
Workgroup: NETCONF

Internet-Draft:

draft-ietf-netconf-udp-notif-12

Published: 22 January 2024

Intended Status: Standards Track

Expires: 25 July 2024

Authors: G. Zheng

Huawei

T. Zhou

Huawei

T. Graf

Swisscom

P. Francois

INSA-Lyon

A. Huang Feng

INSA-Lyon

P. Lucente

NTT

UDP-based Transport for Configured Subscriptions

Abstract

This document describes a UDP-based protocol for YANG notifications

to collect data from network nodes. A shim header is proposed to

facilitate the data streaming directly from the publishing process

on network processor of line cards to receivers. The objective is to

provide a lightweight approach to enable higher frequency and less

performance impact on publisher and receiver processes compared to

already established notification mechanisms.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 July 2024.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Configured Subscription to UDP-Notif

3. UDP-Based Transport

3.1. Design Overview

3.2. Format of the UDP-Notif Message Header

3.3. Data Encoding

4. Options

4.1. Segmentation Option

4.2. Private Encoding Option

5. Applicability

5.1. Congestion Control

5.2. Message Size

5.3. Reliability

6. Secured layer for UDP-notif

6.1. Session lifecycle

6.1.1. DTLS Session Initiation

6.1.2. Publish Data

6.1.3. Session termination

7. A YANG Data Model for Management of UDP-Notif

7.1. YANG to configure UDP-notif

7.2. YANG Module

8. IANA Considerations

8.1. IANA registries

8.2. URI

8.3. YANG module name

9. Implementation Status

9.1. Open Source Publisher

9.2. Open Source Receiver Library

9.3. Pmacct Data Collection

9.4. Huawei VRP

10. Security Considerations

11. Acknowledgements

¶

¶

https://trustee.ietf.org/license-info

12. References

12.1. Normative References

12.2. Informative References

Appendix A. UDP-notif Examples

A.1. Configuration for UDP-notif transport with DTLS disabled

A.2. Configuration for UDP-notif transport with DTLS enabled

A.3. YANG Push message with UDP-notif transport protocol

Authors' Addresses

1. Introduction

The mechanism to support a subscription of a continuous and

customized stream of updates from a YANG datastore [RFC8342] is

defined in [RFC8639] and [RFC8641] and is abbreviated as Sub-Notif.

Requirements for Subscription to YANG Datastores are defined in

[RFC7923].

The mechanism separates the management and control of subscriptions

from the transport used to deliver the data. Three transport

mechanisms, namely NETCONF transport [RFC8640], RESTCONF transport

[RFC8650], and HTTPS transport [I-D.ietf-netconf-https-notif] have

been defined so far for such notification messages.

While powerful in their features and general in their architecture,

the currently available transport mechanisms need to be complemented

to support data publications at high velocity from network nodes

that feature a distributed architecture. The currently available

transports are based on TCP and lack the efficiency needed to

continuously send notifications at high velocity.

This document specifies a transport option for Sub-Notif that

leverages UDP. Specifically, it facilitates the distributed data

collection mechanism described in

[I-D.ietf-netconf-distributed-notif]. In the case of publishing from

multiple network processors on multiple line cards, centralized

designs require data to be internally forwarded from those network

processors to the push server, presumably on a route processor,

which then combines the individual data items into a single

consolidated stream. The centralized data collection mechanism can

result in a performance bottleneck, especially when large amounts of

data are involved.

What is needed is a mechanism that allows for directly publishing

from multiple network processors on line cards, without passing them

through an additional processing stage for internal consolidation.

¶

¶

¶

¶

The proposed UDP-based transport allows for such a distributed data

publishing approach.

Firstly, a UDP approach reduces the burden of maintaining a large

amount of active TCP connections at the receiver, notably in

cases where it collects data from network processors on line

cards from a large amount of network nodes.

Secondly, as no connection state needs to be maintained, UDP

encapsulation can be easily implemented by the hardware of the

publication streamer, which further improves performance.

Ultimately, such advantages allow for a larger data analysis

feature set, as more voluminous, finer grained data sets can be

streamed to the receiver.

The transport described in this document can be used for

transmitting notification messages over both IPv4 and IPv6.

This document describes the notification mechanism. It is intended

to be used in conjunction with [RFC8639], extended by

[I-D.ietf-netconf-distributed-notif].

Section 2 describes the control of the proposed transport mechanism.

Section 3 details the notification mechanism and message format.

Section 4 describes the use of options in the notification message

header. Section 5 covers the applicability of the proposed

mechanism. Section 6 describes a mechanism to secure the protocol in

open networks.

2. Configured Subscription to UDP-Notif

This section describes how the proposed mechanism can be controlled

using subscription channels based on NETCONF or RESTCONF.

As specified in Sub-Notif, configured subscriptions contain the

location information of all the receivers, including the IP address

and the port number, so that the publisher can actively send UDP-

Notif messages to the corresponding receivers.

Note that receivers MAY NOT be already up and running when the

configuration of the subscription takes effect on the monitored

network node. The first message MUST be a separate subscription-

started notification to indicate the Receiver that the stream has

started flowing. Then, the notifications can be sent immediately

without delay. All the subscription state notifications, as defined

in Section 2.7 of [RFC8639], MUST be encapsulated in separate

notification messages.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

3. UDP-Based Transport

In this section, we specify the UDP-Notif Transport behavior.

Section 3.1 describes the general design of the solution.

Section 3.2 specifies the UDP-Notif message format and Section 3.3

describes the encoding of the message payload.

3.1. Design Overview

As specified in Sub-Notif, the YANG data is encapsulated in a

NETCONF/RESTCONF notification message, which is then encapsulated

and carried using a transport protocols such as TLS or HTTP2. This

document defines a UDP based transport. Figure 1 illustrates the

structure of an UDP-Notif message.

