
NETCONF A. Clemm
Internet-Draft Huawei
Intended status: Standards Track E. Voit
Expires: October 20, 2017 A. Gonzalez Prieto
 A. Tripathy
 E. Nilsen-Nygaard
 Cisco Systems
 A. Bierman
 YumaWorks
 B. Lengyel
 Ericsson
 April 18, 2017

Subscribing to YANG datastore push updates
draft-ietf-netconf-yang-push-06

Abstract

 Providing rapid visibility into changes made on YANG configuration
 and operational objects enables new capabilities such as remote
 mirroring of configuration and operational state. Via the mechanism
 described in this document, subscriber applications may request a
 continuous, customized stream of updates from a YANG datastore.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 20, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clemm, et al. Expires October 20, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft YANG-Push April 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Definitions and Acronyms 4
3. Solution Overview . 4
3.1. Event Subscription Model 4
3.2. Negotiation of Subscription Policies 5
3.3. On-Change Considerations 6
3.4. Data Encodings . 7
3.5. Datastore state filters 7
3.6. Streaming updates . 8
3.7. Subscription management 11
3.8. Receiver Authorization 12
3.9. On-change notifiable YANG objects 13
3.10. Other considerations 14

 4. A YANG data model for management of datastore push
 subscriptions . 15

4.1. Overview . 15
4.2. Subscription configuration 21
4.3. YANG Notifications 22
4.4. YANG RPCs . 23

5. YANG module . 28
6. Security Considerations 41
7. Acknowledgments . 42
8. References . 42
8.1. Normative References 42

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Clemm, et al. Expires October 20, 2017 [Page 2]

Internet-Draft YANG-Push April 2017

8.2. Informative References 43
Appendix A. Relationships to other drafts 43
A.1. ietf-netconf-subscribed-notifications 43
A.2. ietf-netconf-netconf-event-notif 44
A.3. ietf-netconf-restconf-notif 44
A.4. voit-notifications2 44

Appendix B. Technologies to be considered for future iterations 44
 B.1. Proxy YANG Subscription when the Subscriber and Receiver
 are different . 45

B.2. OpState and Filters 45
B.3. Splitting push updates 46
B.4. Potential Subscription Parameters 46

Appendix C. Issues that are currently being worked and resolved 47
Appendix D. Changes between revisions 47

 Authors' Addresses . 48

1. Introduction

 Traditional approaches to remote visibility have been built on
 polling. With polling, data is periodically requested and retrieved
 by a client from a server to stay up-to-date. However, there are
 issues associated with polling-based management:

 o Each remote polling cycle places often fruitless load on the
 network, devices, and applications.

 o Polling installs significant latency; and this latency prohibits
 many application types.

 o Polling cycles may be missed, requests may be delayed or get lost,
 often when the network is under stress and the need for the data
 is the greatest.

 o Polling requests will undergo slight fluctuations, resulting in
 intervals of different lengths. The resulting data is difficult
 to calibrate and compare.

 A more effective alternative to polling is for an application can
 receive automatic and continuous updates from a targeted subset of a
 datastore. Accordingly, there is a need for a service that allows
 applications to subscribe to updates from a YANG datastore and that
 enables the publisher to push those updates. The requirements for
 such a service have been documented in [RFC7923].

 This document defines a solution built on top of "Custom Subscription
 to Event Notifications" [subscribe]. Supplementing that work are
 YANG data model augmentations, extended RPCs, and new datastore

https://datatracker.ietf.org/doc/html/rfc7923

Clemm, et al. Expires October 20, 2017 [Page 3]

Internet-Draft YANG-Push April 2017

 specific update notifications. Transport options for [subscribe]
 will work seamlessly with this solution.

2. Definitions and Acronyms

 The terms below supplement those defined in [subscribe].

 Data node: An instance of management information in a YANG datastore.

 Data node update: A data item containing the current value/property
 of a Data node at the time the data node update was created.

 Datastore: A conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Notification message: A transport encapsulated update record(s) and/
 or event notification(s) intended to be sent to a receiver.

 Update record: A representation data node update(s) resulting from
 the application of a filter for a subscription. An update record
 will include the value/property of one or more data nodes at a point
 in time. It may contain the update type for each data node (e.g.,
 add, change, delete). Also included may be metadata/headers such as
 a subscription-id.

 Update trigger: A mechanism that determines when a data record is to
 be generated.

 YANG-Push: The subscription and push mechanism for YANG datastores
 that is specified in this document.

3. Solution Overview

 This document specifies a solution for a push update subscription
 service. This solution supports the dynamic as well as configured
 subscriptions to information updates from YANG datastores. YANG
 objects are subsequently pushed from the publisher to the receiver
 per the terms of the subscription.

3.1. Event Subscription Model

 YANG-push subscriptions are defined using a data model that is itself
 defined in YANG. This model enhances the event subscription model
 defined in [subscribe] with capabilities that allow subscribers to

Clemm, et al. Expires October 20, 2017 [Page 4]

Internet-Draft YANG-Push April 2017

 specify what to include in an update record, as well as what triggers
 the generation of the update record. Key enhancements include:

 o Enhancements to filters. Specifically the filter MUST at identify
 at least one targeted yang data node or subtree, and be applied
 against a datastore.

 o Enhancements to policies. Specifically the conditions triggering
 when to generate new update records.

 * For periodic subscriptions, the trigger is specified by two
 parameters that defines the interval with which updates are to
 be pushed. These parameters are the period/interval of
 reporting duration, and an anchor time which can be used to
 calculate at which times updates needs to be assembled and
 sent.

 * For on-change subscriptions, the trigger occurs whenever a
 change in the subscribed information is detected. Included are
 additional parameters such as:

 + Dampening period: This period is the interval which must
 pass before a successive update records for the same
 subscription are generated. Note that the dampening period
 applies to the set of all data nodes within a single
 subscription. This means that on the first change of an
 object, an update record containing that object is created
 either immediately or at the end of a dampening period
 already in effect.

 + Change type: This parameter can be used to reduce the types
 of datastore changes for which updates are sent (e.g., you
 might only send when an object is created or deleted, but
 not when an object value changes).

 + No Synch on start: defines whether or not a complete push-
 update of all subscribed data will be sent at the beginning
 of a subscription. Such synchronization establishes the
 frame of reference for subsequent updates.

 o Anydata encoding for the contents of periodic and on-change push
 updates.

3.2. Negotiation of Subscription Policies

 A dynamic subscription request SHOULD be declined based on
 publisher's assessment that it may be unable to provide update
 records that would meet the terms of the request. However a

Clemm, et al. Expires October 20, 2017 [Page 5]

Internet-Draft YANG-Push April 2017

 subscriber may quickly follow up with a new subscription request
 using different parameters.

 Random guessing at different parameters by a subscriber is to be
 discouraged. Therefore to minimize the number of subscription
 iterations between subscriber and publisher, dynamic subscriptions
 MUST support a simple negotiation between subscribers and publishers
 for subscription parameters. This negotiation is in the form of a
 no-success response to a failed establish or modify subscription
 request. The no-success message SHOULD include in the returned error
 information that, when considered, increase the likelihood of success
 for subsequent requests. However, there are no guarantee that
 subsequent requests for this subscriber will in fact be accepted.

 Such negotiation information returned from a publisher beyond that
 from [subscribe] include hints at acceptable time intervals, size
 estimates for the number or objects which would be returned from a
 filter, and the names of targeted objects not found in the
 publisher's YANG tree.

3.3. On-Change Considerations

 On-change subscriptions allow subscribers to subscribe to updates
 whenever changes to objects occur. As such, on-change subscriptions
 are effective for data that changes infrequently, yet that require
 applications to be notified with minimal delay.

 On-change subscriptions tend to be more difficult to implement than
 periodic subscriptions. Accordingly, on-change subscriptions may not
 be supported by all implementations or for every object. Therefore
 when an on-change subscription is established, it is important to
 remember that two criteria MUST be met before objects may be sent.
 First the a change in a subscribed object supporting on-change
 notification is detected (for more on how objects are so marked, see

Section 3.9). And second, security protections equivalent to a GET
 on that object permit the object's distribution to a receiver.

 To avoid flooding receivers with repeated updates for fast-changing
 objects, or objects with oscillating values, an on-change
 subscription allows for the definition of a dampening period. Once
 an update record for a given object is generated, no other updates
 for this particular subscription will be created until the end of the
 dampening period. Values sent at the end of the dampening period are
 the current values of all changed objects which are current at the
 time the dampening period expires. Changed objects includes those
 which were deleted or newly created during that dampening period. If
 an object has returned to its original value (or even has been
 created and then deleted) during the dampening-period, the last

Clemm, et al. Expires October 20, 2017 [Page 6]

Internet-Draft YANG-Push April 2017

 change will still be sent. This will indicate churn is occuring on
 that object.

