NETMOD L. Lhotka T0C

Internet-Draft CESNET
Intended status: Standards
R. Mahy
Track
Expires: September 9, 2009 Plantronics
S. Chisholm
Nortel
March 08,
2009

Mapping YANG to Document Schema Definition Languages and Validating
NETCONF Content
draft-ietf-netmod-dsdl-map-01

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 9, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This draft describes the mapping rules for translating YANG data models
into XML schemas using Document Schema Definition Languages (DSDL) and

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

outlines the procedure for validating various types of NETCONF protocol
data units using these schemas.

Table of Contents

Introduction
Objectives and Motivation
DSDL Schema Languages
3.1. RELAX NG
3.2. Schematron
3.3. Document Semantics Renaming Language (DSRL)
Additional Annotations
4.1. Dublin Core Metadata Elements
4.2. RELAX NG DTD Compatibility Annotations
4.3. NETMOD-specific Annotations
Overview of the Mapping
Design Considerations
6.1. Conceptual Data Tree
6.2. Modularity
6.3. Granularity
6.4. Handling of XML Namespaces
Mapping YANG Data Models to the Conceptual Tree Schema
7.1. Optional and Mandatory Content
7.2. Mapping YANG Groupings and Typedefs
7.2.1. YANG Refinements and Augments
7.2.2. Type derivation chains
7.3. Translation of XPath Expressions
7.4. YANG Language Extensions
Mapping Conceptual Tree Schema to DSDL
8.1. Generating RELAX NG Schemas for Various Document Types
8.1.1. Reply to <get> or <get-config>

8.1.2. Remote Procedure Calls

8.1.3. Notifications
8.2. Mapping Semantic Constraints to Schematron
8.2.1. Validation Phases

8.3. Mapping Default Values to DSRL
NETCONF Content Validation
Mapping YANG Statements to Annotated RELAX NG
10.1. The anyxml Statement
10.2. The argument Statement
10.3. The augment Statement
10.4. The base Statement
10.5. The belongs-to Statement
10.6. The bit Statement
10.7. The case Statement
10.8. The choice Statement
10.9. The config Statement

[[[[

I~

|®

‘H ‘@
-o.

10.10.
10.
10.12,
10.
10.14.
10.
10.16.
10.
10.18.
10.19.
10.
10.21.
10.22,
10.23.
10.
10.25.
10.26.
10.27.
10.
10.29.
10.30.
10.31.
10.
10.33.
10.34.
10.35.
10.
10.37.
10.38.
10.39.
10.
10.41.
10.42.
10.43.
10.
10.45.
10.46.
10.47.
10.
10.49.
10.50.
10.
10.50.2.
10.
10.50.4.
10.
10.50.6.
10.
10.50.8.

10
11.
12
13.
14
15.
16
17.
18
19
20.
21
22
23
24.
25
26
27
28.
29
30
31
32.
33
34
35
36.
37
38
39
40.
41
42
43
44 .
45
46
47
48.
49
50

The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
The
50.
50
50.
50
50.
50
50.
50

0 |N O |01 (B (W N

contact Statement
container Statement
default Statement
description Statement
enum Statement
error-app-tag Statement
error-message Statement
extension Statement
grouping Statement
identity Statement
import Statement
include Statement
input Statement
key Statement
leaf Statement
leaf-1ist Statement
length Statement
list Statement
mandatory Statement
max-elements Statement
min-elements Statement
module Statement
must Statement
namespace Statement
notification Statement
ordered-by Statement
organization Statement
output Statement
path Statement
pattern Statement
position Statement
prefix Statement
presence Statement
range Statement
reference Statement
require-instance Statement
revision Statement
rpc Statement
status Statement
submodule Statement
type Statement
The empty Type
The boolean and binary Types
The bits Type
The enumeration and union Types
The identityref Type
The instance-identifier Type
The leafref Type
The numeric Types

10.50.9. The string Type
10.50.10. Derived Types
10.51. The typedef Statement
10.52. The unique Statement
10.53. The units Statement
10.54. The uses Statement
10.55. The value Statement
10.56. The when Statement
10.57. The yang-version Statement
10.58. The yin-element Statement
11. Mapping NETMOD-specific annotations to DSDL Schema Languages
11.1. The @nma:config Annotation
11.2. The @nma:default Annotation
11.3. The @nma:default-case Annotation
11.4. The <nma:error-app-tag> Annotation
11.5. The <nma:error-message> Annotation
11.6. The <nma:instance-identifier> Annotation
11.7. The @nma:key Annotation
11.8. The <nma:leafref> Annotation
11.9. The @nma:min-elements Annotation
11.10. The @nma:max-elements Annotation
11.11. The <nma:must> Annotation
11.12. The <nma:ordered-by> Annotation
11.13. The <nma:status> Annotation
11.14. The @nma:unique Annotation
11.15. The @nma:when Annotation
12. 1IANA Considerations
13. References
Appendix A. RELAX NG Schema for NETMOD-specific Annotations
A.1. XML Syntax
A.2. Compact Syntax
Appendix B. Schema-Independent Library
B.1. XML Syntax
B.2. Compact Syntax
Appendix C. Mapping DHCP Data Model - A Complete Example
C.1. Input YANG Module
C.2. Conceptual Tree Schema
C.2.1. XML Syntax

C.2.2. Compact Syntax

c.3 Final DSDL Schemas
C.3.1. RELAX NG Schema for <get> Reply - XML Syntax

C.3.2. RELAX NG Schema for <get> Reply - Compact Syntax

C.4. Schematron Schema for <get> Reply

C.5. DSRL Schema for <get> Reply
Appendix D. Change Log

D.1. Changes Between Versions -00 and -01
8§ Authors' Addresses

1. Introduction TOC

The NETCONF Working Group has completed a base protocol used for
configuration management [1] (Enns, R., “NETCONF Configuration
Protocol,” December 2006.). This base specification defines protocol
bindings and an XML container syntax for configuration and management
operations, but does not include a modeling language or accompanying
rules for how to model configuration and status information (in XML
syntax) carried by NETCONF. The IETF Operations Area has a long
tradition of defining data for SNMP Management Information Bases (MIBs)
[2] (Case, J., Fedor, M., Schoffstall, M., and J. Davin, “Simple
Network Management Protocol (SNMP),” May 1990.) using the SMI language
[3] (McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed.,
“Structure of Management Information Version 2 (SMIv2),” April 1999.)
to model its data. While this specific modeling approach has a number
of well-understood problems, most of the data modeling features
provided by SMI are still considered extremely important. Simply
modeling the valid syntax rather than additional semantic relationships
has caused significant interoperability problems in the past.

The NETCONF community concluded that a data modeling framework is
needed to support ongoing development of IETF and vendor-defined
management information modules. The NETMOD Working Group was chartered
to address this problem, by defining a new human-friendly modeling
language based on SMIng [4] (Elliott, C., Harrington, D., Jason, J.,
Schoenwaelder, J., Strauss, F., and W. Weiss, “SMIng Objectives,”
December 2001.) and called YANG [5] (Bjorklund, M., Ed., “YANG - A data
modeling language for NETCONF,” March 2009.).

Since NETCONF uses XML for encoding its protocol data units (PDU), it
is natural to express the constraints on NETCONF content using standard
XML schema languages. For this purpose, the NETMOD WG selected the
Document Schema Definition Languages (DSDL) that is being standardized
as ISO/IEC 19757 [6] (ISO/IEC, “Document Schema Definition Languages
(DSDL) - Part 1: Overview,” 11 2004.). The DSDL framework comprises a
set of XML schema languages that address grammar rules, semantic
constraints and other data modeling aspects but also, and more
importantly, do it in a coordinated and consistent way. While it is
true that some DSDL parts have not been standardized yet and are still
work in progress, the three parts that the YANG-to-DSDL mapping relies
upon - RELAX NG, Schematron and DSRL - already have the status of an
ISO/IEC International Standard and are supported in a number of
software tools.

This document contains the specification of a mapping that translates
YANG data models to XML schemas utilizing a subset of the DSDL schema
languages. The mapping procedure is divided into two steps: In the
first step, the structure of the data tree, RPC signatures and
notifications is expressed as a single RELAX NG grammar with simple
annotations representing additional data model information (metadata,

documentation, semantic constraints, default values etc.). The second
step then generates a coordinated set of DSDL schemas that can validate
specific XML documents such as client requests, server responses or
notifications, perhaps also taking into account additional context such
as active capabilities.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [7] (Bradner, S., “Key
words for use in RFCs to Indicate Requirement Levels,” March 1997.).

In the text, we also use the following typographic conventions:

*YANG statement keywords are delimited by single quotes.
*Literal values are delimited by double quotes.

*XML element names are delimited by "<" and ">" characters.
*Names of XML attributes are prefixed by the "@" character.

XML elements names are always written with explicit namespace prefixes
corresponding to the following XML vocabularies:

"a" DTD compatibility annotations [8] (Clark, J., Ed. and M.
Murata, Ed., “RELAX NG DTD Compatibility,” December 2001.)

"dc" Dublin Core metadata elements [9] (Kunze, J., “The Dublin Core

Metadata Element Set,” August 2007.)

"nc" NETCONF protocol [1] (Enns, R., “NETCONF Configuration
Protocol,” December 2006.)

"en" NETCONF event notifications [10] (Chisholm, S. and H. Trevino,

“NETCONF Event Notifications,” July 2008.)

"nma" NETMOD-specific schema annotations (see Section 4.3 (NETMOD-
specific Annotations))

"nmt" Conceptual tree (see Section 6.1 (Conceptual Data Tree))

"dsrl" Document Semantics Renaming Language [11] (ISO/IEC,
“Information Technology - Document Schema Definition Languages

(DSDL) - Part 8: Document Semantics Renaming Language - DSRL,”

12 2008.)

"rng" RELAX NG [12] (ISO/IEC, “Information Technology - Document
Schema Definition Languages (DSDL) - Part 2: Regular-Grammar -
Based Validation - RELAX NG. Second Edition.,” 12 2008.)

"sch" IS0 Schematron [13] (ISO/IEC, “Information Technology -
Document Schema Definition Langquages (DSDL) - Part 3: Rule-Based
Validation - Schematron,” 6 2006.)

"xsd" W3C XML Schema [14] (Thompson, H., Beech, D., Maloney, M.,
and N. Mendelsohn, “XML Schema Part 1: Structures Second
Edition,” October 2004.)

The following table shows the mapping of these prefixes to namespace
URIs.

Prefix Namespace URI

a http://relaxng.org/ns/compatibility/annotations/1.0
dc http://purl.org/dc/terms

nc urn:ietf:params:xml:ns:netconf:base:1.0

en urn:ietf:params:xml:ns:netconf:notification:1.0

nma urn:ietf:params:xml:ns:netmod:dsdl-annotations:1
nmt urn:ietf:params:xml:ns:netmod:conceptual-tree:1

dsrl http://purl.oclc.org/dsdl/dsrl

rng http://relaxng.org/ns/structure/1.0
sch http://purl.oclc.org/dsdl/schematron
xsd http://www.w3.0rg/2001/XMLSchema

Table 1: Used namespace prefixes and corresponding URIs

2. Objectives and Motivation TOC

The main objective of this work is to complement YANG as a data
modeling language by validation capabilities of DSDL schema languages,
primarily RELAX NG and Schematron. This document describes the
correspondence between grammatical, semantic and data type constraints

expressed in YANG and equivalent DSDL constructs. The ultimate goal is
to be able to capture all substantial information contained in YANG
modules and express it in DSDL schemas. While the mapping from YANG to
DSDL described in this document is in principle invertible, the inverse
mapping from DSDL to YANG is not in its scope.

XML-encoded data appear in several different forms in various phases of
the NETCONF workflow - configuration datastore contents, RPC requests
and replies, and notifications. Moreover, RPC methods are characterized
by an inherent diversity resulting from selective availability of
capabilities and features. YANG modules can also define new RPC
methods. The mapping should be able to accommodate this variability and
generate schemas that are specifically tailored to a particular
situation and thus considerably more efficient than generic all-
encompassing schemas.

In order to cope with this variability, we assume that the schemas can
be generated on demand from the available collection of YANG modules
and their lifetime will be relatively short. In other words, we don't
envision that any collection of DSDL schemas will be created and
maintained over extended periods of time in parallel to YANG modules.
The generated schemas are primarily intended as input to the existing
XML schema validators and other off-the-shelf tools. However, the
schemas may also be perused by developers and users as a formal
representation of constraints on a particular XML-encoded data object.
Consequently, our secondary goal is to keep the schemas as readable as
possible. To this end, the complexity of the mapping is distributed
into two steps:

1. The first step maps one or more YANG modules to a single RELAX
NG schema of the so-called '"conceptual tree", which contains
grammatical constraints for the main data tree as well as RPCs
and notifications. In order to record additional constraints
that appear in the YANG modules but cannot be expressed in
RELAX NG, the schema is augmented by simple annotations. The
resulting schema should thus be considered a reasonably
readable equivalent of the input YANG modules.

2. In the second step, the annotated RELAX NG schema from step 1
is transformed further to a coordinated set of DSDL schemas
containing constraints for a particular data object and a
specific situation. The DSDL schemas are intended mainly for
machine validation using off-the-shelf tools.

3. DSDL Schema Languages TOC

The mapping described in this document uses three of the DSDL schema
languages, namely RELAX NG, Schematron and DSRL.

3.1. RELAX NG TOC

RELAX NG (pronounced "relaxing") is an XML schema language for grammar-
based validation and Part 2 of the ISO/IEC DSDL family of standards
[12] (ISO/IEC, “Information Technology - Document Schema Definition
Languages (DSDL) - Part 2: Regular-Grammar-Based Validation - RELAX NG.

Second Edition.,” 12 2008.). Like the W3C XML Schema language [14]
(Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, “XML Schema
Part 1: Structures Second Edition,” October 2004.), it is able to
describe constraints on the structure and contents of XML documents.
However, unlike the DTD [15] (Bray, T., Paoli, J., Sperberg-McQueen,
C., Maler, E., and F. Yergeau, “Extensible Markup Language (XML) 1.0
(Fourth Edition),” August 2006.) and XSD schema languages, RELAX NG
intentionally avoids any infoset augmentation such as defining default
values. In the DSDL architecture, the particular task of defining and
applying default values is delegated to another schema language, DSRL
(see Section 3.3 (Document Semantics Renaming Language (DSRL))).

As its base datatype library, RELAX NG uses the W3C XML Schema Datatype
Library [16] (Biron, P. and A. Malhotra, “XML Schema Part 2: Datatypes
Second Edition,” October 2004.), but unlike XSD, other datatype
libraries may be used along with it or even replace it if necessary.
RELAX NG is very liberal in accepting annotations from other
namespaces. With few exceptions, such annotations may be placed
anywhere in the schema and need no encapsulating element such as
<xsd:annotation> in XSD.

RELAX NG schema can be represented using two equivalent syntaxes: XML
and compact. The compact syntax is described in Annex C of the RELAX NG
specification [17] (ISO/IEC, “Information Technology - Document Schema
Definition Languages (DSDL) - Part 2: Reqgular-Grammar-Based Validation
- RELAX NG. AMENDMENT 1: Compact Syntax,” 1 2006.), which was added to
the standard in 2006 (Amendment 1). Automatic bidirectional conversions
between the two syntaxes can be accomplished using for example Trang.
For its terseness and readability, the compact syntax is often the
preferred form for publishing RELAX NG schemas whereas validators and
other software tools generally require the XML syntax. However, the
compact syntax has two drawbacks:

*External annotations make the compact syntax schema considerably
less readable. While in the XML syntax the annotating elements
and attributes are represented in a simple and uniform way (XML
elements and attributes from foreign namespaces), the compact
syntax uses four different syntactic constructs: documentation,
grammar, initial and following annotations. Therefore, the impact
on readability that results from adding annotations is often much
stronger for the compact syntax than for the XML syntax.

http://www.thaiopensource.com/relaxng/trang.html

*In a program, it is more difficult to generate compact syntax
than XML syntax. While a number of software libraries exist that
make it easy to create an XML tree in memory and serialize it, no
such aid is available for compact syntax.

