping

inline-or-truststore-certs-grouping

inline-or-truststore-public-keys-grouping

truststore-grouping

Each of these groupings are presented in the following subsections.

2.1.3.1. The "central-certificate-ref-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "central-

certificate-ref-grouping" grouping:

Comments:

The "central-certificate-ref-grouping" grouping is provided

solely as convenience to consuming modules that wish to enable

Typedefs:

 leafref

 +-- central-certificate-bag-ref

 +-- central-certificate-ref

 +-- central-public-key-bag-ref

 +-- central-public-key-ref

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

 grouping central-certificate-ref-grouping:

 +-- certificate-bag? ts:central-certificate-bag-ref

 | {central-truststore-supported,certificates}?

 +-- certificate? ts:central-certificate-ref

 {central-truststore-supported,certificates}?

¶

¶

*

the configuration of a reference to a certificate in a

certificate-bag in the truststore.

The "certificate-bag" leaf uses the "central-certificate-bag-ref"

typedef defined in Section 2.1.2.

The "certificate" leaf uses the "central-certificate-ref" typedef

defined in Section 2.1.2.

2.1.3.2. The "central-public-key-ref-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "central-

public-key-ref-grouping" grouping:

Comments:

The "central-public-key-ref-grouping" grouping is provided solely

as convenience to consuming modules that wish to enable the

configuration of a reference to a public-key in a public-key-bag

in the truststore.

The "public-key-bag" leaf uses the "public-key-bag-ref" typedef

defined in Section 2.1.2.

The "public-key" leaf uses the "public-key-ref" typedef defined

in Section 2.1.2.

2.1.3.3. The "inline-or-truststore-certs-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "inline-or-

truststore-certs-grouping" grouping:

¶

*

¶

*

¶

¶

 grouping central-public-key-ref-grouping:

 +-- public-key-bag? ts:central-public-key-bag-ref

 | {central-truststore-supported,public-keys}?

 +-- public-key? ts:central-public-key-ref

 {central-truststore-supported,public-keys}?

¶

¶

*

¶

*

¶

*

¶

¶

 grouping inline-or-truststore-certs-grouping:

 +-- (inline-or-truststore)

 +--:(inline) {inline-definitions-supported}?

 | +-- inline-definition

 | +-- certificate* [name]

 | +-- name? string

 | +---u ct:trust-anchor-cert-grouping

 +--:(central-truststore)

 {central-truststore-supported,certificates}?

 +-- central-truststore-reference?

 ts:central-certificate-bag-ref

¶

Comments:

The "inline-or-truststore-certs-grouping" grouping is provided

solely as convenience to consuming modules that wish to offer an

option whether a bag of certificates can be defined inline or as

a reference to a bag in the truststore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a bag in an alternate location.

For the "inline-definition" option, the "certificate" node uses

the "trust-anchor-cert-grouping" grouping discussed in

Section 2.1.4.7 of [I-D.ietf-netconf-crypto-types].

For the "central-truststore" option, the "central-truststore-

reference" is an instance of the "certificate-bag-ref" discussed

in Section 2.1.2.

2.1.3.4. The "inline-or-truststore-public-keys-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "inline-or-

truststore-public-keys-grouping" grouping:

Comments:

The "inline-or-truststore-public-keys-grouping" grouping is

provided solely as convenience to consuming modules that wish to

offer an option whether a bag of public keys can be defined

inline or as a reference to a bag in the truststore.

A "choice" statement is used to expose the various options. Each

option is enabled by a "feature" statement. Additional "case"

statements MAY be augmented in if, e.g., there is a need to

reference a bag in an alternate location.

¶

*

¶

*

¶

*

¶

*

¶

¶

 grouping inline-or-truststore-public-keys-grouping:

 +-- (inline-or-truststore)

 +--:(inline) {inline-definitions-supported}?

 | +-- inline-definition

 | +-- public-key* [name]

 | +-- name? string

 | +---u ct:public-key-grouping

 +--:(central-truststore)

 {central-truststore-supported,public-keys}?

 +-- central-truststore-reference?

 ts:central-public-key-bag-ref

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-2.1.4.7

For the "inline-definition" option, the "public-key" node uses

the "public-key-grouping" grouping discussed in Section 2.1.4.4

of [I-D.ietf-netconf-crypto-types].

For the "central-truststore" option, the "central-truststore-

reference" is an instance of the "certificate-bag-ref" discussed

in Section 2.1.2.

2.1.3.5. The "truststore-grouping" Grouping

The following tree diagram [RFC8340] illustrates the "truststore-

grouping" grouping:

Comments:

The "truststore-grouping" grouping defines a truststore instance

as being composed of certificates and/or public keys, both of

which are enabled by "feature" statements. The structure

supporting certificates and public keys is essentially the same,

having an outer list of "bags" containing an inner list of

objects (certificates or public keys). The bags enable trust

anchors serving a common purpose to be grouped and referenced

together.

For certificates, each certificate is defined by the "trust-

anchor-cert-grouping" grouping Section 2.1.4.7 of

[I-D.ietf-netconf-crypto-types]. The "cert-data" node is a CMS

structure that can be composed of a chain of one or more

certificates. Additionally, the "certificate-expiration"

notification enables the server to alert clients when

certificates are nearing or have already expired.

For public keys, each public key is defined by the "public-key-

grouping" grouping Section 2.1.4.4 of

*

¶

*

¶

¶

 grouping truststore-grouping:

 +-- certificate-bags {certificates}?

 | +-- certificate-bag* [name]

 | +-- name? string

 | +-- description? string

 | +-- certificate* [name]

 | +-- name? string

 | +---u ct:trust-anchor-cert-grouping

 +-- public-key-bags {public-keys}?