 On-change subscriptions can be refined to let users subscribe only to
 certain types of changes, for example, only to object creations and
 deletions, but not to modifications of object values. Care must be
 used with this capability as the remote datastore extract can de-
 synchronize.

3.4. Data Encodings

 Subscribed data is encoded in either XML or JSON format. A publisher
 MUST support XML encoding and MAY support JSON encoding.

3.4.1. Periodic Subscriptions

 In a periodic subscription, the data included as part of an update
 corresponds to data that could have been simply retrieved using a get
 operation and is encoded in the same way. XML encoding rules for
 data nodes are defined in [RFC7950]. JSON encoding rules are defined
 in [RFC7951].

3.4.2. On-Change Subscriptions

 In an on-change subscription, updates need to indicate not only
 values of changed data nodes but also the types of changes that
 occurred since the last update. Therefore encoding rules for data in
 on-change updates will follow YANG-patch operation as specified in
 [RFC8072]. The YANG-patch will describe what needs to be applied to
 the earlier state reported by the preceding update, to result in the
 now-current state. Note that contrary [RFC8072], objects
 encapsulated are not restricted to configuration objects only.

3.5. Datastore state filters

 Subscription policy specifies both the filters and the datastores
 against which the filters will be applied. The result is the push of
 information necessary to remotely maintain an extract of publisher's
 datastore.

 Only a single filter can be applied to a subscription at a time. The
 following filter types are included in the yang-push data model, and
 may be applied against a datastore:

 o subtree: A subtree filter identifies one or more subtrees. When
 specified, updates will only come from the data nodes of selected
 YANG subtree(s). The syntax and semantics correspond to that
 specified for [RFC6241] section 6.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
https://datatracker.ietf.org/doc/html/rfc8072
https://datatracker.ietf.org/doc/html/rfc8072
https://datatracker.ietf.org/doc/html/rfc6241#section-6

Clemm, et al. Expires October 20, 2017 [Page 7]

Internet-Draft YANG-Push April 2017

 o xpath: An xpath filter is an XPath expression which may be
 meaningfully applied to a datastore. It is the results of this
 expression which will be pushed.

 Xpath itself provides powerful filtering constructs, and care must be
 used in filter definition. As an example, consider an xpath filter
 with a boolean result; such a result will not provide an easily
 interpretable subset of a datastore. Beyond the boolean example, it
 is quite possible to define an xpath filter where results are easy
 for an application to mis-interpret. Consider an xpath filter which
 only passes a datastore object when interface=up. It is up to the
 receiver to understand implications of the presence or absence of
 objects in each update.

 It is not expected that implementations will support comprehensive
 filter syntax and boundless complexity. It will be up to
 implementations to describe what is viable, but the goal is to
 provide equivalent capabilities to what is available with a GET.
 Implementations MUST reject dynamic subscriptions or suspend
 configured subscriptions if they include filters which are
 unsupportable on a platform.

3.6. Streaming updates

 Contrary to traditional data retrieval requests, datastore
 subscription enables an unbounded series of update records to be
 streamed over time. Two generic notifications for update records
 have been defined for this: "push-update" and "push-change-update".

 A push-update notification defines a complete, filtered update of the
 datastore per the terms of a subscription. This type of notification
 is used for continuous updates of periodic subscriptions. A push-
 update notification can also used be for the on-change subscriptions
 in two cases. First it will be used as the initial push-update if
 there is a need to synchronize the receiver at the start of a new
 subscription. It also MAY be sent if the publisher later chooses to
 resynch an on-change subscription. The push-update record contains a
 data snippet that contains an instantiated subtree with the
 subscribed contents. The content of the update record is equivalent
 to the contents that would be obtained had the same data been
 explicitly retrieved using e.g., a NETCONF "get" operation, with the
 same filters applied.

 A push-change-update notification is the most common type of update
 for on-change subscriptions. The update record in this case contains
 a data snippet that indicates the full set of changes that data nodes
 have undergone since the last notification of YANG objects. In other

Clemm, et al. Expires October 20, 2017 [Page 8]

Internet-Draft YANG-Push April 2017

 words, this indicates which data nodes have been created, deleted, or
 have had changes to their values.

 These new YANG notifications are encoded and placed within
 notification messages, which are then queued for egress over the
 specified transport. The following is an example of an XML encoded
 notification message over NETCONF transport as per [netconf-notif].

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-update
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>1011</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-contents>
 <foo>
 <bar>some_string</bar>
 </foo>
 </datastore-contents>
 </push-update>
 </notification>

 Figure 1: Push example

 The following is an example of an on-change notification. It
 contains an update for subscription 89, including a new value for a
 leaf called beta, which is a child of a top-level container called
 alpha:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta>1500</beta>
 </alpha>
 </datastore-changes>
 </push-change-update>
 </notification>

 Figure 2: Push example for on change

 The equivalent update when requesting json encoding:

Clemm, et al. Expires October 20, 2017 [Page 9]

Internet-Draft YANG-Push April 2017

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes>
 {
 "ietf-yang-patch:yang-patch": {
 "patch-id": [
 null
],
 "edit": [
 {
 "edit-id": "edit1",
 "operation": "merge",
 "target": "/alpha/beta",
 "value": {
 "beta": 1500
 }
 }
]
 }
 }
 </datastore-changes>
 </push-change-update>
 </notification>

 Figure 3: Push example for on change with JSON

 When the beta leaf is deleted, the publisher may send

Clemm, et al. Expires October 20, 2017 [Page 10]

Internet-Draft YANG-Push April 2017

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <push-change-update xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>89</subscription-id>
 <time-of-update>2015-03-09T19:14:56.233Z</time-of-update>
 <datastore-changes-xml>
 <alpha xmlns="http://example.com/sample-data/1.0" >
 <beta urn:ietf:params:xml:ns:netconf:base:1.0:
 operation="delete"/>
 </alpha>
 </datastore-changes-xml>
 </push-change-update>
 </notification>

 Figure 4: 2nd push example for on change update

3.7. Subscription management

 [subscribe] has been enhanced to support YANG datastore subscription
 negotiation. These enhancements provide information on why a
 datastore subscription attempt has failed.

 A datastore subscription can be rejected for multiple reasons. This
 includes the lack of read authorization on a requested data node, or
 the inability of the publisher push update records as frequently as
 requested. In such cases, no subscription is established. Instead,
 the subscription-result with the failure reason is returned as part
 of the RPC response. As part of this response, a set of alternative
 subscription parameters MAY be returned that would likely have
 resulted in acceptance of the subscription request. The subscriber
 may consider these as part of future subscription attempts.

 It should be noted that a rejected subscription does not result in
 the generation of an rpc-reply with an rpc-error element, as neither
 the specification of YANG-push specific errors nor the specification
 of additional data parameters to be returned in an error case are
 supported as part of a YANG data model.

 For instance, for the following request:

Clemm, et al. Expires October 20, 2017 [Page 11]

Internet-Draft YANG-Push April 2017

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <datastore>push-update</datastore>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 5: Establish-Subscription example

 the publisher might return:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="http://urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 error-insufficient-resources
 </subscription-result>
 <period>2000</period>
 </rpc-reply>

 Figure 6: Error response example

3.8. Receiver Authorization

 A receiver of subscription data MUST only be sent updates for which
 they have proper authorization. Data that is being pushed therefore
 needs to be subjected to a filter that applies all corresponding
 rules applicable at the time of a specific pushed update, silently
 removing any non-authorized data from subtrees. This enables YANG
 data pushed based on subscriptions to be authorized equivalently to a
 regular data retrieval (get) operation.

 The applicable authorization model for data in YANG datastores is the
 NETCONF Access Control Model [RFC6536]. However, some clarifications
 to that RFC are needed so that the desired access control behavior is
 applied to pushed updates.

 One of these clarifications is that a dynamic subscriber MUST have
 read access to every data node specifically named within the filter.

https://datatracker.ietf.org/doc/html/rfc6536

Clemm, et al. Expires October 20, 2017 [Page 12]

Internet-Draft YANG-Push April 2017

 +-------------+ +-------------+
 subscription | protocol | | target |
 request --> | operation | -------------> | data node |
 | allowed? | datastore | access |
 +-------------+ or state | allowed? |
 data access +-------------+

 Figure 7: Access control for subscription

 Likewise if a receiver no longer has read access permission to a data
 node named/targeted within a filter, a dynamic subscription MUST be
 abnormally terminated (with data-unavailable provided as the reason).
 To provide equivalent behavior, configured subscriptions MUST be
 suspended to a receiver.