For these reasons, the mapping specification in this document use
exclusively the XML syntax. Where appropriate, though, the schemas
resulting from the translation may be presented in the equivalent
compact syntax.

RELAX NG elements are qualified with the namespace URI "http://
relaxng.org/ns/structure/1.0". The namespace of the W3C Schema Datatype
Library is "http://www.w3.0rg/2001/XMLSchema-datatypes".

3.2. Schematron TOC

Schematron is Part 3 of DSDL that reached the status of a full ISO/IEC
standard in 2006 [13] (ISO/IEC, “Information Technology - Document
Schema Definition Languages (DSDL) - Part 3: Rule-Based Validation -
Schematron,” 6 2006.). In contrast to the traditional schema languages
such as DTD, XSD or RELAX NG, which are based on the concept of a
formal grammar, Schematron utilizes a rule-based approach. Its rules
may specify arbitrary conditions involving data from different parts of
an XML document. Each rule consists of three essential parts:

*Context - an XPath expression that defines the set of locations
where the rule is to be applied,

*Assert or report condition - another XPath expression that is
evaluated relative to the location matched by the context
expression.

*Human-readable message that is displayed when the assert
condition is false or report condition is true.

The difference between the assert and report condition is that the
former is positive in that it states a condition that a valid document
has to satisfy, whereas the latter specifies an error condition.
Schematron draws most of its expressive power from XPath [18] (Clark,
J. and S. DeRose, “XML Path Language (XPath) Version 1.0,”

November 1999.) and XSLT [19] (Clark, J., “XSL Transformations (XSLT)
Version 1.0,” November 1999.). ISO Schematron allows for dynamic query
language binding so that the following XML query languages can be used:
STX, XSLT 1.0, XSLT 1.1, EXSLT, XSLT 2.0, XPath 1.0, XPath 2.0 and
XQuery 1.0 (this list may be extended in future).

The human-readable error messages are another feature that
distinguishes Schematron from other schema languages such as RELAX NG
or XSD. The messages may even contain XPath expressions that are

evaluated in the actual context and thus refer to existing XML document
nodes and their content.

ISO Schematron introduced the concept of abstract patterns whose
purpose is similar to functions in programming languages. The mapping
described in this document uses a library of abstract patterns for
specifying generic constraints such as uniqueness of certain leaf
values in list items.

The rules defined by a Schematron schema may be divided into several
subsets known as phases. Validations may then be set up to include only
selected phases. In the context of NETCONF data validation, this is
useful for relaxing constraints that may not always apply. For example,
the reference integrity may not be enforced for a candidate
configuration.

Schematron elements are qualified with namespace URI "http://
purl.oclc.org/dsdl/schematron".

3.3. Document Semantics Renaming Language (DSRL) TOC

DSRL (pronounced "disrule") is Part 8 of DSDL that reached the status
of a full ISO/IEC standard in 2008 [11] (ISO/IEC, “Information
Technology - Document Schema Definition Languages (DSDL) - Part 8:
Document Semantics Renaming Language - DSRL,” 12 2008.). Unlike RELAX
NG and Schematron, it is specifically designed to modify XML
information set of the validated document. The primary application for
DSRL is renaming XML elements and attributes. DSRL can also define
default values for XML attributes and elements so that elements or
attributes with these default values are inserted if they are missing
in the validated documents. The latter feature is used by the YANG-to-
DSDL mapping for representing YANG defaults for leaf nodes.

DSRL elements are qualified with namespace URI "http://purl.oclc.org/
dsdl/dsrl".

4., Additional Annotations TOC

In addition to the DSDL schema languages, the mapping uses three sets
of annotations that are added as foreign-namespace elements and
attributes to RELAX NG schemas. Two of the annotation sets - Dublin
Core elements and DTD compatibility annotations - are standard
vocabularies for representing metadata and documentation, respectively.
While these data model items may not be used for formal validation,
they quite often carry important information. Therefore, they SHOULD be
included in the conceptual tree schema and MAY also appear in the final
validation schemas.

The third set are NETMOD-specific annotations conveying semantic
constraints and other information that cannot be expressed natively in
RELAX NG. These annotations are only used in the first step of the
mapping, i.e., in the conceptual tree schema. In the second mapping
step, these annotations are converted to Schematron and DSRL rules.

4.1. Dublin Core Metadata Elements TOC

Dublin Core is a system of metadata elements that was originally
created for describing metadata of World Wide Web resources in order to
facilitate their automated lookup. Later it was accepted as a standard
for describing metadata of arbitrary resources. This specification uses
the definition found in [9] (Kunze, J., “The Dublin Core Metadata
Element Set,” August 2007.).

Dublin Core elements are qualified with namespace URI "http://purl.org/
dc/terms".

4.2. RELAX NG DTD Compatibility Annotations TOC

DTD compatibility annotations are part of the RELAX NG DTD
Compatibility specification [8] (Clark, J., Ed. and M. Murata, Ed.,
“RELAX NG DTD Compatibility,” December 2001.). The YANG-to-DSDL mapping
uses only the <a:documentation> annotation for representing YANG
'description' and 'reference' texts.

Note that there is no intention to make the resulting schemas DTD-
compatible, the main reason for using these annotations is technical:
they are well supported and adequately interpreted by several RELAX NG
tools.

DTD compatibility annotations are qualified with namespace URI "http://
relaxng.org/ns/compatibility/annotations/1.0".

4.3. NETMOD-specific Annotations TOC

NETMOD-specific annotations are XML elements and attributes qualified
with the namespace URI "urn:ietf:params:xml:ns:netmod:dsdl-annotations:
1" that appear in various locations in the conceptual tree schema. YANG
statements are mapped to these annotations in a very straightforward
way. In particular, the annotation attributes and elements always have
the same name as the corresponding YANG statement.

Table 2 (NETMOD-specific annotations) lists alphabetically the names of
NETMOD-specific annotation elements (in angle brackets) and attributes

http://dublincore.org/

(prefixed with "@") along with a reference to the section where their

use is described. Appendix A (RELAX NG Schema for NETMOD-specific
Annotations) then contains the RELAX NG schema of this annotation

note

N

(8]

vocabulary.
annotation section
@nma:config 10.9 (The config Statement)
@nma:default 10.12 (The default Statement)
@nma:default-case 10.7 (The case Statement)
<nma:error-app-tag> 10.15 (The error-app-tag Statement)
<nma:error-message> 10.16 (The error-message Statement)
<nma:instance-identifier> 10.50.6 (The instance-identifier Type)
@nma:key 10.23 (The key Statement)
<nma:leafref> 10.50.7 (The leafref Type)
@nma:min-elements 10.25 (The leaf-list Statement)
@nma:max-elements 10.25 (The leaf-1list Statement)
<nma:must> 10.32 (The must Statement)
@nma:ordered-by 10.35 (The ordered-by Statement)
@nma:status 10.48 (The status Statement)
@nma:unique 10.52 (The unique Statement)
@nma:units 10.53 (The units Statement)
@nma:when 10.56 (The when Statement)
Table 2: NETMOD-specific annotations
Notes:

1. Appears only as subelement of <nma:must>.

2. Has an optional attribute @require-instance.

3. Has a mandatory attribute @assert and two optional subelements

<nma:error-app-tag> and <nma:error-message>.

T0C

5. Overview of the Mapping

This section gives an overview of the YANG-to-DSDL mapping, its inputs
and outputs. Figure 1 (Structure of the mapping) presents an overall
structure of the mapping:

o e e e e oo o +
| YANG module(s) |
S ——— +
I
|T
I
ot e oo o e oo +
| DSDL schema for conceptual tree |
o e e e e e e e e e o= +
/ | | \ oo +
/ | | \ |library|
Tg/ Tr| | Tn \ +------- +
/ | | \
[+ e pep—— + Fommm o= + e —— +
|get reply| | rpc | | notif | | |
oo oo + +----- + Fommm o + +-o----- +

Figure 1: Structure of the mapping

The mapping procedure is divided into two steps:

1. Transformation T in the first step maps one or more YANG
modules to a single RELAX NG schema for the conceptual tree
(see Section 6.1 (Conceptual Data Tree)). Constraints that
cannot be expressed directly in RELAX NG (list key definitions,
'must' statements etc.) and various documentation texts are
recorded in the schema as simple annotations belonging to
special namespaces.

2. In the second step, the conceptual tree schema is transformed
in multiple ways to a coordinated set of DSDL schemas that can
be used for validating a particular data object in a specific
context. Figure 1 (Structure of the mapping) shows just three
simplest possibilities as examples. In the process, appropriate
parts of the conceptual tree schema are extracted and specific
annotations transformed to equivalent, but usually more
complex, Schematron patterns, <dsrl:default-content> elements
etc.

3. As indicated in Figure 1 (Structure of the mapping), the second
step of the mapping also uses a schema-independent library that
contains common schema objects such as RELAX NG named pattern
definitions.

An implementation of the mapping algorithm accepts one or more valid
YANG modules as its input. It is important to be able to process
multiple YANG modules together since multiple modules may be negotiated
for a NETCONF session and the contents of the configuration datastore
is then obtained as the union of data trees specified by the individual
modules, which may also lead to multiple roots. In addition, the input
modules may be further coupled by the 'augment' statement in which one
module augments the data tree of another module.

It is also assumed that the algorithm has access, perhaps on demand, to
all YANG modules that the module(s) imports (transitively).

The output of the first mapping step is an annotated RELAX NG schema
for the conceptual tree, which represents a virtual XML document
containing, in its different subtrees, the entire datastore, all RPC
requests and replies, and notifications defined by the input YANG
modules. By "virtual" we mean that such an XML document need not
correspond to the actual layout of the configuration database in a
NETCONF agent, and will certainly never appear on the wire as the
content of a NETCONF PDU. Hence, the RELAX NG schema for the conceptual
tree is not intended for any direct validations but rather as a
representation of a particular data model expressed in RELAX NG and the
common starting point for subsequent transformations that will
typically produce validation schemas. The conceptual tree is further
described in Section 6.1 (Conceptual Data Tree).

Other information contained in input YANG modules, such as semantic
constraints or default values, are recorded as annotations - XML
elements or attributes qualified with namespace URI
"urn:ietf:params:xml:ns:netmod:dsdl-annotations:1". Metadata describing
the YANG modules are mapped to annotations utilizing Dublin Core
elements (Section 4.1 (Dublin Core Metadata Elements)). Finally,
documentation strings are mapped to the <a:documentation> elements
belonging to the DTD compatibility vocabulary (Section 4.2 (RELAX NG
DTD Compatibility Annotations)).

The output from the second step is is a coordinated set of three DSDL
schemas corresponding to a specific data object and context:

*RELAX NG schema describing the grammatical and datatype
constraints;

*Schematron schema expressing other constraints such as uniqueness
of list keys or user-specified semantic rules;

*DSRL schema containing a specification of default values.

6. Design Considerations TOC
YANG modules could be mapped to DSDL schemas in a number of ways. The

mapping procedure described in this document uses several specific
design decisions that are discussed in the following subsections.

6.1. Conceptual Data Tree TOC

DSDL schemas generated from YANG modules using the procedure described
in this document are intended to be used for validating XML-encoded
NETCONF data in various forms (full datastore and several types of
PDUs): every YANG-based model represents the contents of a full
datastore but also implies an array of schemas for all types of NETCONF
PDUs. For a reasonably strict validation of a given data object, the
schemas have to be quite specific. To begin with, effective validation
of NETCONF PDU content requires separation of client and server
schemas. While the decision about proper structuring of all PDU-
validating schemas is beyond the scope of this document, the mapping
procedure is designed to accommodate any foreseeable validation needs.
An essential part of the YANG-to-DSDL mapping procedure is nonetheless
common to all validation approaches: the grammar and datatype
specifications for the datastore, RPCs and notifications expressed by
one or more YANG modules have to be translated to RELAX NG. In order to
be able to separate this common step, we introduce the notion of
conceptual data tree: it is a virtual XML tree that contains full
datastore, RPC requests with corresponding replies and notifications.
The schema for the conceptual tree - a single RELAX NG schema with
annotations - therefore has a quite similar logic as the input YANG
module(s), the only major difference being the RELAX NG schema
language.

The conceptual data tree may be schematically represented as follows:

<nmt:netmod-tree
xmlns:nmt="urn:ietf:params:xml:ns:netmod:conceptual-tree:1">
<nmt:top>
configuration and status data
</nmt:top>
<nmt:rpc-methods>
<nmt:rpc-method>
<nmt:input>
<myrpc ...>
</myrpc>
</nmt:input>
<nmt:output>

</nmt:output>
</nmt:rpc-method>

</nmt:rpcs>
<nmt:notifications>
<nmt:notification>
<mynotif>

</mynotif>
</nmt:notification>

</nmt:notifications>
</nmt :netmod>

The namespace URI "urn:ietf:params:xml:ns:netmod:conceptual-tree:1"
identifies a simple vocabulary consisting of a few elements that
encapsulate and separate the various parts of the conceptual data tree.
The conceptual tree schema is not intended for direct validation but
rather serves as a well-defined starting point for subsequent
transformations that generate various validation schemas. Such
transformations should be relatively simple, they will typically
extract one or several subtrees from the conceptual tree schema, modify
them as necessary and add encapsulating elements such as those from the
NETCONF RPC layer.

Additional information contained in the source YANG module(s), such as
semantic constraints and default values, is represented in the form of
interim NETMOD-specific annotations that are included as foreign-
namespace elements or attributes in the RELAX NG schema for the
conceptual tree. In the second phase of the mapping, these annotations
are translated to equivalent Schematron and DSRL rules.

As a useful side effect, by introducing the conceptual data tree we are
also able to resolve the difficulties arising from the fact that a
single configuration repository may consist of multiple parallel data
hierarchies defined in one or more YANG modules, which cannot be mapped

to a valid XML document. In the conceptual data tree, such multiple
hierarchies appear under the single <nmt:top> element.

6.2. Modularity TOC

Both YANG and RELAX NG offer means for modularity, i.e., for splitting
the contents into separate modules (schemas) and combining or reusing
them in various ways. However, the approaches taken by YANG and RELAX
NG differ. Modularity in RELAX NG is suitable for ad hoc combinations
of a small number of schemas whereas YANG assumes a large set of

modules similar to SNMP MIBs. The following differences are important:

*In YANG, whenever module A imports module B, it gets access to
the definitions (groupings and typedefs) appearing at the top
level of module B. However, no part of module B's data tree is
imported along with it. In contrast, the <rng:include> pattern in
RELAX NG imports both definitions of named patterns and the
entire schema tree from the included schema.

*The names of imported YANG groupings and typedefs are qualified
with the namespace of the imported module. On the other hand, the
data nodes contained inside the imported groupings, when used
within the importing module, become part of the importing
namespace. In RELAX NG, the names of patterns are unqualified and
so named patterns defined in both the importing and imported
module share the same flat namespace. The contents of RELAX NG
named patterns may either keep the namespace of the schema where
they are defined or inherit the namespace of the importing
module, analogically to YANG. However, in order to achieve the
latter behavior, the imported module must be prepared in a
special way as a library module that cannot be used as a stand-
alone schema.