 +-- public-key-bag* [name]

 +-- name? string

 +-- description? string

 +-- public-key* [name]

 +-- name? string

 +---u ct:public-key-grouping

¶

¶

*

¶

*

¶

*

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-2.1.4.4
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-2.1.4.7
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-2.1.4.4

[I-D.ietf-netconf-crypto-types]. The "public-key" node can be one

of any number of structures specified by the "public-key-format"

identity node.

2.1.4. Protocol-accessible Nodes

The following tree diagram [RFC8340] lists all the protocol-

accessible nodes defined in the "ietf-truststore" module, without

expanding the "grouping" statements:

The following tree diagram [RFC8340] lists all the protocol-

accessible nodes defined in the "ietf-truststore" module, with all

"grouping" statements expanded, enabling the truststore's full

structure to be seen:

Comments:

Protocol-accessible nodes are those nodes that are accessible

when the module is "implemented", as described in Section 5.6.5

of [RFC7950].

The protocol-accessible nodes for the "ietf-truststore" module

are an instance of the "truststore-grouping" grouping discussed

in Section 2.1.3.5.

¶

¶

module: ietf-truststore

 +--rw truststore {central-truststore-supported}?

 +---u truststore-grouping

¶

¶

module: ietf-truststore

 +--rw truststore {central-truststore-supported}?

 +--rw certificate-bags {certificates}?

 | +--rw certificate-bag* [name]

 | +--rw name string

 | +--rw description? string

 | +--rw certificate* [name]

 | +--rw name string

 | +--rw cert-data trust-anchor-cert-cms

 | +---n certificate-expiration

 | {certificate-expiration-notification}?

 | +-- expiration-date yang:date-and-time

 +--rw public-key-bags {public-keys}?

 +--rw public-key-bag* [name]

 +--rw name string

 +--rw description? string

 +--rw public-key* [name]

 +--rw name string

 +--rw public-key-format identityref

 +--rw public-key binary

¶

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc7950#section-5.6.5

The top-level node "truststore" is additionally constrained by

the feature "central-truststore-supported".

The "truststore-grouping" grouping is discussed in

Section 2.1.3.5.

The reason for why the "truststore-grouping" exists separate from

the protocol-accessible nodes definition is to enable instances

of the truststore to be instantiated in other locations, as may

be needed or desired by some modules.

2.2. Example Usage

The examples in this section are encoded using XML, such as might be

the case when using the NETCONF protocol. Other encodings MAY be

used, such as JSON when using the RESTCONF protocol.

2.2.1. A Truststore Instance

This section presents an example illustrating trust anchors in

<intended>, as per Section 2.1.4. Please see Section 3 for an

example illustrating built-in values in <operational>.

The example contained in this section defines eight bags of trust

anchors. There are four certificate-based bags and four public key

based bags. The following diagram provides an overview of the

contents in the example:

Following is the full example:

*

¶

*

¶

*

¶

¶

¶

¶

Certificate Bags

 +-- Trust anchor certs for authenticating a set of remote servers

 +-- End entity certs for authenticating a set of remote servers

 +-- Trust anchor certs for authenticating a set of remote clients

 +-- End entity certs for authenticating a set of remote clients

Public Key Bags

 +-- SSH keys to authenticate a set of remote SSH server

 +-- SSH keys to authenticate a set of remote SSH clients

 +-- Raw public keys to authenticate a set of remote SSH server

 +-- Raw public keys to authenticate a set of remote SSH clients

¶

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<truststore

 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- A bag of Certificate Bags -->

 <certificate-bags>

 <!-- Trust Anchor Certs for Authenticating Servers -->

 <certificate-bag>

 <name>trusted-server-ca-certs</name>

 <description>

 Trust anchors (i.e. CA certs) used to authenticate server

 certificates. A server certificate is authenticated if its

 end-entity certificate has a chain of trust to one of these

 certificates.

 </description>

 <certificate>

 <name>Server Cert Issuer #1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Server Cert Issuer #2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 <!-- End Entity Certs for Authenticating Servers -->

 <certificate-bag>

 <name>trusted-server-ee-certs</name>

 <description>

 Specific end-entity certificates used to authenticate server

 certificates. A server certificate is authenticated if its

 end-entity certificate is an exact match to one of these

 certificates.

 </description>

 <certificate>

 <name>My Application #1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>My Application #2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 <!-- Trust Anchor Certs for Authenticating Clients -->

 <certificate-bag>

 <name>trusted-client-ca-certs</name>

 <description>

 Trust anchors (i.e. CA certs) used to authenticate client

 certificates. A client certificate is authenticated if its

 end-entity certificate has a chain of trust to one of these

 certificates.

 </description>

 <certificate>

 <name>Client Identity Issuer #1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Client Identity Issuer #2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 <!-- End Entity Certs for Authenticating Clients -->

 <certificate-bag>

 <name>trusted-client-ee-certs</name>

 <description>

 Specific end-entity certificates used to authenticate client

 certificates. A client certificate is authenticated if its

 end-entity certificate is an exact match to one of these

 certificates.

 </description>

 <certificate>

 <name>George Jetson</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Fred Flintstone</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 </certificate-bags>

 <!-- A List of Public Key Bags -->

 <public-key-bags>

 <!-- Public Keys for Authenticating SSH Servers -->

 <public-key-bag>

 <name>trusted-ssh-public-keys</name>

 <description>

 Specific SSH public keys used to authenticate SSH server

 public keys. An SSH server public key is authenticated if

 its public key is an exact match to one of these public keys.