 Another clarification to [RFC6536] is that each of the individual
 nodes in a pushed update MUST also have access control applied. This
 includes verifying read access into nodes added since the last update
 record. If read access into previously accessible nodes not
 explicitly named in the filter are lost mid-subscription, that can be
 treated as a 'delete' for on-change subscriptions. If not capable of
 handling such permission changes for dynamic subscriptions, publisher
 implementations MAY choose to terminate the subscription and to force
 re-establishment with appropriate filtering. But this is not
 optimal.

 +-------------+ +-------------------+
 subscription | data node | yes | |
 update --> | access | ---> | add data node |
 | allowed? | | to update message |
 +-------------+ +-------------------+

 Figure 8: Access control for push updates

3.9. On-change notifiable YANG objects

 In some cases, a publisher supporting on-change notifications may not
 be able to push updates for some object types on-change. Reasons for
 this might be that the value of the data node changes frequently
 (e.g., [RFC7223]'s in-octets counter), that small object changes are
 frequent and meaningless (e.g., a temperature gauge changing 0.1
 degrees), or that the implementation is not capable of on-change
 notification for a particular object.

 Support for on-change notification is usually specific to the
 individual YANG model and/or implementation so it is possible to

https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7223

Clemm, et al. Expires October 20, 2017 [Page 13]

Internet-Draft YANG-Push April 2017

 define in design time. System integrators need this information
 (without reading any data from a live node).

 The default assumption is that no data nodes support on-change
 notification. Schema nodes and subtrees that support on-change
 notifications MUST be marked as such with the YANG extension
 notifiable-on-change. This extension is defined in the data model
 below.

 When an on-change subscription is established data-nodes marked with
 notifiable-on-change false; will be automatically filtered out. This
 also means that authorization checks SHALL NOT be performed on them.

 If a YANG model designer wants to add the notifiable-on-change
 statement to one or more nodes of an existing module, but wants to
 avoid modifying the text of the existing module, the notifiable-on-
 change statement MAY be added using deviation statements.

 deviation /sys:system/sys:system-time {
 deviate add {
 yp:notifiable-on-change false;
 }
 }

 Figure 9: Deviation Example

3.10. Other considerations

3.10.1. Robustness and reliability

 Particularly in the case of on-change push updates, it is important
 that push updates do not get lost.

 Update messages for a single subscription MAY NOT be resequenced.

 It is conceivable that under certain circumstances, a publisher will
 recognize that it is unable to include within an update record the
 full set of objects desired per the terms of a subscription. In this
 case, the publisher MUST take one or more of the following actions.

 o A publisher MUST set the updates-not-sent flag on any update
 record which is known to be missing information.

 o It MAY choose to suspend a subscription as per [subscribe].

 o When resuming an on-change subscription, the publisher SHOULD
 generate a complete patch from the previous update record. If
 this is not possible and the synch-on-start option is configured,

Clemm, et al. Expires October 20, 2017 [Page 14]

Internet-Draft YANG-Push April 2017

 then the full datastore contents MAY be sent instead (effectively
 replacing the previous contents). If neither of these are
 possible, then an updates-not-sent flag MUST be included on the
 next push-change-update.

3.10.2. Update size and fragmentation

 Depending on the subscription, the volume of updates can become quite
 large. Additionally, based on the platform, it is possible that
 update records for a single subscription are best sent independently
 from different line-cards. Therefore, it may not always be practical
 to send the entire update record in a single chunk. Implementations
 may therefore choose, at their discretion, to "chunk" update records,
 breaking one subscription's objects across several update records.
 In this case the updates-not-sent flag will indicate that no single
 update record is complete, and there may be multiple updates coming
 into a receiver for a single periodic interval or on-change dampening
 period.

 Care must be taken in chunking as problems may arrise for objects
 that have containment or referential dependencies. The publisher
 must consider these issues if chunking is provided.

3.10.3. Publisher capacity

 It is far preferable to decline a subscription request then to accept
 such a request when it cannot be met.

 Whether or not a subscription can be supported will be determined by
 a combination of several factors such as the subscription policy (on-
 change or periodic), the period in which to report changes (1 second
 periods will consume more resources than 1 hour periods), the amount
 of data in the subtree that is being subscribed to, and the number
 and combination of other subscriptions that are concurrently being
 serviced.

4. A YANG data model for management of datastore push subscriptions

4.1. Overview

 The YANG data model for datastore push subscriptions is depicted in
 the following figure. Following YANG tree convention in the
 depiction, brackets enclose list keys, "rw" means configuration, "ro"
 operational state data, "?" designates optional nodes, "*" designates
 nodes that can have multiple instances. Parentheses with a name in
 the middle enclose choice and case nodes. New YANG objects defined
 here (i.e., beyond those from [subscribe]) are identified with "yp".

Clemm, et al. Expires October 20, 2017 [Page 15]

Internet-Draft YANG-Push April 2017

module: ietf-subscribed-notifications
 +--rw filters
 | +--rw filter* [identifier]
 | +--rw identifier filter-id
 | +--rw filter-type filter-type
 | +--rw filter
 +--rw subscription-config {configured-subscriptions}?
 | +--rw subscription* [identifier]
 | +--rw identifier subscription-id
 | +--rw encoding? encoding
 | +--rw (target)
 | | +--:(event-stream)
 | | | +--rw stream stream
 | | +--:(yp:datastore)
 | | +--rw yp:datastore datastore
 | +--rw (applied-filter)
 | | +--:(by-reference)
 | | | +--rw filter-ref filter-ref
 | | +--:(locally-configured)
 | | +--rw filter-type filter-type
 | | +--rw filter
 | +--rw stop-time? yang:date-and-time
 | +--rw receivers
 | | +--rw receiver* [address port]
 | | +--rw address inet:host
 | | +--rw port inet:port-number
 | | +--rw protocol? transport-protocol
 | +--rw (notification-origin)?
 | | +--:(interface-originated)
 | | | +--rw source-interface? if:interface-ref
 | | +--:(address-originated)
 | | +--rw source-vrf? string
 | | +--rw source-address inet:ip-address-no-zone
 | +--rw (yp:update-trigger)?
 | | +--:(yp:periodic)
 | | | +--rw yp:period yang:timeticks
 | | | +--rw yp:anchor-time? yang:date-and-time
 | | +--:(yp:on-change) {on-change}?
 | | +--rw yp:dampening-period yang:timeticks
 | | +--rw yp:no-synch-on-start? empty
 | | +--rw yp:excluded-change* change-type
 | +--rw yp:dscp? inet:dscp
 | +--rw yp:weighting? uint8
 | +--rw yp:dependency? sn:subscription-id
 +--ro subscriptions
 +--ro subscription* [identifier]
 +--ro identifier subscription-id
 +--ro configured-subscription?

Clemm, et al. Expires October 20, 2017 [Page 16]

Internet-Draft YANG-Push April 2017

 | empty {configured-subscriptions}?
 +--ro encoding? encoding
 +--ro (target)
 | +--:(event-stream)
 | | +--ro stream stream
 | | +--ro replay-start-time? yang:date-and-time {replay}?
 | +--:(yp:datastore)
 | +--ro yp:datastore datastore
 +--ro (applied-filter)
 | +--:(by-reference)
 | | +--ro filter-ref filter-ref
 | +--:(locally-configured)
 | +--ro filter-type filter-type
 | +--ro filter
 +--ro stop-time? yang:date-and-time
 +--ro (notification-origin)?
 | +--:(interface-originated)
 | | +--ro source-interface? if:interface-ref
 | +--:(address-originated)
 | +--ro source-vrf? string
 | +--ro source-address inet:ip-address-no-zone
 +--ro receivers
 | +--ro receiver* [address port]
 | +--ro address inet:host
 | +--ro port inet:port-number
 | +--ro protocol? transport-protocol
 | +--ro pushed-notifications? yang:counter64
 | +--ro excluded-notifications? yang:counter64
 | +--ro status subscription-status
 +--ro (yp:update-trigger)?
 | +--:(yp:periodic)
 | | +--ro yp:period yang:timeticks
 | | +--ro yp:anchor-time? yang:date-and-time
 | +--:(yp:on-change) {on-change}?
 | +--ro yp:dampening-period yang:timeticks
 | +--ro yp:no-synch-on-start? empty
 | +--ro yp:excluded-change* change-type
 +--ro yp:dscp? inet:dscp
 +--ro yp:weighting? uint8
 +--ro yp:dependency? sn:subscription-id

 rpcs:
 +---x establish-subscription
 | +---w input
 | | +---w encoding? encoding
 | | +---w (target)
 | | | +--:(event-stream)
 | | | | +---w stream stream

