
NETMOD Working Group K. Watsen
Internet-Draft Watsen Networks
Intended status: Best Current Practice A. Farrel
Expires: December 29, 2019 Old Dog Consulting
 Q. Wu
 Huawei Technologies
 June 27, 2019

Handling Long Lines in Inclusions in Internet-Drafts and RFCs
draft-ietf-netmod-artwork-folding-06

Abstract

 This document defines two strategies for handling long lines in
 width-bounded text content. One strategy is based on the historic
 use of a single backslash ('\') character to indicate where line-
 folding has occurred, with the continuation occurring with the first
 non-space (' ') character on the next line. The second strategy
 extends the first strategy by adding a second backslash character to
 identify where the continuation begins and thereby able to handle
 cases not supported by the first strategy. Both strategies use a
 self-describing header enabling automated reconstitution of the
 original content.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 29, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Watsen, et al. Expires December 29, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Handling Long Lines in Inclusions June 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Applicability Statement 4
3. Requirements Language . 4
4. Goals . 4
4.1. Automated Folding of Long Lines in Text Content 4
4.2. Automated Reconstitution of the Original Text Content . . 5

5. Limitations . 5
5.1. Not Recommended for Graphical Artwork 5
5.2. Doesn't Work as Well as Format-Specific Options 5

6. Two Folding Strategies 6
6.1. Comparison . 6
6.2. Recommendation . 6

7. The Single Backslash Strategy ('\') 6
7.1. Folded Structure . 6
7.1.1. Header . 7
7.1.2. Body . 7

7.2. Algorithm . 7
7.2.1. Folding . 7
7.2.2. Unfolding . 9

8. The Double Backslash Strategy ('\\') 9
8.1. Folded Structure . 9
8.1.1. Header . 9
8.1.2. Body . 10

8.2. Algorithm . 10
8.2.1. Folding . 10
8.2.2. Unfolding . 11

9. Examples . 12
9.1. Example Showing Boundary Conditions 12
9.1.1. Using '\' . 12
9.1.2. Using '\\' . 13

9.2. Example Showing Multiple Wraps of a Single Line 13
9.2.1. Using '\' . 13
9.2.2. Using '\\' . 13

9.3. Example Showing "Smart" Folding 13
9.3.1. Using '\' . 14
9.3.2. Using '\\' . 15

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Watsen, et al. Expires December 29, 2019 [Page 2]

Internet-Draft Handling Long Lines in Inclusions June 2019

10. Security Considerations 16
11. IANA Considerations . 16
12. References . 16
12.1. Normative References 16
12.2. Informative References 16

Appendix A. POSIX Shell Script: rfcfold 18
 Acknowledgements . 26
 Authors' Addresses . 26

1. Introduction

 [RFC7994] sets out the requirements for plain-text RFCs and states
 that each line of an RFC (and hence of an Internet-Draft) must be
 limited to 72 characters followed by the character sequence that
 denotes an end-of-line (EOL).

 Internet-Drafts and RFCs often include example text or code
 fragments. Many times the example text or code exceeds the 72
 character line-length limit. The `xml2rfc` utility does not attempt
 to wrap the content of such inclusions, simply issuing a warning
 whenever lines exceed 69 characters. According to the RFC Editor,
 there is currently no convention in place for how to handle long
 lines in such inclusions, other than advising authors to clearly
 indicate what manipulation has occurred.

 This document defines two strategies for handling long lines in
 width-bounded text content. One strategy is based on the historic
 use of a single backslash ('\') character to indicate where line-
 folding has occurred, with the continuation occurring with the first
 non-space (' ') character on the next line. The second strategy
 extends the first strategy by adding a second backslash character to
 identify where the continuation begins and thereby able to handle
 cases not supported by the first strategy. Both strategies use a
 self-describing header enabling automated reconstitution of the
 original content.

 The strategies defined in this document work on any text content, but
 are primarily intended for a structured sequence of lines, such as
 would be referenced by the <sourcecode> element defined in

Section 2.48 of [RFC7991], rather than for two-dimensional imagery,
 such as would be referenced by the <artwork> element defined in

Section 2.5 of [RFC7991].

 Note that text files are represented as lines having their first
 character in column 1, and a line length of N where the last
 character is in the Nth column and is immediately followed by an end
 of line character sequence.

https://datatracker.ietf.org/doc/html/rfc7991#section-2.48
https://datatracker.ietf.org/doc/html/rfc7991#section-2.5

Watsen, et al. Expires December 29, 2019 [Page 3]

Internet-Draft Handling Long Lines in Inclusions June 2019

2. Applicability Statement

 The formats and algorithms defined in this document may be used in
 any context, whether for IETF documents or in other situations where
 structured folding is desired.