 This list of SSH public keys is analogous to OpenSSH's

 "/etc/ssh/ssh_known_hosts" file.

 </description>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>ct:ssh-public-key-format</public-key-form\

at>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>ct:ssh-public-key-format</public-key-form\

at>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </public-key-bag>

 <!-- SSH Public Keys for Authenticating Application A -->

 <public-key-bag>

 <name>SSH Public Keys for Application A</name>

 <description>

 SSH public keys used to authenticate application A's SSH

 public keys. An SSH public key is authenticated if it

 is an exact match to one of these public keys.

 </description>

 <public-key>

 <name>Application Instance #1</name>

 <public-key-format>ct:ssh-public-key-format</public-key-form\

at>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>Application Instance #2</name>

 <public-key-format>ct:ssh-public-key-format</public-key-form\

at>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </public-key-bag>

 <!-- Raw Public Keys for TLS Servers -->

 <public-key-bag>

 <name>Raw Public Keys for TLS Servers</name>

 <public-key>

 <name>Raw Public Key #1</name>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>Raw Public Key #2</name>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </public-key-bag>

 <!-- Raw Public Keys for TLS Clients -->

 <public-key-bag>

 <name>Raw Public Keys for TLS Clients</name>

 <public-key>

 <name>Raw Public Key #1</name>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>Raw Public Key #2</name>

 <public-key-format>ct:subject-public-key-info-format</public\

-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </public-key-bag>

 </public-key-bags>

</truststore>

¶

2.2.2. A Certificate Expiration Notification

The following example illustrates the "certificate-expiration"

notification (per Section 2.1.4.6 of

[I-D.ietf-netconf-crypto-types]) for a certificate configured in the

truststore in Section 2.2.1.

2.2.3. The "Local or Truststore" Groupings

This section illustrates the various "inline-or-truststore"

groupings defined in the "ietf-truststore" module, specifically the

"inline-or-truststore-certs-grouping" (Section 2.1.3.3) and "inline-

or-truststore-public-keys-grouping" (Section 2.1.3.4) groupings.

These examples assume the existence of an example module called "ex-

truststore-usage" having the namespace "https://example.com/ns/

example-truststore-usage".

The ex-truststore-usage module is first presented using tree

diagrams [RFC8340], followed by an instance example illustrating all

the "inline-or-truststore" groupings in use, followed by the YANG

module itself.

The following tree diagram illustrates "ex-truststore-usage" without

expanding the "grouping" statements:

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification

 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2018-05-25T00:01:00Z</eventTime>

 <truststore xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore">

 <certificate-bags>

 <certificate-bag>

 <name>trusted-client-ee-certs</name>

 <certificate>

 <name>George Jetson</name>

 <certificate-expiration>

 <expiration-date>2024-01-05T14:18:53-05:00</expiration-d\

ate>

 </certificate-expiration>

 </certificate>

 </certificate-bag>

 </certificate-bags>

 </truststore>

</notification>

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-2.1.4.6

The following tree diagram illustrates the "ex-truststore-usage"

module, with all "grouping" statements expanded, enabling the

truststore's full structure to be seen:

The following example provides two equivalent instances of each

grouping, the first being a reference to a truststore and the second

being defined inline. The instance having a reference to a

truststore is consistent with the truststore defined in

module: ex-truststore-usage

 +--rw truststore-usage

 +--rw cert* [name]

 | +--rw name string

 | +---u ts:inline-or-truststore-certs-grouping

 +--rw public-key* [name]

 +--rw name string

 +---u ts:inline-or-truststore-public-keys-grouping

¶

¶

module: ex-truststore-usage

 +--rw truststore-usage

 +--rw cert* [name]

 | +--rw name string

 | +--rw (inline-or-truststore)

 | +--:(inline) {inline-definitions-supported}?

 | | +--rw inline-definition

 | | +--rw certificate* [name]

 | | +--rw name string

 | | +--rw cert-data

 | | | trust-anchor-cert-cms

 | | +---n certificate-expiration

 | | {certificate-expiration-notification}?

 | | +-- expiration-date yang:date-and-time

 | +--:(central-truststore)

 | {central-truststore-supported,certificates}?

 | +--rw central-truststore-reference?

 | ts:central-certificate-bag-ref

 +--rw public-key* [name]

 +--rw name string

 +--rw (inline-or-truststore)

 +--:(inline) {inline-definitions-supported}?

 | +--rw inline-definition

 | +--rw public-key* [name]

 | +--rw name string

 | +--rw public-key-format identityref

 | +--rw public-key binary

 +--:(central-truststore)

 {central-truststore-supported,public-keys}?

 +--rw central-truststore-reference?

 ts:central-public-key-bag-ref

¶

Section 2.2.1. The two instances are equivalent, as the inlined

instance example contains the same values defined by the truststore

instance referenced by its sibling example.¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<truststore-usage

 xmlns="https://example.com/ns/example-truststore-usage"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate -->

 <!-- the "inline-or-truststore-certs-grouping" grouping: -->

 <cert>

 <name>example 1a</name>

 <central-truststore-reference>trusted-client-ca-certs</central-t\

ruststore-reference>

 </cert>

 <cert>

 <name>example 1b</name>

 <inline-definition>

 <name>my-trusted-client-ca-certs</name>

 <certificate>

 <name>Client Identity Issuer #1</name>

 <cert>BASE64VALUE=</cert>

 </certificate>

 <certificate>

 <name>Client Identity Issuer #2</name>

 <cert>BASE64VALUE=</cert>

 </certificate>

 </inline-definition>

 </cert>

 <!-- The following two equivalent examples illustrate the -->

 <!-- "inline-or-truststore-public-keys-grouping" grouping: -->

 <public-key>

 <name>example 2a</name>

 <central-truststore-reference>trusted-ssh-public-keys</central-t\

ruststore-reference>

 </public-key>

 <public-key>

 <name>example 2b</name>

 <inline-definition>

 <name>trusted-ssh-public-keys</name>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>

 ct:ssh-public-key-format

 </public-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </inline-definition>