The Message Header contains information that facilitate the

message transmission before deserializing the notification

message.

Notification Message is the encoded content that is transported

by the publication stream. The common encoding methods are listed

in Section 3.2. The structure of the Notification Message is

defined in Section 2.6 of [RFC8639] and a YANG model has been

proposed in [I-D.ahuang-netconf-notif-yang].

[I-D.ietf-netconf-notification-messages] proposes a structure to

send bundled notifications in a single message.

Figure 1: UDP-Notif Message Overview

3.2. Format of the UDP-Notif Message Header

The UDP-Notif Message Header contains information that facilitate

the message transmission before deserializing the notification

message. The data format is shown in Figure 2.

¶

¶

*

¶

*

¶

+-------+ +--------------+ +--------------+

| UDP | | Message | | Notification |

| | | Header | | Message |

+-------+ +--------------+ +--------------+

¶

Figure 2: UDP-Notif Message Header Format

The Message Header contains the following field:

Ver indicates the UDP-notif protocol header version. The values

are allocated by the IANA registry "UDP-notif header version".

The current header version number is 1.

S represents the space of media type specified in the MT field.

When S is unset, MT represents the standard media types as

defined in this document. When S is set, MT represents a private

space to be freely used for non standard encodings. When S is

set, the Private Encoding Option defined in Section 4.2 SHOULD be

present in the UDP-notif message header.

MT is a 4 bit identifier to indicate the media type used for the

Notification Message. 16 types of encoding can be expressed. When

the S bit is unset, the following values apply:

0: Reserved;

1: application/yang-data+json [RFC8040]

2: application/yang-data+xml [RFC8040]

3: application/yang-data+cbor [RFC9254]

Header Len is the length of the message header in octets,

including both the fixed header and the options.

Message Length is the total length of the UDP-notif message

within one UDP datagram, measured in octets, including the

message header. When the Notification Message is segmented using

the Segmentation Options defined in Section 4.1 the Message

Length is the total length of the current, segmented UDP-notif

message, not the length of the entire Notification message.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-----+-+-------+---------------+-------------------------------+

 | Ver |S| MT | Header Len | Message Length |

 +-----+-+-------+---------------+-------------------------------+

 | Message Publisher ID |

 +---+

 | Message ID |

 +---+

 ~ Options ~

 +---+

¶

*

¶

*

¶

*

¶

- ¶

- ¶

- ¶

- ¶

*

¶

*

¶

Message Publisher ID is a 32-bit identifier defined in

[I-D.ietf-netconf-distributed-notif]. This identifier is unique

to the publisher node and identifies the publishing process of

the node to allow the disambiguation of an information source.

Message unicity is obtained from the conjunction of the Message

Publisher ID and the Message ID field described below. If Message

Publisher ID unicity is not preserved through the collection

domain, the source IP address of the UDP datagram SHOULD be used

in addition to the Message Publisher ID to identify the

information source. If a transport layer relay is used, Message

Publisher ID unicity must be preserved through the collection

domain.

The Message ID is generated continuously by the publisher of UDP-

Notif messages. A publisher MUST use different Message ID values

for different messages generated with the same Message Publisher

ID. Note that the main purpose of the Message ID is to

reconstruct messages which are segmented using the segmentation

option described in section Section 4.1. The Message ID values

SHOULD be incremented by one for each successive message

originated with the same Message Publisher ID, so that message

loss can be detected. When the last value (2^32-1) of Message ID

has been generated, the Message ID wraps around and restarts at

0. Different subscribers MAY share the same Message ID sequence.

Options is a variable-length field in the TLV format. When the

Header Length is larger than 12 octets, which is the length of

the fixed header, Options TLVs follow directly after the fixed

message header (i.e., Message ID). The details of the options are

described in Section 4.

All the binary fields MUST be encoded in network byte order (big

endian).

3.3. Data Encoding

UDP-Notif message data can be encoded in CBOR, XML or JSON format.

It is conceivable that additional encodings may be supported in the

future. This can be accomplished by augmenting the subscription data

model with additional identity statements used to refer to requested

encodings.

Private encodings can be using the S bit of the header. When the S

bit is set, the value of the MT field is left to be defined and

agreed upon by the users of the private encoding. An option is

defined in Section 4.2 for more verbose encoding descriptions than

what can be described with the MT field.

*

¶

*

¶

*

¶

¶

¶

¶

Implementation MAY support multiple encoding methods per

subscription. When bundled notifications are supported between the

publisher and the receiver, only subscribed notifications with the

same encoding can be bundled in a given message.

4. Options

All the options are defined with the following format, illustrated

in Figure 3.

Figure 3: Generic Option Format

Type: 1 octet describing the option type;

Length: 1 octet representing the total number of octets in the

TLV, including the Type and Length fields;

Variable-length data: 0 or more octets of TLV Value.

When more than one option is used in the UDP-notif header, options

MUST be ordered by the Type value. Messages with unordered options

MAY be dropped by the Receiver.

4.1. Segmentation Option

The UDP payload length is limited to 65527 bytes (65535 - 8 bytes).

Application level headers will make the actual payload shorter. Even

though binary encodings such as CBOR may not require more space than

what is left, more voluminous encodings such as JSON and XML may

suffer from this size limitation. Although IPv4 and IPv6 publishers

can fragment outgoing packets exceeding their Maximum Transmission

Unit (MTU), fragmented IP packets may not be desired for operational

and performance reasons.

Consequently, implementations of the mechanism SHOULD provide a

configurable max-segment-size option to control the maximum size of

a payload.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+--------------------------------

 | Type | Length | Variable-length data

 +---------------+---------------+--------------------------------

* ¶

*

¶

* ¶

¶

¶

¶

Figure 4: Segmentation Option Format

The Segmentation Option is to be included when the message content

is segmented into multiple segments. Different segments of one

message share the same Message ID. An illustration is provided in

Figure 4. The fields of this TLV are:

Type: Generic option field which indicates a Segmentation Option.