So the conclusion is that the modularity mechanisms of YANG and RELAX
NG, albeit similar, are not directly compatible. Therefore, the
corresponding design decision for the mapping algorithm is to collect
all information in a single schema for the conceptual tree, even if it
comes from multiple YANG modules or submodules. In other words,
translations of imported groupings and typedefs are installed in the
translation of importing module - but only if they are really used
there.

NOTE: The 'include' statement that is used in YANG for including
submodules has in fact the same semantics as the <rng:include> pattern.
However, since we don't map the modular structure for YANG modules, it
seems to have little sense to do it for submodules. Consequently, the
contents of submodules appear directly in the conceptual tree schema,
too.

6.3. Granularity TOC

RELAX NG supports different styles of schema structuring: One extreme,
often called "Russian Doll", specifies the structure of an XML instance
document in a single hierarchy. The other extreme, the flat style, uses
a similar approach as the Data Type Definition (DTD) schema language -
every XML element is introduced inside a new named pattern. In
practice, some compromise between the two extremes is usually chosen.
YANG supports both styles in principle, too, but in most cases the
modules are organized in a way that's closer to the "Russian Doll"
style, which provides a better insight into the structure of the
configuration data. Groupings are usually defined only for contents
that are prepared for reuse in multiple places via the 'uses'
statement. In contrast, RELAX NG schemas tend to be much flatter,
because finer granularity is also needed in RELAX NG for extensibility
of the schemas - it is only possible to replace or modify schema
fragments that are factored out as named patterns. For YANG this is not
an issue since its 'augment' and 'refine' statements can delve, by
using path expressions, into arbitrary depths of existing structures.
In general, it not feasible to map YANG extension mechanisms to those
of RELAX NG. For this reason, the mapping essentially keeps the
granularity of the original YANG data model: definitions of named
patterns in the resulting RELAX NG schema usually have direct
counterparts in YANG groupings and definitions of derived types.

6.4. Handling of XML Namespaces TOC

Most modern XML schema languages including RELAX NG, Schematron and
DSRL support schemas for so-called compound XML documents, which
contain elements from multiple namespaces. This is useful for our
purpose since the YANG-to-DSDL mapping algorithm allows for multiple
input YANG modules that naturally leads to compound document schemas.
RELAX NG offers two alternatives for defining the "target" namespaces
in the schema:

1. First possibility is the traditional XML way via the @xmlns:xxx
attribute.

2. One of the target namespace URIs may be declared using the @ns
attribute.

In both cases these attributes are typically attached to the
<rng:grammar> element.

The design decision for the mapping is to use exclusively the
alternative 1, since all YANG modules are represented symmetrically,
which makes further processing of the conceptual tree schema
considerably easier. Moreover, this way the namespace prefixes declared
in all input modules are recorded in the resulting schema - the prefix
for the namespace declared using @ns would be lost.

In contrast, there is no choice for Schematron and DSRL since both
schema languages require the target namespaces to be defined by special
means. In Schematron, <sch:ns> subelements of the root <sch:schema>
element serve this purpose, whereas in DSRL it is the @targetNamespace
attribute of the root <dsrl:maps> element.

7. Mapping YANG Data Models to the Conceptual Tree Schema TOC

This section explains the main principles underlying the first step of
the mapping. Its result is an annotated RELAX NG schema of the
conceptual tree, which is described in Section 6.1 (Conceptual Data
Tree).

As a special case, if the input YANG modules contain no data nodes
(this is typical e.g., for datatype library modules), an implementation
MAY entirely remove the schema of the (empty) conceptual tree - the
<rng:start> element with all its contents. The output RELAX NG schema
will then contain only named pattern definitions translated from YANG
groupings and typedefs.

Detailed specification of the mapping of individual YANG statements is
contained in Section 10 (Mapping YANG Statements to Annotated RELAX

NG).

7.1. Optional and Mandatory Content TOC

In YANG, the decision whether a given data node is mandatory or
optional is driven by the following rules, see [5] (Bjorklund, M., Ed.,
“YANG - A data modeling language for NETCONF,” March 2009.), Section
3.1:

Leaf and choice nodes are mandatory if they contain the substatement

mandatory true;

In addition, leaf nodes are mandatory if they are declared as list
keys.

Lists or leaf-lists are mandatory if they contain 'min-elements'
substatement with argument value greater than zero.

A slightly more complicated situation arises for YANG containers.
First, containers with the 'presence' substatement are always optional

since their presence or absence carries specific information. On the
other hand, non-presence containers may be omitted if they are empty.
This leads to the following recursive rule:

A container node is optional if its definition contains the 'presence'
substatement or none of its child nodes is mandatory.

In RELAX NG, all elements that are optional must be explicitly wrapped
in the <rng:optional> element. The mapping algorithm thus uses the
above rules to determine whether a YANG node is optional and if so,
insert the <rng:optional> element in the RELAX NG schema.

7.2. Mapping YANG Groupings and Typedefs TOC

YANG groupings and typedefs are generally mapped to RELAX NG named
patterns. There are, however, several caveats that the mapping has to
take into account.

First of all, YANG typedefs and groupings may appear at all levels of
the module hierarchy and are subject to lexical scoping, see [5]
(Bjorklund, M., Ed., “YANG - A data modeling language for NETCONF,”
March 2009.), Section 5.5. Moreover, top-level symbols from external
modules are imported as qualified names represented using the external
module namespace prefix and the name of the symbol. In contrast, named
patterns in RELAX NG (both local and imported via the <rng:include>
pattern) share the same namespace and within a grammar they are always
global - their definitions may only appear at the top level as children
of the <rng:grammar> element. Consequently, whenever YANG groupings and
typedefs are mapped to RELAX NG named pattern definitions, their names
MUST be disambiguated in order to avoid naming conflicts. The mapping
uses the following procedure for mangling the names of groupings and
type definitions:

*Names of groupings and typedefs appearing at the top level of the
YANG module hierarchy are prefixed with the module name and two
underscore characters ("_").

*Names of other groupings and typedefs, i.e., those that do not
appear at the top level of a YANG module, are prefixed with the
module name, double underscore, and then the names of all
ancestor data nodes separated by double underscore.

*Since the names of groupings and typedefs in YANG have different
namespaces, an additional underline character is added to the
front of the mangled names of all groupings.

For example, consider the following YANG module which imports the
standard module "inet-types" [20] (Schoenwaelder, J., Ed., “Common YANG

Data Types,” November 2008.):

module examplel {

namespace "http://example.com/ns/examplel";
prefix "ex1";
import "inet-types" {

prefix "inet";
}
typedef vowels {

type string {

pattern "[aeiouy]*";

}
grouping "grpli" {
leaf "void" {
type "empty";

}

container "cont" {
grouping "grp2" {
leaf "address" {
type "inet:ip-address";

}
}
leaf foo {

type vowels;
}

uses '"grpli";
uses '"grp2";

}

The resulting RELAX NG schema will then contain the following named
pattern definitions (long regular expression patterns for IPv4 and IPv6
addresses are not shown):

<rng:define name="examplel vowels">
<rng:data type="string">
<rng:param name="pattern">[aeiouy]*</param>
</rng:data>
</rng:define>

<rng:define name="_examplel__grpl1">
<rng:optional>
<rng:element name="t:void">
<rng:empty/>
</rng:element>
</rng:optional>
</rng:define>

<rng:define name="_examplel__cont__grp2">
<rng:optional>
<rng:element name="t:address">
<rng:ref name="inet-types__ip-address"/>
</rng:element>
</rng:optional>
</rng:define>

<rng:define name="inet-types__ip-address'">
<rng:choice>
<rng:ref name="inet-types__ipv4-address"/>
<rng:ref name="inet-types__ipv6-address"/>
</rng:choice>
</rng:define>

<rng:define name="inet-types__ipv4-address">
<rng:data type="string">
<rng:param name="pattern">... regex pattern
</rng:data>
</rng:define>

<rng:define name="inet-types__ipv6-address">
<rng:data type="string">
<rng:param name="pattern">... regex pattern
</rng:data>
</rng:define>

.1. YANG Refinements and Augments

...</param>

...</param>

T0C

YANG groupings represent a similar concept as named pattern definitions
in RELAX NG and both languages also offer mechanisms for their

subsequent modification. However, in RELAX NG the definitions
themselves are modified whereas YANG allows for modifying expansions of
groupings. Specifically, YANG provides two statements for this purpose
that may appear as substatements of 'uses':

*'refine' statement allows for changing parameters of a schema
node inside the grouping referenced by the parent 'uses'
statement;

*'augment' statement can be used for adding new schema nodes to
the grouping content.

Both 'refine' and 'augment' statements are quite powerful in that they
can address, using a subset of XPath 1.0 expressions as arguments,
schema nodes that are arbitrarily deep inside the grouping content. In
contrast, definitions of named patterns in RELAX NG operate exclusively
at the topmost level of the named pattern content. In order to achieve
a modifiability of named patterns comparable to YANG, the RELAX NG
schema would have to be extremely flat (cf. Section 6.3 (Granularity))
and very difficult to read.

Since the goal of the mapping described in this document is to generate
ad hoc DSDL schemas, we decided to avoid these complications and
instead expand the grouping and refine and/or augment it "in place". In
other words, every 'uses' statement which has 'refine' and/or 'augment'
substatements is virtually replaced by the content of the corresponding
grouping, the changes specified in the 'refine' and 'augment'
statements are applied and the resulting YANG schema fragment is mapped
as if the 'uses'/'grouping' indirection wasn't there.

If there are further 'uses' statements inside the grouping content,
they may require expansion, too: it is necessary if the contained
'uses'/'grouping' pair lies on the "modification path" specified in the
argument of a 'refine' or 'augment' statement.

EXAMPLE. Consider the following YANG module:

module example2 {

namespace "http://example.com/ns/example2";
prefix ex2;
grouping leaves {

uses fr;

uses es;
}
grouping fr {

leaf feuille {

type string;

}
}
grouping es {
leaf hoja {
type string;
}
}

uses leaves;

The resulting conceptual tree schema contains three named pattern
definitions corresponding to the three groupings, namely

<rng:define name="_example2__leaves'">
<rng:ref name="_example2__ fr"/>
<rng:ref name="_example2__es"/>
</rng:define>

<rng:define name="_example2__ fr">
<rng:optional>
<rng:element name="feuille">
<rng:data type="string"/>
</rng:element>
</rng:optional>
</rng:define>

<rng:define name="_example2__es">
<rng:optional>
<rng:element name="hoja'">
<rng:data type="string"/>
</rng:element>
</rng:optional>
</rng:define>

and the configuration data part of the conceptual tree schema is a
single named pattern reference:

<rng:ref name="_example2__leaves"/>

Now assume that the "uses leaves" statement is refined:

uses leaves {
refine "hoja" {
default "alamo";

The resulting conceptual tree schema now contains just one named
pattern definition - "_example_ fr". The other two groupings '"leaves"
and "es" have to be expanded because they both lie on the "modification
path", i.e., contain the leaf "hoja" that is being refined. The
configuration data part of the conceptual tree now looks like this:

<rng:ref name="_example2_ fr"/>
<rng:optional>
<rng:element name="hoja" nma:default="alamo">
<rng:data type="string"/>
</rng:element>
</rng:optional>

7.2.2. Type derivation chains TOC

RELAX NG has no equivalent of the type derivation mechanism in YANG,
where a base built-in type may be modified (in multiple steps) by
adding new restrictions. Therefore, when mapping YANG derived types
with restrictions, the derived types MUST be "unwound" all the way back
to the base built-in type. At the same time, all restrictions found
along the type derivation chain MUST be combined and their intersection
used as facets restricting the corresponding type in RELAX NG.

When a derived YANG type is used without restrictions, the 'type'
statement is mapped simply to the <rng:ref> element, i.e., a named
pattern reference. However, if restrictions are specified as
substatements of the 'type' statement, the type MUST be expanded at
that point so that only the base built-in type appears in the output
schema, restricted with facets that again correspond to the combination
of all restrictions found along the type derivation chain and also in
the 'type' statement.

EXAMPLE. Consider this YANG module:

module example3 {
namespace "http://example.com/ns/example3";
prefix ex3;
typedef dozen {
type uint8 {
range 1..12;

}
leaf month {

type dozen;

The 'type' statement in "leaf month" is mapped simply to the reference
<rng:ref name="example__dozen"/> and the corresponding named pattern is
defined as follows:

<rng:define name="example3__dozen">
<rng:data type="unsignedByte">
<rng:param name="minInclusive">1</param>
<rng:param name="maxInclusive">12</param>
</rng:data>
</rng:define>

Assume now that the definition of leaf "month" is changed to

leaf month {
type dozen {
range 7..max;

The output RELAX NG schema then won't contain any named pattern
definition and leaf "month" will be mapped directly to

<rng:element name="month">
<rng:data type="unsignedByte">
<rng:param name="minInclusive">7</param>
<rng:param name="maxInclusive">12</param>
</rng:data>
</rng:element>

7.3. Translation of XPath Expressions TOC

YANG uses full XPath 1.0 syntax [18] (Clark, J. and S. DeRose, “XML
Path Language (XPath) Version 1.0,” November 1999.) for the arguments

of 'must' and 'when' statements and a subset thereof in several other
statements. However, since the name of a data node always belongs to
the namespace of the YANG Module where the data node is defined, YANG
adopted a simplification similar to the concept of default namespace in
XPath 2.0: node names needn't carry a namespace prefix inside the
module where they are defined, in which case the module's namespace is
assumed.

If an XPath expression is carried over to a NETMOD-specific annotation
in the first mapping step, it MUST be translated into a fully
conformant XPath 1.0 expression that also reflects the hierarchy of the
conceptual data tree:

1. Each unprefixed node name MUST be prepended with the local
module's namespace prefix declared by the 'prefix' statement.

2. Absolute XPath expressions, i.e., those starting with a slash,
MUST be prepended with appropriate path in the conceptual tree,
according to the YANG specification of context for XPath
expressions, see [18] (Clark, J. and S. DeRose, “XML Path
Language (XPath) Version 1.0,” November 1999.), sections 7.5.3
and 7.19.5.

Translation rule 2 means for example that absolute XPath expressions
appearing in the main configuration data tree always start with
"nmt:netmod-tree/nmt:top/", those appearing in a notification always
start with "nmt:netmod-tree/nmt:notifications/nmt:notification/", etc.
EXAMPLE. YANG XPath expression "/dhcp/max-lease-time" appearing in the
main configuration data will be translated to "nmt:netmod-tree/nmt:top/
dhcp:dhcp/dhcp:max-lease-time".

[Editor's note: We may want to introduce "$root" variable that always
contains the appropriate partial path in conceptual tree. The
translated XPath in the example would then become "$root/dhcp:dhcp/
dhcp:max-lease-time".]

The key identifiers and "descendant schema node identifiers" (see the
ABNF production for "descendant-schema-nodeid" in Section 12 of [5]
(Bjorklund, M., Ed., “YANG - A data modeling language for NETCONF,”
March 2009.)) that appear as items in the arguments of 'key' and
'unique' statements, respectively, are special XPath expressions and
MUST be translated in the same way, i.e., after the translation each
key and every component of a node identifier must have the namespace
prefix of the local module.

7.4. YANG Language Extensions TOC

YANG allows for extending its own language in-line by adding new
statements with keywords from special namespaces. Such extensions first
have to be declared using the 'extension' statement and then can be

used as the native statements, only with a namespace prefix qualifying
the extension keyword. RELAX NG has a similar extension mechanism - XML
elements and attributes with names from foreign namespaces may be
inserted at almost every place of a RELAX NG schema.

YANG language extensions may or may not have a meaning in the context
of DSDL schemas. Therefore, an implementation MAY ignore any or all of
the extensions. However, an extension that is not ignored MUST be
mapped to XML element(s) and/or attribute(s) that exactly match the YIN
form of the extension.

