
Network Working Group A. Clemm
Internet-Draft Sympotech
Intended status: Standards Track E. Voit
Expires: May 1, 2017 A. Gonzalez Prieto
 A. Tripathy
 E. Nilsen-Nygaard
 Pre-release version Cisco Systems
 A. Bierman
 YumaWorks
 B. Lengyel
 Ericsson
 October 28, 2016

Subscribing to YANG datastore push updates
draft-ietf-netconf-yang-push-04

Abstract

 This document defines a subscription and push mechanism for YANG
 datastores. This mechanism allows subscriber applications to request
 updates from a YANG datastore, which are then pushed by the publisher
 to a receiver per a subscription policy, without requiring additional
 subscriber requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clemm, et al. Expires May 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft YANG-Push October 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Definitions and Acronyms 5
3. Solution Overview . 6
3.1. Subscription Model 6
3.2. Negotiation of Subscription Policies 8
3.3. On-Change Considerations 9
3.4. Data Encodings . 10
3.5. YANG object filters 11
3.6. Push Data Stream and Transport Mapping 11
3.7. Subscription management 15
3.8. Other considerations 16

 4. A YANG data model for management of datastore push
 subscriptions . 20

4.1. Overview . 20
4.2. Update streams . 26
4.3. Filters . 27
4.4. Subscription configuration 27
4.5. Subscription monitoring 29
4.6. Notifications . 29
4.7. RPCs . 31

5. YANG module . 35
6. Security Considerations 47
7. Acknowledgments . 48
8. References . 48

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Clemm, et al. Expires May 1, 2017 [Page 2]

Internet-Draft YANG-Push October 2016

8.1. Normative References 48
8.2. Informative References 48

Appendix A. Issues that are currently being worked and resolved 49
A.1. Unresolved and yet-to-be addressed issues 49
A.2. Agreement in principal 49

Appendix B. Changes between revisions 50
 Authors' Addresses . 50

1. Introduction

 YANG [RFC7950] was originally designed for the Netconf protocol
 [RFC6241] which focused on configuration data. However, YANG can be
 used to model both configuration and operational data. It is
 therefore reasonable to expect YANG datastores will increasingly be
 used to support applications that care about about both.

 For example, service assurance applications will need to be aware of
 any remote updates to configuration and operational objects. Rapid
 awareness of object changes will enable such things as validating and
 maintaining cross-network integrity and consistency, or monitoring
 state and key performance indicators of remote devices.

 Traditional approaches to remote visibility have been built on
 polling. With polling, data is periodically explicitly retrieved by
 a client from a server to stay up-to-date. However, there are issues
 associated with polling-based management:

 o It introduces additional load on network, devices, and
 applications. Each polling cycle requires a separate yet arguably
 redundant request that results in an interrupt, requires parsing,
 consumes bandwidth.

 o It lacks robustness. Polling cycles may be missed, requests may
 be delayed or get lost, often particularly in cases when the
 network is under stress and hence exactly when the need for the
 data is the greatest.

 o Data may be difficult to calibrate and compare. Polling requests
 may undergo slight fluctuations, resulting in intervals of
 different lengths which makes data hard to compare. Likewise,
 pollers may have difficulty issuing requests that reach all
 devices at the same time, resulting in offset polling intervals
 which again make data hard to compare.

 A more effective alternative to polling is when an application can
 request to be automatically updated on current relevant content of a
 datastore. If such a request is accepted, interesting updates will
 subsequently be pushed from that datastore.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc6241

Clemm, et al. Expires May 1, 2017 [Page 3]

Internet-Draft YANG-Push October 2016

 Dependence on polling-based management is typically considered an
 important shortcoming of applications that rely on MIBs polled using
 SNMP [RFC1157]. However, without a provision to support a push-based
 alternative, there is no reason to believe that management
 applications that operate on YANG datastores will be any more
 effective, as they would follow the same request/response pattern.

 While YANG allows the definition of push notifications, such
 notifications generally indicate the occurrence of certain well-
 specified event conditions, such as the onset of an alarm condition
 or the occurrence of an error. A capability to subscribe to and
 deliver such pre-defined event notifications has been defined in
 [RFC5277]. In addition, configuration change notifications have been
 defined in [RFC6470]. These change notifications pertain only to
 configuration information, not to operational state, and convey the
 root of the subtree to which changes were applied along with the
 edits, but not the modified data nodes and their values.
 Furthermore, while delivery of updates using notifications is a
 viable option, some applications desire the ability to stream updates
 using other transports.

 Accordingly, there is a need for a service that allows applications
 to dynamically subscribe to updates of a YANG datastore and that
 allows the publisher to push those updates, possibly using one of
 several delivery mechanisms. Additionally, support for subscriptions
 configured directly on the publisher are also useful when dynamic
 signaling is undesirable or unsupported. The requirements for such a
 service are documented in [RFC7923].

 This document proposes a solution. The solution builds on top of the
 Netconf Event Model [I-D.ietf-netconf-5277bis] which defines a
 mechanism for the management of event subscriptions. At its core,
 the solution defined here introduces a new set of event streams which
 maybe subscribed, introduces datastore push update mechanisms, and
 provides extensions to the event subscription model. The document
 also includes YANG data model augmentations which extend the model
 and RPCs defined within [I-D.ietf-netconf-5277bis].

 Key capabilities worth highlighting include:

 o An extension to event subscription mechanisms allowing clients to
 subscribe to event streams containing automatic datastore updates.
 The subscription allows clients to specify which data they are
 interested in, what types of updates (e.g. create, delete,
 modify), and to provide optional filters with criteria that data
 must meet for updates to be sent. Furthermore, subscriptions can
 specify a policy that directs when updates are provided. For

https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc6470
https://datatracker.ietf.org/doc/html/rfc7923

Clemm, et al. Expires May 1, 2017 [Page 4]

Internet-Draft YANG-Push October 2016

 example, a client may request to be updated periodically in
 certain intervals, or whenever data changes occur.

 o Format and contents of the YANG push updates themselves.

 o The ability for a publisher to push back on requested subscription
 parameters. Because not every publisher may support every
 requested update policy for every piece of data, it is necessary
 for a publisher to be able to indicate whether or not it is
 capable of supporting a requested subscription, and possibly allow
 to negotiate push update subscription parameters. For example,
 some publishers may have a lower limit to the period with which
 they can send updates, or they may not support on-change updates
 for every piece of data.

 o Subscription parameters which allow the specification of QoS
 extensions to address prioritization between independent streams
 of updates.

2. Definitions and Acronyms

 Many of the terms in this document are defined in
 [I-D.ietf-netconf-5277bis]. Please see that document for these
 definitions.

 Data node: An instance of management information in a YANG datastore.

 Data node update: A data item containing the current value/property
 of a Data node at the time the data node update was created.

 Data record: A record containing a set of one or more data node
 instances and their associated values.

 Datastore: A conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Datastream: A continuous stream of data records, each including a set
 of updates, i.e. data node instances and their associated values.

 Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Push-update stream: A conceptual data stream of a datastore that
 streams the entire datastore contents continuously and perpetually.

 Update: A data item containing the current value of a data node.

Clemm, et al. Expires May 1, 2017 [Page 5]

Internet-Draft YANG-Push October 2016

 Update notification: An Event Notification including those data node
 update(s) to be pushed in order to meet the obligations of a single
 Subscription. All included data node updates must reflect the state
 of a Datastore at a snapshot in time.

 Update record: A representation of a data node update as a data
 record. An update record can be included as part of an update
 stream. It can also be logged for retrieval. In general, an update
 record will include the value/property of a data node. It may also
 include information about the type of data node update, i.e. whether
 the data node was modified/updated, or newly created, or deleted.

 Update trigger: A mechanism, as specified by a Subscription Policy,
 that determines when a data node update is to be communicated. (e.g.,
 a change trigger, invoked when the value of a data node changes or a
 data node is created or deleted, or a time trigger, invoked after the
 laps of a periodic time interval.)

 YANG object filter: A filter that contains evaluation criteria which
 are evaluated against YANG objects of a subscription. An update is
 only published if the object meets the specified filter criteria.

 YANG-Push: The subscription and push mechanism for YANG datastores
 that is specified in this document.

3. Solution Overview

 This document specifies a solution for a push update subscription
 service. This solution supports the dynamic as well as configured
 subscriptions to information updates from YANG datastores. A
 subscription might target exposed operational and/or configuration
 YANG objects on a device. YANG objects are subsequently pushed from
 the publisher to the receiver per the terms of the subscription.

3.1. Subscription Model

 YANG-push subscriptions are defined using a data model that is itself
 defined in YANG. This model augments the event subscription model
 defined in [I-D.ietf-netconf-5277bis] and introduces several new
 parameters that allow subscribers to specify what to include in an
 update notification and what triggers such an update notification.