The Type value is to be assigned TBD1.

Length: Generic option field which indicates the length of this

option. It is a fixed value of 4 octets for the Segmentation

Option.

Segment Number: 15-bit value indicating the sequence number of

the current segment. The first segment of a segmented message has

a Segment Number value of 0. The Segment Number cannot wrap

around.

L: is a flag to indicate whether the current segment is the last

one of the message. When 0 is set, the current segment is not the

last one. When 1 is set, the current segment is the last one,

meaning that the total number of segments used to transport this

message is the value of the current Segment Number + 1.

An implementation of this specification SHOULD NOT rely on IP

fragmentation by default to carry large messages. An implementation

of this specification SHOULD either restrict the size of individual

messages carried over this protocol, or support the segmentation

option. The implementor or user SHOULD take into account the IP

layer header size when setting the max-segment-size parameter to

avoid fragmentation at the IP layer.

When a message has multiple options and is segmented using the

described mechanism, all the options MUST be present on the first

segment ordered by the options Type. The rest of segmented messages

MAY include all the options ordered by options type.

The receiver SHOULD support the reception of unordered segments. The

implementation of the receiver SHOULD provide an option to discard

the received segments if, after some time, one of the segments is

still missing and the reassembly of the message is not possible.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+-----------------------------+-+

 | Type | Length | Segment Number |L|

 +---------------+---------------+-----------------------------+-+

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

4.2. Private Encoding Option

The space to describe private encodings in the MT field of the UDP-

Notif header being limited, an option is provided to describe custom

encodings. The fields of this option are as follows.

Figure 5: Private Encoding Option Format

Type: Generic option field which indicates a Private Encoding

Option. The Type value is to be assigned TBD2.

Length: Generic option field which indicates the length of this

option. It is a variable value.

Enc. Descr: The description of the private encoding used for this

message. The values to be used for such private encodings is left

to be defined by the users of private encodings.

This option SHOULD only be used when the S bit of the header is set,

as providing a private encoding description for standard encodings

is meaningless.

5. Applicability

In this section, we provide an applicability statement for the

proposed mechanism, following the recommendations of [RFC8085].

The proposed mechanism falls in the category of UDP applications

"designed for use within the network of a single network operator or

on networks of an adjacent set of cooperating network operators, to

be deployed in controlled environments", as defined in [RFC8085].

Implementations of the proposed mechanism SHOULD thus follow the

recommendations in place for such specific applications. In the

following, we discuss recommendations on congestion control, message

size guidelines, reliability considerations and security

considerations.

The main use case of the proposed mechanism is the collection of

statistical metrics for accounting purposes, where potential loss is

not a concern, but should however be reported (such as IPFIX Flow

Records exported with UDP [RFC7011]). Such metrics are typically

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +---------------+---------------+--------------------------------

 | Type | Length | Variable length enc. descr.

 +---------------+---------------+--------------------------------

*

¶

*

¶

*

¶

¶

¶

¶

exported in a periodical subscription as described in Section 3.1 of

[RFC8641].

5.1. Congestion Control

The proposed application falls into the category of applications

performing transfer of large amounts of data. It is expected that

the operator using the solution configures QoS on its related flows.

As per [RFC8085], such applications MAY choose not to implement any

form of congestion control, but follow the following principles.

It is NOT RECOMMENDED to use the proposed mechanism over congestion-

sensitive network paths. The only environments where UDP-Notif is

expected to be used are managed networks. The deployments require

that the network path has been explicitly provisioned to handle the

traffic through traffic engineering mechanisms, such as rate

limiting or capacity reservations.

Implementation of the proposal SHOULD NOT push unlimited amounts of

traffic by default, and SHOULD require the users to explicitly

configure such a mode of operation.

Burst mitigation through packet pacing is RECOMMENDED. Disabling

burst mitigation SHOULD require the users to explicitly configure

such a mode of operation.

Applications SHOULD monitor packet losses and provide means to the

user for retrieving information on such losses. The UDP-Notif

Message ID can be used to deduce congestion based on packet loss

detection. Hence the receiver can notify the Publisher to use a

lower streaming rate. The interaction to control the streaming rate

on the Publisher is out of the scope of this document.

5.2. Message Size

[RFC8085] recommends not to rely on IP fragmentation for messages

whose size result in IP packets exceeding the MTU along the path.

The segmentation option of the current specification permits

segmentation of the UDP Notif message content without relying on IP

fragmentation. Implementation of the current specification SHOULD

allow for the configuration of the MTU.

It is RECOMMENDED that the size of a Notification Message is small

and segmentation does not result in segmenting the message into too

much segments to avoid dropping the entire message when there is a

lost segment. When a Notification Message is large, it is

RECOMMENDED to use a reliable transport such as HTTPS-notif

[I-D.ietf-netconf-https-notif].

¶

¶

¶

¶

¶

¶

¶

¶

5.3. Reliability

A receiver implementation for this protocol SHOULD deal with

potential loss of packets carrying a part of segmented payload, by

discarding packets that were received, but cannot be re-assembled as

a complete message within a given amount of time. This time SHOULD

be configurable.

6. Secured layer for UDP-notif

In unsecured networks, UDP-notif messages MUST be secured or

encrypted. In this section, a mechanism using DTLS 1.3 to secure

UDP-notif protocol is presented. The following sections defines the

requirements for the implementation of the secured layer of DTLS for

UDP-notif. No DTLS 1.3 extensions are defined in this document.

The DTLS 1.3 protocol [RFC9147] is designed to meet the requirements

of applications that need to secure datagram transport.

Implementations using DTLS to secure UDP-notif messages MUST use

DTLS 1.3 protocol as defined in [RFC9147].