EXAMPLE. Consider the following extension defined by the "acme" module:

extension documentation-flag {
argument number;

This extension can then be used in the same or another module, for
instance like this:

leaf folio {
acme:documentation-flag 42;
type string;

If this extension is honored by the mapping, it will be mapped to
<rng:element name="folio">
<acme:documentation-flag number="42"/>
<rng:data type="string"/>

</rng:element>

Note that the 'extension' statement itself is not mapped in any way.

8. Mapping Conceptual Tree Schema to DSDL TOC

As explained in Section 5 (Overview of the Mapping), the second step of
the YANG-to-DSDL mapping takes the conceptual tree schema and
transforms it to various DSDL schemas ready for validation. As an input
parameter, this step gets in the simplest case a specification of the
NETCONF XML document type (or combination of multiple types) that is to
be validated. These document type can be for example reply to <nc:get>
or <nc:get-config>, RPC requests or replies and notification. Other
parameters further describing the context may also be provided, such as
the list of active capabilities, features etc.

In general, the second mapping step has to accomplish the following
three tasks:

1. Extract the part(s) of the conceptual tree schema that are
appropriate or the requested document type. For example, if a
<get> reply is to be validated, the subtree under <nmt:top>
must be selected.

2. The schema must be accommodated to the specific encapsulating
XML elements mandated by the RPC layer. These are, for example,
<nc:rpc> and <nc:data> elements in the case of a datastore or
<en:notification> for a notification.

3. Finally, NETMOD-specific annotations that are relevant for the
schema language of the generated schema must be mapped to
corresponding schema-language-specific rules.

These three tasks are together much simpler than the first mapping
step. Presumably, they can be effectively realized using XSL
transformations [19] (Clark, J., “XSL Transformations (XSLT) Version
1.0,” November 1999.).

The following subsections describe the details of the second mapping
step for the individual DSDL schema languages. Section 11 (Mapping
NETMOD-specific annotations to DSDL Schema Languages) then contains a
detailed specification for the mapping of all NETMOD-specific
annotations.

8.1. Generating RELAX NG Schemas for Various Document Types TOC

wWith one minor exception, obtaining a validating RELAX NG schema from
the conceptual tree schema really means only taking appropriate parts
from the conceptual tree schema and assembling them in a new RELAX NG
grammar, perhaps after removing all unwanted annotations. Depending on
the XML document type that is the target for validation (<get>/<get-
config> reply, RPC or notification) a corresponding top-level part of
the grammar MUST be added as described in the following subsections.
Schemas for multiple alternative target document types can also be
easily generated by enclosing the definitions for requested type in
<rng:choice> element.

In order to avoid copying identical named pattern definitions to the
output RELAX NG file, these schema-independent definition are collected
in a library file "relang-1lib.rng" which is then included by the
validating RELAX NG schemas. Appendix B (Schema-Independent Library)
has the listing of this library file.

The minor exception mentioned above is the annotation @nma:config,
which must be observed if the target document type is <get-config>
reply. In this case, each element definition that has this attribute

with the value "false" MUST be removed from the schema together with
its descendants. See Section 11.1 (The @nma:config Annotation) for more
details.

8.1.1. Reply to <get> or <get-config> T0C

For a reply to <get> or <get-config>, the mapping must take the part of
the conceptual tree schema under the definition of <nmt:top> and insert
it in the following grammar:

<rng:grammar ... namespaces etc. ...>
<rng:include href="relaxng-1lib.rng"/>
<rng:start>
<rng:element name="nc:rpc-reply">
<rng:ref name="message-id-attribute"/>
<rng:element name="nc:data'">
patterns defining contents of "nmt:top" subtree
</rng:element>
</rng:element>
</rng:start>
named pattern definitions
</rng:grammar>

The definition for the named pattern "message-id-attribute" is found in
the library file "relaxng-lib.rng" which is included on the second line
(see Appendix B (Schema-Independent Library)).

Definitions of other named patterns MUST be copied from the conceptual
tree schema without any changes to the resulting grammar. However, an
implementation MAY choose to copy only those definitions that are
really used in the particular output grammar.

8.1.2. Remote Procedure Calls TOC

For an RPC method named "myrpc" and defined in a YANG module with
prefix "yam", the corresponding schema subtree is identified by the
definition of <nmt:rpc-method> element whose <nmt:input> subelement has
<yam:myrpc> as the only child.

The mapping must also take into account whether the target document
type in an RPC request or reply. For "yam:myrpc" request, the resulting
grammar looks as follows:

<rng:grammar ... namespaces etc. ...>
<rng:include href="relaxng-1lib.rng"/>
<rng:start>
<rng:element name="nc:rpc">
<rng:ref name="message-id-attribute"/>
<rng:element name="yam:myrpc">
patterns defining contents of subtree
"nmt :rpc-method/nmt:input/yam:myrpc"
</rng:element>
</rng:element>
</rng:start>
named pattern definitions
</rng:grammar>

For "myrpc" reply, the output grammar is

<rng:grammar ... namespaces etc. ...>
<rng:include href="relaxng-1lib.rng"/>
<rng:start>
<rng:element name="nc:rpc-reply">
<rng:ref name="message-id-attribute"/>
patterns defining contents of corresponding
"nmt:rpc-method/nmt:output" subtree
</rng:element>
</rng:start>
named pattern definitions
</rng:grammar>

In both cases, exact copies of named pattern definitions from the
conceptual tree schema MUST be inserted, but an implementation MAY
choose to include only those used for the given RPC.

8.1.3. Notifications TOC

For a notification named "mynotif" and defined in a YANG module with
prefix "yam", the corresponding schema subtree is identified by the
definition of <nmt:notification> element that has the single child
<yam:mynotif>.

The resulting grammar looks as follows:

<rng:grammar ... namespaces etc. ...>
<rng:include href="relaxng-1lib.rng"/>
<rng:start>
<rng:element name="en:notification">
<rng:ref name="eventTime-element"/>
<rng:element name="yam:myrpc">
<!-- patterns defining contents of
"nmt:rpc-notification/yam:mynotif" subtree -->
</rng:element>
</rng:element>
</rng:start>
<!-- named pattern definitions -->
</rng:grammar>

The definition of the named pattern "eventTime-element" is found in the
"relaxng-lib.rng" library file.

And again, exact copies of named pattern definitions from the
conceptual tree schema MUST be inserted, but an implementation MAY
choose to include only those used for the given notification.

8.2. Mapping Semantic Constraints to Schematron TOC

Schematron schemas tend to be much flatter and more uniform compared to
RELAX with exactly four levels of XML hierarchy: <sch:schema>,
<sch:pattern>, <sch:rule> and <sch:assert> or <sch:report>.

In a Schematron schema generated by the second mapping step, the basic
unit of organization is a rule represented by the <sch:rule> element.
Every rule corresponds to exactly one element definition in the
conceptual tree schema. The mandatory @context attribute of <sch:rule>
is set to the absolute path of the corresponding element in the data
tree.

In the opposite direction, however, not every element definition has a
corresponding rule in the Schematron schema: only those definitions are
taken into account that are annotated with at least one of the
following NETMOD-specific annotations: <nma:instance-identifier>,
@nma:key, <nma:leafref>, @nma:min-elements, @nma:max-elements,
<nma:must>, @nma:unique and <nma:when>.

Schematron rules may be further grouped into patterns represented by
the <sch:pattern> element. The mapping uses patterns only for
discriminating between subsets of rules that belong to different
validation phases, see Section 8.2.1 (Validation Phases). Therefore,
the <sch:schema> always has exactly two <sch:pattern> children: one
named "standard" contains rules for all annotations except
<nma:instance-identifier> and <nma:leafref>, and another named "ref-

integrity" containing rules for these two remaining annotations, i.e.,
referential integrity checks.

Element definitions in the conceptual tree schema that appear inside a
named pattern definition (i.e., have <rng:define> among its ancestors)
are subject to a different treatment. This is because their path in the
data tree is not fixed - the named pattern may be referred to in
multiple different places. The mapping uses abstract rules to handle
this case: An element definition inside a named pattern is mapped to an
abstract rule and every use of the named pattern then extends this
abstract pattern in the concrete context.

EXAMPLE. Consider this element definition annotated with <nma:must>:

<rng:element name="dhcp:default-lease-time">
<rng:data type="unsignedInt"/>
<nma:must assert=". <= ../dhcp:max-lease-time">
<nma:error-message>
The default-lease-time must be less than max-lease-time
</nma:error-message>
</nma:must>
</rng:element>

If this element definition appears outside any named pattern and as a
child of <dhcp:dhcp> (as it does in the DHCP schema, see Appendix C.2
(Conceptual Tree Schema)), it is mapped to the following Schematron
rule:

<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:default-lease-time">
<sch:assert test=". <= ../dhcp:max-lease-time">
The default-lease-time must be less than max-lease-time
</sch:assert>
</sch:rule>

Now assume the element definition is inside a named pattern definition,
say

<rng:define name="_dhcp__default-lease-time">
<rng:element name="dhcp:default-lease-time">
same content
</rng:element>
</rng:define>

In this case it is mapped to an abstract rule:

<sch:rule 1d="1d31415926" abstract="true'">
<sch:assert test=". <= ../dhcp:max-lease-time">
The default-lease-time must be less than max-lease-time
</sch:assert>
</sch:rule>

Any use of the named pattern definition via <rng:ref
name="_dhcp__default-lease-time"/> then results in a new rule extending
the abstract one, for example

<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:default-lease-time">
<sch:extends rule="1d31415926"/>
</sch:rule>

Care must be taken that the value of the @context attribute in general
consists of two parts in this case: its beginning is determined by the
location of the <rng:ref> element in the main schema tree and the rest
of the path comes from the relative position of the annotated element
definition inside the named pattern. The situation becomes even more
complex when the mapping has to deal with chained definitions of named
patterns (<rng:ref> inside <rng:define>). The @context value then must
be recursively glued together from multiple parts.

The mapping from the conceptual tree schema to Schematron proceeds in
the following steps:

1. First, the active subtree(s) of the conceptual tree schema must
be selected depending on the requested target document type.
This procedure is identical to the RELAX NG case, including the
handling of @nma:config if the target document type is <get-
config> reply.

2. Namespaces of all input YANG modules, together with the
namespaces of base NETCONF ("nc" prefix) or notifications ("en"
prefix) MUST be declared using the <sch:ns> element, for
example

<sch:ns uri="http://example.com/ns/dhcp" prefix="dhcp"/>
3. Validation phases are defined (see Section 8.2.1 (Validation

Phases)) and their constituting patterns "standard" and "ref-
integrity" created.

4. For either validation phase, the input conceptual tree schema
is scanned and element definitions with annotations relevant
for the given phase are selected and a <sch:rule> is created
for each of them. The rule is abstract if the element
definition appears inside a named pattern, see above.

5. All annotations attached to the given element definition are
then mapped using the mapping rules specified in Section 11
(Mapping NETMOD-specific annotations to DSDL Schema Languages).
The resulting <sch:assert> or <sch:report> elements are the
installed as children of the <sch:rule> element.

8.2.1. Validation Phases TOC

In certain situations it is useful to validate XML instance documents
without enforcing the referential integrity constraints represented by
the <nma:leafref> and <nma:instance-identifier> annotations. For
example, a candidate configuration refering to configuration parameters
or state data of certain hardware will not pass full validation before
the hardware is installed. To handle this, the Schematron mapping
introduces two validation phases:

*Validation phase "full", which is the default, checks all
semantic constraints.

*Validation phase "noref" is the same as "full" except it doesn't
check referential integrity constraints.

A parameter identifying the validation phase to use has to be passed to
the Schematron processor or otherwise both patterns are used by
default. How this is exactly done depends on the concrete Schematron
processor and is outside the scope of this document.

The validation phases are defined in Schematron by listing the patterns
that are to be applied for each phase. Therefore, the mapping puts the
rules for referential integrity checking to a special <sch:pattern>
with @id attribute set to "ref-integrity". The rules mapped from the
remaining semantic constraints are put to another <sch:pattern> with
@id attributes set to "standard".

wWith validation phases, the resulting Schematron schema has the
following overall structure:

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
<sch:ns uri="..." prefix="..."/>
more NS declarations
<sch:phase id="full">
<sch:active pattern="standard"/>
<sch:active pattern="ref-integrity"/>
</sch:phase>
<sch:phase id="noref">
<sch:active pattern="standard"/>
</sch:phase>
<sch:pattern id="standard">
all rules except ref. integrity checks
</sch:pattern>
<sch:pattern id="ref-integrity">
rules for ref. integrity checks
</sch:pattern>
</sch:schema>

8.3. Mapping Default Values to DSRL TOC
TBD
9. NETCONF Content Validation TOC

This section describes the procedures for validating XML instance
documents corresponding to various NETCONF PDUs given the set of DSDL
schemas generated for the particular document type.

[Editor's note: This section is incomplete. We have to figure out what
are the NETCONF instances we want to validate, and also the validation
contexts and modes. However, these questions are not DSDL-specific and
should be addressed by the WG.]

The validation proceeds in the following steps, see also Figure 2
(Outline of the validation procedure):

1. The XML instance document can be immediately checked for
grammatical and data type validity using the RELAX NG schema.

2. Second, the default values for leaves and default cases have to
be applied. It is important to apply the defaults before the
next validation step because [5] (Bjorklund, M., Ed., “YANG - A
data modeling language for NETCONF,” March 2009.) states that
the data tree against which XPath expressions are evaluated

already has all defaults filled-in. Note that this step
modifies the information set of the input XML document.

3. The semantic constraints are checked using the Schematron

schema.

S NS + Fommmm oo +

I I | XML |

| XML | | document |

| document |----------- O----------- > | with |

| | A | defaults |

I I I I I

Foemmeeaaam + | Fommmmeaaaa +
N | filling-in A
| grammar, | defaults | semantic
| datatypes [| constraints
I I |

. + oo e o= + o m e +

| RELAX NG | | DSRL | | Schematron |

| schema | | schema | | schema |

S RS + tom oo + YU +
Figure 2: Outline of the validation procedure

10. Mapping YANG Statements to Annotated RELAX NG TOC

Each subsection in this section is devoted to one YANG statement and
provides the specification how the statement is mapped to the annotated
RELAX NG schema of the conceptual tree. This is the first step of the
mapping procedure, see Section 5 (Overview of the Mapping). The
subsections are sorted alphabetically by the statement keyword.

Each YANG statement is mapped to an XML fragment, typically a single
element or attribute but it may also be a larger structure. The mapping
algorithm is inherently recursive, which means that after finishing a
statement the mapping continues with its substatements, if there are
any, and a certain element of the resulting fragment becomes the parent

of other fragments resulting from the mapping of substatements. We use
the following notation:

*The argument of the statement being mapped is denoted by
ARGUMENT .

*The element in the RELAX NG schema that becomes the parent of the
resulting XML fragment is denoted by PARENT.

10.1. The anyxml Statement TOC

This statement is mapped to <rng:element> element and ARGUMENT becomes
the value of its @name attribute. The content of <rng:element> is

<rng:ref name="__anyxml__"/>

Substatements of the 'anyxml' statement are mapped to additional
children of the RELAX NG element definition.