 The subscription model assumes the presence of one or more conceptual
 perpetual datastreams of continuous subscribable YANG updates. There
 are several datastreams with predefined semantics, such as the stream
 of updates of all operational data or the stream of updates of all
 config data. In addition, it is possible to define custom streams
 with customizable semantics. The model includes the list of update

Clemm, et al. Expires May 1, 2017 [Page 6]

Internet-Draft YANG-Push October 2016

 datastreams that are supported by a system and available for
 subscription.

 The subscription model augments the [I-D.ietf-netconf-5277bis]
 subscription model with a set of parameters:

 o Anydata encoding for periodic and on-change push updates.

 o A subscription policy definition regarding the update trigger when
 to send new update notifications.

 * For periodic subscriptions, the trigger is defined by two
 parameters that defines the interval with which updates are to
 be pushed. These parameters are the period/interval of
 reporting duration, and an anchor time which can be used to
 calculate at which times updates needs to be assembled and
 sent.

 * EDITOR'S NOTE: A possible option to discuss concerns the
 introduction of an additional parameter "changes-only" for
 periodic subscription. Including this flag would results in
 sending at the end of each period an update containing only
 changes since the last update (i.e. a change-update as in the
 case of an on-change subscription), not a full snapshot of the
 subscribed information. Such an option might be interesting in
 case of data that is largely static and bandwidth-constrained
 environments.

 * For on-change subscriptions, the trigger occurs whenever a
 change in the subscribed information is detected. On-change
 subscriptions have more complex semantics that can be guided by
 additional parameters. Please refer also to Section 3.3.

 + One parameter specifies the dampening period, i.e. the
 interval that must pass before a successive update
 notification for the same Subscription is sent. Note that
 the dampening period applies to the set of all data nodes
 within a single subscription. This means that on the first
 change of an object, an update notification containing that
 object is sent either immediately or at the end of a
 dampening period already in effect.

 + Another parameter allows to restrict the types of changes
 for which updates are sent (changes to object values, object
 creation or deletion events). It is conceivable to augment
 the data model with additional parameters in the future to
 specify even more refined policies, such as parameters that

Clemm, et al. Expires May 1, 2017 [Page 7]

Internet-Draft YANG-Push October 2016

 specify the magnitude of a change that must occur before an
 update is triggered.

 + A third parameter specifies whether or not a complete update
 with all the subscribed data should be sent at the beginning
 of a subscription to facilitate synchronization and
 establish the frame of reference for subsequent updates.

 o Optionally, a filter, or set of filters, describing the subset of
 data node updates that are of interest to the subscriber. The
 publisher must only send to the subscriber those data node updates
 that can traverse applied filter(s). The absence of a filter
 indicates that all data items from the stream are of interest to
 the subscriber and all data records must be sent in their entirety
 to the subscriber. The following types of filters are supported:
 subtree filters, with the same semantics as defined in
 [RFC6241][RFC6241], and XPath filters. Additional filter types
 can be added through augmentations. Filters can be specified
 "inline" as part of the subscription, or can be configured
 separately and referenced by a subscription, in order to
 facilitate reuse of complex filters.

 The subscription data model is specified as part of the YANG data
 model described later in this specification. It is conceivable that
 additional subscription parameters might be added in the future.
 This can be accomplished through augmentation of the subscription
 data model.

3.2. Negotiation of Subscription Policies

 Dynamic subscriptions must support a simple negotiation between
 subscribers and publishers for subscription parameters. This
 negotiation is limited to a single pair of subscription request and
 response messages. For negative response messages, the publisher
 SHOULD include in the returned error what subscription parameters
 would have been accepted for the request. The returned acceptable
 parameters constitute suggestions that, when followed, increase the
 likelihood of success for subsequent requests. However, there are no
 guarantee that subsequent requests for this subscriber will in fact
 be accepted.

 A subscription request might be declined based on publisher's
 assessment that it may be unable to provide a filtered update
 notification stream that would meet the terms of the establish-
 subscription request.

https://datatracker.ietf.org/doc/html/rfc6241

Clemm, et al. Expires May 1, 2017 [Page 8]

Internet-Draft YANG-Push October 2016

 In case a subscriber requests an encoding other than XML, and this
 encoding is not supported by the publisher, the publisher simply
 indicates in the response that the encoding is not supported.

 A subscription negotiation capability has been introduced as part of
 the NETCONF Event Notifications model. However, the ability to
 negotiate subscriptions is of particular importance in conjunction
 with push updates, as publisher implementations may have limitations
 with regards to what updates can be generated and at what velocity.

3.3. On-Change Considerations

 On-change subscriptions allow subscribers to subscribe to updates
 whenever changes to objects occur. As such, on-change subscriptions
 are of particular interest for data that changes relatively
 infrequently, yet that require applications to be notified with
 minimal delay when changes do occur.

 On-change subscriptions tend to be more difficult to implement than
 periodic subscriptions. Specifically, on-change subscriptions may
 involve a notion of state to see if a change occurred between past
 and current state, or the ability to tap into changes as they occur
 in the underlying system. Accordingly, on-change subscriptions may
 not be supported by all implementations or for every object.

 When an on-change subscription is requested for a datastream with a
 given subtree filter, where not all objects support on-change update
 triggers, the subscription request MUST be rejected. As a result,
 on-change subscription requests will tend to be directed at very
 specific, targeted subtrees with only few objects.

 Any updates for an on-change subscription will include only objects
 for which a change was detected. To avoid flooding receivers with
 repeated updates for fast-changing objects, or objects with
 oscillating values, an on-change subscription allows for the
 definition of a dampening period. Once an update for a given object
 is sent, no other updates for this particular object are sent until
 the end of the dampening period. Values sent at the end of the
 dampening period are the values current when that dampening period
 expires. In addition, updates include information about objects that
 were deleted and ones that were newly created.

 On-change subscriptions can be refined to let users subscribe only to
 certain types of changes, for example, only to object creations and
 deletions, but not to modifications of object values.

 Additional refinements are conceivable. For example, in order to
 avoid sending updates on objects whose values undergo only a

Clemm, et al. Expires May 1, 2017 [Page 9]

Internet-Draft YANG-Push October 2016

 negligible change, additional parameters might be added to an on-
 change subscription specifying a YANG object filter that states how
 large or "significant" a change has to be before an update is sent.
 A simple policy is a "delta-policy" that states, for integer-valued
 data nodes, the minimum difference between the current value and the
 value that was last reported that triggers an update. Also more
 sophisticated policies are conceivable, such as policies specified in
 percentage terms or policies that take into account the rate of
 change. While not specified as part of this draft, such policies can
 be accommodated by augmenting the subscription data model
 accordingly.

3.4. Data Encodings

 Subscribed data is encoded in either XML or JSON format. A publisher
 MUST support XML encoding and MAY support JSON encoding.

 It is conceivable that additional encodings may be supported as
 options in the future. This can be accomplished by augmenting the
 subscription data model with additional identity statements used to
 refer to requested encodings.

3.4.1. Periodic Subscriptions

 In a periodic subscription, the data included as part of an update
 corresponds to data that could have been simply retrieved using a get
 operation and is encoded in the same way. XML encoding rules for
 data nodes are defined in [RFC7950]. JSON encoding rules are defined
 in [RFC7951]. This encoding is valid JSON, but also has special
 encoding rules to identify module namespaces and provide consistent
 type processing of YANG data.

3.4.2. On-Change Subscriptions

 In an on-change subscription, updates need to indicate not only
 values of changed data nodes but also the types of changes that
 occurred since the last update, such as whether data nodes were newly
 created since the last update or whether they were merely modified,
 as well as which data nodes were deleted.

 Encoding rules for data in on-change updates correspond to how data
 would be encoded in a YANG-patch operation as specified in
 [I-D.ietf-netconf-yang-patch]. The "YANG-patch" would in this case
 be applied to the earlier state reported by the preceding update, to
 result in the now-current state of YANG data. Of course, contrary to
 a YANG-patch operation, the data is sent from the publisher to the
 receiver and is not restricted to configuration data.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951

Clemm, et al. Expires May 1, 2017 [Page 10]

Internet-Draft YANG-Push October 2016

3.5. YANG object filters

 Subscriptions can specify filters for subscribed data. The following
 filters are supported:

 o subtree-filter: A subtree filter specifies a subtree that the
 subscription refers to. When specified, updates will only concern
 data nodes from this subtree. Syntax and semantics correspond to
 that specified for [RFC6241] section 6.

 o xpath-filter: An XPath filter specifies an XPath expression
 applied to the data in an update, assuming XML-encoded data.