 </public-key>

</truststore-usage>

¶

Following is the "ex-truststore-usage" module's YANG definition:¶

module ex-truststore-usage {

 yang-version 1.1;

 namespace "https://example.com/ns/example-truststore-usage";

 prefix etu;

 import ietf-truststore {

 prefix ts;

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 organization

 "Example Corporation";

 contact

 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description

 "This example module illustrates notable groupings defined

 in the 'ietf-truststore' module.";

 revision 2024-03-16 {

 description

 "Initial version";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 container truststore-usage {

 description

 "An illustration of the various truststore groupings.";

 list cert {

 key "name";

 leaf name {

 type string;

 description

 "An arbitrary name for this cert.";

 }

 uses ts:inline-or-truststore-certs-grouping;

 description

 "A cert that may be configured locally or be

 a reference to a cert in the truststore.";

 }

 list public-key {

 key "name";

 leaf name {

 type string;

 description

 "An arbitrary name for this cert.";

 }

 uses ts:inline-or-truststore-public-keys-grouping;

 description

 "A public key that may be configured locally or be

 a reference to a public key in the truststore.";

 }

 }

}

¶

2.3. YANG Module

This YANG module imports modules from [RFC8341] and

[I-D.ietf-netconf-crypto-types].

<CODE BEGINS> file "ietf-truststore@2024-03-16.yang"

¶

¶

module ietf-truststore {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-truststore";

 prefix ts;

 import ietf-netconf-acm {

 prefix nacm;

 reference

 "RFC 8341: Network Configuration Access Control Model";

 }

 import ietf-crypto-types {

 prefix ct;

 reference

 "RFC AAAA: YANG Data Types and Groupings for Cryptography";

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web : https://datatracker.ietf.org/wg/netconf

 WG List : NETCONF WG list <mailto:netconf@ietf.org>

 Author : Kent Watsen <kent+ietf@watsen.net>";

 description

 "This module defines a 'truststore' to centralize management

 of trust anchors including certificates and public keys.

 Copyright (c) 2024 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC BBBB

 (https://www.rfc-editor.org/info/rfcBBBB); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2024-03-16 {

 description

 "Initial version";

 reference

 "RFC BBBB: A YANG Data Model for a Truststore";

 }

 /****************/

 /* Features */

 /****************/

 feature central-truststore-supported {

 description

 "The 'central-truststore-supported' feature indicates that

 the server supports the truststore (i.e., implements the

 'ietf-truststore' module).";

 }

 feature inline-definitions-supported {

 description

 "The 'inline-definitions-supported' feature indicates that

 the server supports locally-defined trust anchors.";

 }

 feature certificates {

 description

 "The 'certificates' feature indicates that the server

 implements the /truststore/certificate-bags subtree.";

 }

 feature public-keys {

 description

 "The 'public-keys' feature indicates that the server

 implements the /truststore/public-key-bags subtree.";

 }

 /****************/

 /* Typedefs */

 /****************/

 typedef central-certificate-bag-ref {

 type leafref {

 path "/ts:truststore/ts:certificate-bags/"

 + "ts:certificate-bag/ts:name";

 }

 description

 "This typedef defines a reference to a certificate bag

 in the central truststore.";

 }

 typedef central-certificate-ref {

 type leafref {

 path "/ts:truststore/ts:certificate-bags/ts:certificate-bag"

 + "[ts:name = current()/../certificate-bag]/"

 + "ts:certificate/ts:name";

 }

 description

 "This typedef defines a reference to a specific certificate

 in a certificate bag in the central truststore. This typedef

 requires that there exist a sibling 'leaf' node called

 'certificate-bag' that SHOULD have the typedef

 'central-certificate-bag-ref'.";

 }

 typedef central-public-key-bag-ref {

 type leafref {

 path "/ts:truststore/ts:public-key-bags/"

 + "ts:public-key-bag/ts:name";

 }

 description

 "This typedef defines a reference to a public key bag

 in the central truststore.";

 }

 typedef central-public-key-ref {

 type leafref {

 path "/ts:truststore/ts:public-key-bags/ts:public-key-bag"

 + "[ts:name = current()/../public-key-bag]/"

 + "ts:public-key/ts:name";

 }

 description

 "This typedef defines a reference to a specific public key

 in a public key bag in the truststore. This typedef

 requires that there exist a sibling 'leaf' node called

 'public-key-bag' that SHOULD have the typedef

 'central-public-key-bag-ref'.";

 }

 /*****************/

 /* Groupings */

 /*****************/

 // *-ref groupings

 grouping central-certificate-ref-grouping {

 description

 "Grouping for the reference to a certificate in a

 certificate-bag in the central truststore.";

 leaf certificate-bag {

 nacm:default-deny-write;

 if-feature "central-truststore-supported";

 if-feature "certificates";

 type ts:central-certificate-bag-ref;

 must "../certificate";

 description

 "Reference to a certificate-bag in the truststore.";

 }

 leaf certificate {

 nacm:default-deny-write;

 if-feature "central-truststore-supported";

 if-feature "certificates";

 type ts:central-certificate-ref;

 must "../certificate-bag";

 description

 "Reference to a specific certificate in the

 referenced certificate-bag.";