If the 'anyxml' statement occurs in any of the input YANG modules, the
following pattern definition MUST be added exactly once to the RELAX NG
schema as a child of the <rng:grammar> element (cf. [21] (van der
vlist, E., “RELAX NG,” 2004.), p. 172):

<rng:define name="__anyxml__ ">
<rng:zeroOrMore>
<rng:choice>
<rng:attribute>
<rng:anyName/>
</rng:attribute>
<rng:element>
<rng:anyName/>
<rng:ref name="__anyxml__"/>
</rng:element>
<rng:text/>
</rng:choice>
</rng:zeroOrMore>
</rng:define>

EXAMPLE: YANG statement
anyxml data {

description "Any XML content allowed here.";

maps to the following fragment:

<rng:element name="data">
<a:documentation>Any XML content allowed here</a:documentation>
<rng:ref name="__anyxml__"/>

</rng:element>

10.2. The argument Statement TOC

This statement is not mapped to the output schema, but see the rules
for extension handling in Section 7.4 (YANG Language Extensions).

10.3. The augment Statement TOC

As a substatement of 'uses', this statement is handled as a part of
'uses' mapping, see Section 10.54 (The uses Statement).

At the top level of a module or submodule, the 'augment' statement is
used for augmenting the schema tree of another YANG module. If the
latter module is not processed within the same mapping session, the
top-level 'augment' statement MUST be ignored. Otherwise, the contents
of the statement are added to the foreign module with the namespace of
the module where the 'augment' statement appears.

10.4. The base Statement TOC

This statement is ignored as a substatement of 'identity' and handled
within the 'identityref' type if it appears as a substatement of that
type definition, see Section 10.50.5 (The identityref Type).

10.5. The belongs-to Statement TOC

This statement is not used since processing of submodules is always
initiated from the main module, see Section 10.21 (The include

Statement).

T0C

10.6. The bit Statement

This statement is handled within the "bits" type, see Section 10.50.3
(The bits Type).

10.7. The case Statement TOC

This statement is mapped to <rng:group> element. If the argument of a
sibling 'default' statement equals to ARGUMENT, @nma:default-case
attribute with the value of "true" is added to that <rng:group>
element.

10.8. The choice Statement TOC

This statement is mapped to <rng:choice> element.
Unless 'choice' has the 'mandatory' substatement with the value of
"true", the <rng:choice> element MUST be wrapped in <rng:optional>.

10.9. The config Statement TOC

This statement is mapped to @nma:config attribute and ARGUMENT becomes
its value.

10.10. The contact Statement TOC

This statement is not used by the mapping since the output RELAX NG
schema may result from multiple YANG modules created by different
authors. The schema contains references to all input modules in the
Dublin Core elements <dc:source>, see Section 10.31 (The module
Statement). The original modules are the authoritative sources of the
authorship information.

10.11. The container Statement TOC

Using the procedure outlined in Section 7.1 (Optional and Mandatory
Content), the mapping algorithm MUST determine whether the statement

defines an optional container, and if so, insert the <rng:optional>

element and make it the new PARENT.

The container defined by this statement is then mapped to the
<rng:element> element, which becomes a child of PARENT and uses
ARGUMENT as the value of its @name attribute.

10.12. The default Statement

If this statement is a substatement of 'typedef' or 'leaf',K it is

mapped to the @nma:default attribute of PARENT and ARGUMENT becomes its

value.

As a substatement of 'choice', the 'default'

default case and is handled within the

statement identifies the
statement,
Section 10.7 (The case Statement). If the default case uses the

shorthand notation where the 'case' statement is omitted, an extra

<rng:group> element MUST be inserted with @nma:default-case attribute

set to "true". The net result is then the same as if the
statement wasn't omitted for the default case.
EXAMPLE. The following 'choice' statement

choice leaves {
default feuille;
leaf feuille { type empty; }
leaf hoja { type empty; }

is mapped to

<rng:choice>
<rng:group nma:default="true">
<rng:element name="feuille">
<rng:empty/>
</rng:element>
</rng:group>
<rng:element name="hoja">
<rng:empty/>
</rng:element/>
</rng:choice>

10.13. The description Statement

TOC

This statement is ignored if it appears at the top level of each input
YANG module. The description can be found in the source module that is

referred to by Dublin Core element <dc:source> and use ARGUMENT as its
content.

Otherwise, this statement is mapped to the DTD compatibility element
<a:documentation> and ARGUMENT becomes its text.

In order to get properly formatted in the RELAX NG compact syntax, this
element SHOULD be inserted as the first child of PARENT.

10.14. The enum Statement TOC

This statement is mapped to <rng:value> element and ARGUMENT becomes
its text. All substatements except 'status' are ignored because the
<rng:value> element cannot contain annotations, see [12] (ISO/IEC,
“Information Technology - Document Schema Definition Languages (DSDL) -
Part 2: Regular-Grammar-Based Validation - RELAX NG. Second Edition.,”

12 2008.), Section 6.

10.15. The error-app-tag Statement TOC

This statement is ignored unless it is a substatement of 'must'. In the
latter case it is mapped to the <nma:error-app-tag> element. See also
Section 10.32 (The must Statement).

10.16. The error-message Statement TOC

This statement is ignored unless it is a substatement of 'must'. In the
latter case it is mapped to the <nma:error-message> element. See also
Section 10.32 (The must Statement).

10.17. The extension Statement TOC

This statement is ignored. However, extensions to the YANG language MAY
be mapped as described in Section 7.4 (YANG Language Extensions).

T0C

10.18. The grouping Statement

This statement is mapped to a RELAX NG named pattern definition
<rng:define>, but only if the grouping defined by this statement is
used without refinements and augments in at least one of the input
modules. In this case, the named pattern definition becomes a child of
the <rng:grammar> element and its name is ARGUMENT mangled according to
the rules specified in Section 7.2 (Mapping YANG Groupings and
Typedefs).

Whenever a grouping is used with additional refinements and/or
augments, the grouping is expanded so that the refinements and augments
may be applied directly to the prescribed schema nodes. See

Section 7.2.1 (YANG Refinements and Augments) for further details and
an example.

An implementation MAY offer the option of recording all 'grouping'
statements as named patterns in the output RELAX NG schema even if they
are not referenced. This is useful for mapping YANG "library" modules
containing only 'typedef' and/or 'grouping' statements.

10.19. The identity Statement TOC

This statement is not specifically mapped. However, if the identity

defined by this statement is used as the base for an "identityref" type
in any of the input modules, ARGUMENT will appear as the text of one of
the <rng:value> elements in the mapping of that "identityref" type. See
Section 10.50.5 (The identityref Type) for more details and an example.

10.20. The import Statement TOC

This statement is not specifically mapped. The module whose name is in
ARGUMENT has to be parsed so that the importing module be able to use
its top-level groupings and typedefs and also augment the data tree of
the imported module.

If the 'import' statement has the 'revision' substatement, the
corresponding revision of the imported module MUST be used. The
mechanism for finding a given module revision is outside the scope of
this document.

T0C

10.21. The include Statement

This statement is not specifically mapped. The submodule whose name is
in ARGUMENT has to be parsed and its contents mapped exactly as if the
submodule text was a subset of the main module text.

If the 'include' statement has the 'revision' substatement, the
corresponding revision of the submodule MUST be used. The mechanism for
finding a given submodule revision is outside the scope of this
document.

10.22. The input Statement TOC

This statement is handled within 'rpc' statement, see Section 10.47
(The rpc Statement).

10.23. The key Statement TOC

This statement is mapped to @nma:key attribute. ARGUMENT is MUST be
translated so that every key is prefixed with the namespace prefix of
the local module. The result of this translation then becomes the value
of the @nma:key attribute.

10.24. The leaf Statement TOC

This statement is mapped to the <rng:element> element and ARGUMENT
becomes the value of its @name attribute.

The leaf is optional if there is no "mandatory true;" substatement and
if the leaf is not declared among the keys of an enclosing list. In
this case, the <rng:element> element MUST be wrapped in <rng:optional>.

10.25. The leaf-list Statement TOC

This statement is mapped to a block enclosed by either <rng:zeroOrMore>
or <rng:oneOrMore> element depending on whether the argument of 'min-
elements' substatement is "O" or positive, respectively (it is zero by
default). This <rng:zeroOrMore> or <rng:oneOrMore> element becomes the
PARENT.

<rng:element> is the added as a child element of PARENT and ARGUMENT
becomes the value of its @name attribute. If the 'leaf-list' statement

has the 'min-elements' substatement and its argument is greater than
one, additional attribute @nma:min-elements is attached to
<rng:element> and the argument of 'min-elements' becomes the value of
this attribute. Similarly, if there is the 'max-elements' substatement
and its argument value is not "unbounded", attribute @nma:max-elements
is attached to this element and the argument of 'max-elements' becomes
the value of this attribute.

EXAMPLE. YANG leaf-list

leaf-1list foliage {
min-elements 3;
max-elements 6378;
ordered-by user;
type string;

is mapped to the following RELAX NG fragment:

<rng:oneOrMore>
<rng:element name="foliage" nma:ordered-by="user"
nma:min-elements="3" nma:max-elements="6378">
<rng:data type="string"/>
</rng:element>
</rng:oneOrMore>

10.26. The length Statement TOC

This statement is handled within the "string" type, see Section 10.50.9

(The string Type).

10.27. The list Statement TOC

This statement is mapped exactly as the 'leaf-list' statement, see
Section 10.25 (The leaf-1ist Statement).

10.28. The mandatory Statement TOC

This statement may appear as a substatement of 'leaf', 'choice' or
'anyxml' statement. If ARGUMENT is "true", the parent data node is
mapped as mandatory, see Section 7.1 (Optional and Mandatory Content).

10.29. The max-elements Statement TOC

This statement is handled within 'leaf-list' or 'list' statements, see
Section 10.25 (The leaf-1list Statement).

10.30. The min-elements Statement TOC

This statement is handled within 'leaf-list' or 'list' statements, see
Section 10.25 (The leaf-1list Statement).

10.31. The module Statement TOC

This statement is not specifically mapped except that a <dc:source>
element SHOULD be created as a child of <rng:grammar> and contain
ARGUMENT as a reference to the input YANG module. See also

Section 10.46 (The revision Statement).

wWith respect to the conceptual tree schema, substatements of 'module'
MUST be mapped so that

*top level data elements be defined as children of the <nmt:top>
element;

*elements mapped from 'rpc' statements be defined as children of
the <nmt:rpc-methods> element;

*elements mapped from 'notification' statements be defined as
children of the <nmt:notifications> element.

10.32. The must Statement TOC

This statement is mapped to the <nma:must> element. It has one
mandatory attribute @assert (with no namespace), which contains
ARGUMENT transformed into a valid XPath expression (see Section 7.3
(Translation of XPath Expressions)). The <nma:must> element may get
other subelements resulting from mapping 'error-app-tag' and 'error-
message' substatements. Other substatements of 'must', i.e.,
'description' and 'reference', are ignored.

EXAMPLE. YANG statement

must 'current() <= ../max-lease-time' {
error-message
"The default-lease-time must be less than max-lease-time";

is mapped to

<nma:must assert="current()<=../dhcp:max-lease-time">
<nma:error-message>
The default-lease-time must be less than max-lease-time
</nma:error-message>
</nma:must>

10.33. The namespace Statement TOC

This statement is mapped to @xmlns:xxx attribute of the <rng:grammar>
element where "xxx" is the namespace prefix specified by the sibling
'prefix' statement. ARGUMENT becomes the value of this attribute.

10.34. The notification Statement TOC

This statement is mapped to the following subtree in the RELAX NG
schema ("yam" is the prefix of the local YANG module):

<rng:element name="nmt:notification">
<rng:element name="yam:ARGUMENT">

</rng:element>
</rng:element>

Substatements of 'notification' are mapped under <rng:element
name="yam:ARGUMENT">.

The <rng:element name="nmt:rpc-notification"> element is a child of
<rng:element name="nmt:notifications">.

10.35. The ordered-by Statement TOC

This statement is mapped to @nma:ordered-by attribute and ARGUMENT
becomes the value of this attribute. See Section 10.25 (The leaf-1list

Statement) for an example.

10.36. The organization Statement TOC

This statement is not used by the mapping since the output RELAX NG
schema may result from multiple YANG modules authored by different
parties. The schema contains references to all input modules in the
Dublin Core elements <dc:source>, see Section 10.31 (The module
Statement). The original modules are the authoritative sources of the
authorship information.

10.37. The output Statement T0C

This statement is handled within 'rpc' statement, see Section 10.47
(The rpc Statement).

10.38. The path Statement TOC

This statement is handled within "leafref" type, see Section 10.50.7
(The leafref Type).

10.39. The pattern Statement TOC

This statement is handled within "string" type, see Section 10.50.9
(The string Type).

10.40. The position Statement TOC

This statement is ignored.

10.41. The prefix Statement TOC

This statement is handled within the sibling 'namespace' statement, see
Section 10.33 (The namespace Statement), or within the parent 'import'

statement, see Section 10.20 (The import Statement). As a substatement
of 'belongs-to' (in submodules), the 'prefix' statement is ignored.

10.42. The presence Statement TOC

This statement influences the mapping of 'container' (Section 10.11
(The container Statement)): it makes the parent container optional,
regardless of its content. See also Section 7.1 (Optional and Mandatory

Content).

10.43. The range Statement TOC

This statement is handled within numeric types, see Section 10.50.8
(The numeric Types).

10.44. The reference Statement TOC

This statement is ignored if it appears at the top level of a module or
submodule.

Otherwise, this statement is mapped to <a:documentation> element and
its text is set to ARGUMENT prefixed with "See: ".

10.45. The require-instance Statement TOC

This statement is handled within the types "leafref" (Section 10.50.7
(The leafref Type)) and "instance-identifier" (Section 10.50.6 (The
instance-identifier Type)).

10.46. The revision Statement TOC

The mapping uses only the most recent instance of the 'revision'
statement, i.e., one with the latest date in ARGUMENT, which specifies
the current revision of the input YANG module [5] (Bjorklund, M., Ed.,
“YANG - A data modeling language for NETCONF,” March 2009.). This date
SHOULD be recorded, together with the name of the YANG module, in the

corresponding Dublin Core element <dc:source> (see Section 10.31 (The
module Statement)), for example in this form:

<dc:source>YANG module 'foo', revision 2009-01-19</dc:source>

The 'description' substatement of 'revision' is not used.

10.47. The rpc Statement TOC

This statement is mapped to the following subtree in the RELAX NG
schema ("yam" is the prefix of the local YANG module):

<rng:element name="nmt:rpc-method">
<rng:element name="nmt:input">
<rng:element name="yam:ARGUMENT">
<!-- mapped content of 'input' -->
</rng:element>
</rng:element>
<rng:element name="nmt:output">
<!-- mapped content of 'output' -->
</rng:element>
</rng:element>

As indicated by the comments, contents of the 'input' substatement (if
any) are mapped under <rng:element name="yam:ARGUMENT">. Similarly,
contents of the 'output' substatement are mapped under <rng:element
name="nmt:output">. If there is no 'output' substatement, the
<rng:element name="nmt:output"> MUST NOT be present.

The <rng:element name="nmt:rpc-method"> element is a child of
<rng:element name="nmt:rpc-methods">.

10.48. The status Statement TOC

This statement is mapped to @nma:status attribute and ARGUMENT becomes
its value.

10.49. The submodule Statement TOC

This statement is not specifically mapped. Its substatements are mapped
as if they appeared directly in the module the submodule belongs to.

10.50. The type Statement TOC

Most YANG built-in types have an equivalent in the XSD datatype library
[16] (Biron, P. and A. Malhotra, “XML Schema Part 2: Datatypes Second
Edition,” October 2004.) as shown in Table 3 (Selected datatypes from
the W3C XML Schema Type Library).