 Within the IETF, this work primarily targets the xml2rfc v3
 <sourcecode> element (Section 2.48 of [RFC7991]) and the xml2rfc v2
 <artwork> element (Section 2.5 of [RFC7749]) that, for lack of a
 better option, is currently used for both source code and artwork.
 This work may be also be used for the xml2rfc v3 <artwork> element
 (Section 2.5 of [RFC7991]) but, as described in Section 5.1, it is
 generally not recommended.

3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

4. Goals

4.1. Automated Folding of Long Lines in Text Content

 Automated folding of long lines is needed in order to support draft
 compilations that entail a) validation of source input files (e.g.,
 XML, JSON, ABNF, ASN.1) and/or b) dynamic generation of output, using
 a tool that doesn't observe line lengths, that is stitched into the
 final document to be submitted.

 Generally, in order for tooling to be able to process input files,
 the files must be in their original/natural state, which may entail
 them having some long lines. Thus, these source files need to be
 modified before inclusion in the document in order to satisfy the
 line length limits. This modification SHOULD be automated to reduce
 effort and errors resulting from manual processing.

 Similarly, dynamically generated output (e.g., tree diagrams) must
 also be modified, if necessary, in order for the resulting document
 to satisfy the line length limits. When needed, this effort again
 SHOULD be automated to reduce effort and errors resulting from manual
 processing.

https://datatracker.ietf.org/doc/html/rfc7991#section-2.48
https://datatracker.ietf.org/doc/html/rfc7749#section-2.5
https://datatracker.ietf.org/doc/html/rfc7991#section-2.5
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Watsen, et al. Expires December 29, 2019 [Page 4]

Internet-Draft Handling Long Lines in Inclusions June 2019

4.2. Automated Reconstitution of the Original Text Content

 Automated reconstitution of the exact original text content is needed
 to support validation of text-based content extracted from documents.

 For instance, already YANG [RFC7950] modules are extracted from
 Internet-Drafts and validated as part of the draft-submission
 process. Additionally, the desire to validate instance examples
 (i.e., XML/JSON documents) contained within Internet-Drafts has been
 discussed ([yang-doctors-thread]).

5. Limitations

5.1. Not Recommended for Graphical Artwork

 While the solution presented in this document works on any kind of
 text-based content, it is most useful on content that represents
 source code (XML, JSON, etc.) or, more generally, on content that has
 not been laid out in two dimensions (e.g., diagrams).

 Fundamentally, the issue is whether the text content remains readable
 once folded. Text content that is unpredictable is especially
 susceptible to looking bad when folded; falling into this category
 are most UML diagrams, YANG tree diagrams, and ASCII art in general.

 It is NOT RECOMMENDED to use the solution presented in this document
 on graphical artwork.

5.2. Doesn't Work as Well as Format-Specific Options

 The solution presented in this document works generically for all
 text-based content, as it only views content as plain text. However,
 various formats sometimes have built-in mechanisms that are better
 suited to prevent long lines.

 For instance, both the `pyang` and `yanglint` utilities have the
 command line option "--tree-line-length" that can be used to indicate
 a desired maximum line length for when generating tree diagrams
 [RFC8340].

 In another example, some source formats (e.g., YANG [RFC7950]) allow
 any quoted string to be broken up into substrings separated by a
 concatenation character (e.g., '+'), any of which can be on a
 different line.

 It is RECOMMENDED that authors do as much as possible within the
 selected format to avoid long lines.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/draft-submission
https://datatracker.ietf.org/doc/html/rfc8340
https://datatracker.ietf.org/doc/html/rfc7950

Watsen, et al. Expires December 29, 2019 [Page 5]

Internet-Draft Handling Long Lines in Inclusions June 2019

6. Two Folding Strategies

 This document defines two nearly identical strategies for folding
 text-based content.

 The Single Backslash Strategy ('\'): Uses a backslash ('\')
 character at the end of the line where folding occurs, and
 assumes that the continuation begins at the character that is
 not a space character (' ') on the following line.

 The Double Backslash Strategy ('\\'): Uses a backslash ('\')
 character at the end of the line where folding occurs, and
 assumes that the continuation begins after a second backslash
 ('\') character on the following line.

6.1. Comparison

 The first strategy produces more readable output, however it is
 significantly more likely to encounter unfoldable input (e.g., there
 exists a line anywhere in the input ending with a backslash
 character, or there exists a long line containing only space
 characters) and, for long lines that can be folded, automation
 implementations may encounter scenarios that will produce errors
 without special care.

 The second strategy produces less readable output, but is unlikely to
 encounter unfoldable input, there are no long lines that cannot be
 folded, and no special care is required for when folding a long line.

6.2. Recommendation

 It is RECOMMENDED for implementations to first attempt to fold
 content using the single backslash strategy and, only in the unlikely
 event that it cannot fold the input or the folding logic is unable to
 cope with a contingency occurring on the desired folding column, then
 fallback to the double backslash strategy.