 }

 }

 grouping central-public-key-ref-grouping {

 description

 "Grouping for the reference to a public key in a

 public-key-bag in the central truststore.";

 leaf public-key-bag {

 nacm:default-deny-write;

 if-feature "central-truststore-supported";

 if-feature "public-keys";

 type ts:central-public-key-bag-ref;

 description

 "Reference of a public key bag in the truststore including

 the certificate to authenticate the TLS client.";

 }

 leaf public-key {

 nacm:default-deny-write;

 if-feature "central-truststore-supported";

 if-feature "public-keys";

 type ts:central-public-key-ref;

 description

 "Reference to a specific public key in the

 referenced public-key-bag.";

 }

 }

 // inline-or-truststore-* groupings

 grouping inline-or-truststore-certs-grouping {

 description

 "A grouping for the configuration of a list of certificates.

 The list of certificate may be defined inline or as a

 reference to a certificate bag in the central truststore.

 Servers that wish to define alternate truststore locations

 MUST augment in custom 'case' statements enabling

 references to those alternate truststore locations.";

 choice inline-or-truststore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the truststore.";

 case inline {

 if-feature "inline-definitions-supported";

 container inline-definition {

 description

 "A container for locally configured trust anchor

 certificates.";

 list certificate {

 key "name";

 min-elements 1;

 description

 "A trust anchor certificate or chain of certificates.";

 leaf name {

 type string;

 description

 "An arbitrary name for this certificate.";

 }

 uses ct:trust-anchor-cert-grouping {

 refine "cert-data" {

 mandatory true;

 }

 }

 }

 }

 }

 case central-truststore {

 if-feature "central-truststore-supported";

 if-feature "certificates";

 leaf central-truststore-reference {

 type ts:central-certificate-bag-ref;

 description

 "A reference to a certificate bag that exists in the

 central truststore.";

 }

 }

 }

 }

 grouping inline-or-truststore-public-keys-grouping {

 description

 "A grouping that allows the public keys to be either

 configured locally, within the using data model, or be a

 reference to a public key bag stored in the truststore.

 Servers that wish to define alternate truststore locations

 SHOULD augment in custom 'case' statements enabling

 references to those alternate truststore locations.";

 choice inline-or-truststore {

 nacm:default-deny-write;

 mandatory true;

 description

 "A choice between an inlined definition and a definition

 that exists in the truststore.";

 case inline {

 if-feature "inline-definitions-supported";

 container inline-definition {

 description

 "A container to hold local public key definitions.";

 list public-key {

 key "name";

 description

 "A public key definition.";

 leaf name {

 type string;

 description

 "An arbitrary name for this public key.";

 }

 uses ct:public-key-grouping;

 }

 }

 }

 case central-truststore {

 if-feature "central-truststore-supported";

 if-feature "public-keys";

 leaf central-truststore-reference {

 type ts:central-public-key-bag-ref;

 description

 "A reference to a bag of public keys that exists

 in the central truststore.";

 }

 }

 }

 }

 // the truststore grouping

 grouping truststore-grouping {

 description

 "A grouping definition that enables use in other contexts.

 Where used, implementations MUST augment new 'case'

 statements into the various inline-or-truststore 'choice'

 statements to supply leafrefs to the model-specific

 location(s).";

 container certificate-bags {

 nacm:default-deny-write;

 if-feature "certificates";

 description

 "A collection of certificate bags.";

 list certificate-bag {

 key "name";

 description

 "A bag of certificates. Each bag of certificates should

 be for a specific purpose. For instance, one bag could

 be used to authenticate a specific set of servers, while

 another could be used to authenticate a specific set of

 clients.";

 leaf name {

 type string;

 description

 "An arbitrary name for this bag of certificates.";

 }

 leaf description {

 type string;

 description

 "A description for this bag of certificates. The

 intended purpose for the bag SHOULD be described.";

 }

 list certificate {

 key "name";

 description

 "A trust anchor certificate or chain of certificates.";

 leaf name {

 type string;

 description

 "An arbitrary name for this certificate.";

 }

 uses ct:trust-anchor-cert-grouping {

 refine "cert-data" {

 mandatory true;

 }

 }

 }

 }

 }

 container public-key-bags {

 nacm:default-deny-write;

 if-feature "public-keys";

 description

 "A collection of public key bags.";

 list public-key-bag {

 key "name";

 description

 "A bag of public keys. Each bag of keys SHOULD be for

 a specific purpose. For instance, one bag could be used

 authenticate a specific set of servers, while another

 could be used to authenticate a specific set of clients.";

 leaf name {

 type string;

 description

 "An arbitrary name for this bag of public keys.";

 }

 leaf description {

 type string;

 description

 "A description for this bag public keys. The

 intended purpose for the bag MUST be described.";

 }

 list public-key {

 key "name";

 description

 "A public key.";

 leaf name {

 type string;

 description

 "An arbitrary name for this public key.";

 }

 uses ct:public-key-grouping;

 }

 }

 }

 }

 /*********************************/

 /* Protocol accessible nodes */

 /*********************************/

 container truststore {

 if-feature central-truststore-supported;

 nacm:default-deny-write;

 description

 "The truststore contains bags of certificates and

 public keys.";

 uses truststore-grouping;

 }

}

¶

<CODE ENDS>

3. Support for Built-in Trust Anchors

In some implementations, a server may define some built-in trust

anchors. For instance, there may be built-in trust anchors enabling

the server to securely connect to well-known services (e.g., an SZTP

[RFC8572] bootstrap server) or public CA certificates to connect to

arbitrary Web services using public PKI.