YANG type XSD type Meaning

int8 byte 8-bit integer value

int16 short 16-bit integer value

int32 int 32-bit integer value

int64 long 64-bit integer value

uint8 unsignedByte 8-bit unsigned integer value

uinti16 unsignedShort 16-bit unsigned integer value

uint32 unsignedInt 32-bit unsigned integer value
uint64 unsignedLong 64-bit unsigned integer value
float32 float 32-bit IEEE floating-point value
float64 double 64-bit IEEE floating-point value
string string character string

boolean boolean "true" or "false"

binary base64Binary binary data in base64 encoding

Table 3: Selected datatypes from the W3C XML Schema Type Library

Details about the mapping of individual YANG built-in types are given
in the following subsections.

10.50.1. The empty Type TOC

This type is mapped to <rng:empty/>.

10.50.2. The boolean and binary Types TOC

These two built-in types do not allow any restrictions and are mapped
simply by inserting <rng:data> element whose @type attribute is set to

ARGUMENT mapped according to Table 3 (Selected datatypes from the W3C
XML Schema Type Library).

10.50.3. The bits Type TOC

This type is mapped to <rng:list> and for each 'bit' substatement the
following XML fragment is inserted as a child of <rng:list>:

<rng:optional>
<rng:value>bit_name</rng:value>
</rng:optional>

where bit_name is the name of the bit as found in the argument of the
corresponding 'bit' statement.

10.50.4. The enumeration and union Types TOC

These types are mapped to <rng:choice> element.

10.50.5. The identityref Type TOC

This type is mapped to <rng:choice> element with one or more
<rng:value> subelements. Each of the <rng:value> subelements MUST have
the @type attribute and its value set to "QName". One <rng:value>
subelement with argument of the 'base' substatement as its text MUST
always be present. In addition, one <rng:value> substatement MUST be
added for each identity declared locally or in an imported module that
has the argument of the 'base' substatement as its base identity.

All namespace prefixes that are used for identities from imported
modules MUST be appropriately defined.

EXAMPLE (taken from [5] (Bjorklund, M., Ed., “YANG - A data modeling
language for NETCONF,” March 2009.), Section 7.6.13). Consider the
following two YANG modules:

module crypto-base {
namespace "http://example.com/crypto-base";
prefix "crypto";

identity crypto-alg {

description
"Base identity from which all crypto algorithms
are derived.";

}

module des {
namespace "http://example.com/des";
prefix "des";

import "crypto-base" {
prefix "crypto";

}

identity des {
base "crypto:crypto-alg";
description "DES crypto algorithm";
}

identity des3 {
base "crypto:crypto-alg";
description "Triple DES crypto algorithm";

}

If these two modules are imported to another module, leaf definition

leaf crypto {
type identityref {
base "crypto:crypto-alg";

}
is mapped to

<rng:element name="crypto">
<rng:choice>
<rng:value type="QName">crypto:crypto-alg</value>
<rng:value type="QName">des:des</value>
<rng:value type="QName">des:des3</value>
</rng:choice>
</rng:element>

The "crypto" and "des" prefixes will by typically defined via
attributes of the <rng:grammar> element.

10.50.6. The instance-identifier Type TOC

This type is mapped to <rng:data> element with @type attribute set to
"string". In addition, empty <nma:instance-identifier> element MUST be
inserted as a child of PARENT.

The 'require-instance' substatement, if it exists, is mapped to the
@require-instance attribute of <nma:instance-identifier>.

10.50.7. The leafref Type TOC

This type is mapped to <rng:data> element with @type attribute set to
the type of the leaf given in the argument of 'path' substatement. In
addition, <nma:leafref> element MUST be inserted as a child of PARENT.
The argument value of the 'path' substatement is set as the text of
this element.

The 'require-instance' substatement, if it exists, is mapped to the
@require-instance attribute of <nma:leafref>.

10.50.8. The numeric Types TOC

YANG built-in numeric types are "int8", "int16", "int32", "inte64",
"uint8", "uint16", "uint32", "uint64", "float32" and "float64". They
are mapped to <rng:data> element with @type attribute set to ARGUMENT
mapped according to Table 3 (Selected datatypes from the W3C XML Schema
Type Library).

All numeric types support the 'range' restriction, which is handled in
the following way:

*If the range expression consists of a single range part, insert
the pair of RELAX NG facets

<rng:param name="minInclusive">...</rng:param>
and
<rng:param name="maxInclusive">...</rng:param>

Their contents are the lower and upper bound of the range part,
respectively. If the range part consists of a single number, both

"minInclusive" and "maxInclusive" facets use this value as their
content. If the lower bound is "min", the "minInclusive" facet is
omitted and if the upper bound is "max", the "maxInclusive" facet
is omitted.

*If the range expression has multiple parts separated by "|", then
repeat the <rng:data> element once for every range part and wrap
them all in <rng:choice> element. Each <rng:data> element
contains the "minInclusive" and "maxInclusive" facets for one
part of the range expression as described in the previous item.

For example, the 'typedef' statement

typedef rt {
type int32 {
range "-6378..0|42|100..max";

appearing at the top level of the "example" module is mapped to the
following RELAX NG fragment:

<rng:define name="example__rt">
<rng:choice>
<rng:data type="int">
<rng:param name="minInclusive'">-6378</rng:param>
<rng:param name="maxInclusive'">0</rng:param>
</rng:data>
<rng:data type="int">
<rng:param name="minInclusive'">42</rng:param>
<rng:param name="maxInclusive'">42</rng:param>
</rng:data>
<rng:data type="int">
<rng:param name="minInclusive">100</rng:param>
</rng:data>
</rng:choice>
</rng:define>

10.50.9. The string Type TOC

This type is mapped to <rng:data> element with the @type attribute set
to "string".

For the 'pattern' restriction, insert <rng:param> element with @name
attribute set to "pattern". The argument of the 'pattern' statement
(regular expression) becomes the content of this element.

The 'length' restriction is handled in the same way as the 'range'
restriction for the numeric types, with the additional twist that if
the length expression has multiple parts, the "pattern" facet

<rng:param name="pattern">...</rng:param>

if there is any, must be repeated inside each copy of the <rng:data>
element, i.e., for each length part.

10.50.10. Derived Types TOC

If the 'type' statement refers to a derived type, it is mapped in one
of the following ways depending on whether it contains any restrictions
as its substatements:

1. Without restrictions, the 'type' statement is mapped simply to
the <rng:ref> element, i.e., a reference to a named pattern. If
the RELAX NG definition of this named pattern has not been
added to the output schema yet, the corresponding 'typedef'
must be found and its mapping installed as a subelement of
<rng:grammar>, see Section 10.51 (The typedef Statement). Even
if a given derived type is used more than once in the input
YANG modules, the mapping of the corresponding 'typedef' MUST
be installed only once.

2. If any restrictions are present, the base type for the given
derived type must be determined and the mapping of this base
type is used. Restrictions appearing at all stages of the
derivation chain must be taken into account and their
conjunction added to the <rng:data> element which defines the
basic type.

See Section 7.2.2 (Type derivation chains) for more details and an
example.

10.51. The typedef Statement TOC

This statement is mapped to a RELAX NG named pattern definition
<rng:define>, but only if the type defined by this statement is used
without restrictions in at least one of the input modules. In this
case, the named pattern definition becomes a child of the <rng:grammar>
element and its name is ARGUMENT mangled according to the rules
specified in Section 7.2 (Mapping YANG Groupings and Typedefs).

Whenever a derived type is used with additional restrictions, the the
base type for the derived type is used instead with restrictions
(facets) that are a combination of all restrictions specified along the
type derivation chain. See Section 10.50.10 (Derived Types) for further
details and an example.

An implementation MAY offer the option of recording all 'typedef'
statements as named patterns in the output RELAX NG schema even if they
are not referenced. This is useful for mapping YANG "library" modules
containing only 'typedef' and/or 'grouping' statements.

10.52. The unique Statement TOC

This statement is mapped to @nma:unique attribute. ARGUMENT 1is
translated so that every node identifier in each of its components is
prefixed with the namespace prefix of the local module, unless the
prefix is already present. The result of this translation then becomes
the value of the @nma:unique attribute.

For example, assuming that the local module prefix is "ex",

unique "foo ex:bar/baz"
is mapped to the following attribute/value pair:

nma:unique="ex:foo ex:bar/ex:baz"

10.53. The units Statement TOC

This statement is mapped to @nma:units attribute and ARGUMENT becomes
its value.

10.54. The uses Statement TOC

If this statement has neither 'refine' nor 'augment' substatements, it
is mapped to <rng:ref> element and the value of its @name attribute is
set to ARGUMENT mangled according to Section 7.2 (Mapping YANG
Groupings and Typedefs)

If there are any 'refine' or 'augment' substatements, the corresponding
grouping must be looked up and its contents is inserted as children of
PARENT. See Section 7.2.1 (YANG Refinements and Augments) for further
details and an example.

10.55. The value Statement TOC

This statement is ignored.

10.56. The when Statement TOC

This statement is mapped to @nma:when attribute and ARGUMENT becomes it
value.

10.57. The yang-version Statement TOC
This statement is not mapped to the output schema. However, an

implementation SHOULD check that it is compatible with the YANG version
declared by the statement (currently version 1).

10.58. The yin-element Statement TOC

This statement is not mapped to the output schema, but see the rules
for extension handling in Section 7.4 (YANG Language Extensions).

11. Mapping NETMOD-specific annotations to DSDL Schema TOC
Languages

This section contains mapping specification for individual NETMOD-
specific annotations. In each case, the result of the mapping must be
inserted into an appropriate context of the target DSDL schema as
described in Section 8 (Mapping Conceptual Tree Schema to DSDL). The
context is determined by the element definition in the conceptual tree
schema to which the annotation is attached. In the rest of this
section, we will denote CONTELEM the name of this context element
properly qualified with its namespace prefix. Unless otherwise stated,
Schematron asserts are descendants of the "standard" pattern and
therefore active in both validation phases.

T0C

11.1. The @nma:config Annotation

This annotation MUST be observed when generating any schema for the
reply to <nc:get-config>. In particular:

*When generating RELAX NG, the contents of the CONTELEM definition
MUST be changed to <rng:notAllowed>.

*When generating Schematron or DSRL, the CONTELEM definition and
all its descendants in the conceptual tree schema MUST be

ignored.
11.2. The @nma:default Annotation TOC
TBD
11.3. The @nma:default-case Annotation TOC
TBD
11.4. The <nma:error-app-tag> Annotation TOC

This annotation currently has no mapping defined.

11.5. The <nma:error-message> Annotation TOC

This annotation is handled within <nma:must>, see Section 11.11 (The
<nma:must> Annotation).

11.6. The <nma:instance-identifier> Annotation TOC

This annotation currently has no mapping defined.
[Editor's note: The mapping is probably not possible with XPath 1.0 as
the query language in Schematron. Shall we use EXSLT or XPath 2.07]

11.7. The @nma:key Annotation TOC
Assume this annotation has the value "k_1 k_2 ... k_n", i.e., specifies
n child leaves as keys. The annotation is then mapped to the following
Schematron report:

<sch:report test="CONDITION">

Duplicate key of list "CONTELEM"

</sch:report>

where CONDITION has this form:

preceding-sibling: :CONTELEM[C_1 and C_2 and ... and C_n]

Each C_i, for i=1,2,...,n, specifies the condition for violation of
uniqueness of key k_i, namely

k_i=current()/k_1i

11.8. The <nma:leafref> Annotation TOC

The mapping of this annotation depends on its @require-instance
attribute. If this attribute is not present or its value is "true", the
referred leaf must exist in the instance document (this is verified by
the RELAX NG schema) and the <nma:leafref> annotation is mapped to the
following assert:

<sch:assert test="PATH=..'">
Leafref "CONTELEM" must have the same value as "PATH"
</sch:assert>

where PATH is the content of <nma:leafref>.

If the @require-instance attribute has the value "false", then the
equality in contents of the context element and the referred leaf is
required only if the referred leaf exists. Hence, <nma:leafref> is
mapped to the following assert:

<sch:assert test="not(PATH) or PATH=..">
Leafref "CONTELEM" must have the same value as "PATH"
</sch:assert>

In both cases the assert is a descendant of the "ref-integrity"
pattern, which means that it will be used only for the "full"
validation phase.

11.9. The @nma:min-elements Annotation TOC
This annotation is mapped to the following Schematron assert:
<sch:assert test="count(../CONTELEM)>=MIN">
List "CONTELEM" - item count must be at least MIN

</sch:assert>

where MIN is the value of @nma:min-elements.

11.10. The @nma:max-elements Annotation TOC

This annotation is mapped to the following Schematron assert:

<sch:assert test="count(../CONTELEM)&1t;=MAX">
List "CONTELEM" - item count must be at most MAX
</sch:assert>

where MAX is the value of @nma:min-elements.

11.11. The <nma:must> Annotation TOC
This annotation is mapped to the following Schematron assert:

<sch:assert test="EXPRESSION">
MESSAGE
</sch:assert>

where EXPRESSION is the value of the mandatory @assert attribute of
<nma:must>. If the <nma:error-message> subelement exists, MESSAGE 1is
set to its content, otherwise it is set to the default message
"Condition EXPRESSION must be true".

11.12. The <nma:ordered-by> Annotation TOC

This annotation currently has no mapping defined.

11.13. The <nma:status> Annotation

This annotation currently has no mapping defined.

11.14. The @nma:unique Annotation TOC

The mapping of this annotation is almost identical as for @nma:key, see
Section 11.7 (The @nma:key Annotation), with two small differences:

*The value of @nma:unique is a list of descendant schema node
identifiers rather than simple leaf names. However, the XPath
expressions specified in Section 11.7 (The @nma:key Annotation)
work without any modifications if the descendant schema node
identifiers are substituted for k_1, k_ 2, ..., k_n.

*The message appearing as the text of <sch:report> is different:
"Violated uniqueness for list CONTELEM".

11.15. The @nma:when Annotation TOC

<sch:assert test="EXPRESSION or not(..)">
Node "CONTELEM" requires "EXPRESSION"
</sch:assert>

where EXPRESSION is the value of @nma:when.

12. TIANA Considerations TOC

This document registers two namespace URIs in the IETF XML registry
[22] (Mealling, M., “The TETF XML Registry,” January 2004.):

URI: urn:ietf:params:xml:ns:netmod:dsdl-annotations:1

URI: urn:ietf:params:xml:ns:netmod:conceptual-tree:1

13. References TOC

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[106]

[11]

[12]

[13]

[14]

[15]

[16]

Enns, R., “NETCONF Configuration Protocol,” RFC 4741,
December 2006 (TXT).

Case, J., Fedor, M., Schoffstall, M., and J. Davin, “Simple
Network Management Protocol (SNMP),” STD 15, RFC 1157,

May 1990 (TXT).

McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder,
Ed., “Structure of Management Information Version 2 (SMIv2),
STD 58, RFC 2578, April 1999 (TXT).

Elliott, C., Harrington, D., Jason, J., Schoenwaelder, J.,
Strauss, F., and W. Weiss, “SMIng Objectives,” RFC 3216,
December 2001 (TXT).

Bjorklund, M., Ed., “YANG - A data modeling language for
NETCONF,"” draft-ietf-netmod-yang-04 (work in progress),
March 2009 (HTML).

ISO/IEC, “Document Schema Definition Languages (DSDL) - Part
1: Overview,” ISO/IEC 19757-1, 11 2004.

Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT).
Clark, J., Ed. and M. Murata, Ed., “RELAX NG DTD
Compatibility,” OASIS Committee Specification 3 December 2001,
December 2001.

Kunze, J., “The Dublin Core Metadata Element Set,” RFC 5013,
August 2007 (TXT).

Chisholm, S. and H. Trevino, “NETCONF Event Notifications,”
RFC 5277, July 2008 (TXT).