Clemm, et al. Expires October 20, 2017 [Page 17]

Internet-Draft YANG-Push April 2017

 | | | | +---w replay-start-time? yang:date-and-time {replay}?
 | | | +--:(yp:datastore)
 | | | +---w yp:datastore datastore
 | | +---w (applied-filter)
 | | | +--:(by-reference)
 | | | | +---w filter-ref filter-ref
 | | | +--:(locally-configured)
 | | | +---w filter-type filter-type
 | | | +---w filter
 | | +---w stop-time? yang:date-and-time
 | | +---w (yp:update-trigger)?
 | | | +--:(yp:periodic)
 | | | | +---w yp:period yang:timeticks
 | | | | +---w yp:anchor-time? yang:date-and-time
 | | | +--:(yp:on-change) {on-change}?
 | | | +---w yp:dampening-period yang:timeticks
 | | | +---w yp:no-synch-on-start? empty
 | | | +---w yp:excluded-change* change-type
 | | +---w yp:dscp? inet:dscp
 | | +---w yp:weighting? uint8
 | | +---w yp:dependency? sn:subscription-id
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(no-success)
 | | +--ro filter-failure? string
 | | +--ro replay-start-time-hint? yang:date-and-time
 | | +--ro yp:period-hint? yang:timeticks
 | | +--ro yp:error-path? string
 | | +--ro yp:object-count-estimate? uint32
 | | +--ro yp:object-count-limit? uint32
 | | +--ro yp:kilobytes-estimate? uint32
 | | +--ro yp:kilobytes-limit? uint32
 | +--:(success)
 | +--ro identifier subscription-id
 +---x modify-subscription
 | +---w input
 | | +---w identifier? subscription-id
 | | +---w (applied-filter)
 | | | +--:(by-reference)
 | | | | +---w filter-ref filter-ref
 | | | +--:(locally-configured)
 | | | +---w filter-type filter-type
 | | | +---w filter
 | | +---w stop-time? yang:date-and-time
 | | +---w (yp:update-trigger)?
 | | +--:(yp:periodic)
 | | | +---w yp:period yang:timeticks

Clemm, et al. Expires October 20, 2017 [Page 18]

Internet-Draft YANG-Push April 2017

 | | | +---w yp:anchor-time? yang:date-and-time
 | | +--:(yp:on-change) {on-change}?
 | | +---w yp:dampening-period yang:timeticks
 | +--ro output
 | +--ro subscription-result subscription-result
 | +--ro (result)?
 | +--:(no-success)
 | +--ro filter-failure? string
 | +--ro yp:period-hint? yang:timeticks
 | +--ro yp:error-path? string
 | +--ro yp:object-count-estimate? uint32
 | +--ro yp:object-count-limit? uint32
 | +--ro yp:kilobytes-estimate? uint32
 | +--ro yp:kilobytes-limit? uint32
 +---x delete-subscription
 | +---w input
 | | +---w identifier subscription-id
 | +--ro output
 | +--ro subscription-result subscription-result
 +---x kill-subscription
 +---w input
 | +---w identifier subscription-id
 +--ro output
 +--ro subscription-result subscription-result

 notifications:
 +---n replay-complete
 | +--ro identifier subscription-id
 +---n notification-complete
 | +--ro identifier subscription-id
 +---n subscription-started
 | +--ro identifier subscription-id
 | +--ro encoding? encoding
 | +--ro (target)
 | | +--:(event-stream)
 | | | +--ro stream stream
 | | | +--ro replay-start-time? yang:date-and-time {replay}?
 | | +--:(yp:datastore)
 | | +--ro yp:datastore datastore
 | +--ro (applied-filter)
 | | +--:(by-reference)
 | | | +--ro filter-ref filter-ref
 | | +--:(locally-configured)
 | | +--ro filter-type filter-type
 | | +--ro filter
 | +--ro stop-time? yang:date-and-time
 | +--ro (yp:update-trigger)?
 | | +--:(yp:periodic)

Clemm, et al. Expires October 20, 2017 [Page 19]

Internet-Draft YANG-Push April 2017

 | | | +--ro yp:period yang:timeticks
 | | | +--ro yp:anchor-time? yang:date-and-time
 | | +--:(yp:on-change) {on-change}?
 | | +--ro yp:dampening-period yang:timeticks
 | | +--ro yp:no-synch-on-start? empty
 | | +--ro yp:excluded-change* change-type
 | +--ro yp:dscp? inet:dscp
 | +--ro yp:weighting? uint8
 | +--ro yp:dependency? sn:subscription-id
 +---n subscription-resumed
 | +--ro identifier subscription-id
 +---n subscription-modified
 | +--ro identifier subscription-id
 | +--ro encoding? encoding
 | +--ro (target)
 | | +--:(event-stream)
 | | +--ro stream stream
 | | +--ro replay-start-time? yang:date-and-time {replay}?
 | +--ro (applied-filter)
 | | +--:(by-reference)
 | | | +--ro filter-ref filter-ref
 | | +--:(locally-configured)
 | | +--ro filter-type filter-type
 | | +--ro filter
 | +--ro stop-time? yang:date-and-time
 | +--ro (yp:update-trigger)?
 | | +--:(yp:periodic)
 | | | +--ro yp:period yang:timeticks
 | | | +--ro yp:anchor-time? yang:date-and-time
 | | +--:(yp:on-change) {on-change}?
 | | +--ro yp:dampening-period yang:timeticks
 | | +--ro yp:no-synch-on-start? empty
 | | +--ro yp:excluded-change* change-type
 | +--ro yp:dscp? inet:dscp
 | +--ro yp:weighting? uint8
 | +--ro yp:dependency? sn:subscription-id
 +---n subscription-terminated
 | +--ro identifier subscription-id
 | +--ro error-id subscription-errors
 | +--ro filter-failure? string
 +---n subscription-suspended
 +--ro identifier subscription-id
 +--ro error-id subscription-errors
 +--ro filter-failure? string

module: ietf-yang-push
 notifications:
 +---n push-update

Clemm, et al. Expires October 20, 2017 [Page 20]

Internet-Draft YANG-Push April 2017

 | +--ro subscription-id sn:subscription-id
 | +--ro time-of-update? yang:date-and-time
 | +--ro updates-not-sent? empty
 | +--ro datastore-contents?
 +---n push-change-update {on-change}?
 +--ro subscription-id sn:subscription-id
 +--ro time-of-update? yang:date-and-time
 +--ro updates-not-sent? empty
 +--ro datastore-changes?

 Figure 10: Model structure

 Selected components of the model are summarized below.

4.2. Subscription configuration

 Both configured and dynamic subscriptions are represented within the
 list subscription-config. Each subscription has own list elements.
 New and enhanced parameters extending the basic subscription data
 model in [subscribe] include:

 o An update filter identifying yang nodes of interest. Filter
 contents are specified via a reference to an existing filter, or
 via an in-line definition for only that subscription. This
 facilitates the reuse of filter definitions, which can be
 important in case of complex filter conditions. Referenced
 filters can also allow an implementation to avoid evaluating
 filter acceptability during a dynamic subscription request. The
 case statement differentiates the options.

 o For periodic subscriptions, triggered updates will occur at the
 boundaries of a specified time interval. These boundaries many be
 calculated from the periodic parameters:

 * a "period" which defines duration between period push updates.

 * an "anchor-time"; update intervals always fall on the points in
 time that are a multiple of a period after the anchor time. If
 anchor time is not provided, then the anchor time MUST be set
 with the creation time of the initial update record.

 o For on-change subscriptions, assuming the dampening period has
 completed, triggered occurs whenever a change in the subscribed
 information is detected. On-change subscriptions have more
 complex semantics that is guided by its own set of parameters:

Clemm, et al. Expires October 20, 2017 [Page 21]

Internet-Draft YANG-Push April 2017

 * a "dampening-period" specifies the interval that must pass
 before a successive update for the subscription is sent. If no
 dampening period is in effect, the update is sent immediately.
 If a subsequent change is detected, another update is only sent
 once the dampening period has passed for this subscription.

 * an "excluded-change" flag which allows restriction of the types
 of changes for which updates should be sent (e.g., only add to
 an update record on object creation).

 * a "no-synch-on-start" flag which specifies whether a complete
 update with all the subscribed data is to be sent at the
 beginning of a subscription.

 o Optional qos parameters to indicate the treatment of a
 subscription relative to other traffic between publisher and
 receiver. These include:

 * A "dscp" QoS marking which MUST be stamped on notification
 messages to differentiate network QoS behavior.