Built-in trust anchors are expected to be set by a vendor-specific

process. Any ability for operators to set and/or modify built-in

trust anchors is outside the scope of this document.

The primary characteristic of the built-in trust anchors is that

they are provided by the server, as opposed to configuration. As

such, they are present in <operational> (Section 5.3 of [RFC8342]),

and <system> [I-D.ietf-netmod-system-config], if implemented.

The example below illustrates what the truststore in <operational>

might look like for a server in its factory default state. Note that

the built-in trust anchor bags have the "or:origin" annotation value

"or:system".

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8342#section-5.3

<truststore

 xmlns="urn:ietf:params:xml:ns:yang:ietf-truststore"

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <certificate-bags>

 <certificate-bag or:origin="or:system">

 <name>Built-In Manufacturer Trust Anchor Certificates</name>

 <description>

 Certificates built into the device for authenticating

 manufacturer-signed objects, such as TLS server certificates,

 vouchers, etc.

 </description>

 <certificate>

 <name>Manufacturer Root CA Cert</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 <certificate-bag or:origin="or:system">

 <name>Built-In Public Trust Anchor Certificates</name>

 <description>

 Certificates built into the device for authenticating

 certificates issued by public certificate authorities,

 such as the end-entity certificate for web servers.

 </description>

 <certificate>

 <name>Public Root CA Cert 1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Public Root CA Cert 2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Public Root CA Cert 3</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </certificate-bag>

 </certificate-bags>

</truststore>

¶

4. Security Considerations

4.1. Security of Data at Rest

The YANG module defined in this document defines a mechanism called

a "truststore" that, by its name, suggests that its contents are

protected from unauthorized modification.

Security controls for the API (i.e., data in motion) are discussed

in Section 4.3, but controls for the data at rest (e.g., on disk)

cannot be specified by the YANG module.

In order to satisfy the expectations of a "truststore", server

implementations MUST ensure that the truststore contents are

protected from unauthorized modifications when at rest.

4.2. Unconstrained Public Key Usage

This module enables the configuration of public keys without

constraints on their usage, e.g., what operations the key is allowed

to be used for (encryption, verification, both).

Trust anchors configured via this module are implicitly trusted to

validate certification paths that may include any name, be used for

any purpose, subject to constraints imposed by an intermediate CA or

by context in which the truststore is used. Implementations are free

to use alternative or auxiliary structures and validation rules to

define constraints that limit the applicability of a trust anchor.

4.3. Considerations for the "ietf-truststore" YANG Module

This section follows the template defined in Section 3.7.1 of

[RFC8407].

The YANG module defined in this document is designed to be accessed

via YANG based management protocols, such as NETCONF [RFC6241] and

RESTCONF [RFC8040]. Both of these protocols have mandatory-to-

implement secure transport layers (e.g., SSH, TLS) with mutual

authentication.

The Network Access Control Model (NACM) [RFC8341] provides the means

to restrict access for particular users to a pre-configured subset

of all available protocol operations and content.

Please be aware that this YANG module uses groupings from other YANG

modules that define nodes that may be considered sensitive or

vulnerable in network environments. Please review the Security

Considerations for dependent YANG modules for information as to

which nodes may be considered sensitive or vulnerable in network

environments.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8407#section-3.7.1

[I-D.ietf-netconf-crypto-types]

Most of the readable data nodes defined in this YANG module are not

considered sensitive or vulnerable in network environments. However,

the "cert-data" node uses the NACM "default-deny-all" extension, for

reasons described in Section 3.9 of [I-D.ietf-netconf-crypto-types].

All the writable data nodes defined by this module, both in the

"grouping" statements as well as the protocol-accessible

"truststore" instance, may be considered sensitive or vulnerable in

some network environments. For instance, any modification to a trust

anchor or reference to a trust anchor may dramatically alter the

implemented security policy. For this reason, the NACM extension

"default-deny-write" has been set for all data nodes defined in this

module.

This module does not define any "rpc" or "action" statements, and

thus the security considerations for such is not provided here.

5. IANA Considerations

5.1. The "IETF XML" Registry

This document registers one URI in the "ns" subregistry of the IETF

XML Registry [RFC3688]. Following the format in [RFC3688], the

following registration is requested:

5.2. The "YANG Module Names" Registry

This document registers one YANG module in the YANG Module Names

registry [RFC6020]. Following the format in [RFC6020], the following

registration is requested:

6. References

6.1. Normative References

Watsen, K., "YANG Data Types and Groupings for

Cryptography", Work in Progress, Internet-Draft, draft-

ietf-netconf-crypto-types-33, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-

types-33>.

¶

¶

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-truststore

 Registrant Contact: The IESG

 XML: N/A, the requested URI is an XML namespace.

¶

¶

 name: ietf-truststore

 namespace: urn:ietf:params:xml:ns:yang:ietf-truststore

 prefix: ts

 reference: RFC BBBB

¶

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33#section-3.9
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-33

[RFC2119]

[RFC7950]

[RFC8174]

[RFC8341]

[I-D.ietf-netconf-http-client-server]

[I-D.ietf-netconf-keystore]

[I-D.ietf-netconf-netconf-client-server]

[I-D.ietf-netconf-restconf-client-server]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

6.2. Informative References

Watsen, K., "YANG Groupings for HTTP Clients and HTTP

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-http-client-server-19, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-http-

client-server-19>.

Watsen, K., "A YANG Data Model for a

Keystore and Keystore Operations", Work in Progress,

Internet-Draft, draft-ietf-netconf-keystore-34, 1 March

2024, <https://datatracker.ietf.org/doc/html/draft-ietf-

netconf-keystore-34>.