 Only a single filter can be applied to a subscription at a time.

 It is conceivable for implementations to support other filters. For
 example, an on-change filter might specify that changes in values
 should be sent only when the magnitude of the change since previous
 updates exceeds a certain threshold. It is possible to augment the
 subscription data model with additional filter types.

3.6. Push Data Stream and Transport Mapping

 Pushing data based on a subscription could be considered analogous to
 a response to a data retrieval request, e.g. a "get" request.
 However, contrary to such a request, multiple responses to the same
 request may get sent over a longer period of time.

 An applicable mechanism is that of a notification. There are however
 some specifics that need to be considered. Contrary to other
 notifications that are associated with alarms and unexpected event
 occurrences, update notifications are solicited, i.e. tied to a
 particular subscription which triggered the notification.

 A push update notification contains several parameters:

 o A subscription correlator, referencing the name of the
 subscription on whose behalf the notification is sent.

 o Data nodes containing a representation of the datastore subtree(s)
 containing the updates. In all cases, the subtree(s) are filtered
 per access control rules to contain only data that the subscriber
 is authorized to see. For on-change subscriptions, the subtree
 may only contain the data nodes which have changed since the start
 of the previous dampening interval.

 This document introduces two generic notifications: "push-update" and
 "push-change-update". Those notifications may be encapsulated on a

https://datatracker.ietf.org/doc/html/rfc6241#section-6

Clemm, et al. Expires May 1, 2017 [Page 11]

Internet-Draft YANG-Push October 2016

 transport (e.g. Netconf notifications and HTTP) to carry data
 records with updates of datastore contents as specified by a
 subscription. It is possible also map notifications to other
 transports and encodings and use the same subscription model;
 however, the definition of such mappings is outside the scope of this
 document.

 A push-update notification defines a complete update of the datastore
 per the terms of a subscription. This type of notification is used
 for continuous updates of periodic subscriptions. A push-update
 notification can also used be for the on-change subscriptions in two
 cases. First it will be used as the initial push-update if there is
 a need to synchronize the receiver at the start of a new
 subscription. It also may be sent if the publisher later chooses to
 resynch a previously synched on-change subscription. The push-update
 record contains a data snippet that contains an instantiated subtree
 with the subscribed contents. The content of the update notification
 is equivalent to the contents that would be obtained had the same
 data been explicitly retrieved using e.g. a Netconf "get"-operation,
 with the same filters applied.

 The contents of the notification conceptually represents the union of
 all data nodes in the yang modules supported by the publisher.
 However, in a YANG data model, it is not practical to model the
 precise data contained in the updates as part of the notification.
 This is because the specific data nodes supported depend on the
 implementing system and may even vary dynamically. Therefore, to
 capture this data, a single parameter that can represent any
 datastore contents is used, not parameters that represent data nodes
 one at a time.

 A push-change-update notification is the most common type of update
 for on-change subscriptions. It is not used for periodic
 subscriptions. The update record in this case contains a data
 snippet that indicates the full set of changes that data nodes have
 undergone since the last notification of YANG objects. In other
 words, this indicates which data nodes have been created, deleted, or
 have had changes to their values. The format of the data snippet
 follows YANG-patch [I-D.ietf-netconf-yang-patch], i.e. the same
 format that would be used with a YANG-patch operation to apply
 changes to a data tree, indicating the creates, deletes, and
 modifications of data nodes. Please note that as the update can
 include a mix of configuration and operational data

 The following is an example of push notification. It contains an
 update for subscription 1011, including a subtree with root foo that
 contains a leaf, bar:

Clemm, et al. Expires May 1, 2017 [Page 12]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-update
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>1011</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-contents-xml>
 <foo>
 <bar>some_string</bar>
 </foo>
 </datastore-contents-xml>
 </push-update>
 </notification>

 Figure 1: Push example

 The following is an example of an on-change notification. It
 contains an update for subscription 89, including a new value for a
 leaf called beta, which is a child of a top-level container called
 alpha:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-xml>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta>1500</beta>
 </alpha>
 </datastore-changes-xml>
 </push-change-update>
 </notification>

 Figure 2: Push example for on change

 The equivalent update when requesting json encoding:

Clemm, et al. Expires May 1, 2017 [Page 13]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-json>
 {
 "ietf-yang-patch:yang-patch": {
 "patch-id": [
 null
],
 "edit": [
 {
 "edit-id": "edit1",
 "operation": "merge",
 "target": "/alpha/beta",
 "value": {
 "beta": 1500
 }
 }
]
 }
 }
 </datastore-changes-json>
 </push-change-update>
 </notification>

 Figure 3: Push example for on change with JSON

 When the beta leaf is deleted, the publisher may send

Clemm, et al. Expires May 1, 2017 [Page 14]

Internet-Draft YANG-Push October 2016

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-xml>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta urn:ietf:params:xml:ns:netconf:base:1.0:
 operation="delete"/>
 </alpha>
 </datastore-changes-xml>
 </push-change-update>
 </notification>

 Figure 4: 2nd push example for on change update

3.7. Subscription management

 A [[I-D.ietf-netconf-5277bis] subscription needs enhancment to
 support YANG Push subscription negotiation. Specifically, these
 enhancements are needed to signal to the subscriber why an attempt
 has failed.

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, the lack of read
 authorization on the requested data node, or the inability of the
 publisher to provide a stream with the requested semantics. In such
 cases, no subscription is established. Instead, the subscription-
 result with the failure reason is returned as part of the RPC
 response. In addition, a set of alternative subscription parameters
 MAY be returned that would likely have resulted in acceptance of the
 subscription request, which the subscriber may try for a future
 subscription attempt.

 It should be noted that a rejected subscription does not result in
 the generation of an rpc-reply with an rpc-error element, as neither
 the specification of YANG-push specific errors nor the specification
 of additional data parameters to be returned in an error case are
 supported as part of a YANG data model.

 For instance, for the following request:

Clemm, et al. Expires May 1, 2017 [Page 15]

Internet-Draft YANG-Push October 2016

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 5: Establish-Subscription example

 the publisher might return:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="http://urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-insufficient-resources
 </subscription-result>
 <period>2000</period>
 </rpc-reply>

 Figure 6: Error response example

3.8. Other considerations

3.8.1. Authorization

 A receiver of subscription data may only be sent updates for which
 they have proper authorization. Data that is being pushed therefore
 needs to be subjected to a filter that applies all corresponding
 rules applicable at the time of a specific pushed update, silently
 removing any non-authorized data from subtrees.

 The authorization model for data in YANG datastores is described in
 the Netconf Access Control Model [RFC6536]. However, some
 clarifications to that RFC are needed so that the desired access
 control behavior is applied to pushed updates.

 One of these clarifications is that a subscription may only be
 established if the receiver has read access to the target data node.

https://datatracker.ietf.org/doc/html/rfc6536

Clemm, et al. Expires May 1, 2017 [Page 16]

Internet-Draft YANG-Push October 2016

 +-------------+ +-------------+
 subscription | protocol | | target |
 request --> | operation | -------------> | data node |
 | allowed? | datastore | access |
 +-------------+ or state | allowed? |
 data access +-------------+

 Figure 7: Access control for subscription

 Likewise if a receiver no longer has read access permission to a
 target data node, the subscription must be abnormally terminated
 (with loss of access permission as the reason provided).

 Another clarification to [RFC6536] is that each of the individual
 nodes in a pushed update must also go through access control
 filtering. This includes new nodes added since the last update
 notification, as well as existing nodes. For each of these read
 access must be verified. The methods of doing this efficiently are
 left to implementation.

 +-------------+ +-------------------+
 subscription | data node | yes | |
 update --> | access | ---> | add data node |
 | allowed? | | to update message |
 +-------------+ +-------------------+

 Figure 8: Access control for push updates

 If there are read access control changes applied under the target
 node, no notifications indicating the fact that this has occurred
 should be provided.

3.8.2. Robustness and reliability considerations

 Particularly in the case of on-change push updates, it is important
 that push updates do not get lost.

 Update notifications will typically traverse a secure and reliable
 transport. Notifications will not be reordered, and will also
 contain a time stamp. Despite these protections for on-change, it is
 possible that complete update notifications get lost. For this
 reason, patch-ids may be included in a subscription so that an
 application can determine if an update has been lost.