When this security layer is used, the Publisher MUST always be a

DTLS client, and the Receiver MUST always be a DTLS server. The

Receivers MUST support accepting UDP-notif Messages on the specified

UDP port, but MAY be configurable to listen on a different port. The

Publisher MUST support sending UDP-notif messages to the specified

UDP port, but MAY be configurable to send messages to a different

port. The Publisher MAY use any source UDP port for transmitting

messages.

6.1. Session lifecycle

6.1.1. DTLS Session Initiation

The Publisher initiates a DTLS connection by sending a DTLS

ClientHello to the Receiver. Implementations MAY support the denial

of service countermeasures defined by DTLS 1.3 if a given deployment

can ensure that DoS attacks are not a concern. When these

countermeasures are used, the Receiver responds with a DTLS

HelloRetryRequest containing a stateless cookie. The Publisher sends

a second DTLS ClientHello message containing the received cookie.

Details can be found in Section 5.1 of [RFC9147].

When DTLS is implemented, the Publisher MUST NOT send any UDP-notif

messages before the DTLS handshake has successfully completed. Early

data mechanism (also known as 0-RTT data) as defined in [RFC9147]

MUST NOT be used.

Implementations of this security layer MUST support DTLS 1.3

[RFC9147] and MUST support the mandatory to implement cipher suite

¶

¶

¶

¶

¶

¶

TLS_AES_128_GCM_SHA256 and SHOULD implement TLS_AES_256_GCM_SHA384

and TLS_CHACHA20_POLY1305_SHA256 cipher suites, as specified in TLS

1.3 [RFC8446]. If additional cipher suites are supported, then

implementations MUST NOT negotiate a cipher suite that employs NULL

integrity or authentication algorithms.

Where confidentiality protection with DTLS is required,

implementations must negotiate a cipher suite that employs a non-

NULL encryption algorithm.

6.1.2. Publish Data

When DTLS is used, all UDP-notif messages MUST be published as DTLS

"application_data". It is possible that multiple UDP-notif messages

are contained in one DTLS record, or that a publication message is

transferred in multiple DTLS records. The application data is

defined with the following ABNF [RFC5234] expression:

APPLICATION-DATA = 1*UDP-NOTIF-FRAME

UDP-NOTIF-FRAME = MSG-LEN SP UDP-NOTIF-MSG

MSG-LEN = NONZERO-DIGIT *DIGIT

SP = %d32

NONZERO-DIGIT = %d49-57

DIGIT = %d48 / NONZERO-DIGIT

UDP-NOTIF-MSG is defined in Section 3.

The Publisher SHOULD attempt to avoid IP fragmentation by using the

Segmentation Option in the UDP-notif message.

6.1.3. Session termination

A Publisher MUST close the associated DTLS connection if the

connection is not expected to deliver any UDP-notif Messages later.

It MUST send a DTLS close_notify alert before closing the

connection. A Publisher (DTLS client) MAY choose to not wait for the

Receiver's close_notify alert and simply close the DTLS connection.

Once the Receiver gets a close_notify from the Publisher, it MUST

reply with a close_notify.

When no data is received from a DTLS connection for a long time, the

Receiver MAY close the connection. Implementations SHOULD set the

timeout value to 10 minutes but application specific profiles MAY

recommend shorter or longer values. The Receiver (DTLS server) MUST

attempt to initiate an exchange of close_notify alerts with the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Publisher before closing the connection. Receivers that are

unprepared to receive any more data MAY close the connection after

sending the close_notify alert.

Although closure alerts are a component of TLS and so of DTLS, they,

like all alerts, are not retransmitted by DTLS and so may be lost

over an unreliable network.

7. A YANG Data Model for Management of UDP-Notif

7.1. YANG to configure UDP-notif

The YANG model described in Section 7.2 defines a new receiver

instance for UDP-notif transport. When this transport is used, four

new leaves and a dtls container allow configuring UDP-notif receiver

parameters.

¶

¶

¶

7.2. YANG Module

This YANG module is used to configure, on a publisher, a receiver

willing to consume notification messages. This module augments the

"ietf-subscribed-notif-receivers" module to define a UDP-notif

transport receiver. The grouping "udp-notif-receiver-grouping"

defines the necessary parameters to configure the transport defined

module: ietf-udp-notif-transport

 augment /sn:subscriptions/snr:receiver-instances

 /snr:receiver-instance/snr:transport-type:

 +--:(udp-notif)

 +--rw udp-notif-receiver

 +--rw remote-address inet:ip-address-no-zone

 +--rw remote-port inet:port-number

 +--rw dtls! {dtls13}?

 | +--rw client-identity!

 | | +--rw (auth-type)

 | | +--:(certificate) {client-ident-x509-cert}?

 | | | ...

 | | +--:(raw-public-key) {client-ident-raw-public-key}?

 | | | ...

 | | +--:(tls13-epsk) {client-ident-tls13-epsk}?

 | | ...

 | +--rw server-authentication

 | | +--rw ca-certs! {server-auth-x509-cert}?

 | | | +--rw (local-or-truststore)

 | | | ...

 | | +--rw ee-certs! {server-auth-x509-cert}?

 | | | +--rw (local-or-truststore)

 | | | ...

 | | +--rw raw-public-keys! {server-auth-raw-public-key}?

 | | | +--rw (local-or-truststore)

 | | | ...

 | | +--rw tls13-epsks? empty

 | | {server-auth-tls13-epsk}?

 | +--rw hello-params {tlscmn:hello-params}?

 | | +--rw tls-versions

 | | | +--rw tls-version* identityref

 | | +--rw cipher-suites

 | | +--rw cipher-suite* identityref

 | +--rw keepalives {tls-client-keepalives}?

 | +--rw peer-allowed-to-send? empty

 | +--rw test-peer-aliveness!

 | +--rw max-wait? uint16

 | +--rw max-attempts? uint8

 +--rw enable-segmentation? boolean {segmentation}?