 * A "weighting" so that bandwidth proportional to this weighting
 can be allocated to this subscription relative to others for
 that receiver.

 * a "dependency" upon another subscription. Notification
 messages MUST NOT be sent prior to other notification messages
 containing update record(s) for the referenced subscription.

 o A subscription's weighting MUST work identically to stream
 dependency weighting as described within RFC 7540, section 5.3.2.

 o A subscription's dependency MUST work identically to stream
 dependency as described within RFC 7540, sections 5.3.1, 5.3.3,
 and 5.3.4. If a dependency is attempted via an RPC, but the
 referenced subscription does not exist, the dependency will be
 removed.

4.3. YANG Notifications

4.3.1. Monitoring and OAM Notifications

 OAM notifications and mechanism are reused from [subscribe]. Some
 have been augmented to include the YANG datastore specific objects.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7540

Clemm, et al. Expires October 20, 2017 [Page 22]

Internet-Draft YANG-Push April 2017

4.3.2. New Notifications for update records

 The data model introduces two YANG notifications to encode
 information for update records: "push-update" and "push-change-
 update".

 "Push-update" is used to send a complete snapshot of the filtered
 subscription data. This type of notification is used to carry the
 update records of a periodic subscription. The "push-update"
 notification is also used with on-change subscriptions for the
 purposes of allowing a receiver to "synch" on a complete set of
 subscribed datastore contents. This synching may be done the start
 of an on-change subscription, and then later in that subscription to
 force resynchronization. If the "updates-not-sent" flag is set, this
 indicates that the update record is incomplete.

 "Push-change-update" is used to send datastore changes that have
 occurred in subscribed data since the previous update. This
 notification is used only in conjunction with on-change
 subscriptions. This will be encoded as yang-patch data.

 If the application detects an informational discontinuity in either
 notification, the notification MUST include a flag "updates-not-
 sent". This flag which indicates that not all changes which have
 occurred since the last update are actually included with this
 update. In other words, the publisher has failed to fulfill its full
 subscription obligations. (For example a datastore missed a window
 in providing objects to a publisher process.) To facilitate
 synchronization, a publisher MAY subsequently send a push-update
 containing a full snapshot of subscribed data.

4.4. YANG RPCs

 YANG-Push subscriptions are established, modified, and deleted using
 RPCs augmented from [subscribe].

4.4.1. Establish-subscription RPC

 The subscriber sends an establish-subscription RPC with the
 parameters in section 3.1. An example might look like:

Clemm, et al. Expires October 20, 2017 [Page 23]

Internet-Draft YANG-Push April 2017

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <period>500</period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 11: Establish-subscription RPC

 The publisher MUST respond explicitly positively (i.e., subscription
 accepted) or negatively (i.e., subscription rejected) to the request.
 Positive responses include the subscription-id of the accepted
 subscription. In that case a publisher MAY respond:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 <subscription-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 52
 </subscription-id>
 </rpc-reply>

 Figure 12: Establish-subscription positive RPC response

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, the lack of read
 authorization on the requested data node, or the inability of the
 publisher to provide a stream with the requested semantics.

 When the requester is not authorized to read the requested data node,
 the returned information indicates the node is unavailable. For
 instance, if the above request was unauthorized to read node "ex:foo"
 the publisher may return:

Clemm, et al. Expires October 20, 2017 [Page 24]

Internet-Draft YANG-Push April 2017

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 subtree-unavailable
 </subscription-result>
 <filter-failure
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 /ex:foo
 </filter-failure>
 </rpc-reply>

 Figure 13: Establish-subscription access denied response

 If a request is rejected because the publisher is not able to serve
 it, the publisher SHOULD include in the returned error what
 subscription parameters would have been accepted for the request.
 However, there are no guarantee that subsequent requests using this
 info will in fact be accepted.

 For example, for the following request:

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <datastore>running</datastore>
 <filter netconf:type="xpath"
 xmlns:ex="http://example.com/sample-data/1.0"
 select="/ex:foo"/>
 <dampening-period>10</dampening-period>
 <encoding>encode-xml</encoding>
 </establish-subscription>
 </netconf:rpc>

 Figure 14: Establish-subscription request example 2

 a publisher that cannot serve on-change updates but periodic updates
 might return the following:

Clemm, et al. Expires October 20, 2017 [Page 25]

Internet-Draft YANG-Push April 2017

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 period-unsupported
 </subscription-result>
 <period-hint>100</period-hint>
 </rpc-reply>

 Figure 15: Establish-subscription error response example 2

4.4.2. Modify-subscription RPC

 The subscriber MAY invoke the modify-subscription RPC for a
 subscription it previously established. The subscriber will include
 newly desired values in the modify-subscription RPC. Parameters not
 included MUST remain unmodified. Below is an example where a
 subscriber attempts to modify the period of a subscription.

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <datastore>running</datastore>
 <subscription-id>
 1011
 </subscription-id>
 <period>250</period>
 </modify-subscription>
 </netconf:rpc>

 Figure 16: Modify subscription request

 The publisher MUST respond explicitly positively or negatively to the
 request. A response to a successful modification might look like:

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 </rpc-reply>

 Figure 17: Modify subscription response

 If the subscription modification is rejected, the publisher MUST send
 a response like it does for an establish-subscription and maintain

Clemm, et al. Expires October 20, 2017 [Page 26]

Internet-Draft YANG-Push April 2017

 the subscription as it was before the modification request.
 Responses MAY include hints. A subscription MAY be modified multiple
 times.

 A configured subscription cannot be modified using modify-
 subscription RPC. Instead, the configuration needs to be edited as
 needed.

4.4.3. Delete-subscription RPC

 To stop receiving updates from a subscription and effectively delete
 a subscription that had previously been established using an
 establish-subscription RPC, a subscriber can send a delete-
 subscription RPC, which takes as only input the subscription-id. For
 example:

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 <subscription-id>
 1011
 </subscription-id>
 </delete-subscription>
 </netconf:rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscription-result
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push:1.0">
 ok
 </subscription-result>
 </rpc-reply>

 Figure 18: Delete subscription

 Configured subscriptions cannot be deleted via RPC, but have to be
 removed from the configuration.

4.4.4. YANG Module Synchronization

 To make subscription requests, the subscriber needs to know the YANG
 module library available on the publisher. The YANG 1.0 module
 library information is sent by a NETCONF server in the NETCONF
 'hello' message. For YANG 1.1 modules and all modules used with the
 RESTCONF [RFC8040] protocol, this information is provided by the YANG
 Library module (ietf-yang-library.yang from [RFC7895]. The YANG

https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc7895

Clemm, et al. Expires October 20, 2017 [Page 27]

Internet-Draft YANG-Push April 2017

 library information is important for the receiver to reproduce the
 set of object definitions used by the replicated datastore.

 The YANG library includes a module list with the name, revision,
 enabled features, and applied deviations for each YANG module
 implemented by the publisher. The receiver is expected to know the
 YANG library information before starting a subscription. The
 "/modules-state/module-set-id" leaf in the "ietf-yang-library" module
 can be used to cache the YANG library information.

 The set of modules, revisions, features, and deviations can change at
 run-time (if supported by the server implementation). In this case,
 the receiver needs to be informed of module changes before data nodes
 from changed modules can be processed correctly. The YANG library
 provides a simple "yang-library-change" notification that informs the
 client that the library has changed. The receiver then needs to re-
 read the entire YANG library data for the replicated server in order
 to detect the specific YANG library changes. The "ietf-netconf-
 notifications" module defined in [RFC6470] contains a "netconf-
 capability-change" notification that can identify specific module
 changes. For example, the module URI capability of a newly loaded
 module will be listed in the "added-capability" leaf-list, and the
 module URI capability of an removed module will be listed in the
 "deleted-capability" leaf-list.

5. YANG module

<CODE BEGINS> file "ietf-yang-push.yang"
module ietf-yang-push {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-push";
 prefix yp;

 import ietf-inet-types {
 prefix inet;
 }
 import ietf-yang-types {
 prefix yang;
 }
 import ietf-subscribed-notifications {
 prefix sn;
 }

 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

https://datatracker.ietf.org/doc/html/rfc6470
http://tools.ietf.org/wg/netconf/

Clemm, et al. Expires October 20, 2017 [Page 28]

Internet-Draft YANG-Push April 2017

 WG Chair: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nokia.com>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:albertgo@cisco.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description
 "This module contains conceptual YANG specifications
 for YANG push.";

 revision 2017-04-19 {
 description
 "Move to identities for filters, datastores.";
 reference
 "YANG Datastore Push, draft-ietf-netconf-yang-push-06";
 }

 /*
 * EXTENSIONS
 */

 extension notifiable-on-change {
 argument "value";
 description
 "Indicates whether changes to the data node are reportable in
 on-change subscriptions.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-push-06

Clemm, et al. Expires October 20, 2017 [Page 29]

Internet-Draft YANG-Push April 2017

 The statement MUST only be a substatement of the leaf, leaf-list,
 container, list, anyxml, anydata statements. Zero or One
 notifiable-on-change statement is allowed per parent statement.
 NO substatements are allowed.