 At the same time, it is conceivable that under certain circumstances,
 a publisher will recognize that it is unable to include within an
 update notification the full set of objects desired per the terms of

https://datatracker.ietf.org/doc/html/rfc6536

Clemm, et al. Expires May 1, 2017 [Page 17]

Internet-Draft YANG-Push October 2016

 a subscription. In this case, the publisher must take one or more of
 the following actions.

 o A publisher must set the updates-not-sent flag on any update
 notification which is known to be missing information.

 o It may choose to suspend and resume a subscription as per
 [I-D.ietf-netconf-5277bis].

 o When resuming an on-change subscription, the publisher should
 generate a complete patch from the previous update notification.
 If this is not possible and the synch-on-start option is
 configured, then the full datastore contents may be sent instead
 (effectively replacing the previous contents). If neither of
 these are possible, then an updates-not-sent flag must be included
 on the next push-change-update.

3.8.3. Update size and fragmentation considerations

 Depending on the subscription, the volume of updates can become quite
 large. There is no inherent limitation to the amount of data that
 can be included in a notification. That said, it may not always be
 practical to send the entire update in a single chunk.
 Implementations MAY therefore choose, at their discretion, to "chunk"
 updates and break them out into several update notifications.

3.8.4. Push data streams

 There are several conceptual data streams introduced in this
 specification:

 o yang-push includes the entirety of YANG data, including both
 configuration and operational data.

 o operational-push includes all operational (read-only) YANG data

 o config-push includes all YANG configuration data.

 It is conceivable to introduce other data streams with more limited
 scope, for example:

 o operdata-nocounts-push, a datastream containing all operational
 (read-only) data with the exception of counters

 o other custom datastreams

 Those data streams make particular sense for use cases involving
 service assurance (not relying on operational data), and for use

Clemm, et al. Expires May 1, 2017 [Page 18]

Internet-Draft YANG-Push October 2016

 cases requiring on-change update triggers which make no sense to
 support in conjunction with fast-changing counters. While it is
 possible to specify subtree filters on yang-push to the same effect,
 having those data streams greatly simplifies articulating
 subscriptions in such scenarios.

3.8.5. Implementation considerations

 Implementation specifics are outside the scope of this specification.
 That said,it should be noted that monitoring of operational state
 changes inside a system can be associated with significant
 implementation challenges.

 Even periodic retrieval and push of operational counters may consume
 considerable system resources. In addition the on-change push of
 small amounts of configuration data may, depending on the
 implementation, require invocation of APIs, possibly on an object-by-
 object basis, possibly involving additional internal interrupts, etc.

 For those reasons, it is important for an implementation to
 understand what subscriptions it can or cannot support. It is far
 preferable to decline a subscription request then to accept such a
 request when it cannot be met.

 Whether or not a subscription can be supported will in general be
 determined by a combination of several factors, including the
 subscription policy (on-change or periodic, with on-change in general
 being the more challenging of the two), the period in which to report
 changes (1 second periods will consume more resources than 1 hour
 periods), the amount of data in the subtree that is being subscribed
 to, and the number and combination of other subscriptions that are
 concurrently being serviced.

 When providing access control to every node in a pushed update, it is
 possible to make and update efficient access control filters for an
 update. These filters can be set upon subscription and applied
 against a stream of updates. These filters need only be updated when
 (a) there is a new node added/removed from the subscribed tree with
 different permissions than its parent, or (b) read access permissions
 have been changed on nodes under the target node for the subscriber.

3.8.6. Not Notifiable YANG Objects

 In some cases, a publisher supporting "on-change" notifications may
 not be able to push updates for some object types "on-change".
 Reasons for this might be that the value of the data node changes
 frequently (e.g., a received-octets-counter), that small object
 changes are frequent and meaningless (e.g., a temperature gauge

Clemm, et al. Expires May 1, 2017 [Page 19]

Internet-Draft YANG-Push October 2016

 changing 0.1 degrees), or that the implementation is not capable of
 on-change notification of an object type.

 The default assumption is that changes on all data nodes will be
 reported on-change. However if a certain data node cannot do this,
 it SHOULD be marked with the YANG extension not-notifiable-on-change.

4. A YANG data model for management of datastore push subscriptions

4.1. Overview

 The YANG data model for datastore push subscriptions is depicted in
 the following figure. Following Yang tree convention in the
 depiction, brackets enclose list keys, "rw" means configuration, "ro"
 operational state data, "?" designates optional nodes, "*" designates
 nodes that can have multiple instances. Parantheses with a name in
 the middle enclose choice and case nodes. A "+" at the end of a line
 indicates that the line is to be concatenated with the subsequent
 line. New YANG tree notation is the i] which indicates that the node
 in that line has been brought in / imported from another model, and
 an (a) which indicates this is the specific imported node augmented.
 In the figure below, all have been imported from 5277bis. The model
 consists mostly of augmentations to RPCs and notifications defined in
 the data model for subscriptions for event notifications of
 [I-D.ietf-netconf-5277bis].

 module: ietf-yang-push
 i] +--ro streams
 i] | +--ro stream* stream
 i] +--rw filters
 i] | +--rw filter* [filter-id]
 i] | +--rw filter-id filter-id
 i] | +--rw (filter-type)?
 i] | +--:(rfc5277)
 i] | | +--rw filter?
 | +--:(update-filter)
 | +--rw (update-filter)?
 | +--:(subtree)
 | | +--rw subtree-filter?
 | +--:(xpath)
 | +--rw xpath-filter? yang:xpath1.0
 i] +--rw subscription-config {configured-subscriptions}?
 i] | +--rw subscription* [subscription-id]
 i] | +--rw subscription-id subscription-id
 i] | +--rw stream? stream
 i] | +--rw encoding? encoding
 (a) | +--rw (filter-type)?
 i] | | +--:(rfc5277)

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 20]

Internet-Draft YANG-Push October 2016

 i] | | | +--rw filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter? yang:xpath1.0
 i] | | +--:(by-reference)
 i] | | +--rw filter-ref? filter-ref
 i] | +--rw startTime? yang:date-and-time
 i] | +--rw stopTime? yang:date-and-time
 | +--rw (update-trigger)?
 | | +--:(periodic)
 | | | +--rw period yang:timeticks
 | | | +--rw anchor-time? yang:date-and-time
 | | +--:(on-change) {on-change}?
 | | +--rw no-synch-on-start? empty
 | | +--rw dampening-period yang:timeticks
 | | +--rw excluded-change* change-type
 i] | +--rw receivers
 i] | | +--rw receiver* [address]
 i] | | +--rw address inet:host
 i] | | +--rw port inet:port-number
 i] | | +--rw protocol? transport-protocol
 i] | +--rw (push-source)?
 i] | | +--:(interface-originated)
 i] | | | +--rw source-interface? if:interface-ref
 i] | | +--:(address-originated)
 i] | | +--rw source-vrf? uint32
 i] | | +--rw source-address inet:ip-address-no-zone
 | +--rw dscp? inet:dscp
 | +--rw subscription-priority? uint8
 | +--rw subscription-dependency? string
 (a) +--ro subscriptions
 i] +--ro subscription*
 i] +--ro subscription-id
 i] +--ro configured-subscription?
 i] +--ro subscription-status?
 i] +--ro stream?
 i] +--ro encoding?
 (a) +--ro (filter-type)?
 i] | +--:(rfc5277)
 i] | | +--ro filter?
 | +--:(update-filter)
 | | +--ro (update-filter)?
 | | +--:(subtree)
 | | | +--ro subtree-filter?
 | | +--:(xpath)

https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 21]

Internet-Draft YANG-Push October 2016

 | | +--ro xpath-filter?
 i] | +--:(by-reference)
 i] | +--ro filter-ref?
 i] +--ro startTime?
 i] +--ro stopTime?
 +--ro (update-trigger)?
 | +--:(periodic)
 | | +--ro period
 | | +--ro anchor-time?
 | +--:(on-change) {on-change}?
 | +--ro no-synch-on-start?
 | +--ro dampening-period
 | +--ro excluded-change*
 i] +--ro receivers
 i] | +--ro receiver*
 i] | +--ro address
 i] | +--ro port
 i] | +--ro protocol?
 i] +--ro (push-source)?
 i] | +--:(interface-originated)
 i] | | +--ro source-interface?
 i] | +--:(address-originated)
 i] | +--ro source-vrf?
 i] | +--ro source-address
 +--ro dscp?
 +--ro subscription-priority?
 +--ro subscription-dependency?
 i] rpcs:
 i] +---x establish-subscription
 (a) | +---w input
 i] | | +---w stream?
 i] | | +---w encoding?
 (a) | | +---w (filter-type)?
 i] | | | +--:(rfc5277)
 i] | | | | +---w filter?
 | | | +--:(update-filter)
 | | | | +---w (update-filter)?
 | | | | +--:(subtree)
 | | | | | +---w subtree-filter?
 | | | | +--:(xpath)
 | | | | +---w xpath-filter?
 i] | | | +--:(by-reference)
 i] | | | +---w filter-ref?
 i] | | +---w startTime?
 i] | | +---w stopTime?
 | | +---w (update-trigger)?
 | | | +--:(periodic)
 | | | | +---w period

https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 22]

Internet-Draft YANG-Push October 2016

 | | | | +---w anchor-time?
 | | | +--:(on-change) {on-change}?
 | | | +---w no-synch-on-start?
 | | | +---w dampening-period
 | | | +---w excluded-change*
 | | +---w dscp?
 | | +---w subscription-priority?
 | | +---w subscription-dependency?
 i] | +--ro output
 i] | +--ro subscription-result
 i] | +--ro (result)?
 i] | +--:(success)
 i] | | +--ro subscription-id
 (a) | +--:(no-success)
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +---w (update-filter)?
 | | | +--:(subtree)
 | | | | +---w subtree-filter?
 | | | +--:(xpath)
 | | | +---w xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---x modify-subscription
 i] | +---w input
 i] | | +---w subscription-id?
 i] | | +---w (filter-type)?
 i] | | | +--:(rfc5277)
 i] | | | | +---w filter?
 | | | +--:(update-filter)
 | | | | +---w (update-filter)?