 +--rw max-segment-size? uint32 {segmentation}?

¶

in this document using the generic "udp-client-grouping" grouping

from the "ietf-udp-client" module

[I-D.ahuang-netconf-udp-client-server] and the "tls-client-grouping"

defined in the "ietf-tls-client" module

[I-D.ietf-netconf-tls-client-server].¶

<CODE BEGINS> file "ietf-udp-notif-transport@2024-01-22.yang"

module ietf-udp-notif-transport {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport";

 prefix unt;

 import ietf-subscribed-notifications {

 prefix sn;

 reference

 "RFC 8639: Subscription to YANG Notifications";

 }

 import ietf-subscribed-notif-receivers {

 prefix snr;

 reference

 "RFC YYYY: An HTTPS-based Transport for

 Configured Subscriptions";

 }

 import ietf-udp-client {

 prefix udpc;

 reference

 "RFC ZZZZ: YANG Grouping for UDP Clients and UDP Servers";

 }

 import ietf-tls-client {

 prefix tlsc;

 reference

 "RFC TTTT: YANG Groupings for TLS Clients and TLS Servers";

 }

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http:/tools.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Guangying Zheng

 <mailto:zhengguangying@huawei.com>

 Tianran Zhou

 <mailto:zhoutianran@huawei.com>

 Thomas Graf

 <mailto:thomas.graf@swisscom.com>

 Pierre Francois

 <mailto:pierre.francois@insa-lyon.fr>

 Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>

 Paolo Lucente

 <mailto:paolo@ntt.net>";

 description

 "Defines UDP-Notif as a supported transport for subscribed

 event notifications.

 Copyright (c) 2023 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC

 itself for full legal notices.";

 revision 2024-01-22 {

 description

 "Initial revision";

 reference

 "RFC-to-be: UDP-based Transport for Configured Subscriptions";

 }

 /*

 * FEATURES

 */

 feature encode-cbor {

 description

 "This feature indicates that CBOR encoding of notification

 messages is supported.";

 }

 feature dtls13 {

 description

 "This feature indicates that DTLS 1.3 encryption of UDP

 packets is supported.";

 }

 feature segmentation {

 description

 "This feature indicates segmentation of notification messages

 is supported.";

 }

 /*

 * IDENTITIES

 */

 identity udp-notif {

 base sn:transport;

 description

 "UDP-Notif is used as transport for notification messages

 and state change notifications.";

 }

 identity encode-cbor {

 base sn:encoding;

 description

 "Encode data using CBOR as described in RFC 9254.";

 reference

 "RFC 9254: CBOR Encoding of Data Modeled with YANG";

 }

 grouping udp-notif-receiver-grouping {

 description

 "Provides a reusable description of a UDP-Notif target

 receiver.";

 uses udpc:udp-client-grouping;

 container dtls {

 if-feature dtls13;

 presence dtls;

 uses tlsc:tls-client-grouping {

 // Using tls-client-grouping without TLS1.2 parameters

 // allowing only DTLS 1.3

 refine "client-identity/auth-type/tls12-psk" {

 // create the logical impossibility of enabling TLS1.2

 if-feature "not tlsc:client-ident-tls12-psk";

 }

 refine "server-authentication/tls12-psks" {

 // create the logical impossibility of enabling TLS1.2

 if-feature "not tlsc:server-auth-tls12-psk";

 }

 }

 description

 "Container for configuring DTLS 1.3 parameters.";

 }

 leaf enable-segmentation {

 if-feature segmentation;

 type boolean;

 default false;

 description

 "The switch for the segmentation feature. When disabled, the

 publisher will not allow fragment for a very large data";

 }

 leaf max-segment-size {

 when "../enable-segmentation = 'true'";

 if-feature segmentation;

 type uint32;

 description

 "UDP-Notif provides a configurable max-segment-size to

 control the size of each segment (UDP-Notif header, with

 options, included).";

 }

 }

 augment "/sn:subscriptions/snr:receiver-instances/" +

 "snr:receiver-instance/snr:transport-type" {

 case udp-notif {

 container udp-notif-receiver {

 description

 "The UDP-notif receiver to send notifications to.";

 uses udp-notif-receiver-grouping;

 }

 }

 description

 "Augment the transport-type choice to include the 'udp-notif'

 transport.";

 }

}

<CODE ENDS>

¶

8. IANA Considerations

This document describes several new registries, the URIs from IETF

XML Registry and the registration of a two new YANG module names.

8.1. IANA registries

This document is creating 3 registries called "UDP-notif media

types", "UDP-notif option types", and "UDP-notif header version"

under the new group "UDP-notif protocol". The registration procedure

is made using the Standards Action process defined in [RFC8126].

The first requested registry is the following:

These are the initial registrations for "UDP-notif media types":

The second requested registry is the following:

These are the initial registrations for "UDP-notif options types":

¶

¶

¶

 Registry Name: UDP-notif media types

 Registry Category: UDP-notif protocol.

 Registration Procedure: Standard Action as defined in RFC8126

 Maximum value: 15

¶

¶

 Value: 0

 Description: Reserved

 Reference: RFC-to-be

¶

 Value: 1

 Description: media type application/yang-data+json

 Reference: <xref target="RFC8040"/>

¶

 Value: 2

 Description: media type application/yang-data+xml

 Reference: <xref target="RFC8040"/>

¶

 Value: 3

 Description: media type application/yang-data+cbor

 Reference: <xref target="RFC9254"/>

¶

¶

 Registry Name: UDP-notif option types

 Registry Category: UDP-notif protocol.