ISO/IEC, “Information Technology - Document Schema Definition
Languages (DSDL) - Part 8: Document Semantics Renaming
Language - DSRL,” ISO/IEC 19757-8:2008(E), 12 2008.

ISO/IEC, “Information Technology - Document Schema Definition
Languages (DSDL) - Part 2: Regular-Grammar-Based Validation -
RELAX NG. Second Edition.,” ISO/IEC 19757-2:2008(E), 12 2008.
ISO/IEC, “Information Technology - Document Schema Definition
Languages (DSDL) - Part 3: Rule-Based Validation -
Schematron,” ISO/IEC 19757-3:2006(E), 6 2006.

Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn, “XML
Schema Part 1: Structures Second Edition,” World Wide Web
Consortium Recommendation REC-xmlschema-1-20041028,

October 2004 (HTML).

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and F.
Yergeau, “Extensible Markup Language (XML) 1.0 (Fourth
Edition),” World Wide Web Consortium Recommendation REC-
xml-20060816, August 2006 (HTML).

Biron, P. and A. Malhotra, “XML Schema Part 2: Datatypes
Second Edition,” World Wide Web Consortium Recommendation REC-
xmlschema-2-20041028, October 2004 (HTML).

”

http://tools.ietf.org/html/rfc4741
http://www.ietf.org/rfc/rfc4741.txt
http://tools.ietf.org/html/rfc1157
http://tools.ietf.org/html/rfc1157
http://www.ietf.org/rfc/rfc1157.txt
http://tools.ietf.org/html/rfc2578
fttp://www.ietf.org/rfc/rfc2578.txt
http://tools.ietf.org/html/rfc3216
http://www.ietf.org/rfc/rfc3216.txt
http://www.ietf.org/internet-drafts/draft-ietf-netmod-yang-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-netmod-yang-04.txt
http://tools.ietf.org/html/draft-ietf-netmod-yang-04
http://www.dsdl.org/0567.pdf
http://www.dsdl.org/0567.pdf
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://relaxng.org/compatibility-20011203.html
http://relaxng.org/compatibility-20011203.html
http://tools.ietf.org/html/rfc5013
http://www.ietf.org/rfc/rfc5013.txt
http://tools.ietf.org/html/rfc5277
http://www.ietf.org/rfc/rfc5277.txt
http://http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006(E).zip
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

[17]

ISO/IEC, “Information Technology - Document Schema Definition
Languages (DSDL) - Part 2: Regular-Grammar-Based Validation -
RELAX NG. AMENDMENT 1: Compact Syntax,” ISO/IEC 19757-2:2003/
Amd. 1:2006(E), 1 2006.

[18] Clark, J. and S. DeRose, “XML Path Language (XPath) Version
1.0,” World wWide Web Consortium Recommendation REC-
Xpath-19991116, November 1999 (HTML).

[19] Clark, J., “XSL Transformations (XSLT) Version 1.0,” World
Wide Web Consortium Recommendation REC-xs1t-19991116,
November 1999.

[20] Schoenwaelder, J., Ed., “Common YANG Data Types,” draft-ietf-
netmod-yang-types-01 (work in progress), November 2008 (HTML).

[21] van der Vlist, E., “RELAX NG,” 0'Reilly , 2004.

[22] Mealling, M., “The IETF XML Registry,” BCP 81, RFC 3688,
January 2004 (TXT).

Appendix A. RELAX NG Schema for NETMOD-specific Annotations TOC

This appendix contains the RELAX NG schema for the NETMOD-specific
annotations in both XML and compact syntax.

[Editor's note: It is currently only a set of named pattern definitions
as templates for the annotation elements and attributes. We should find
a way how to connect this to the schema for RELAX NG, which these
annotations extend. One option may be NVDL or it can also be done as in
the spec for DTD compatibility annotations.]

TOC

http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040774_ISO_IEC_19757-2_2003_Amd_1_2006(E).zip
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.ietf.org/internet-drafts/draft-ietf-netmod-yang-types-01.txt
http://tools.ietf.org/html/draft-ietf-netmod-yang-types-01
http://books.xmlschemata.org/relaxng/
http://tools.ietf.org/html/rfc3688
ftp://ftp.isi.edu/in-notes/rfc3688.txt

A.1. XML Syntax

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
ns="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
datatypeLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">

<define name="config-attribute">
<attribute name="config">
<data type="boolean"/>
</attribute>
</define>

<define name="default-attribute">
<attribute name="default"/>
</define>

<define name="default-case-attribute">
<attribute name="default-case">
<data type="boolean"/>
</attribute>
</define>

<define name="error-app-tag-element'">
<optional>
<element name="error-app-tag">
<text/>
</element>
</optional>
</define>

<define name="error-message-element'">
<optional>
<element name="error-message">
<text/>
</element>
</optional>
</define>

<define name="instance-identifier-element">
<element name="instance-identifier">
<optional>
<attribute name="require-instance">
<data type="boolean"/>
</attribute>
</optional>
</element>
</define>

<define name="key-attribute'">
<attribute name="key'">

<list>
<data type="QName"/>
</list>
</attribute>
</define>

<define name="leafref-element'">
<element name="leafref">
<optional>
<attribute name='"require-instance">
<data type="boolean"/>
</attribute>
</optional>
<data type="string"/>
</element>
</define>

<define name="min-elements-attribute">
<attribute name="min-elements'">
<data type="integer"/>
</attribute>
</define>

<define name="max-elements-attribute">
<attribute name="max-elements'">
<data type="integer"/>
</attribute>
</define>

<define name="must-element'">
<element name="must">
<attribute name="assert'">
<data type="string"/>
</attribute>
<interleave>
<ref name="err-app-tag-element"/>
<ref name="err-message-element"/>
</interleave>
</element>
</define>

<define name="ordered-by-attribute">
<attribute name="ordered-by">
<choice>
<value>user</value>
<value>system</value>
</choice>
</attribute>
</define>

<define name="status-attribute">
<attribute name="status">
<choice>
<value>current</value>
<value>deprecated</value>
<value>obsolete</value>
</choice>
</attribute>
</define>

<define name="unique-attribute">
<attribute name="unique">
<list>
<data type="string"/>
</list>
</attribute>
</define>

<define name="units-attribute">
<attribute name="units">
<data type="string"/>
</attribute>
</define>

<define name="when-attribute">
<attribute name="when">
<data type="string"/>
</attribute>
</define>

</grammar>

TOC

A.2. Compact Syntax

default namespace =
"urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"

config-attribute = attribute config { xsd:boolean }
default-attribute = attribute default { text }
default-case-attribute = attribute default-case { xsd:boolean }
error-app-tag-element = element error-app-tag { text }?
error-message-element = element error-message { text }?
instance-identifier-element =
element instance-identifier {
attribute require-instance { xsd:boolean }?
}
key-attribute =
attribute key {
list { xsd:QName }
}
leafref-element =
element leafref {
attribute require-instance { xsd:boolean }7?,
xsd:string
}
min-elements-attribute = attribute min-elements { xsd:integer }
max-elements-attribute = attribute max-elements { xsd:integer }
must-element =
element must {
attribute assert { xsd:string },
(err-app-tag-element & err-message-element)

}
ordered-by-attribute = attribute ordered-by { "user" | "system" }
status-attribute =

attribute status { "current" | "deprecated" | "obsolete" }

unique-attribute =
attribute unique {
list { xsd:string }
}
units-attribute = attribute units { xsd:string }
when-attribute = attribute when { xsd:string }

Appendix B. Schema-Independent Library TOC

In order to avoid copying the same named pattern definitions to the
RELAX NG schemas generated in the second mapping step, we collected
these definitions to a library file - schema-independent library -

which is included by the validating schemas under the file name
"relaxng-lib.rng" (XML syntax) and "relaxng-lib.rnc" (compact syntax).
The included definitions cover patterns for common elements from base
NETCONF [1] (Enns, R., “NETCONF Configuration Protocol,”

December 2006.) and event notifications [10] (Chisholm, S. and H.
Trevino, “NETCONF Event Notifications,” July 2008.).

B.1. XML Syntax TOC

<?xml version="1.0" encoding="UTF-8"?>
<!-- Library of RELAX NG pattern definitions -->

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:en="urn:ietf:params:xml:ns:netconf:notification:1.0"
datatypeLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">

<define name="message-id-attribute">
<attribute name="message-id">
<data type="string">
<param name="maxLength">4095</param>
</data>
</attribute>
</define>

<define name="ok-element">
<element name="nc:ok'">
<empty/>
</element>
</define>

<define name="eventTime-element">
<element name="en:eventTime">
<data type="dateTime"/>
</element>
</define>
</grammar>

TOC

B.2. Compact Syntax

Library of RELAX NG pattern definitions

namespace en = "urn:ietf:params:xml:ns:netconf:notification:1.0"
namespace nc = "urn:ietf:params:xml:ns:netconf:base:1.0"

message-id-attribute =
attribute message-id {
xsd:string { maxLength = "4095" }
}
ok-element = element nc:ok { empty }
eventTime-element = element en:eventTime { xsd:dateTime }

Appendix C. Mapping DHCP Data Model - A Complete Example TOC

This appendix demonstrates both steps of the YANG-to-DSDL mapping
applied to the "canonical" DHCP tutorial data model. The input (single)
YANG module is shown in Appendix C.1 (Input YANG Module) and the output
schemas in the following two subsections.

The conceptual tree schema was obtained by the "rng" plugin of the
pyang tool and the validating DSDL schemas by XSLT stylesheets that are
also part of pyang distribution. RELAX NG schemas are shown in both XML
and compact syntax. The latter was obtained from the former by using
the Trang tool

Due to the limit of 72 characters per line, few long strings required
manual editing, in particular the regular expression patterns for IP
addresses etc. in the RELAX NG schemas. In the compact syntax we broke
the patterns to appropriate segments and joined them with the

concatenation operator "~". In the XML syntax, though, the long
patterns had to be replaced by the placeholder string "... regex
pattern ...". Also, line breaks were added to several documentation

strings and Schematron messages. Other than that, the results of the
automatic translations were not changed.

T0C

http://www.yang-central.org/twiki/bin/view/Main/DhcpTutorial
http://code.google.com/p/pyang/
http://thaiopensource.com/relaxng/trang.html

C.1. Input YANG Module

module dhcp {
namespace "http://example.com/ns/dhcp";
prefix dhcp;

import yang-types { prefix yang; }
import inet-types { prefix inet; }

organization
"yang-central.org";

description
"Partial data model for DHCP, based on the config of
the ISC DHCP reference implementation.";

container dhcp {
description
"configuration and operational parameters for a DHCP server.";

leaf max-lease-time {
type uint32;
units seconds;
default 7200;

leaf default-lease-time {
type uint32;
units seconds;
must '. <= ../dhcp:max-lease-time' {
error-message
"The default-lease-time must be less than max-lease-time";

3
default 600;

uses subnet-list;

container shared-networks {
list shared-network {
key name;

leaf name {
type string;
}

uses subnet-list;

container status {
config false;
list leases {

key address;

leaf address {
type inet:ip-address;
}
leaf starts {
type yang:date-and-time;
}
leaf ends {
type yang:date-and-time;
}
container hardware {
leaf type {
type enumeration {
enum "ethernet";
enum "token-ring";
enum "fddi";
}

}
leaf address {

type yang:phys-address;

grouping subnet-list {
description "A reusable list of subnets";
list subnet {
key net;
leaf net {
type inet:ip-prefix;
}
container range {
presence "enables dynamic address assignment";
leaf dynamic-bootp {
type empty;
description
"Allows BOOTP clients to get addresses in this range";
}
leaf low {
type inet:ip-address;
mandatory true;
}
leaf high {
type inet:ip-address;
mandatory true;

}

container dhcp-options {
description "Options in the DHCP protocol";
leaf-1list router {
type inet:host;
ordered-by user;
reference "RFC 2132, sec. 3.8";
}
leaf domain-name {
type inet:domain-name;
reference "RFC 2132, sec. 3.17";

leaf max-lease-time {
type uint32;
units seconds;
default 7200;

C.2. Conceptual Tree Schema TOC

C.2.1. XML Syntax

<?xml version="1.0" encoding="UTF-8"?>
<grammar
xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
xmlns:dc="http://purl.org/dc/terms"
xmlns:dhcp="http://example.com/ns/dhcp"
xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
xmlns:nmt="urn:ietf:params:xml:ns:netmod:conceptual-tree:1"
datatypelLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<dc:creator>Pyang 0.9.3, RELAX NG plugin</dc:creator>
<dc:source>YANG module 'dhcp'</dc:source>
<start>
<element name="nmt:netmod-tree">
<element name="nmt:top">
<interleave>
<optional>
<element name="dhcp:dhcp">
<a:documentation>
configuration and operational parameters for a DHCP server.
</a:documentation>
<optional>
<element name="dhcp:max-lease-time"
nma:default="7200" nma:units="seconds">
<data type="unsignedInt"/>
</element>
</optional>
<optional>
<element name="dhcp:default-lease-time"
nma:default="600" nma:units="seconds">
<data type="unsignedInt"/>
<nma:must
assert=". <= ../dhcp:max-lease-time">
<nma:error-message>
The default-lease-time must be less than max-lease-time
</nma:error-message>
</nma:must>
</element>
</optional>
<ref name="_dhcp__subnet-1list"/>
<optional>
<element name="dhcp:shared-networks">
<zeroOrMore>
<element name="dhcp:shared-network"
nma:key="dhcp:name">
<element name="dhcp:name'">
<data type="string"/>
</element>
<ref name="_dhcp__subnet-1list"/>

</element>
</zeroOrMore>
</element>
</optional>
<optional>
<element name="dhcp:status" nma:config="false">
<zeroOrMore>
<element name="dhcp:leases"
nma: key="dhcp:address">
<element name="dhcp:address">
<ref name="inet-types__ip-address"/>
</element>
<optional>
<element name="dhcp:starts">
<ref name="yang-types__date-and-time"/>
</element>
</optional>
<optional>
<element name="dhcp:ends">
<ref name="yang-types__date-and-time"/>
</element>
</optional>
<optional>
<element name="dhcp:hardware">
<optional>
<element name="dhcp:type">
<choice>
<value>ethernet</value>
<value>token-ring</value>
<value>fddi</value>
</choice>
</element>
</optional>
<optional>
<element name="dhcp:address">
<ref name="yang-types__phys-address"/>
</element>
</optional>
</element>
</optional>
</element>
</zeroOrMore>
</element>
</optional>
</element>
</optional>
</interleave>
</element>
<element name="nmt:rpc-methods">

<empty/>
</element>
<element name="nmt:notifications">
<empty/>
</element>
</element>
</start>
<define name="_dhcp__subnet-1list">
<a:documentation>A reusable list of subnets</a:documentation>
<zeroOrMore>
<element name="dhcp:subnet" nma:key="dhcp:net">
<element name="dhcp:net">
<ref name="inet-types__ip-prefix"/>
</element>
<optional>
<element name="dhcp:range">
<optional>
<element name="dhcp:dynamic-bootp">
<a:documentation>
Allows BOOTP clients to get addresses in this range
</a:documentation>
<empty/>
</element>
</optional>
<element name="dhcp:low">
<ref name="inet-types__ip-address"/>
</element>
<element name="dhcp:high">
<ref name="inet-types__ip-address"/>
</element>
</element>
</optional>
<optional>
<element name="dhcp:dhcp-options">
<a:documentation>
Options in the DHCP protocol
</a:documentation>
<zeroOrMore>
<element name="dhcp:router" nma:ordered-by="user">
<a:documentation>
See: RFC 2132, sec. 3.8
</a:documentation>
<ref name="inet-types__host"/>
</element>
</zeroOrMore>
<optional>
<element name="dhcp:domain-name">
<a:documentation>
See: RFC 2132, sec. 3.17