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 23]

Internet-Draft YANG-Push October 2016

 | | | | +--:(subtree)
 | | | | | +---w subtree-filter?
 | | | | +--:(xpath)
 | | | | +---w xpath-filter?
 i] | | | +--:(by-reference)
 i] | | | +---w filter-ref?
 i] | | +---w startTime?
 i] | | +---w stopTime?
 | | +---w (update-trigger)?
 | | +--:(periodic)
 | | | +---w period
 | | | +---w anchor-time?
 | | +--:(on-change) {on-change}?
 | | +---w dampening-period
 | | +---w excluded-change*
 i] | +--ro output
 i] | +--ro subscription-result
 i] | +--ro (result)?
 i] | +--:(success)
 i] | | +--ro subscription-id
 i] | +--:(no-success)
 i] | +--ro stream?
 i] | +--ro encoding?
 i] | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +---w (update-filter)?
 | | | +--:(subtree)
 | | | | +---w subtree-filter?
 | | | +--:(xpath)
 | | | +---w xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---x delete-subscription

https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 24]

Internet-Draft YANG-Push October 2016

 i] +---w input
 i] | +---w subscription-id
 i] +--ro output
 i] +--ro subscription-result

 (a) notifications
 (a) +---n subscription-started
 i] | +--ro subscription-id
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter?
 i] | | +--:(by-reference)
 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 (a) +---n subscription-modified
 i] | +--ro subscription-id
 i] | +--ro stream?
 i] | +--ro encoding?
 (a) | +--ro (filter-type)?
 i] | | +--:(rfc5277)
 i] | | | +--ro filter?
 | | +--:(update-filter)
 | | | +--rw (update-filter)?
 | | | +--:(subtree)
 | | | | +--ro subtree-filter?
 | | | +--:(xpath)
 | | | +--rw xpath-filter?
 i] | | +--:(by-reference)

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 25]

Internet-Draft YANG-Push October 2016

 i] | | +--ro filter-ref?
 i] | +--ro startTime?
 i] | +--ro stopTime?
 | +--ro (update-trigger)?
 | | +--:(periodic)
 | | | +--ro period
 | | | +--ro anchor-time?
 | | +--:(on-change) {on-change}?
 | | +--ro no-synch-on-start?
 | | +--ro dampening-period
 | | +--ro excluded-change*
 | +--ro dscp?
 | +--ro subscription-priority?
 | +--ro subscription-dependency?
 i] +---n subscription-terminated
 i] | +--ro subscription-id
 i] | +--ro reason?
 i] +---n subscription-suspended
 i] | +--ro subscription-id
 i] | +--ro reason?
 i] +---n subscription-resumed
 i] | +--ro subscription-id
 i] +---n replay-complete
 i] | +--ro subscription-id
 i] +---n notification-complete
 i] | +--ro subscription-id
 +---n push-update
 | +--ro subscription-id
 | +--ro time-of-update?
 | +--ro updates-not-sent?
 | +--ro datastore-contents?
 +---n push-change-update {on-change}?
 +--ro subscription-id
 +--ro time-of-update?
 +--ro updates-not-sent?
 +--ro datastore-changes?

 Figure 9: Model structure

 The components of the model are described in the following
 subsections.

4.2. Update streams

 Container "update-streams" is used to indicate which data streams are
 provided by the system and can be subscribed to. For this purpose,
 it contains a leaf list of data nodes identifying the supported
 streams.

Clemm, et al. Expires May 1, 2017 [Page 26]

Internet-Draft YANG-Push October 2016

4.3. Filters

 Container "filters" contains a list of configurable data filters,
 each specified in its own list element. This allows users to
 configure filters separately from an actual subscription, which can
 then be referenced from a subscription. This facilitates the reuse
 of filter definitions, which can be important in case of complex
 filter conditions.

 One of three types of filters can be specified as part of a filter
 list element. Subtree filters follow syntax and semantics of RFC

6241 and allow to specify which subtree(s) to subscribe to. In
 addition, XPath filters can be specified for more complex filter
 conditions. Finally, filters can be specified using syntax and
 semantics of RFC5277.

 It is conceivable to introduce other types of filters; in that case,
 the data model needs to be augmented accordingly.

4.4. Subscription configuration

 As an optional feature, configured-subscriptions, allows for the
 configuration of subscriptions as opposed to RPC. Subscriptions
 configurations are represented by list subscription-config. Each
 subscription is represented through its own list element and includes
 the following components:

 o "subscription-id" is an identifier used to refer to the
 subscription.

 o "stream" refers to the stream being subscribed to. The
 subscription model assumes the presence of perpetual and
 continuous streams of updates. Various streams are defined:
 "push-update" covers the entire set of YANG data in the publisher.
 "operational-push" covers all operational data, while "config-
 push" covers all configuration data. Other streams could be
 introduced in augmentations to the model by introducing additional
 identities.

 o "encoding" refers to the encoding requested for the data updates.
 By default, updates are encoded using XML. However, JSON can be
 requested as an option if the json-enconding feature is supported.
 Other encodings may be supported in the future.

 o "anchor-time" is a timestamp. When used in conjunction with
 period, the boundaries of periodic update periods may be
 calculated.

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc5277

Clemm, et al. Expires May 1, 2017 [Page 27]

Internet-Draft YANG-Push October 2016

 o Filters for a subscription can be specified using a choice,
 allowing to either reference a filter that has been separately
 configured or entering its definition inline.

 o A choice of subscription policies allows to define when to send
 new updates - periodic or on change.

 * For periodic subscriptions, the trigger is defined by a
 "period", a parameter that defines the interval with which
 updates are to be pushed. The start time of the subscription
 serves as anchor time, defining one specific point in time at
 which an update needs to be sent. Update intervals always fall
 on the points in time that are a multiple of a period after the
 start time.

 * For on-change subscriptions, the trigger occurs whenever a
 change in the subscribed information is detected. On-change
 subscriptions have more complex semantics that is guided by
 additional parameters. "dampening-period" specifies the
 interval that must pass before a successive update for the same
 data node is sent. The first time a change is detected, the
 update is sent immediately. If a subsequent change is
 detected, another update is only sent once the dampening period
 has passed, containing the value of the data node that is then
 valid. "excluded-change" allows to restrict the types of
 changes for which updates are sent (changes to object values,
 object creation or deletion events). "no-synch-on-start" is a
 flag that allows to specify whether or not a complete update
 with all the subscribed data should be sent at the beginning of
 a subscription; if the flag is omitted, a complete update is
 sent to facilitate synchronization. It is conceivable to
 augment the data model with additional parameters in the future
 to specify even more refined policies, such as parameters that
 specify the magnitude of a change that must occur before an
 update is triggered.

 o This is followed with a list of receivers for the subscription,
 indicating for each receiver the transport that should be used for
 push updates (if options other than Netconf are supported). It
 should be noted that the receiver does not have to be the same
 system that configures the subscription.

 o Finally, "push-source" can be used to specify the source of push
 updates, either a specific interface or publisher address.

 A subscription established through configuration cannot be deleted
 using an RPC. Likewise, subscriptions established through RPC cannot
 be deleted through configuration.

Clemm, et al. Expires May 1, 2017 [Page 28]

Internet-Draft YANG-Push October 2016

 The deletion of a subscription, whether through RPC or configuration,
 results in immediate termination of the subsciption.

4.5. Subscription monitoring

 Subscriptions can be subjected to management themselves. For
 example, it is possible that a publisher may no longer be able to
 serve a subscription that it had previously accepted. Perhaps it has
 run out of resources, or internal errors may have occurred. When
 this is the case, a publisher needs to be able to temporarily suspend
 the subscription, or even to terminate it. More generally, the
 publisher should provide a means by which the status of subscriptions
 can be monitored.