 Registration Procedure: Standard Action as defined in RFC8126

 Maximum value: 255

¶

¶

 Value: 0

 Description: Reserved

 Reference: RFC-to-be

¶

The third requested registry is the following:

These are the initial registrations for "UDP-notif header version":

8.2. URI

IANA is also requested to assign a two new URI from the IETF XML

Registry [RFC3688]. The following two URIs are suggested:

8.3. YANG module name

This document also requests a two new YANG module names in the YANG

Module Names registry [RFC8342] with the following suggestions:

9. Implementation Status

Note to the RFC-Editor: Please remove this section before

publishing.

 Value: TBD1 (suggested value: 1)

 Description: Segmentation Option

 Reference: RFC-to-be

¶

 Value: TBD2 (suggested value: 2)

 Description: Private Encoding Option

 Reference: RFC-to-be

¶

¶

 Registry Name: UDP-notif header version

 Registry Category: UDP-notif protocol.

 Registration Procedure: Standard Action as defined in RFC8126

 Maximum value: 7

¶

¶

 Value: 0

 Description: UDP based Publication Channel for Streaming Telemetry

 Reference: draft-ietf-netconf-udp-pub-channel-05

¶

 Value: 1

 Description: UDP-based Transport for Configured Subscriptions.

 Reference: RFC-to-be

¶

¶

URI: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport

Registrant Contact: The IESG.

XML: N/A; the requested URI is an XML namespace.

¶

¶

name: ietf-udp-notif

namespace: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport

prefix: unt

reference: RFC-to-be

¶

¶

[I-D.ahuang-netconf-udp-client-server]

9.1. Open Source Publisher

INSA Lyon implemented this document for a YANG Push publisher in an

example implementation.

The open source code can be obtained here: [INSA-Lyon-Publisher].

9.2. Open Source Receiver Library

INSA Lyon implemented this document for a YANG Push receiver as a

library.

The open source code can be obtained here: [INSA-Lyon-Receiver].

9.3. Pmacct Data Collection

The open source YANG push receiver library has been integrated into

the Pmacct open source Network Telemetry data collection.

9.4. Huawei VRP

Huawei implemented this document for a YANG Push publisher in their

VRP platform.

10. Security Considerations

[RFC8085] states that "UDP applications that need to protect their

communications against eavesdropping, tampering, or message forgery

SHOULD employ end-to-end security services provided by other IETF

protocols". As mentioned above, the proposed mechanism is designed

to be used in controlled environments, as defined in [RFC8085] also

known as "limited domains", as defined in [RFC8799]. Thus, a

security layer is not necessary required. Nevertheless, a DTLS layer

MUST be implemented in unsecured networks. A specification of udp-

notif using DTLS is presented in Section 6.

11. Acknowledgements

The authors of this documents would like to thank Alexander Clemm,

Benoit Claise, Eric Voit, Huiyang Yang, Kent Watsen, Mahesh

Jethanandani, Marco Tollini, Hannes Tschofenig, Michael Tuxen, Rob

Wilton, Sean Turner, Stephane Frenot, Timothy Carey, Tim Jenkins,

Tom Petch and Yunan Gu for their constructive suggestions for

improving this document.

12. References

12.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

[I-D.ietf-netconf-distributed-notif]

[I-D.ietf-netconf-https-notif]

[I-D.ietf-netconf-tls-client-server]

[RFC2119]

[RFC3688]

[RFC5234]

Feng, A. H., Francois, P., and K. Watsen, "YANG Grouping

for UDP Clients and UDP Servers", Work in Progress,

Internet-Draft, draft-ahuang-netconf-udp-client-

server-01, 22 January 2024, <https://

datatracker.ietf.org/api/v1/doc/document/draft-ahuang-

netconf-udp-client-server/>.

Zhou, T., Zheng, G., Voit, E.,

Graf, T., and P. Francois, "Subscription to Distributed

Notifications", Work in Progress, Internet-Draft, draft-

ietf-netconf-distributed-notif-08, 6 October 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-

netconf-distributed-notif-08>.

Jethanandani, M. and K. Watsen, "An

HTTPS-based Transport for YANG Notifications", Work in

Progress, Internet-Draft, draft-ietf-netconf-https-

notif-14, 18 January 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-netconf-https-notif-14>.

Watsen, K., "YANG Groupings for TLS Clients and TLS

Servers", Work in Progress, Internet-Draft, draft-ietf-

netconf-tls-client-server-34, 28 December 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-

client-server-34>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-udp-client-server/
https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-udp-client-server/
https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-udp-client-server/
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-distributed-notif-08
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-distributed-notif-08
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-https-notif-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-https-notif-14
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-34
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-34
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-tls-client-server-34
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688

[RFC6991]

[RFC8085]

[RFC8126]

[RFC8174]

[RFC8342]

[RFC8446]

[RFC8639]

[RFC8640]

[RFC8650]

[RFC9147]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/info/rfc8085>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

E., and A. Tripathy, "Subscription to YANG

Notifications", RFC 8639, DOI 10.17487/RFC8639, September

2019, <https://www.rfc-editor.org/info/rfc8639>.

Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

E., and A. Tripathy, "Dynamic Subscription to YANG Events

and Datastores over NETCONF", RFC 8640, DOI 10.17487/

RFC8640, September 2019, <https://www.rfc-editor.org/

info/rfc8640>.

Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and

A. Bierman, "Dynamic Subscription to YANG Events and

Datastores over RESTCONF", RFC 8650, DOI 10.17487/

RFC8650, November 2019, <https://www.rfc-editor.org/info/

rfc8650>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The

Datagram Transport Layer Security (DTLS) Protocol Version

1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

<https://www.rfc-editor.org/info/rfc9147>.