7. The Single Backslash Strategy ('\')

7.1. Folded Structure

 Text content that has been folded as specified by this strategy MUST
 adhere to the following structure.

Watsen, et al. Expires December 29, 2019 [Page 6]

Internet-Draft Handling Long Lines in Inclusions June 2019

7.1.1. Header

 The header is two lines long.

 The first line is the following 45-character string that MAY be
 surrounded by any number of printable characters. This first line
 cannot itself be folded.

 NOTE: '\' line wrapping per BCP XX (RFC XXXX)

 [Note to RFC Editor: Please replace XX and XXXX with the numbers
 assigned to this document and delete this note. Please make this
 change in multiple places in this document.]

 The second line is a blank line. This line provides visual
 separation for readability.

7.1.2. Body

 The character encoding is the same as described in Section 2 of
 [RFC7994], except that, per [RFC7991], tab characters are prohibited.

 Lines that have a backslash ('\') occurring as the last character in
 a line are considered "folded".

 Really long lines may be folded multiple times.

7.2. Algorithm

 This section describes a process for folding and unfolding long lines
 when they are encountered in text content.

 The steps are complete, but implementations MAY achieve the same
 result in other ways.

 When a larger document contains multiple instances of text content
 that may need to be folded or unfolded, another process must insert/
 extract the individual text content instances to/from the larger
 document prior to utilizing the algorithms described in this section.
 For example, the `xiax` utility [xiax] does this.

7.2.1. Folding

 Determine the desired maximum line length from input to the line-
 wrapping process, such as from a command line parameter. If no value
 is explicitly specified, the value "69" SHOULD be used.

https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7991

Watsen, et al. Expires December 29, 2019 [Page 7]

Internet-Draft Handling Long Lines in Inclusions June 2019

 Ensure that the desired maximum line length is not less than the
 minimum header, which is 45 characters. If the desired maximum line
 length is less than this minimum, exit (this text-based content
 cannot be folded).

 Scan the text content for horizontal tab characters. If any
 horizontal tab characters appear, either resolve them to space
 characters or exit, forcing the input provider to convert them to
 space characters themselves first.

 Scan the text content to ensure at least one line exceeds the desired
 maximum. If no line exceeds the desired maximum, exit (this text
 content does not need to be folded).

 Scan the text content to ensure no existing lines already end with a
 backslash ('\') character, as this would lead to an ambiguous result.
 If such a line is found, exit (this text content cannot be folded).

 If this text content needs to and can be folded, insert the header
 described in Section 7.1.1, ensuring that any additional printable
 characters surrounding the header does not result in a line exceeding
 the desired maximum.

 For each line in the text content, from top-to-bottom, if the line
 exceeds the desired maximum, then fold the line by:

 1. Determine where the fold will occur. This location MUST be
 before or at the desired maximum column, and MUST NOT be chosen
 such that the character immediately after the fold is a space ('
 ') character. If no such location can be found, then exit (this
 text content cannot be folded)

 2. At the location where the fold is to occur, insert a backslash
 ('\') character followed by the end of line character sequence.

 3. On the following line, insert any number of space (' ')
 characters.

 The result of the previous operation is that the next line starts
 with an arbitrary number of space (' ') characters, followed by the
 character that was previously occupying the position where the fold
 occurred.

 Continue in this manner until reaching the end of the text content.
 Note that this algorithm naturally addresses the case where the
 remainder of a folded line is still longer than the desired maximum,
 and hence needs to be folded again, ad infinitum.

Watsen, et al. Expires December 29, 2019 [Page 8]

Internet-Draft Handling Long Lines in Inclusions June 2019

 The process described in this section is illustrated by the
 "fold_it_1()" function in Appendix A.

7.2.2. Unfolding

 Scan the beginning of the text content for the header described in
Section 7.1.1. If the header is not present, starting on the first

 line of the text content, exit (this text contents does not need to
 be unfolded).

 Remove the 2-line header from the text content.

 For each line in the text content, from top-to-bottom, if the line
 has a backslash ('\') character immediately followed by the end of
 line character sequence, then the line can be unfolded. Remove the
 backslash ('\') character, the end of line character sequence, and
 any leading space (' ') characters, which will bring up the next
 line. Then continue to scan each line in the text content starting
 with the current line (in case it was multiply folded).

 Continue in this manner until reaching the end of the text content.

 The process described in this section is illustrated by the
 "unfold_it_1()" function in Appendix A.

8. The Double Backslash Strategy ('\\')

8.1. Folded Structure

 Text content that has been folded as specified by this strategy MUST
 adhere to the following structure.

8.1.1. Header

 The header is two lines long.