 The argument is a boolean value indicating whether on-change
 notifications are supported. If notifiable-on-change is not
 specified, the default is the same as the parent data node's
 value. For top level data nodes the default value is false.";
 }

 /*
 * FEATURES
 */

 feature on-change {
 description
 "This feature indicates that on-change updates are
 supported.";
 }

 /*
 * IDENTITIES
 */

 /* Error type identities for datastore subscription */
 identity period-unsupported {
 base sn:error;
 description
 "Requested time period is too short. This can be for both
 periodic and on-change dampening.";
 }

 identity qos-unsupported {
 base sn:error;
 description
 "Subscription QoS parameters not supported on this platform.";
 }

 identity dscp-unavailable {
 base sn:error;
 description
 "Requested DSCP marking not allocatable.";
 }

 identity on-change-unsupported {
 base sn:error;
 description

Clemm, et al. Expires October 20, 2017 [Page 30]

Internet-Draft YANG-Push April 2017

 "On-change not supported.";
 }

 identity synch-on-start-unsupported {
 base sn:error;
 description
 "On-change synch-on-start not supported.";
 }

 identity synch-on-start-datatree-size {
 base sn:error;
 description
 "Synch-on-start would push a datatree which exceeds size limit.";
 }

 identity reference-mismatch {
 base sn:error;
 description
 "Mismatch in filter key and referenced yang subtree.";
 }

 identity data-unavailable {
 base sn:error;
 description
 "Referenced yang node or subtree doesn't exist, or read
 access is not permitted.";
 }

 identity datatree-size {
 base sn:error;
 description
 "Resulting push updates would exceed size limit.";
 }

 /* Datastore identities */
 identity datastore {
 description
 "A datastore.";
 }
 identity candidate {
 base datastore;
 description
 "The candidate datastore per RFC-6241.";
 reference "RFC-6241, #5.1";
 }
 identity running {
 base datastore;
 description

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241

Clemm, et al. Expires October 20, 2017 [Page 31]

Internet-Draft YANG-Push April 2017

 "The running datastore per RFC-6241.";
 reference "RFC-6241, #5.1";
 }
 identity startup {
 base datastore;
 description
 "The startup datastore per RFC-6241.";
 reference "RFC-6241, #5.1";
 }
 identity operational {
 base datastore;
 description
 "The operational datastore contains all configuration data
 actually used by the system, including all applied configuration,
 system-provided configuration and values defined by any supported
 data models. In addition, the operational datastore also
 contains state data.";
 reference
 "the original text came from draft-ietf-netmod-revised-datastores
 -01, section #4.3. This definition is expected to remain stable
 meaning later reconciliation between the drafts unnecessary.";
 }

 /* New filter identities (adds to 'sn') */
 identity subtree {
 base sn:filter;
 description
 "A filter which follows the subtree filter syntax specified
 in RFC 6241.";
 reference "RFC 6241 section 6";
 }

 /*
 * TYPE DEFINITIONS
 */

 typedef change-type {
 type enumeration {
 enum "create" {
 description
 "Create a new data resource if it does not already exist. If
 it already exists, replace.";
 }
 enum "delete" {
 description
 "Delete a data resource if it already exists. If it does not
 exists, take no action.";
 }

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-revised-datastores
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241#section-6

Clemm, et al. Expires October 20, 2017 [Page 32]

Internet-Draft YANG-Push April 2017

 enum "insert" {
 description
 "Insert a new user-ordered data resource";
 }
 enum "merge" {
 description
 "merge the edit value with the target data resource; create
 if it does not already exist";
 }
 enum "move" {
 description
 "Reorder the target data resource";
 }
 enum "replace" {
 description
 "Replace the target data resource with the edit value";
 }
 enum "remove" {
 description
 "Remove a data resource if it already exists ";
 }
 }
 description
 "Specifies different types of datastore changes.";
 reference
 "RFC 8072 section 2.5, with a delta that it is ok to receive
 ability create on an existing node, or recieve a delete on a
 missing node.";
 }

 typedef datastore {
 type identityref {
 base datastore;
 }
 description
 "Specifies a system-provided datastore. May also specify ability
 portion of a datastore, so as to reduce the filtering effort.";
 }

 /*
 * GROUP DEFINITIONS
 */

 grouping datastore-criteria {
 description
 "A reusable place to define the meaning of datastore.";
 leaf datastore {
 type datastore;

https://datatracker.ietf.org/doc/html/rfc8072#section-2.5

Clemm, et al. Expires October 20, 2017 [Page 33]

Internet-Draft YANG-Push April 2017

 mandatory true;
 description
 "Datastore against which the subscription has been applied.";
 }
 }

 grouping update-policy-modifiable {
 description
 "This grouping describes the datastore specific subscription
 conditions that can be changed during the lifetime of the
 subscription.";
 choice update-trigger {
 description
 "Defines necessary conditions for sending an event to
 the subscriber.";
 case periodic {
 description
 "The agent is requested to notify periodically the current
 values of the datastore as defined by the filter.";
 leaf period {
 type yang:timeticks;
 mandatory true;
 description
 "Duration of time which should occur between periodic
 push updates. Where the anchor of a start-time is
 available, the push will include the objects and their
 values which exist at an exact multiple of timeticks
 aligning to this start-time anchor.";
 }
 leaf anchor-time {
 type yang:date-and-time;
 description
 "Designates a timestamp from which the series of periodic
 push updates are computed. The next update will take place
 at the next period interval from the anchor time. For
 example, for an anchor time at the top of a minute and a
 period interval of a minute, the next update will be sent
 at the top of the next minute.";
 }
 }
 case on-change {
 if-feature "on-change";
 description
 "The agent is requested to notify changes in values in the
 datastore subset as defined by a filter.";
 leaf dampening-period {
 type yang:timeticks;
 mandatory true;

Clemm, et al. Expires October 20, 2017 [Page 34]

Internet-Draft YANG-Push April 2017

 description
 "Minimum amount of time that needs to have passed since the
 last time an update was provided for the subscription.";
 }
 }
 }
 }

 grouping update-policy {
 description
 "This grouping describes the datastore specific subscription
 conditions of a subscription.";
 uses update-policy-modifiable {
 augment "update-trigger/on-change" {
 description
 "Includes objects not modifiable once subscription is
 established.";
 leaf no-synch-on-start {
 type empty;
 description
 "This leaf acts as a flag that determines behavior at the
 start of the subscription. When present, synchronization
 of state at the beginning of the subscription is outside
 the scope of the subscription. Only updates about changes
 that are observed from the start time, i.e. only push-
 change-update notifications are sent. When absent (default
 behavior), in order to facilitate a receiver's
 synchronization, a full update is sent when the
 subscription starts using a push-update notification, just
 like in the case of a periodic subscription. After that,
 push-change-update notifications only are sent unless the
 Publisher chooses to resynch the subscription again.";
 }
 leaf-list excluded-change {
 type change-type;
 description
 "Use to restrict which changes trigger an update.
 For example, if modify is excluded, only creation and
 deletion of objects is reported.";
 }
 }
 }
 }

 grouping update-qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower

Clemm, et al. Expires October 20, 2017 [Page 35]

Internet-Draft YANG-Push April 2017

 layers for transport prioritization and treatment";
 leaf dscp {
 type inet:dscp;
 default "0";
 description
 "The push update's IP packet transport priority. This is made
 visible across network hops to receiver. The transport
 priority is shared for all receivers of a given subscription.";
 }
 leaf weighting {
 type uint8 {
 range "0 .. 255";
 }
 description
 "Relative weighting for a subscription. Allows an underlying
 transport layer perform informed load balance allocations
 between various subscriptions";
 reference
 "RFC-7540, section 5.3.2";
 }
 leaf dependency {
 type sn:subscription-id;
 description
 "Provides the Subscription ID of a parent subscription which
 has absolute priority should that parent have push updates
 ready to egress the publisher. In other words, there should be
 no streaming of objects from the current subscription if of
 the parent has something ready to push.";
 reference
 "RFC-7540, section 5.3.1";
 }
 }

 grouping update-error-hints {
 description
 "Allow return additional negotiation hints that apply
 specifically to push updates.";
 leaf period-hint {
 type yang:timeticks;
 description
 "Returned when the requested time period is too short. This
 hint can assert an viable period for both periodic push
 cadence and on-change dampening.";
 }
 leaf error-path {
 type string;
 description
 "Reference to a YANG path which is associated with the error