Watsen, K., "NETCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-netconf-

client-server-35, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-

client-server-35>.

Watsen, K., "RESTCONF Client and Server Models", Work in

Progress, Internet-Draft, draft-ietf-netconf-restconf-

client-server-35, 1 March 2024, <https://

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-19
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-19
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-19
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-34
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-34
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-35
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-35
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-35
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-35

[I-D.ietf-netconf-ssh-client-server]

[I-D.ietf-netconf-tcp-client-server]

[I-D.ietf-netconf-tls-client-server]

[I-D.ietf-netconf-trust-anchors]

[I-D.ietf-netmod-system-config]

[RFC3688]

[RFC4648]

[RFC6020]

[RFC6241]

datatracker.ietf.org/doc/html/draft-ietf-netconf-

restconf-client-server-35>.

Watsen, K., "YANG Groupings for SSH Clients and SSH

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-ssh-client-server-39, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-

client-server-39>.

Watsen, K. and M. Scharf, "YANG

Groupings for TCP Clients and TCP Servers", Work in

Progress, Internet-Draft, draft-ietf-netconf-tcp-client-

server-23, 1 March 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-netconf-tcp-client-server-23>.

Watsen, K., "YANG Groupings for TLS Clients and TLS

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-tls-client-server-40, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-

client-server-40>.

Watsen, K., "A YANG Data Model for a Truststore", Work in

Progress, Internet-Draft, draft-ietf-netconf-trust-

anchors-27, 1 March 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-netconf-trust-anchors-27>.

Ma, Q., Wu, Q., and C. Feng,

"System-defined Configuration", Work in Progress,

Internet-Draft, draft-ietf-netmod-system-config-05, 21

February 2024, <https://datatracker.ietf.org/doc/html/

draft-ietf-netmod-system-config-05>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-35
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-35
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-39
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-39
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-client-server-39
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tcp-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tcp-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-40
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-40
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-40
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-trust-anchors-27
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-trust-anchors-27
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-05
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-05
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020

[RFC8040]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC8572]

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Watsen, K., Farrer, I., and M. Abrahamsson, "Secure Zero

Touch Provisioning (SZTP)", RFC 8572, DOI 10.17487/

RFC8572, April 2019, <https://www.rfc-editor.org/info/

rfc8572>.

Appendix A. Change Log

A.1. 00 to 01

Added features "x509-certificates" and "ssh-host-keys".

Added nacm:default-deny-write to "trust-anchors" container.

A.2. 01 to 02

Switched "list pinned-certificate" to use the "trust-anchor-cert-

grouping" from crypto-types. Effectively the same definition as

before.

A.3. 02 to 03

Updated copyright date, boilerplate template, affiliation,

folding algorithm, and reformatted the YANG module.

A.4. 03 to 04

Added groupings 'inline-or-truststore-certs-grouping' and

'inline-or-truststore-host-keys-grouping', matching similar

* ¶

* ¶

*

¶

*

¶

*

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8572
https://www.rfc-editor.org/info/rfc8572

definitions in the keystore draft. Note new (and incomplete)

"truststore" usage!

Related to above, also added features 'truststore-supported' and

'local-trust-anchors-supported'.

A.5. 04 to 05

Renamed "trust-anchors" to "truststore"

Removed "pinned." prefix everywhere, to match truststore rename

Moved everything under a top-level 'grouping' to enable use in

other contexts.

Renamed feature from 'local-trust-anchors-supported' to 'inline-

definitions-supported' (same name used in keystore)

Removed the "require-instance false" statement from the "*-ref"

typedefs.

Added missing "ssh-host-keys" and "x509-certificates" if-feature

statements

A.6. 05 to 06

Editorial changes only.

A.7. 06 to 07

Added Henk Birkholz as a co-author (thanks Henk!)

Added PSKs and raw public keys to truststore.

A.8. 07 to 08

Added new "Support for Built-in Trust Anchors" section.

Removed spurious "uses ct:trust-anchor-certs-grouping" line.

Removed PSK from model.

A.9. 08 to 09

Removed remaining PSK references from text.

Wrapped each top-level list with a container.

Introduced "bag" term.

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

Merged "SSH Public Keys" and "Raw Public Keys" in a single

"Public Keys" bag. Consuming downstream modules (i.e., "ietf-

[ssh/tls]-[client/server]) refine the "public-key-format" to be

either SSH or TLS specific as needed.

A.10. 09 to 10

Removed "algorithm" node from examples.

Removed the no longer used statements supporting the old "ssh-

public-key" and "raw-public-key" nodes.

Added a "Note to Reviewers" note to first page.

A.11. 10 to 11

Corrected module prefix registered in the IANA Considerations

section.

Modified 'inline-or-truststore-certs-grouping' to use a list (not

a leaf-list).

Added new example section "The Local or Truststore Groupings".

Clarified expected behavior for "built-in" certificates in

<operational>

Expanded "Data Model Overview section(s) [remove "wall" of tree

diagrams].

Updated the Security Considerations section.

A.12. 11 to 12

Fixed a copy/paste issue in the "Data at Rest" Security

Considerations section.

A.13. 12 to 13

Fixed issues found by the SecDir review of the "keystore" draft.

A.14. 13 to 14

Added an "Unconstrained Public Key Usage" Security Consideration

to address concern raised by SecDir.

Addressed comments raised by YANG Doctor.

A.15. 14 to 15

Added prefixes to 'path' statements per trust-anchors/issues/1

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

Renamed feature "truststore-supported" to "central-truststore-

supported".