 The first line is the following 46-character string that MAY be
 surrounded by any number of printable characters. This first line
 cannot itself be folded.

 NOTE: '\\' line wrapping per BCP XX (RFC XXXX)

 [Note to RFC Editor: Please replace XX and XXXX with the numbers
 assigned to this document and delete this note. Please make this
 change in multiple places in this document.]

 The second line is a blank line. This line provides visual
 separation for readability.

Watsen, et al. Expires December 29, 2019 [Page 9]

Internet-Draft Handling Long Lines in Inclusions June 2019

8.1.2. Body

 The character encoding is the same as described in Section 2 of
 [RFC7994], except that, per [RFC7991], tab characters are prohibited.

 Lines that have a backslash ('\') occurring as the last character in
 a line immediately followed by the end of line character sequence,
 when the subsequent line starts with a backslash ('\') as the first
 non-space (' ') character, are considered "folded".

 Really long lines may be folded multiple times.

8.2. Algorithm

 This section describes a process for folding and unfolding long lines
 when they are encountered in text content.

 The steps are complete, but implementations MAY achieve the same
 result in other ways.

 When a larger document contains multiple instances of text content
 that may need to be folded or unfolded, another process must insert/
 extract the individual text content instances to/from the larger
 document prior to utilizing the algorithms described in this section.
 For example, the `xiax` utility [xiax] does this.

8.2.1. Folding

 Determine the desired maximum line length from input to the line-
 wrapping process, such as from a command line parameter. If no value
 is explicitly specified, the value "69" SHOULD be used.

 Ensure that the desired maximum line length is not less than the
 minimum header, which is 46 characters. If the desired maximum line
 length is less than this minimum, exit (this text-based content
 cannot be folded).

 Scan the text content for horizontal tab characters. If any
 horizontal tab characters appear, either resolve them to space
 characters or exit, forcing the input provider to convert them to
 space characters themselves first.

 Scan the text content to see if any line exceeds the desired maximum.
 If no line exceeds the desired maximum, exit (this text content does
 not need to be folded).

 Scan the text content to ensure no existing lines already end with a
 backslash ('\') character while the subsequent line starts with a

https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7994#section-2
https://datatracker.ietf.org/doc/html/rfc7991

Watsen, et al. Expires December 29, 2019 [Page 10]

Internet-Draft Handling Long Lines in Inclusions June 2019

 backslash ('\') character as the first non-space (' ') character, as
 this could lead to an ambiguous result. If such a line is found, and
 its width is less than the desired maximum, then it SHOULD be flagged
 for forced folding (folding even though unnecessary). If the folding
 implementation doesn't support forced foldings, it MUST exit.

 If this text content needs to and can be folded, insert the header
 described in Section 8.1.1, ensuring that any additional printable
 characters surrounding the header does not result in a line exceeding
 the desired maximum.

 For each line in the text content, from top-to-bottom, if the line
 exceeds the desired maximum, or requires a forced folding, then fold
 the line by:

 1. Determine where the fold will occur. This location MUST be
 before or at the desired maximum column.

 2. At the location where the fold is to occur, insert a first
 backslash ('\') character followed by the end of line character
 sequence.

 3. On the following line, insert any number of space (' ')
 characters followed by a second backslash ('\') character.

 The result of the previous operation is that the next line starts
 with an arbitrary number of space (' ') characters, followed by a
 backslash ('\') character, immediately followed by the character that
 was previously occupying the position where the fold occurred.

 Continue in this manner until reaching the end of the text content.
 Note that this algorithm naturally addresses the case where the
 remainder of a folded line is still longer than the desired maximum,
 and hence needs to be folded again, ad infinitum.

 The process described in this section is illustrated by the
 "fold_it_2()" function in Appendix A.

8.2.2. Unfolding

 Scan the beginning of the text content for the header described in
Section 8.1.1. If the header is not present, starting on the first

 line of the text content, exit (this text content does not need to be
 unfolded).

 Remove the 2-line header from the text content.

Watsen, et al. Expires December 29, 2019 [Page 11]

Internet-Draft Handling Long Lines in Inclusions June 2019

 For each line in the text content, from top-to-bottom, if the line
 has a backslash ('\') character immediately followed by the end of
 line character sequence, and if the next line has a backslash ('\')
 character as the first non-space (' ') character, then the lines can
 be unfolded. Remove the first backslash ('\') character, the end of
 line character sequence, any leading space (' ') characters, and the
 second backslash ('\') character, which will bring up the next line.
 Then continue to scan each line in the text content starting with the
 current line (in case it was multiply folded).

 Continue in this manner until reaching the end of the text content.

 The process described in this section is illustrated by the
 "unfold_it_2()" function in Appendix A.

9. Examples

 The following self-documenting examples illustrate folded text-based
 content.