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.1

Clemm, et al. Expires October 20, 2017 [Page 36]

Internet-Draft YANG-Push April 2017

 being returned.";
 }
 leaf object-count-estimate {
 type uint32;
 description
 "If there are too many objects which could potentially be
 returned by the filter, this identifies the estimate of the
 number of objects which the filter would potentially pass.";
 }
 leaf object-count-limit {
 type uint32;
 description
 "If there are too many objects which could be returned by the
 filter, this identifies the upper limit of the publisher's
 ability to service for this subscription.";
 }
 leaf kilobytes-estimate {
 type uint32;
 description
 "If the returned information could be beyond the capacity of
 the publisher, this would identify the data size which could
 result from this filter.";
 }
 leaf kilobytes-limit {
 type uint32;
 description
 "If the returned information would be beyond the capacity of
 the publisher, this identifies the upper limit of the
 publisher's ability to service for this subscription.";
 }
 }

 /*
 * DATA NODES
 */

 augment "/sn:establish-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters that
 apply specifically to datastore updates to RPC input.";
 uses update-policy;
 uses update-qos;
 }
 augment "/sn:establish-subscription/sn:input/sn:target" {
 description
 "This augmentation adds the datastore as a valid parameter object
 for the subscription to RPC input. This provides a target for
 the filter.";

Clemm, et al. Expires October 20, 2017 [Page 37]

Internet-Draft YANG-Push April 2017

 case datastore {
 uses datastore-criteria;
 }
 }
 augment "/sn:establish-subscription/sn:output/"+
 "sn:result/sn:no-success" {
 description
 "This augmentation adds datastore specific error info
 and hints to RPC output.";
 uses update-error-hints;
 }
 augment "/sn:modify-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses update-policy-modifiable;
 }
 augment "/sn:modify-subscription/sn:output/"+
 "sn:result/sn:no-success" {
 description
 "This augmentation adds push datastore error info and hints to
 RPC output.";
 uses update-error-hints;
 }

 notification push-update {
 description
 "This notification contains a push update, containing data
 subscribed to via a subscription. This notification is sent for
 periodic updates, for a periodic subscription. It can also be
 used for synchronization updates of an on-change subscription.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type sn:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;
 description
 "This leaf contains the time of the update.";
 }
 leaf updates-not-sent {
 type empty;

Clemm, et al. Expires October 20, 2017 [Page 38]

Internet-Draft YANG-Push April 2017

 description
 "This is a flag which indicates that not all data nodes
 subscribed to are included with this update. In other words,
 the publisher has failed to fulfill its full subscription
 obligations. This may lead to intermittent loss of
 synchronization of data at the client. Synchronization at the
 client can occur when the next push-update is received.";
 }
 anydata datastore-contents {
 description
 "This contains the updated data. It constitutes a snapshot
 at the time-of-update of the set of data that has been
 subscribed to. The format and syntax of the data
 corresponds to the format and syntax of data that would be
 returned in a corresponding get operation with the same
 filter parameters applied.";
 }
 }
 notification push-change-update {
 if-feature "on-change";
 description
 "This notification contains an on-change push update. This
 notification shall only be sent to the receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf subscription-id {
 type sn:subscription-id;
 mandatory true;
 description
 "This references the subscription because of which the
 notification is sent.";
 }
 leaf time-of-update {
 type yang:date-and-time;
 description
 "This leaf contains the time of the update, i.e. the time at
 which the change was observed.";
 }
 leaf updates-not-sent {
 type empty;
 description
 "This is a flag which indicates that not all changes which
 have occurred since the last update are included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations, for example in
 cases where it was not able to keep up with a change burst.
 To facilitate synchronization, a publisher may subsequently
 send a push-update containing a full snapshot of subscribed

Clemm, et al. Expires October 20, 2017 [Page 39]

Internet-Draft YANG-Push April 2017

 data. Such a push-update might also be triggered by a
 subscriber requesting an on-demand synchronization.";
 }
 anydata datastore-changes {
 description
 "This contains datastore contents that has changed since the
 previous update, per the terms of the subscription. Changes
 are encoded analogous to the syntax of a corresponding yang-
 patch operation, i.e. a yang-patch operation applied to the
 YANG datastore implied by the previous update to result in the
 current state (and assuming yang-patch could also be applied
 to operational data).";
 }
 }

 augment "/sn:subscription-started" {
 description
 "This augmentation adds many yang datastore specific objects to
 the notification that a subscription has started.";
 uses update-policy;
 uses update-qos;
 }
 augment "/sn:subscription-started/sn:target" {
 description
 "This augmentation allows the datastore to be included as part
 of the notification that a subscription has started.";
 case datastore {
 uses datastore-criteria;
 }
 }
 augment "/sn:subscription-modified" {
 description
 "This augmentation adds many yang datastore specific objects to
 the notification that a subscription has been modified.";
 uses update-policy;
 uses update-qos;
 }

 augment "/sn:subscription-config/sn:subscription" {
 description
 "This augmentation adds many yang datastore specific objects
 which can be configured as opposed to established via RPC.";
 uses update-policy;
 uses update-qos;
 }
 augment "/sn:subscription-config/sn:subscription/sn:target" {
 description
 "This augmentation adds the datastore to the filtering

Clemm, et al. Expires October 20, 2017 [Page 40]

Internet-Draft YANG-Push April 2017

 criteria for a subscription.";
 case datastore {
 uses datastore-criteria;
 }
 }
 augment "/sn:subscriptions/sn:subscription" {
 yp:notifiable-on-change true;
 description
 "This augmentation adds many datastore specific objects to a
 subscription.";
 uses update-policy;
 uses update-qos;
 }
 augment "/sn:subscriptions/sn:subscription/sn:target" {
 description
 "This augmentation allows the datastore to be displayed as part
 of the filtering criteria for a subscription.";
 case datastore {
 uses datastore-criteria;
 }
 }
/* YANG Parser Pyang crashing on the following syntax below
 deviation "/sn:subscriptions/sn:subscription/sn:receivers/"
 + "sn:receiver/sn:pushed-notifications" {
 deviate add {
 yp:notifiable-on-change false;
 }
 }
 deviation "/sn:subscriptions/sn:subscription/sn:receivers/"
 + "sn:receiver/sn:excluded-notifications" {
 deviate add {
 yp:notifiable-on-change false;
 }
 }
YANG Parser Pyang crashing on the following syntax above */
}

<CODE ENDS>

6. Security Considerations

 All security considerations from [subscribe] are relevant for
 datastores. In addition there are specific security considerations
 for receviers defined in Section 3.8

 If the access control permissions on subscribed YANG nodes change
 during the lifecycle of a subscription, a publisher MUST either

Clemm, et al. Expires October 20, 2017 [Page 41]

Internet-Draft YANG-Push April 2017

 transparently conform to the new access control permissions, or must
 terminate or restart the subscriptions so that new access control
 permissions are re-established.

 The NETCONF Authorization Control Model SHOULD be used to restrict
 the delivery of YANG nodes for which the receiver has no access.

7. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Tim Jenkins, Kent Watsen, Susan Hares, Yang Geng, Peipei
 Guo, Michael Scharf, Sharon Chisholm, and Guangying Zheng.

8. References

8.1. Normative References

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <http://www.rfc-editor.org/info/rfc6470>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <http://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <http://www.rfc-editor.org/info/rfc7951>.

 [RFC8072] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", RFC 8072, DOI 10.17487/RFC8072, February
 2017, <http://www.rfc-editor.org/info/rfc8072>.

 [subscribe]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Notifications", draft-ietf-netconf-subscribed-

notifications-01 (work in progress), April 2017.

https://datatracker.ietf.org/doc/html/rfc6470
http://www.rfc-editor.org/info/rfc6470
https://datatracker.ietf.org/doc/html/rfc6536
http://www.rfc-editor.org/info/rfc6536
https://datatracker.ietf.org/doc/html/rfc7895
http://www.rfc-editor.org/info/rfc7895
https://datatracker.ietf.org/doc/html/rfc7950
http://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7951
http://www.rfc-editor.org/info/rfc7951
https://datatracker.ietf.org/doc/html/rfc8072
http://www.rfc-editor.org/info/rfc8072
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-subscribed-notifications-01
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-subscribed-notifications-01

Clemm, et al. Expires October 20, 2017 [Page 42]

Internet-Draft YANG-Push April 2017

8.2. Informative References

 [http-notif]
 Voit, E., Gonzalez Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Clemm, A., and A. Bierman, "Restconf and HTTP
 Transport for Event Notifications", March 2017.