 Container "subscriptions" contains the state of all subscriptions
 that are currently active. This includes subscriptions that were
 established (and have not yet been deleted) using RPCs, as well as
 subscriptions that have been configured as part of configuration.

 Each subscription is represented as a list element "datastore-push-
 subscription". The associated information includes an identifier for
 the subscription, a subscription status, as well as the various
 subscription parameters that are in effect. The subscription status
 indicates whether the subscription is currently active and healthy,
 or if it is degraded in some form. Leaf "configured-subscription"
 indicates whether the subscription came into being via configuration
 or via RPC.

 Subscriptions that were established by RPC are removed from the list
 once they expire (reaching stop-time)or when they are terminated.
 Subscriptions that were established by configuration need to be
 deleted from the configuration by a configuration editing operation.

4.6. Notifications

4.6.1. Monitoring and OAM Notifications

 OAM notifications are reused from [I-D.ietf-netconf-5277bis]. Some
 have augmentations to include new objects defined in this draft.

 Still to be investigated is whether a publisher might also provide
 additional information about subscriptions, such as statistics about
 the number of data updates that were sent. However, such information
 is currently outside the scope of this specification.

Clemm, et al. Expires May 1, 2017 [Page 29]

Internet-Draft YANG-Push October 2016

4.6.2. Update Notifications

 The data model introduces two YANG notifications for the actual
 updates themselves.

 Notification "push-update" is used to send a complete snapshot of the
 data that has been subscribed to, with all YANG object filters
 applied. The notification is used for periodic subscription updates
 in a periodic subscription.

 The notification can also be used in an on-change subscription for
 the purposes of allowing a receiver to "synch". Specifically, it is
 used at the start of an on-change subscription, unless no-synch-on-
 start is specified for the subscription. In addition, it MAY be used
 during the subscription, for example if change updates were not sent
 as indicated by the "updates-not-sent" flag (see below), or for synch
 updates at longer period intervals (such as once per day) to mitigate
 the possibility of any application-dependent synchronization drift.
 The trigger for sending a push-update notification in conjunction
 with on-change subscriptions are at this point outside the scope of
 the specification.

 The format and syntax of the contained data corresponds to the format
 and syntax of data that would be returned in a corresponding get
 operation with the same filter parameters applied.

 Notification "push-change-update" is used to send data updates for
 changes that have occurred in the subscribed data. This notification
 is used only in conjunction with on-change subscriptions.

 The data updates are encoded analogous to the syntax of a
 corresponding yang-patch operation. It corresponds to the data that
 would be contained in a yang-patch operation applied to the YANG
 datastore at the previous update, to result in the current state (and
 applying it also to operational data).

 In rare circumstances, the notification can include a flag "updates-
 not-sent". This is a flag which indicates that not all changes which
 have occurred since the last update are actually included with this
 update. In other words, the publisher has failed to fulfill its full
 subscription obligations, for example in cases where it was not able
 to keep up with a change burst. To facilitate synchronization, a
 publisher MAY subsequently send a push-update containing a full
 snapshot of subscribed data. Such a push-update might also be
 triggered by a subscriber requesting an on-demand synchronization.

Clemm, et al. Expires May 1, 2017 [Page 30]

Internet-Draft YANG-Push October 2016

4.7. RPCs

 YANG-Push subscriptions are established, modified, and deleted using
 three RPCs.

4.7.1. Establish-subscription RPC

 The subscriber sends an establish-subscription RPC with the
 parameters in section 3.1. For instance

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 10: Establish-subscription RPC

 The publisher must respond explicitly positively (i.e., subscription
 accepted) or negatively (i.e., subscription rejected) to the request.
 Positive responses include the subscription-id of the accepted
 subscription. In that case a publisher may respond:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 52
 </subscription-id>
 </rpc-reply>

 Figure 11: Establish-subscription positive RPC response

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, the lack of read
 authorization on the requested data node, or the inability of the
 publisher to provide a stream with the requested semantics.

Clemm, et al. Expires May 1, 2017 [Page 31]

Internet-Draft YANG-Push October 2016

 When the requester is not authorized to read the requested data node,
 the returned "error-info"; indicates an authorization error and the
 requested node. For instance, if the above request was unauthorized
 to read node "ex:foo" the publisher may return:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-data-not-authorized
 </subscription-result>
 </rpc-reply>

 Figure 12: Establish-subscription access denied response

 If a request is rejected because the publisher is not able to serve
 it, the publisher SHOULD include in the returned error what
 subscription parameters would have been accepted for the request.
 However, there are no guarantee that subsequent requests for this
 subscriber or others will in fact be accepted.

 For example, for the following request:

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <dampening-period>10</dampening-period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 13: Establish-subscription request example 2

 A publisher that cannot serve on-change updates but periodic updates
 might return the following:

Clemm, et al. Expires May 1, 2017 [Page 32]

Internet-Draft YANG-Push October 2016

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-no-such-option
 </subscription-result>
 <period>100</period>
 </rpc-reply>

 Figure 14: Establish-subscription error response example 2

4.7.2. Modify-subscription RPC

 The subscriber may send a modify-subscription PRC for a subscription
 previously established using RPC The subscriber may change any
 subscription parameters by including the new values in the modify-
 subscription RPC. Parameters not included in the rpc should remain
 unmodified. For illustration purposes we include an exchange example
 where a subscriber modifies the period of the subscription.

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <stream>push-update</stream>
 <subscription-id>
 1011
 </subscription-id>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>250</period>
 <encoding>encode-xml</encoding>
 </modify-subscription>
 </netconf:rpc>

 Figure 15: Modify subscription request

 The publisher must respond explicitly positively (i.e., subscription
 accepted) or negatively (i.e., subscription rejected) to the request.
 Positive responses include the subscription-id of the accepted
 subscription. In that case a publisher may respond:

Clemm, et al. Expires May 1, 2017 [Page 33]

Internet-Draft YANG-Push October 2016

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 1011
 </subscription-id>
 </rpc-reply>

 Figure 16: Modify subscription response

 If the subscription modification is rejected, the publisher must send
 a response like it does for an establish-subscription and maintain
 the subscription as it was before the modification request. A
 subscription may be modified multiple times.

 A configured subscription cannot be modified using modify-
 subscription RPC. Instead, the configuration needs to be edited as
 needed.

4.7.3. Delete-subscription RPC

 To stop receiving updates from a subscription and effectively delete
 a subscription that had previously been established using an
 establish-subscription RPC, a subscriber can send a delete-
 subscription RPC, which takes as only input the subscription-id. For
 example:

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>
 1011
 </subscription-id>
 </delete-subscription>
 </netconf:rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Figure 17: Delete subscription

Clemm, et al. Expires May 1, 2017 [Page 34]

Internet-Draft YANG-Push October 2016

 Configured subscriptions cannot be deleted via RPC, but have to be
 removed from the configuration.

4.7.4. YANG Module Synchronization

 In order to fully support datastore replication, the receiver needs
 to know the YANG module library that is in use by server that is
 being replicated. The YANG 1.0 module library information is sent by
 a NETCONF server in the NETCONF 'hello' message. For YANG 1.1
 modules and all modules used with the RESTCONF
 [I-D.ietf-netconf-restconf] protocol, this information is provided by
 the YANG Library module (ietf-yang-library.yang from [RFC7895]. The
 YANG library information is important for the receiver to reproduce
 the set of object definitions used by the replicated datastore.

 The YANG library includes a module list with the name, revision,
 enabled features, and applied deviations for each YANG YANG module
 implemented by the server. The receiver is expected to know the YANG
 library information before starting a subscription. The "/modules-
 state/module-set-id" leaf in the "ietf-yang-library" module can be
 used to cache the YANG library information. [ED. NOTE: Should
 "module-set-id" be added to establish-subscription response?]

 The set of modules, revisions, features, and deviations can change at
 run-time (if supported by the server implementation). In this case,
 the receiver needs to be informed of module changes before data nodes
 from changed modules can be processed correctly. The YANG library
 provides a simple "yang-library-change" notification that informs the
 client that the library has changed somehow. The receiver then needs
 to re-read the entire YANG library data for the replicated server in
 order to detect the specific YANG library changes. The "ietf-
 netconf-notifications" module defined in [RFC6470] contains a
 "netconf-capability-change" notification that can identify specific
 module changes. For example, the module URI capability of a newly
 loaded module will be listed in the "added-capability" leaf-list, and
 the module URI capability of an removed module will be listed in the
 "deleted-capability" leaf-list.