 The source text content cannot be presented here, as it would again
 be folded. Alas, only the results can be provided.

9.1. Example Showing Boundary Conditions

 This example illustrates boundary condition. The input contains
 seven lines, each line one character longer than the previous line.
 Numbers for counting purposes. The default desired maximum column
 value "69" is used.

9.1.1. Using '\'

 =========== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===========

 123456789012345678901234567890123456789012345678901234567890123456
 1234567890123456789012345678901234567890123456789012345678901234567
 12345678901234567890123456789012345678901234567890123456789012345678
 123456789012345678901234567890123456789012345678901234567890123456789
 12345678901234567890123456789012345678901234567890123456789012345678\
 90
 12345678901234567890123456789012345678901234567890123456789012345678\
 901
 12345678901234567890123456789012345678901234567890123456789012345678\
 9012

Watsen, et al. Expires December 29, 2019 [Page 12]

Internet-Draft Handling Long Lines in Inclusions June 2019

9.1.2. Using '\\'

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 123456789012345678901234567890123456789012345678901234567890123456
 1234567890123456789012345678901234567890123456789012345678901234567
 12345678901234567890123456789012345678901234567890123456789012345678
 123456789012345678901234567890123456789012345678901234567890123456789
 12345678901234567890123456789012345678901234567890123456789012345678\
 \90
 12345678901234567890123456789012345678901234567890123456789012345678\
 \901
 12345678901234567890123456789012345678901234567890123456789012345678\
 \9012

9.2. Example Showing Multiple Wraps of a Single Line

 This example illustrates what happens when very long line needs to be
 folded multiple times. The input contains one line containing 280
 characters. Numbers for counting purposes. The default desired
 maximum column value "69" is used.

9.2.1. Using '\'

 =========== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===========

 12345678901234567890123456789012345678901234567890123456789012345678\
 90123456789012345678901234567890123456789012345678901234567890123456\
 78901234567890123456789012345678901234567890123456789012345678901234\
 56789012345678901234567890123456789012345678901234567890123456789012\
 34567890

9.2.2. Using '\\'

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 12345678901234567890123456789012345678901234567890123456789012345678\
 \9012345678901234567890123456789012345678901234567890123456789012345\
 \6789012345678901234567890123456789012345678901234567890123456789012\
 \3456789012345678901234567890123456789012345678901234567890123456789\
 \01234567890

9.3. Example Showing "Smart" Folding

 This example illustrates how readability can be improved via "smart"
 folding, whereby folding occurs at format-specific locations and
 format-specific indentations are used.

Watsen, et al. Expires December 29, 2019 [Page 13]

Internet-Draft Handling Long Lines in Inclusions June 2019

 The text content was manually folded, since the script in the
 appendix does not implement smart folding.

 Note that the header is surrounded by different printable characters
 then shown in the script-generated examples.

9.3.1. Using '\'

 [NOTE: '\' line wrapping per BCP XX (RFC XXXX)]

 <yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 urn:ietf:params:xml:ns:yang:ietf-interfaces\
 </namespace>
 </module>
 ...
 </module-set>
 ...
 </yang-library>

 Below is the equivalent to the above, but it was folded using the
 script in the appendix.

Watsen, et al. Expires December 29, 2019 [Page 14]

Internet-Draft Handling Long Lines in Inclusions June 2019

 =========== NOTE: '\' line wrapping per BCP XX (RFC XXXX) ===========

 <yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
 ace>
 </module>
 ...
 </module-set>
 ...
 </yang-library>

9.3.2. Using '\\'

 [NOTE: '\\' line wrapping per BCP XX (RFC XXXX)]

 <yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>\
 \urn:ietf:params:xml:ns:yang:ietf-interfaces\
 \</namespace>
 </module>
 ...
 </module-set>
 ...
 </yang-library>

 Below is the equivalent to the above, but it was folded using the
 script in the appendix.

Watsen, et al. Expires December 29, 2019 [Page 15]

Internet-Draft Handling Long Lines in Inclusions June 2019

 ========== NOTE: '\\' line wrapping per BCP XX (RFC XXXX) ===========

 <yang-library
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

 <module-set>
 <name>config-modules</name>
 <module>
 <name>ietf-interfaces</name>
 <revision>2018-02-20</revision>
 <namespace>urn:ietf:params:xml:ns:yang:ietf-interfaces</namesp\
 \ace>
 </module>
 ...
 </module-set>
 ...
 </yang-library>

10. Security Considerations

 This BCP has no Security Considerations.