Associated with above, generally moved text to refer to a

"central" truststore.

Removed two unecessary/unwanted "min-elements 1" and associated

"presence" statements.

Aligned modules with `pyang -f` formatting.

Fixed nits found by YANG Doctor reviews.

A.16. 15 to 16

Replaced "base64encodedvalue==" with "BASE64VALUE=" in examples.

Minor editorial nits

A.17. 16 to 17

fixup the 'WG Web' and 'WG List' lines in YANG module(s)

fixup copyright (i.e., s/Simplified/Revised/) in YANG module(s)

Added Informative reference to ma-netmod-with-system

A.18. 17 to 18

Updated Security Considerations section to address comment

received from Carl Wallace.

Fixed examples to not have line-returns around "identity"

encodings.

Fixed a couple tree diagrams to not create diagrams for

"groupings" too.

Added "if-feature central-truststore-supported" to top-level

"trustore" container.

A.19. 18 to 19

Updated per Shepherd reviews impacting the suite of drafts.

A.20. 19 to 20

Updated per Shepherd reviews impacting the suite of drafts.

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

A.21. 20 to 21

Updated (implicitly) per Tom Petch review.

Updated per AD's review.

s/local/inline/ in feature names, grouping names, and node names.

Updated ref from 'ma-netmod-with-system' to 'ietf-netmod-system-

config'.

Removed special handling text for built-in certs

Updated section on built-in trust anchors to read almost the same

as the section in the keystore draft.

A.22. 21 to 22

Mostly addresses AD review comments.

Also added typedefs and groupings similar to those created by

Alto WG.

Added note to Editor to fix line foldings.

Renamed "truststore" to "central truststore" throughout.

Removed "built-in" section text that overlaps with the "system-

config" draft.

Added "certificate-ref-grouping" and "public-key-ref-grouping"

Modified typedef certificate-ref's leafref path to NOT prefix

"certificate-bag".

Modified typedef public-key-ref's leafref path to NOT prefix

"public-key-bag".

Added groupings "certificate-ref-grouping" and "public-key-ref-

grouping".

A.23. 22 to 23

Addresses Gen-ART review by Dale Worley.

Addresses review by Tom Petch.

A.24. 23 to 24

Addresses 1st-round of IESG reviews.

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

A.25. 24 to 26

Addresses issues found in OpsDir review of the ssh-client-server

draft.

Renamed Security Considerations section s/Template for/

Considerations for/

s/defines/presents/ in a few places.

Add refs to where the 'operational' and 'system' datastores are

defined.

Improved Security Consideration for 'cert-data' node.

s/should/SHOULD/ is one place

A.26. 26 to 28

Nothing changed. Only bumped for automation...

Acknowledgements

The authors especially thank Henk Birkholz for contributing YANG to

the ietf-truststore module supporting raw public keys and PSKs (pre-

shared or pairwise-symmetric keys). While these contributions were

eventually replaced by reusing the existing support for asymmetric

and symmetric trust anchors, respectively, it was only through

Henk's initiative that the WG was able to come to that result.

The authors additionally thank the following for helping give shape

to this work (ordered by first name): Balázs Kovács, Carl Wallace,

Eric Voit, Éric Vyncke, Francesca Palombini, Jensen Zhang, Jürgen

Schönwälder, Lars Eggert, Liang Xia, Martin Björklund, Murray

Kucherawy, Nick Hancock, Qin Wu, Rob Wilton, Robert Varga, Roman

Danyliw, Paul Kyzivat, and Yoav Nir.

Author's Address

Kent Watsen

Watsen Networks

Email: kent+ietf@watsen.net

*

¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

¶

mailto:kent+ietf@watsen.net

	A YANG Data Model for a Truststore
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to other RFCs
	1.2. Specification Language
	1.3. Adherence to the NMDA
	1.4. Conventions

	2. The "ietf-truststore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "central-certificate-ref-grouping" Grouping
	2.1.3.2. The "central-public-key-ref-grouping" Grouping
	2.1.3.3. The "inline-or-truststore-certs-grouping" Grouping
	2.1.3.4. The "inline-or-truststore-public-keys-grouping" Grouping
	2.1.3.5. The "truststore-grouping" Grouping

	2.1.4. Protocol-accessible Nodes

	2.2. Example Usage
	2.2.1. A Truststore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Local or Truststore" Groupings

	2.3. YANG Module

	3. Support for Built-in Trust Anchors
	4. Security Considerations
	4.1. Security of Data at Rest
	4.2. Unconstrained Public Key Usage
	4.3. Considerations for the "ietf-truststore" YANG Module

	5. IANA Considerations
	5.1. The "IETF XML" Registry
	5.2. The "YANG Module Names" Registry

	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Change Log
	A.1. 00 to 01
	A.2. 01 to 02
	A.3. 02 to 03
	A.4. 03 to 04
	A.5. 04 to 05
	A.6. 05 to 06
	A.7. 06 to 07
	A.8. 07 to 08
	A.9. 08 to 09
	A.10. 09 to 10
	A.11. 10 to 11
	A.12. 11 to 12
	A.13. 12 to 13
	A.14. 13 to 14
	A.15. 14 to 15
	A.16. 15 to 16
	A.17. 16 to 17
	A.18. 17 to 18
	A.19. 18 to 19
	A.20. 19 to 20
	A.21. 20 to 21
	A.22. 21 to 22
	A.23. 22 to 23
	A.24. 23 to 24
	A.25. 24 to 26
	A.26. 26 to 28

	Acknowledgements
	Author's Address