5. YANG module

 <CODE BEGINS> file "ietf-yang-push@2016-10-28.yang"
 module ietf-yang-push {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-push";
 prefix yp;

 import ietf-inet-types {
 prefix inet;

https://datatracker.ietf.org/doc/html/rfc7895
https://datatracker.ietf.org/doc/html/rfc6470

Clemm, et al. Expires May 1, 2017 [Page 35]

Internet-Draft YANG-Push October 2016

 }
 import ietf-yang-types {
 prefix yang;
 }
 import ietf-event-notifications {
 prefix notif-bis;
 }

 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nokia.com>

 Editor: Alexander Clemm
 <mailto:alex@sympotech.com>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:albertgo@cisco.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description
 "This module contains conceptual YANG specifications
 for YANG push.";

 revision 2016-10-28 {
 description
 "Updates to simplify modify-subscription, add anchor-time";
 reference "YANG Datastore Push, draft-ietf-netconf-yang-push-04";

http://tools.ietf.org/wg/netconf/
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-push-04

Clemm, et al. Expires May 1, 2017 [Page 36]

Internet-Draft YANG-Push October 2016

 }

 feature on-change {
 description
 "This feature indicates that on-change updates are
 supported.";
 }

 /*
 * IDENTITIES
 */

 /* Additional errors for subscription operations */
 identity error-data-not-authorized {
 base notif-bis:error;
 description
 "No read authorization for a requested data node.";
 }

 /* Additional types of streams */
 identity update-stream {
 description
 "Base identity to represent a conceptual system-provided
 datastream of datastore updates with predefined semantics.";
 }

 identity yang-push {
 base update-stream;
 description
 "A conceptual datastream consisting of all datastore
 updates, including operational and configuration data.";
 }

 identity operational-push {
 base update-stream;
 description
 "A conceptual datastream consisting of updates of all
 operational data.";
 }

 identity config-push {
 base update-stream;
 description
 "A conceptual datastream consisting of updates of all
 configuration data.";
 }

Clemm, et al. Expires May 1, 2017 [Page 37]

Internet-Draft YANG-Push October 2016

 identity custom-stream {
 base update-stream;
 description
 "A conceptual datastream for datastore
 updates with custom updates as defined by a user.";
 }

 /* Additional transport option */
 identity http2 {
 base notif-bis:transport;
 description
 "HTTP2 notifications as a transport";
 }

 /*
 * TYPE DEFINITIONS
 */

 typedef filter-id {
 type uint32;
 description
 "A type to identify filters which can be associated with a
 subscription.";
 }

 typedef change-type {
 type enumeration {
 enum "create" {
 description
 "A new data node was created";
 }
 enum "delete" {
 description
 "A data node was deleted";
 }
 enum "modify" {
 description
 "The value of a data node has changed";
 }
 }
 description
 "Specifies different types of changes that may occur
 to a datastore.";
 }

 typedef update-stream {
 type identityref {
 base update-stream;

Clemm, et al. Expires May 1, 2017 [Page 38]

Internet-Draft YANG-Push October 2016

 }
 description
 "Specifies a system-provided datastream.";
 }

 grouping update-filter {
 description
 "This groupings defines filters for push updates for a
 datastore tree. The filters define which updates are of
 interest in a push update subscription. Mixing and matching
 of multiple filters does not occur at the level of this
 grouping. When a push-update subscription is created, the
 filter can be a regular subscription filter, or one of the
 additional filters that are defined in this grouping.";
 choice update-filter {
 description
 "Define filters regarding which data nodes to include
 in push updates";
 case subtree {
 description
 "Subtree filter.";
 anyxml subtree-filter {
 description
 "Subtree-filter used to specify the data nodes targeted
 for subscription within a subtree, or subtrees, of a
 conceptual YANG datastore. Objects matching the filter
 criteria will traverse the filter. The syntax follows
 the subtree filter syntax specified in RFC 6241,
 section 6.";
 reference "RFC 6241 section 6";
 }
 }
 case xpath {
 description
 "XPath filter";
 leaf xpath-filter {
 type yang:xpath1.0;
 description
 "Xpath defining the data items of interest.";
 }
 }
 }
 }

 grouping update-policy {
 description
 "This grouping describes the conditions under which an
 update will be sent as part of an update stream.";

https://datatracker.ietf.org/doc/html/rfc6241#section-6
https://datatracker.ietf.org/doc/html/rfc6241#section-6
https://datatracker.ietf.org/doc/html/rfc6241#section-6

Clemm, et al. Expires May 1, 2017 [Page 39]

Internet-Draft YANG-Push October 2016

 choice update-trigger {
 description
 "Defines necessary conditions for sending an event to
 the subscriber.";
 case periodic {
 description
 "The agent is requested to notify periodically the
 current values of the datastore or the subset
 defined by the filter.";
 leaf period {
 type yang:timeticks;
 mandatory true;
 description
 "Duration of time which should occur between periodic
 push updates. Where the anchor of a start-time is
 available, the push will include the objects and their
 values which exist at an exact multiple of timeticks
 aligning to this start-time anchor.";
 }
 leaf anchor-time {
 type yang:date-and-time;
 description
 "Designates a timestamp from which the series of
 periodic push updates are computed. The next update
 will take place at the next period interval from the
 anchor time. For example, for an anchor time at the
 top of a minute and a period interval of a minute,
 the next update will be sent at the top of the next
 minute.";
 }
 }
 case on-change {
 if-feature "on-change";
 description
 "The agent is requested to notify changes in
 values in the datastore or a subset of it defined
 by a filter.";
 leaf no-synch-on-start {
 type empty;
 description
 "This leaf acts as a flag that determines behavior at the
 start of the subscription. When present,
 synchronization of state at the beginning of the
 subscription is outside the scope of the subscription.
 Only updates about changes that are observed from the
 start time, i.e. only push-change-update notifications
 are sent.
 When absent (default behavior), in order to facilitate

Clemm, et al. Expires May 1, 2017 [Page 40]

Internet-Draft YANG-Push October 2016

 a receiver's synchronization, a full update is sent
 when the subscription starts using a push-update
 notification, just like in the case of a periodic
 subscription. After that, push-change-update
 notifications only are sent unless the Publisher chooses
 to resynch the subscription again.";
 }
 leaf dampening-period {
 type yang:timeticks;
 mandatory true;
 description
 "Minimum amount of time that needs to have
 passed since the last time an update was
 provided.";
 }
 leaf-list excluded-change {
 type change-type;
 description
 "Use to restrict which changes trigger an update.
 For example, if modify is excluded, only creation and
 deletion of objects is reported.";
 }
 }
 }
 }

 grouping subscription-qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower
 layers for transport priortization and treatment";
 leaf dscp {
 if-feature "notif-bis:configured-subscriptions";
 type inet:dscp;
 default "0";
 description
 "The push update's IP packet transport priority.
 This is made visible across network hops to receiver.
 The transport priority is shared for all receivers of
 a given subscription.";
 }
 leaf subscription-priority {
 type uint8;
 description
 "Relative priority for a subscription. Allows an
 underlying transport layer perform informed load
 balance allocations between various subscriptions";
 }

Clemm, et al. Expires May 1, 2017 [Page 41]

Internet-Draft YANG-Push October 2016

 leaf subscription-dependency {
 type string;
 description
 "Provides the Subscription ID of a parent subscription
 without which this subscription should not exist. In
 other words, there is no reason to stream these objects
 if another subscription is missing.";
 }
 }

 augment "/notif-bis:establish-subscription/notif-bis:input" {
 description
 "Define additional subscription parameters that apply
 specifically to push updates";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:establish-subscription/notif-bis:input/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:establish-subscription/notif-bis:output" {
 description
 "Allow to return additional subscription parameters that apply
 specifically to push updates.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:establish-subscription/notif-bis:output/"+
 "notif-bis:result/notif-bis:no-success/notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:modify-subscription/notif-bis:input" {
 description
 "Define additional subscription parameters that apply
 specifically to push updates.";

Clemm, et al. Expires May 1, 2017 [Page 42]

Internet-Draft YANG-Push October 2016

 uses update-policy;
 }
 augment "/notif-bis:modify-subscription/notif-bis:input/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:modify-subscription/notif-bis:output" {
 description
 "Allow to retun additional subscription parameters that apply
 specifically to push updates.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:modify-subscription/notif-bis:output/"+
 "notif-bis:result/notif-bis:no-success/notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 notification push-update {
 description
 "This notification contains a push update, containing
 data subscribed to via a subscription.
 This notification is sent for periodic updates, for a
 periodic subscription. It can also be used for
 synchronization updates of an on-change subscription.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type notif-bis:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;

Clemm, et al. Expires May 1, 2017 [Page 43]