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8639
https://www.rfc-editor.org/info/rfc8640
https://www.rfc-editor.org/info/rfc8640
https://www.rfc-editor.org/info/rfc8650
https://www.rfc-editor.org/info/rfc8650
https://www.rfc-editor.org/info/rfc9147

[RFC9254]

[I-D.ahuang-netconf-notif-yang]

[I-D.ietf-netconf-notification-messages]

[INSA-Lyon-Publisher]

[INSA-Lyon-Receiver]

[Paolo-Lucente-Pmacct]

[RFC6241]

[RFC7011]

[RFC7923]

Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,

C., and M. Richardson, "Encoding of Data Modeled with

YANG in the Concise Binary Object Representation (CBOR)",

RFC 9254, DOI 10.17487/RFC9254, July 2022, <https://

www.rfc-editor.org/info/rfc9254>.

12.2. Informative References

Feng, A. H., Francois, P., Graf, T.,

and B. Claise, "YANG model for NETCONF Event

Notifications", Work in Progress, Internet-Draft, draft-

ahuang-netconf-notif-yang-04, 22 January 2024, <https://

datatracker.ietf.org/api/v1/doc/document/draft-ahuang-

netconf-notif-yang/>.

Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.

Clemm, "Notification Message Headers and Bundles", Work

in Progress, Internet-Draft, draft-ietf-netconf-

notification-messages-08, 17 November 2019, <https://

datatracker.ietf.org/doc/html/draft-ietf-netconf-

notification-messages-08>.

"INSA Lyon, YANG Push publisher example

implementation", <https://github.com/network-analytics/

udp-notif-scapy>.

"INSA Lyon, YANG Push receiver library

implementation", <https://github.com/network-analytics/

udp-notif-c-collector>.

"Paolo Lucente, Pmacct open source Network

Telemetry Data Collection", <https://github.com/pmacct/

pmacct>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Claise, B., Ed., Trammell, B., Ed., and P. Aitken,

"Specification of the IP Flow Information Export (IPFIX)

Protocol for the Exchange of Flow Information", STD 77,

RFC 7011, DOI 10.17487/RFC7011, September 2013, <https://

www.rfc-editor.org/info/rfc7011>.

Voit, E., Clemm, A., and A. Gonzalez Prieto,

"Requirements for Subscription to YANG Datastores", RFC

https://www.rfc-editor.org/info/rfc9254
https://www.rfc-editor.org/info/rfc9254
https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-notif-yang/
https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-notif-yang/
https://datatracker.ietf.org/api/v1/doc/document/draft-ahuang-netconf-notif-yang/
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages-08
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages-08
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-messages-08
https://github.com/network-analytics/udp-notif-scapy
https://github.com/network-analytics/udp-notif-scapy
https://github.com/network-analytics/udp-notif-c-collector
https://github.com/network-analytics/udp-notif-c-collector
https://github.com/pmacct/pmacct
https://github.com/pmacct/pmacct
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7011
https://www.rfc-editor.org/info/rfc7011

[RFC7951]

[RFC8040]

[RFC8340]

[RFC8641]

[RFC8799]

7923, DOI 10.17487/RFC7923, June 2016, <https://www.rfc-

editor.org/info/rfc7923>.

Lhotka, L., "JSON Encoding of Data Modeled with YANG",

RFC 7951, DOI 10.17487/RFC7951, August 2016, <https://

www.rfc-editor.org/info/rfc7951>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Clemm, A. and E. Voit, "Subscription to YANG

Notifications for Datastore Updates", RFC 8641, DOI

10.17487/RFC8641, September 2019, <https://www.rfc-

editor.org/info/rfc8641>.

Carpenter, B. and B. Liu, "Limited Domains and Internet

Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,

<https://www.rfc-editor.org/info/rfc8799>.

Appendix A. UDP-notif Examples

This non-normative section shows two examples of how the the "ietf-

udp-notif-transport" YANG module can be used to configure a

[RFC8639] based publisher to send notifications to a receiver and an

example of a YANG Push notification message using UDP-notif

transport protocol.

A.1. Configuration for UDP-notif transport with DTLS disabled

This example shows how UDP-notif can be configured without DTLS

encryption.

¶

¶

https://www.rfc-editor.org/info/rfc7923
https://www.rfc-editor.org/info/rfc7923
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/info/rfc8799

A.2. Configuration for UDP-notif transport with DTLS enabled

This example shows how UDP-notif can be configured with DTLS

encryption.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<?xml version='1.0' encoding='UTF-8'?>