11. IANA Considerations

 This BCP has no IANA Considerations.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [RFC7749] Reschke, J., "The "xml2rfc" Version 2 Vocabulary",
RFC 7749, DOI 10.17487/RFC7749, February 2016,

 <https://www.rfc-editor.org/info/rfc7749>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7749
https://www.rfc-editor.org/info/rfc7749

Watsen, et al. Expires December 29, 2019 [Page 16]

Internet-Draft Handling Long Lines in Inclusions June 2019

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
RFC 7991, DOI 10.17487/RFC7991, December 2016,

 <https://www.rfc-editor.org/info/rfc7991>.

 [RFC7994] Flanagan, H., "Requirements for Plain-Text RFCs",
RFC 7994, DOI 10.17487/RFC7994, December 2016,

 <https://www.rfc-editor.org/info/rfc7994>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [xiax] "The `xiax` Python Package",
 <https://pypi.org/project/xiax/>.

 [yang-doctors-thread]
 "[yang-doctors] automating yang doctor reviews",
 <https://mailarchive.ietf.org/arch/msg/yang-doctors/

DCfBqgfZPAD7afzeDFlQ1Xm2X3g>.

https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7991
https://www.rfc-editor.org/info/rfc7991
https://datatracker.ietf.org/doc/html/rfc7994
https://www.rfc-editor.org/info/rfc7994
https://datatracker.ietf.org/doc/html/bcp215
https://datatracker.ietf.org/doc/html/rfc8340
https://www.rfc-editor.org/info/rfc8340
https://pypi.org/project/xiax/
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g
https://mailarchive.ietf.org/arch/msg/yang-doctors/DCfBqgfZPAD7afzeDFlQ1Xm2X3g

Watsen, et al. Expires December 29, 2019 [Page 17]

Internet-Draft Handling Long Lines in Inclusions June 2019

Appendix A. POSIX Shell Script: rfcfold

 This non-normative appendix section includes a shell script that can
 both fold and unfold text content using both the single and double
 backslash strategies described in Section 7 and Section 8
 respectively.

 This script is intended to be applied to a single text content
 instance. If it is desired to fold or unfold text content instances
 within a larger document (e.g., an Internet draft or RFC), then
 another tool must be used to extract the content from the larger
 document before utilizing this script.

 For readability purposes, this script forces the minimally supported
 line length to be eight characters longer than the raw header text
 defined in Section 7.1.1 and Section 8.1.1 so as to ensure that the
 header can be wrapped by a space (' ') character and three equal
 ('=') characters on each side of the raw header text.

 This script does not implement the "forced folding" logic described
 in Section 8.2.1. In such cases the script will exit with the
 message:

 Error: infile has a line ending with a '\' character
 followed by a '\' character as the first non-space
 character on the next line. This script cannot fold
 this file using '\\' strategy without there being
 false positives produced in the unfolding (i.e., this
 script does not attempt to proactively force-fold such
 lines, as described in RFC XXXX).

 Shell-level end-of-line backslash ('\') characters have been
 purposely added to the script so as to ensure that the script is
 itself not folded in this document, thus simplify the ability to
 copy/paste the script for local use. As should be evident by the
 lack of the mandatory header described in Section 7.1.1, these
 backslashes do not designate a folded line, such as described in

Section 7.

 <CODE BEGINS>

 #!/bin/bash --posix
 # must use `bash` (not `sh`)

 # This script may need some adjustments to work on a given system.
 # For instance, the utilities `pcregrep` and `gsed` may need to
 # be installed.

Watsen, et al. Expires December 29, 2019 [Page 18]

Internet-Draft Handling Long Lines in Inclusions June 2019

 print_usage() {
 echo
 echo "Folds the text file, only if needed, at the specified"
 echo "column, according to BCP XX."
 echo
 echo "Usage: $0 [-s <strategy>] [-c <col>] [-r] -i <infile>"
 echo " -o <outfile>"
 echo
 echo " -s: strategy to use, '1' or '2' (default: try 1, else 2)"
 echo " -c: column to fold on (default: 69)"
 echo " -r: reverses the operation"
 echo " -i: the input filename"
 echo " -o: the output filename"
 echo " -d: show debug messages"
 echo " -q: quiet (suppress error messages)"
 echo " -h: show this message"
 echo
 echo "Exit status code: zero on success, non-zero otherwise."
 echo
 }

 # global vars, do not edit
 strategy=0 # auto
 debug=0
 quiet=0
 reversed=0
 infile=""
 outfile=""
 maxcol=69 # default, may be overridden by param
 hdr_txt_1="NOTE: '\\' line wrapping per BCP XX (RFC XXXX)"
 hdr_txt_2="NOTE: '\\\\' line wrapping per BCP XX (RFC XXXX)"
 equal_chars="=="
 space_chars=" "
 temp_dir=""

 # determine name of [g]sed binary
 type gsed > /dev/null 2>&1 && SED=gsed || SED=sed

 # warn if a non-GNU sed utility is used
 "$SED" --version < /dev/null 2> /dev/null \
 | grep GNU >/dev/null 2>&1 || echo 'Warning: not using GNU sed'