Internet-Draft YANG-Push October 2016

 description
 "This leaf contains the time of the update.";
 }
 leaf updates-not-sent {
 type empty;
 description
 "This is a flag which indicates that not all data nodes
 subscribed to are included included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations.
 This may lead to intermittent loss of synchronization
 of data at the client. Synchronization at the client
 can occur when the next push-update is received.";
 }
 anydata datastore-contents {
 description
 "This contains the updated data. It constitutes a snapshot
 at the time-of-update of the set of data that has been
 subscribed to. The format and syntax of the data
 corresponds to the format and syntax of data that would be
 returned in a corresponding get operation with the same
 filter parameters applied.";
 }
 }
 notification push-change-update {
 if-feature "on-change";
 description
 "This notification contains an on-change push update.
 This notification shall only be sent to the receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type notif-bis:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;
 description
 "This leaf contains the time of the update, i.e. the
 time at which the change was observed.";
 }
 leaf updates-not-sent {
 type empty;
 description
 "This is a flag which indicates that not all changes which

Clemm, et al. Expires May 1, 2017 [Page 44]

Internet-Draft YANG-Push October 2016

 have occured since the last update are included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations, for example in
 cases where it was not able to keep up with a change burst.
 To facilitate synchronization, a publisher MAY subsequently
 send a push-update containing a full snapshot of subscribed
 data. Such a push-update might also be triggered by a
 subscriber requesting an on-demand synchronization.";
 }
 anydata datastore-changes {
 description
 "This contains datastore contents that has changed
 since the previous update, per the terms of the
 subscription. Changes are encoded analogous to
 the syntax of a corresponding yang-patch operation,
 i.e. a yang-patch operation applied to the YANG datastore
 implied by the previous update to result in the current
 state (and assuming yang-patch could also be applied to
 operational data).";
 }
 }
 augment "/notif-bis:subscription-started" {
 description
 "This augmentation adds push subscription parameters
 to the notification that a subscription has
 started and data updates are beginning to be sent.
 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-started/notif-bis:filter-type" {
 description
 "This augmentation allows to include additional update filters
 options to be included as part of the notification that a
 subscription has started.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:subscription-modified" {
 description
 "This augmentation adds push subscription parameters
 to the notification that a subscription has
 been modified.

Clemm, et al. Expires May 1, 2017 [Page 45]

Internet-Draft YANG-Push October 2016

 This notification shall only be sent to receivers
 of a subscription; it does not constitute a general-purpose
 notification.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-modified/notif-bis:filter-type" {
 description
 "This augmentation allows to include additional update
 filters options to be included as part of the notification
 that a subscription has been modified.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 augment "/notif-bis:filters/notif-bis:filter/"+
 "notif-bis:filter-type" {
 description
 "This container adds additional update filter options
 to the list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 case update-filter {
 uses update-filter;
 }
 }
 augment "/notif-bis:subscription-config/notif-bis:subscription" {
 description
 "Contains the list of subscriptions that are configured,
 as opposed to established via RPC or other means.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscription-config/notif-bis:subscription/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 uses update-filter;
 }
 }
 augment "/notif-bis:subscriptions/notif-bis:subscription" {
 description
 "Contains the list of currently active subscriptions,
 i.e. subscriptions that are currently in effect,
 used for subscription management and monitoring purposes.

Clemm, et al. Expires May 1, 2017 [Page 46]

Internet-Draft YANG-Push October 2016

 This includes subscriptions that have been setup via RPC
 primitives, e.g. establish-subscription, delete-subscription,
 and modify-subscription, as well as subscriptions that
 have been established via configuration.";
 uses update-policy;
 uses subscription-qos;
 }
 augment "/notif-bis:subscriptions/notif-bis:subscription/"+
 "notif-bis:filter-type" {
 description
 "Add push filters to selection of filter types.";
 case update-filter {
 description
 "Additional filter options for push subscription.";
 uses update-filter;
 }
 }
 }

 <CODE ENDS>

6. Security Considerations

 Subscriptions could be used to attempt to overload publishers of YANG
 datastores. For this reason, it is important that the publisher has
 the ability to decline a subscription request if it would deplete its
 resources. In addition, a publisher needs to be able to suspend an
 existing subscription when needed. When this occur, the subscription
 status is updated accordingly and the receivers are notified.
 Likewise, requests for subscriptions need to be properly authorized.

 A subscription could be used to retrieve data in subtrees that a
 receiver has no authorized access to. Therefore it is important that
 data pushed based on subscriptions is authorized in the same way that
 regular data retrieval operations are. Data being pushed to a
 receiver needs therefore to be filtered accordingly, just like if the
 data were being retrieved on-demand. The Netconf Authorization
 Control Model applies.

 A subscription could be configured on another receiver's behalf, with
 the goal of flooding that receiver with updates. One or more
 publishers could be used to overwhelm a receiver which doesn't even
 support subscriptions. Receivers which do not want pushed data need
 only terminate or refuse any transport sessions from the publisher.
 In addition, the Netconf Authorization Control Model SHOULD be used
 to control and restrict authorization of subscription configuration.

Clemm, et al. Expires May 1, 2017 [Page 47]

Internet-Draft YANG-Push October 2016

7. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Tim Jenkins, Kent Watsen, Susan Hares, Yang Geng, Peipei
 Guo, Michael Scharf, Sharon Chisholm, and Guangying Zheng.

8. References

8.1. Normative References

 [I-D.ietf-netconf-5277bis]
 Clemm, A., Gonzalez Prieto, A., Voit, E., Tripathy, A.,
 Nilsen-Nygaard, E., Chisholm, S., and H. Trevino,
 "Subscribing to YANG-Defined Event Notifications", draft-

ietf-netconf-5277bis-01 (work in progress), October 2016.

 [I-D.ietf-netconf-yang-patch]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", draft-ietf-netconf-yang-patch-12 (work in
 progress), September 2016.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, February 2012.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, March
 2012.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, June 2016.

 [RFC7950] Bjorklund, M., "The YANG 1.1 Data Modeling Language",
RFC 7950, August 2016.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, August 2016.

8.2. Informative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", I-D draft-ietf-netconf-restconf-17, September
 2016.

 [RFC1157] Case, J., "A Simple Network Management Protocol (SNMP)",
RFC 1157, May 1990.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-5277bis-01
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-5277bis-01
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-patch-12
https://datatracker.ietf.org/doc/html/rfc6470
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7895
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-17
https://datatracker.ietf.org/doc/html/rfc1157

Clemm, et al. Expires May 1, 2017 [Page 48]

Internet-Draft YANG-Push October 2016

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",

RFC 6241, June 2011.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923, June 2016.

Appendix A. Issues that are currently being worked and resolved

 (To be removed by RFC editor prior to publication)

A.1. Unresolved and yet-to-be addressed issues

 Which stream types to introduce, if any based on implications of
 opstate. Current list includes streams for all operational and for
 all config data. Consider adding stream for operational data minus
 counters.

 We need a new Metadata filter. But so does traditional GET. This
 should be relevant independent of subscriptions. This has
 implications of ephemeral requirements from I2RS

 Should we allow an interplay of filter types in a single
 subscription. Or should we keep them fully independent.

 Do we add a counter for the number of object changes during a
 dampening period?

A.2. Agreement in principal

 Do we need an extension for NACM to support filter out datastore
 nodes for which the receiver has no read access? (And how does this
 differ from existing GET, which must do the same filtering?) In
 5277, such filtering is done at the notification level. Yang-push
 includes notification-content filtering. This may be very expensive
 in terms of processing. Andy suggestion: only accept Yang-push
 subscriptions for subtrees the user has rights for all the nodes in
 the subtree. Changes to those rights trigger a subscription
 termination. Should we codify this, or let vendors determine when
 per subtree filtering might be applied?

 Need to add a new RPC to request enabling a resynch for an existing
 on-change subscription exposed on publisher

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7923

Clemm, et al. Expires May 1, 2017 [Page 49]

Internet-Draft YANG-Push October 2016

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v03 to v04

 o Updates-not-sent flag added

 o Not notifiable extension added

 o Dampening period is for whole subscription, not single objects

 o Moved start/stop into rfc5277bis

 o Client and Server changed to subscriber, publisher, and receiver

 o Anchor time for periodic

 o Message format for synchronization (i.e. synch-on-start)

 o Material moved into 5277bis

 o QoS parameters supported, by not allowed to be modified by RPC

 o Text updates throughout

Authors' Addresses

 Alexander Clemm
 Sympotech

 Email: alex@sympotech.com

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

Clemm, et al. Expires May 1, 2017 [Page 50]

Internet-Draft YANG-Push October 2016

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Balazs Lengyel
 Ericsson

 Email: balazs.lengyel@ericsson.com

Clemm, et al. Expires May 1, 2017 [Page 51]