<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\

notifications">

 <subscription>

 <id>6666</id>

 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\

ter>

 <stream>some-stream</stream>

 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\

if-transport">unt:udp-notif</transport>

 <encoding>encode-json</encoding>

 <receivers>

 <receiver>

 <name>subscription-specific-receiver-def</name>

 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\

ietf-subscribed-notif-receivers">global-udp-notif-receiver-def</rece\

iver-instance-ref>

 </receiver>

 </receivers>

 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

 <period>6000</period>

 </periodic>

 </subscription>

 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\

cribed-notif-receivers">

 <receiver-instance>

 <name>global-udp-notif-receiver-def</name>

 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\

udp-notif-transport">

 <remote-address>192.0.5.1</remote-address>

 <remote-port>12345</remote-port>

 <enable-segmentation>false</enable-segmentation>

 <max-segment-size/>

 </udp-notif-receiver>

 </receiver-instance>

 </receiver-instances>

 </subscriptions>

</config>

¶

¶

=============== NOTE: '\' line wrapping per RFC 8792 ================

<?xml version='1.0' encoding='UTF-8'?>

<config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\

notifications">

 <subscription>

 <id>6666</id>

 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\

ter>

 <stream>some-stream</stream>

 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\

if-transport">unt:udp-notif</transport>

 <encoding>encode-json</encoding>

 <receivers>

 <receiver>

 <name>subscription-specific-receiver-def</name>

 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\

ietf-subscribed-notif-receivers">global-udp-notif-receiver-dtls-def<\

/receiver-instance-ref>

 </receiver>

 </receivers>

 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

 <period>6000</period>

 </periodic>

 </subscription>

 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\

cribed-notif-receivers">

 <receiver-instance>

 <name>global-udp-notif-receiver-dtls-def</name>

 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\

udp-notif-transport">

 <remote-address>192.0.5.1</remote-address>

 <remote-port>12345</remote-port>

 <enable-segmentation>false</enable-segmentation>

 <max-segment-size/>

 <dtls>

 <client-identity>

 <tls13-epsk>

 <local-definition>

 <key-format>ct:octet-string-key-format</key-format>

 <cleartext-key>BASE64VALUE=</cleartext-key>

 </local-definition>

 <external-identity>example_external_id</external-ide\

ntity>

 <hash>sha-256</hash>

 <context>example_context_string</context>

 <target-protocol>8443</target-protocol>

 <target-kdf>12345</target-kdf>

 </tls13-epsk>

 </client-identity>

 <server-authentication>

 <ca-certs>

 <local-definition>

 <certificate>

 <name>Server Cert Issuer #1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>Server Cert Issuer #2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </local-definition>

 </ca-certs>

 <ee-certs>

 <local-definition>

 <certificate>

 <name>My Application #1</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 <certificate>

 <name>My Application #2</name>

 <cert-data>BASE64VALUE=</cert-data>

 </certificate>

 </local-definition>

 </ee-certs>

 <raw-public-keys>

 <local-definition>

 <public-key>

 <name>corp-fw1</name>

 <public-key-format>ct:subject-public-key-info-fo\

rmat</public-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 <public-key>

 <name>corp-fw2</name>

 <public-key-format>ct:subject-public-key-info-fo\

rmat</public-key-format>

 <public-key>BASE64VALUE=</public-key>

 </public-key>

 </local-definition>

 </raw-public-keys>

 <tls13-epsks/>

 </server-authentication>

 <keepalives>

 <test-peer-aliveness>

 <max-wait>30</max-wait>

 <max-attempts>3</max-attempts>

 </test-peer-aliveness>

 </keepalives>

 </dtls>

 </udp-notif-receiver>

 </receiver-instance>

 </receiver-instances>

 </subscriptions>

</config>

¶

A.3. YANG Push message with UDP-notif transport protocol

This example shows how UDP-notif is used as a transport protocol to

send a "push-update" notification [RFC8641] encoded in JSON

[RFC7951].

Assuming the publisher needs to send the JSON payload showed in

Figure 6, the UDP-notif transport is encoded following the Figure 7.

The UDP-notif message is then encapsulated in a UDP frame.

Figure 6: JSON Payload to be sent

Figure 7: UDP-notif transport message

¶

¶

{

 "ietf-notification:notification": {

 "eventTime": "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

}

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-----+-+-------+---------------+-------------------------------+

 |Ver=1|0| MT=1 | Header_Len=12 | Message_Length=230 |

 +-----+-+-------+---------------+-------------------------------+

 | Message Publisher ID=2 |

 +---+

 | Message ID=1563 |

 +---+

 | YANG Push JSON payload (Len=218 octets) |

 |{"ietf-notification:notification":{"eventTime":"2023-02-10T08:0|

 |0:11.22Z","ietf-yang-push:push-update":{"id":1011,"datastore-co|

 |ntents":{"ietf-interfaces:interfaces":[{"interface":{"name":"et|

 |h0","oper-status":"up"}}]}}}} |

 +---+

Authors' Addresses

Guangying Zheng

Huawei

101 Yu-Hua-Tai Software Road

Nanjing

Jiangsu,

China

Email: zhengguangying@huawei.com

Tianran Zhou

Huawei

156 Beiqing Rd., Haidian District

Beijing

China

Email: zhoutianran@huawei.com

Thomas Graf

Swisscom

Binzring 17

CH- Zuerich 8045

Switzerland

Email: thomas.graf@swisscom.com

Pierre Francois

INSA-Lyon

Lyon

France

Email: pierre.francois@insa-lyon.fr

Alex Huang Feng

INSA-Lyon

Lyon

France

Email: alex.huang-feng@insa-lyon.fr

Paolo Lucente

NTT

Siriusdreef 70-72

Hoofddorp, WT 2132

Netherlands

Email: paolo@ntt.net

mailto:zhengguangying@huawei.com
mailto:zhoutianran@huawei.com
mailto:thomas.graf@swisscom.com
mailto:pierre.francois@insa-lyon.fr
mailto:alex.huang-feng@insa-lyon.fr
mailto:paolo@ntt.net

	UDP-based Transport for Configured Subscriptions
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Configured Subscription to UDP-Notif
	3. UDP-Based Transport
	3.1. Design Overview
	3.2. Format of the UDP-Notif Message Header
	3.3. Data Encoding

	4. Options
	4.1. Segmentation Option
	4.2. Private Encoding Option

	5. Applicability
	5.1. Congestion Control
	5.2. Message Size
	5.3. Reliability

	6. Secured layer for UDP-notif
	6.1. Session lifecycle
	6.1.1. DTLS Session Initiation
	6.1.2. Publish Data
	6.1.3. Session termination

	7. A YANG Data Model for Management of UDP-Notif
	7.1. YANG to configure UDP-notif
	7.2. YANG Module

	8. IANA Considerations
	8.1. IANA registries
	8.2. URI
	8.3. YANG module name

	9. Implementation Status
	9.1. Open Source Publisher
	9.2. Open Source Receiver Library
	9.3. Pmacct Data Collection
	9.4. Huawei VRP

	10. Security Considerations
	11. Acknowledgements
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. UDP-notif Examples
	A.1. Configuration for UDP-notif transport with DTLS disabled
	A.2. Configuration for UDP-notif transport with DTLS enabled
	A.3. YANG Push message with UDP-notif transport protocol

	Authors' Addresses