 # verify the availability of pcregrep
 type pcregrep > /dev/null 2>&1 || {
 echo 'Error: missing utility `pcregrep`'
 exit 1
 }

Watsen, et al. Expires December 29, 2019 [Page 19]

Internet-Draft Handling Long Lines in Inclusions June 2019

 cleanup() {
 rm -rf "$temp_dir"
 }
 trap 'cleanup' EXIT

 fold_it_1() {
 # ensure input file doesn't contain the fold-sequence already
 pcregrep -M "\\\\\n" $infile >> /dev/null 2>&1
 if [[$? -eq 0]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: infile $infile has a line ending with a '\\'"
 echo "character. This file cannot be folded using the '\\'"
 echo "strategy."
 echo
 fi
 return 1
 fi

 # where to fold
 foldcol=`expr "$maxcol" - 1` # for the inserted '\' char

 # ensure input file doesn't contain whitespace on the fold column
 grep "^.\{$foldcol\} " $infile >> /dev/null 2>&1
 if [[$? -eq 0]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: infile has a space character occuring on the"
 echo "folding column. This file cannot be folded using the"
 echo "'\\' strategy."
 echo
 fi
 return 1
 fi

 # center header text
 length=`expr ${#hdr_txt_1} + 2`
 left_sp=`expr \("$maxcol" - "$length" \) / 2`
 right_sp=`expr "$maxcol" - "$length" - "$left_sp"`
 header=`printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_1" "$right_sp" "$equal_chars"`

 # generate outfile
 echo "$header" > $outfile
 echo "" >> $outfile
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\2/;t M;b;:M;P;D;'\
 < $infile >> $outfile 2>/dev/null
 if [[$? -ne 0]]; then

Watsen, et al. Expires December 29, 2019 [Page 20]

Internet-Draft Handling Long Lines in Inclusions June 2019

 return 1
 fi
 return 0
 }

 fold_it_2() {
 # where to fold
 foldcol=`expr "$maxcol" - 1` # for the inserted '\' char

 # ensure input file doesn't contain the fold-sequence already
 pcregrep -M "\\\\\n[\]*\\\\" $infile >> /dev/null 2>&1
 if [[$? -eq 0]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: infile has a line ending with a '\\' character"
 echo "followed by a '\\' character as the first non-space"
 echo "character on the next line. This script cannot fold"
 echo "this file using '\\\\' strategy without there being"
 echo "false positives produced in the unfolding (i.e., this"
 echo "script does not attempt to proactively force-fold such"
 echo "lines, as described in RFC XXXX)."
 echo
 fi
 return 1
 fi

 # center header text
 length=`expr ${#hdr_txt_2} + 2`
 left_sp=`expr \("$maxcol" - "$length" \) / 2`
 right_sp=`expr "$maxcol" - "$length" - "$left_sp"`
 header=`printf "%.*s %s %.*s" "$left_sp" "$equal_chars"\
 "$hdr_txt_2" "$right_sp" "$equal_chars"`

 # generate outfile
 echo "$header" > $outfile
 echo "" >> $outfile
 "$SED" 's/\(.\{'"$foldcol"'\}\)\(..\)/\1\\\n\\\2/;t M;b;:M;P;D;'\
 < $infile >> $outfile 2>/dev/null
 if [[$? -ne 0]]; then
 return 1
 fi
 return 0
 }

 fold_it() {
 # ensure input file doesn't contain a TAB
 grep $'\t' $infile >> /dev/null 2>&1
 if [[$? -eq 0]]; then

Watsen, et al. Expires December 29, 2019 [Page 21]

Internet-Draft Handling Long Lines in Inclusions June 2019

 if [[$quiet -eq 0]]; then
 echo
 echo "Error: infile contains a TAB character, which is"
 echo "not allowed."
 echo
 fi
 return 1
 fi

 # check if file needs folding
 testcol=`expr "$maxcol" + 1`
 grep ".\{$testcol\}" $infile >> /dev/null 2>&1
 if [$? -ne 0]; then
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi
 cp $infile $outfile
 return -1
 fi

 if [[$strategy -eq 1]]; then
 fold_it_1
 return $?
 fi
 if [[$strategy -eq 2]]; then
 fold_it_2
 return $?
 fi
 quiet_sav=$quiet
 quiet=1
 fold_it_1
 result=$?
 quiet=$quiet_sav
 if [[$result -ne 0]]; then
 if [[$debug -eq 1]]; then
 echo "Folding strategy 1 didn't succeed, trying strategy 2..."
 fi
 fold_it_2
 return $?
 fi
 return 0
 }

 unfold_it_1() {
 temp_dir=`mktemp -d`

 # output all but the first two lines (the header) to wip file
 awk "NR>2" $infile > $temp_dir/wip

Watsen, et al. Expires December 29, 2019 [Page 22]