 [netconf-notif]
 Gonzalez Prieto, A., Clemm, A., Voit, E., Tripathy, A.,
 Nilsen-Nygaard, E., Chisholm, S., and H. Trevino, "NETCONF
 Support for Event Notifications", October 2016.

 [notifications2]
 Voit, E., Bierman, A., Clemm, A., and T. Jenkins, "Custom
 Subscription to Event Notifications", February 2017.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <http://www.rfc-editor.org/info/rfc7923>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

Appendix A. Relationships to other drafts

 There are other related drafts which are progressing in the NETCONF
 WG. This section details the relationship of this draft to those
 others.

A.1. ietf-netconf-subscribed-notifications

 The draft [subscribe] is the techical foundation around which the
 rest of the YANG push datastore specific mechanisms are layered.

https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7223
http://www.rfc-editor.org/info/rfc7223
https://datatracker.ietf.org/doc/html/rfc7923
http://www.rfc-editor.org/info/rfc7923
https://datatracker.ietf.org/doc/html/rfc8040
http://www.rfc-editor.org/info/rfc8040

Clemm, et al. Expires October 20, 2017 [Page 43]

Internet-Draft YANG-Push April 2017

A.2. ietf-netconf-netconf-event-notif

 The [netconf-notif] draft supports yang-push by defining NETCONF
 transport specifics. Included are:

 o bindings for RPC communications and Event Notifications over
 NETCONF.

 o encoded examples

A.3. ietf-netconf-restconf-notif

 The [http-notif] draft supports yang-push by defining transport
 specific guidance where some form of HTTP is used underneath.
 Included are:

 o bindings for RPC communications over RESTCONF

 o bindings for Event Notifications over HTTP2 and HTTP1.1

 o encoded examples

 o end-to-end deployment guidance for Call Home and TLS Heartbeat

A.4. voit-notifications2

 The draft [notifications2] is not required to implement yang-push.
 Instead it defines data plane notification elements which improve the
 delivered experience. The following capabilities are specified:

 o Defines common encapsulation headers objects to support
 functionality such as event severity, message signing, message
 loss discovery, message de-duplication, originating process
 identification.

 o Defines how to bundle multiple event records into a single
 notification message.

 These capabilities would be delivered by adding the drafts newly
 proposed header objects to the push-update and push-change-update
 notifications defined here. This draft is not yet adopted by the
 NETCONF WG.

Appendix B. Technologies to be considered for future iterations

Clemm, et al. Expires October 20, 2017 [Page 44]

Internet-Draft YANG-Push April 2017

B.1. Proxy YANG Subscription when the Subscriber and Receiver are
 different

 The properties of Dynamic and Configured Subscriptions can be
 combined to enable deployment models where the Subscriber and
 Receiver are different. Such separation can be useful with some
 combination of:

 o An operator does not want the subscription to be dependent on the
 maintenance of transport level keep-alives. (Transport
 independence provides different scalability characteristics.)

 o There is not a transport session binding, and a transient
 Subscription needs to survive in an environment where there is
 unreliable connectivity with the Receiver and/or Subscriber.

 o An operator wants the Publisher to include highly restrictive
 capacity management and Subscription security mechanisms outside
 of domain of existing operational or programmatic interfaces.

 To build a Proxy Subscription, first the necessary information must
 be signaled as part of the <establish-subscription>. Using this set
 of Subscriber provided information; the same process described within

section 3 will be followed.

 After a successful establishment, if the Subscriber wishes to track
 the state of Receiver subscriptions, it may choose to place a
 separate on-change Subscription into the "Subscriptions" subtree of
 the YANG Datastore on the Publisher.

B.2. OpState and Filters

 Currently there are ongoing discussions to revise the concept of
 datastores, allowing for proper handling and distinction of intended
 versus applied configurations and extending the notion of a datastore
 to operational data. When finalized, the new concept may open up the
 possibility for new types of subscription filters, for example,
 targeting specific datastores and targeting (potentially) differences
 in datatrees across different datastores.

 Likewise, it is conceivable that filters are defined that apply to
 metadata, such as data nodes for which metadata has been defined that
 meets a certain criteria.

 Defining any such subscription filters at this point would be highly
 speculative in nature. However, it should be noted that
 corresponding extensions may be defined in future specifications.
 Any such extensions will be straightforward to accommodate by

Clemm, et al. Expires October 20, 2017 [Page 45]

Internet-Draft YANG-Push April 2017

 introducing a model that defines new filter types, and augmenting the
 new filter type into the subscription model.

B.3. Splitting push updates

 Push updates may become fairly large and extend across multiple
 subsystems in a YANG-Push Server. As a result, it conceivable to not
 combine all updates into a single update message, but to split
 updates into multiple separate update messages. Such splitting could
 occur along multiple criteria: limiting the number of data nodes
 contained in a single update, grouping updates by subtree, grouping
 updates by internal subsystems (e.g., by line card), or grouping them
 by other criteria.

 Splitting updates bears some resemblance to fragmenting packets. In
 effect, it can be seen as fragmenting update messages at an
 application level. However, from a transport perspective, splitting
 of update messages is not required as long as the transport does not
 impose a size limitation or provides its own fragmentation mechanism
 if needed. We assume this to be the case for YANG-Push. In the case
 of NETCONF, RESTCONF, HTTP/2, no limit on message size is imposed.
 In case of other transports, any message size limitations need to be
 handled by the corresponding transport mapping.

 There may be some scenarios in which splitting updates might still
 make sense. For example, if updates are collected from multiple
 independent subsystems, those updates could be sent separately
 without need for combining. However, if updates were to be split,
 other issues arise. Examples include indicating the number of
 updates to the receiver, distinguishing a missed fragment from a
 missed update, and the ordering with which updates are received.
 Proper addressing those issues would result in considerable
 complexity, while resulting in only very limited gains. In addition,
 if a subscription is found to result in updates that are too large, a
 publisher can always reject the request for a subscription while the
 subscriber is always free to break a subscription up into multiple
 subscriptions.

B.4. Potential Subscription Parameters

 A possible is the introduction of an additional parameter "changes-
 only" for periodic subscription. Including this flag would results
 in sending at the end of each period an update containing only
 changes since the last update (i.e. a change-update as in the case of
 an on-change subscription), not a full snapshot of the subscribed
 information. Such an option might be interesting in case of data
 that is largely static and bandwidth-constrained environments.

Clemm, et al. Expires October 20, 2017 [Page 46]

Internet-Draft YANG-Push April 2017

Appendix C. Issues that are currently being worked and resolved

 (To be removed by RFC editor prior to publication)

 Issue #6: Data plane notifications and layered headers. Specifically
 how do we want to enable standard header unification and bundle
 support vs. the data plane notifications currently defined.

Appendix D. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v05 - v06

 o Security considerations updated.

 o Base YANG model in [sn] updated as part of move to identities,
 YANG augmentations in this doc matched up

 o Terms refined and text updates throughout

 o Appendix talking about relationship to other drafts added.

 o Datastore replaces stream

 o Definitions of filters improved

 v04 to v05

 o Referenced based subscription document changed to Subscribed
 Notifications from 5277bis.

 o Getting operational data from filters

 o Extension notifiable-on-change added

 o New appendix on potential futures. Moved text into there from
 several drafts.

 o Subscription configuration section now just includes changed
 parameters from Subscribed Notifications

 o Subscription monitoring moved into Subscribed Notifications

 o New error and hint mechanisms included in text and in the yang
 model.

 o Updated examples based on the error definitions

Clemm, et al. Expires October 20, 2017 [Page 47]

Internet-Draft YANG-Push April 2017

 o Groupings updated for consistency

 o Text updates throughout

 v03 to v04

 o Updates-not-sent flag added

 o Not notifiable extension added

 o Dampening period is for whole subscription, not single objects

 o Moved start/stop into rfc5277bis

 o Client and Server changed to subscriber, publisher, and receiver

 o Anchor time for periodic

 o Message format for synchronization (i.e. synch-on-start)

 o Material moved into 5277bis

 o QoS parameters supported, by not allowed to be modified by RPC

 o Text updates throughout

Authors' Addresses

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

Clemm, et al. Expires October 20, 2017 [Page 48]

Internet-Draft YANG-Push April 2017

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Balazs Lengyel
 Ericsson

 Email: balazs.lengyel@ericsson.com

Clemm, et al. Expires October 20, 2017 [Page 49]