Internet-Draft Handling Long Lines in Inclusions June 2019

 # unfold wip file
 "$SED" ':S;$!N;s/\\\n *//;t S;P;D' $temp_dir/wip > $outfile

 return 0
 }

 unfold_it_2() {
 temp_dir=`mktemp -d`

 # output all but the first two lines (the header) to wip file
 awk "NR>2" $infile > $temp_dir/wip

 # unfold wip file
 "$SED" ':S;$!N;s/\\\n *\\//;t S;P;D' $temp_dir/wip > $outfile

 return 0
 }

 unfold_it() {
 # check if file needs unfolding
 line=`head -n 1 $infile`
 result=`echo $line | fgrep "$hdr_txt_1"`
 if [$? -eq 0]; then
 unfold_it_1
 return $?
 fi
 result=`echo $line | fgrep "$hdr_txt_2"`
 if [$? -eq 0]; then
 unfold_it_2
 return $?
 fi
 if [[$debug -eq 1]]; then
 echo "nothing to do"
 fi
 cp $infile $outfile
 return -1
 }

 process_input() {
 while ["$1" != ""]; do
 if ["$1" == "-h" -o "$1" == "--help"]; then
 print_usage
 exit 1
 fi
 if ["$1" == "-d"]; then
 debug=1
 fi
 if ["$1" == "-q"]; then

Watsen, et al. Expires December 29, 2019 [Page 23]

Internet-Draft Handling Long Lines in Inclusions June 2019

 quiet=1
 fi
 if ["$1" == "-s"]; then
 strategy="$2"
 shift
 fi
 if ["$1" == "-c"]; then
 maxcol="$2"
 shift
 fi
 if ["$1" == "-r"]; then
 reversed=1
 fi
 if ["$1" == "-i"]; then
 infile="$2"
 shift
 fi
 if ["$1" == "-o"]; then
 outfile="$2"
 shift
 fi
 shift
 done

 if [[-z "$infile"]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: infile parameter missing (use -h for help)"
 echo
 fi
 exit 1
 fi

 if [[-z "$outfile"]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: outfile parameter missing (use -h for help)"
 echo
 exit 1
 fi
 fi

 if [[! -f "$infile"]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: specified file \"$infile\" is does not exist."
 echo
 exit 1

Watsen, et al. Expires December 29, 2019 [Page 24]

Internet-Draft Handling Long Lines in Inclusions June 2019

 fi
 fi

 if [[$strategy -eq 2]]; then
 min_supported=`expr ${#hdr_txt_2} + 8`
 else
 min_supported=`expr ${#hdr_txt_1} + 8`
 fi
 if [[$maxcol -lt $min_supported]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: the folding column cannot be less than"
 echo "$min_supported."
 echo
 fi
 exit 1
 fi

 # this is only because the code otherwise runs out of equal_chars
 max_supported=`expr ${#equal_chars} + 1 + ${#hdr_txt_1} + 1\
 + ${#equal_chars}`
 if [[$maxcol -gt $max_supported]]; then
 if [[$quiet -eq 0]]; then
 echo
 echo "Error: the folding column cannot be more than"
 echo "$max_supported."
 echo
 fi
 exit 1
 fi
 }

 main() {
 if ["$#" == "0"]; then
 print_usage
 exit 1
 fi

 process_input $@

 if [[$reversed -eq 0]]; then
 fold_it
 code=$?
 else
 unfold_it
 code=$?
 fi
 exit $code

Watsen, et al. Expires December 29, 2019 [Page 25]

Internet-Draft Handling Long Lines in Inclusions June 2019

 }

 main "$@"

 <CODE ENDS>

Acknowledgements

 The authors thank the RFC Editor for confirming that there was
 previously no set convention for handling long lines in sourcecode
 inclusions, thus instigating this work.

 The authors thank the following folks for their various contributions
 while producing this document (sorted by first name): Benoit Claise,
 Erik Auerswald, Gianmarco Bruno, Italo Busi, Joel Jaeggli, Jonathan
 Hansford, Lou Berger, Martin Bjorklund, and Rob Wilton.

 Special acknowledgement to Erik Auerswald for his contributions to
 the `rfcfold` script, especially for greatly improving the `sed` one-
 liners used therein.

Authors' Addresses

 Kent Watsen
 Watsen Networks

 EMail: kent+ietf@watsen.net

 Adrian Farrel
 Old Dog Consulting

 EMail: adrian@olddog.co.uk

 Qin Wu
 Huawei Technologies

 EMail: bill.wu@huawei.com

Watsen, et al. Expires December 29, 2019 [Page 26]