</a:documentation>
<ref name="inet-types__domain-name"/>
</element>
</optional>
</element>
</optional>
<optional>
<element name="dhcp:max-lease-time"
nma:default="7200" nma:units="seconds">
<data type="unsignedInt"/>
</element>
</optional>
</element>
</zeroOrMore>
</define>
<define name="inet-types__ip-prefix">
<choice>
<ref name="inet-types__ipv4-prefix"/>
<ref name="inet-types__ipv6-prefix"/>
</choice>
</define>
<define name="inet-types__ipv4-prefix">
<data type="string">
<param name="pattern">... regex pattern ...</param>
</data>
</define>
<define name="inet-types__ ipv6-prefix">
<data type="string">

<param name="pattern">... regex pattern ...</param>
</data>
</define>
<define name="inet-types__ip-address">
<choice>

<ref name="inet-types__ipv4-address"/>
<ref name="inet-types__ipv6-address"/>
</choice>
</define>
<define name="inet-types__ipv4-address'">
<data type="string">
<param name="pattern">... regex pattern ...</param>
</data>
</define>
<define name="inet-types__ipv6-address'">
<data type="string">
<param name="pattern">... regex pattern ...</param>
</data>
</define>
<define name="inet-types__host">
<choice>

<ref name="inet-types__ip-address"/>
<ref name="inet-types__domain-name"/>
</choice>
</define>
<define name="inet-types__domain-name">
<data type="string">

<param name="pattern">... regex pattern

<param name="pattern">... regex pattern
</data>
</define>

<define name="yang-types__date-and-time">

<data type="string">
<param name="pattern">... regex pattern

</data>

</define>

<define name="yang-types__phys-address'">
<data type="string"/>

</define>

</grammar>

.</param>
.</param>

.</param>

T0C

C.2.2. Compact Syntax

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace dc = "http://purl.org/dc/terms"

namespace dhcp = "http://example.com/ns/dhcp"

namespace nma = "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
namespace nmt = "urn:ietf:params:xml:ns:netmod:conceptual-tree:1"

dc:creator ["Pyang 0.9.3, RELAX NG plugin"]
dc:source ["YANG module 'dhcp'"]
start =
element nmt:netmod-tree {
element nmt:top {

configuration and operational parameters for a DHCP server.
element dhcp:dhcp {

[nma:default = "7200" nma:units = "seconds"]
element dhcp:max-lease-time { xsd:unsignedInt }?,
[nma:default = "600" nma:units = "seconds"]

element dhcp:default-lease-time {
xsd:unsignedInt
>> nma:must [
assert = ", <= ,./dhcp:max-lease-time"
nma:error-message [
"The default-lease-time must be less than max-lease-time"

]

1?7,
_dhcp__subnet-1ist,
element dhcp:shared-networks {
[nma:key = "dhcp:name"]
element dhcp:shared-network {
element dhcp:name { xsd:string },
_dhcp__subnet-1list
}*
}?I
[nma:config = "false"]
element dhcp:status {
[nma:key = "dhcp:address"]
element dhcp:leases {
element dhcp:address { inet-types__ip-address },
element dhcp:starts { yang-types__date-and-time }?,
element dhcp:ends { yang-types__date-and-time }?,
element dhcp:hardware {
element dhcp:type { "ethernet"
| "token-ring"
| "fddi"
}?/
element dhcp:address { yang-types__phys-address }?

37

}*
}?
32
}l
element nmt:rpc-methods { empty },
element nmt:notifications { empty }

}

A reusable list of subnets
_dhcp__subnet-1list =
[nma:key = "dhcp:net"]
element dhcp:subnet {
element dhcp:net { inet-types__ip-prefix },
element dhcp:range {

Allows BOOTP clients to get addresses in this range
element dhcp:dynamic-bootp { empty }?,
element dhcp:low { inet-types__ip-address },
element dhcp:high { inet-types__ip-address }
3?,

Options in the DHCP protocol
element dhcp:dhcp-options {

See: RFC 2132, sec. 3.8
[nma:ordered-by = "user"]
element dhcp:router { inet-types__host }*,

See: RFC 2132, sec. 3.17
element dhcp:domain-name { inet-types__domain-name }?
}?I
[nma:default = "7200" nma:units = "seconds"]
element dhcp:max-lease-time { xsd:unsignedInt }?
}*
inet-types__ip-prefix =
inet-types__ipv4-prefix | inet-types__ipv6-prefix
inet-types__ipv4-prefix =
xsd:string {
pattern =
"(([0-1]?[0-9]7[0-9]|2[0-4][0-9]]|25[0-5])\.)" ~
"{3}([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])/\p{N}+"
}
inet-types__ipv6-prefix =
xsd:string {
pattern =
"((([0-9a-TA-F]{1,4}:){7})([0-9a-fA-F]{1,4})/" ~
"\p{N}+) | ((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\." ~
"[0-97{1,33\.[0-91{1,3}I\.[0-9]{1,3}))/\p{N}+)|" ~
"((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)" ~

"(([0-9a-fA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*/\p{N}+)" ~
"((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)" ~
"(([0-9a-fA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*(([0-9]" ~
"{1,33\.[0-971{1,3}I\.[0-91{1,33\.[0-9]1{1,3}))/\p{N}+)"
}
inet-types__ip-address =
inet-types__ipv4-address | inet-types__ipv6-address
inet-types__ipv4-address =
xsd:string {
pattern =
"(([0-1]?[0-9]7[0-9]|2[0-4][0-9]]|25[0-5])\.){3}([O0-1]?" ~
"[0-9]7[0-9]12[0-4][0-9]|25[0-5]) (%[\p{N}\p{L}]+)?"
}
inet-types__ipv6-address =
xsd:string {
pattern =
"((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4}) (%[\p{N}" ~
"\p{L}]+)?) [((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\." ~
"[0-9]1{1,33\.[0-9]1{1,3}\.[0-9]{1,3})) (%[\p{N}\p{L}]+)?) " ~
"((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F1{1,4}))*(::)" ~
"(([0-9a-fA-F]1{1,4}:)*([0-9a-TA-F1{1,4}))*(%[\p{N}" ~
"\p{L}]+)?)((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*" ~
"(::)(([0-9a-fA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*(([0-9]{1,3}" ~
"\.[0-97{2,3}\.[0-91{1,33\.[0-9]1{1,3})) (%[\p{NI\p{LI]+)?)"
}
inet-types__host = inet-types__ip-address | inet-types__domain-name
inet-types__domain-name =
xsd:string {
pattern =
"([a-zA-Z][a-zA-Z0-9\-]*[a-zA-ZO-9]\.)*" ~
"[a-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9]"
pattern =
"([r-zA-Z][a-zA-Z0-9\-]*[a-zA-ZO-9]\.)*" ~
"[a-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9]"
}
yang-types__date-and-time =
xsd:string {
pattern =
"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}" ~
"(NLdF)?2(Z] (\+]-)N\d{2}:\d{2})"
}
yang-types__phys-address = xsd:string

T0C

C.3. Final DSDL Schemas

This appendix contains DSDL schemas that were obtained from the
conceptual tree schema in Appendix C.2 (Conceptual Tree Schema) by XSL
transformations. These schemas can be directly used for validating a
reply to unfiltered <get> with the contents corresponding to the DHCP
data model.

The RELAX NG schema (again shown in both XML and compact syntax)
includes the schema independent library from Appendix B (Schema-
Independent Library).

T0C

C.3.1. RELAX NG Schema for <get> Reply - XML Syntax

<?xml version="1.0" encoding="utf-8"?>
<grammar
xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
xmlns:dc="http://purl.org/dc/terms"
xmlns:dhcp="http://example.com/ns/dhcp"
xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
xmlns:nmt="urn:ietf:params:xml:ns:netmod:conceptual-tree:1"
datatypeLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes"
ns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rng:include xmlns:rng="http://relaxng.org/ns/structure/1.0"
href="./relaxng-1lib.rng"/>
<start>
<rng:element xmlns:rng="http://relaxng.org/ns/structure/1.0"
name="rpc-reply">
<rng:ref name="message-id-attribute"/>
<rng:element name="data">
<interleave>
<optional>
<element name="dhcp:dhcp">
<optional>
<element name="dhcp:max-lease-time">
<data type="unsignedInt"/>
</element>
</optional>
<optional>
<element name="dhcp:default-lease-time">
<data type="unsignedInt"/>
</element>
</optional>
<ref name="_dhcp__subnet-1list"/>
<optional>
<element name="dhcp:shared-networks'">
<zeroOrMore>
<element name="dhcp:shared-network">
<element name="dhcp:name'">
<data type="string"/>
</element>
<ref name="_dhcp__subnet-1list"/>
</element>
</zeroOrMore>
</element>
</optional>
<optional>
<element name="dhcp:status">
<zeroOrMore>
<element name="dhcp:leases">
<element name="dhcp:address">

<ref name="inet-types__ip-address"/>
</element>
<optional>
<element name="dhcp:starts">
<ref name="yang-types__date-and-time"/>
</element>
</optional>
<optional>
<element name="dhcp:ends">
<ref name="yang-types__date-and-time"/>
</element>
</optional>
<optional>
<element name="dhcp:hardware">
<optional>
<element name="dhcp:type">
<choice>
<value>ethernet</value>
<value>token-ring</value>
<value>fddi</value>
</choice>
</element>
</optional>
<optional>
<element name="dhcp:address">
<ref name="yang-types__phys-address"/>
</element>
</optional>
</element>
</optional>
</element>
</zeroOrMore>
</element>
</optional>
</element>
</optional>
</interleave>
</rng:element>
</rng:element>
</start>
<define name="_dhcp__subnet-1list">
<zeroOrMore>
<element name="dhcp:subnet">
<element name="dhcp:net">
<ref name="inet-types__ip-prefix"/>
</element>
<optional>
<element name="dhcp:range">
<optional>

<element name="dhcp:dynamic-bootp">
<empty/>
</element>
</optional>
<element name="dhcp:low">
<ref name="inet-types__ip-address"/>
</element>
<element name="dhcp:high">
<ref name="inet-types__ip-address"/>
</element>
</element>
</optional>
<optional>
<element name="dhcp:dhcp-options">
<zeroOrMore>
<element name="dhcp:router">
<ref name="inet-types__host"/>
</element>
</zeroOrMore>
<optional>
<element name="dhcp:domain-name">
<ref name="inet-types__domain-name"/>
</element>
</optional>
</element>
</optional>
<optional>
<element name="dhcp:max-lease-time">
<data type="unsignedInt"/>
</element>
</optional>
</element>
</zeroOrMore>
</define>
<define name="inet-types__ip-prefix">
<choice>
<ref name="inet-types__ipv4-prefix"/>
<ref name="inet-types__ipv6-prefix"/>
</choice>
</define>
<define name="inet-types__ipv4-prefix">
<data type="string">
<param name="pattern">... regex pattern ...</param>
</data>
</define>
<define name="inet-types__ipv6-prefix">
<data type="string">
<param name="pattern'">... regex pattern ...</param>
</data>

</define>
<define name="inet-types__ip-address">
<choice>
<ref name="inet-types__ipv4-address"/>
<ref name="inet-types__ipv6-address"/>
</choice>
</define>
<define name="inet-types__ipv4-address'">
<data type="string">
<param name="pattern">... regex pattern
</data>
</define>
<define name="inet-types__ipv6-address'">
<data type="string">

<param name="pattern">... regex pattern
</data>
</define>
<define name="inet-types__host">
<choice>

<ref name="inet-types__ip-address"/>
<ref name="inet-types__domain-name"/>
</choice>
</define>
<define name="inet-types__domain-name">
<data type="string">

<param name="pattern">... regex pattern

<param name="pattern">... regex pattern
</data>
</define>

<define name="yang-types__date-and-time">

<data type="string">
<param name="pattern">... regex pattern

</data>

</define>

<define name="yang-types__phys-address'">
<data type="string"/>

</define>

</grammar>

.</param>

.</param>

.</param>
.</param>

.</param>

C.3.2. RELAX NG Schema for <get> Reply - Compact Syntax

default namespace = "urn:ietf:params:xml:ns:netconf:base:1.0"

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"

namespace dc = "http://purl.org/dc/terms"
namespace dhcp = "http://example.com/ns/dhcp"

namespace nma = "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"

namespace nmt = "urn:ietf:params:xml:ns:netmod:conceptual-tree:1"

include "relaxng-1lib.rnc"
start =
element rpc-reply {
message-id-attribute,
element data {
element dhcp:dhcp {
element dhcp:max-lease-time { xsd:unsignedInt }?,
element dhcp:default-lease-time { xsd:unsignedInt }?,
_dhcp__subnet-1ist,
element dhcp:shared-networks {
element dhcp:shared-network {
element dhcp:name { xsd:string },
_dhcp__subnet-1ist
}*
1?7,
element dhcp:status {
element dhcp:leases {
element dhcp:address { inet-types__ip-address },
element dhcp:starts { yang-types__date-and-time }?,
element dhcp:ends { yang-types__date-and-time }?,
element dhcp:hardware {
element dhcp:type { "ethernet"

| "token-ring"

| "fddi"

12,

element dhcp:address { yang-types__phys-address }?
1?
}*
}?
32

}

}
_dhcp__subnet-1list =

element dhcp:subnet {

element dhcp:net { inet-types__ip-prefix },

element dhcp:range {
element dhcp:dynamic-bootp { empty }?,
element dhcp:low { inet-types__ip-address },
element dhcp:high { inet-types__ip-address }

37,

element dhcp:dhcp-options {

element dhcp:router { inet-types__host }*,
element dhcp:domain-name { inet-types__domain-name }?
3?,
element dhcp:max-lease-time { xsd:unsignedInt }?
}*
inet-types__ip-prefix =
inet-types__ipv4-prefix | inet-types__ipv6-prefix
inet-types__ipv4-prefix =
xsd:string {
pattern =
"(([0-1]?7[0-9]?7[0-9]]|2[0-4][0-9]|25[0-5])\.)" ~
"{3}([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])/\p{N}+"
}
inet-types__ipv6-prefix =
xsd:string {
pattern =
"((([0-9a-TA-F]{1,4}:){7})([0-9a-TA-F]{1,4})/" ~
"\p{N}+) [((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\." ~
"[0-9]{1,33\.[0-91{1,3}I\.[0-9]{1,3}))/\p{N}+)|" ~
"((([0-9a-FfA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)" ~
"(([0-9a-FfA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*/\p{N}+)" ~
"((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)" ~
"(([0-9a-FfA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*(([0-9]" ~
"{1,33\.[0-91{1,3I\.[0-9]{1,33\.[0-9]1{1,3}))/\p{N}+)"
}
inet-types__ip-address =
inet-types__ipv4-address | inet-types__ipv6-address
inet-types__ipv4-address =
xsd:string {
pattern =
"(([0-1]?[0-9]7[0-9]|2[0-4][0-9]]|25[0-5])\.){3}([O0-1]?" ~
"[0-9]?[0-9]]2[0-4][0-9][25[0-5]) (%[\p{N}\p{L}]+)?"
}
inet-types__ipv6-address =
xsd:string {
pattern =
"((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,43}) (%[\p{N}" ~
"\p{L}]1+)?) | ((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\." ~
"[0-91{1,3}\.[0-9]{1,3}\.[0-9]{1,3})) (%[\p{N}\p{L}]+)?) " ~
"((([0-9a-FfA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)" ~
"(([0-9a-FfA-F]{1,4}:)*([0-9a-TA-F]{1,4}))* (%[\p{N}" ~
"\p{L}]+)?)((([0-9a-TA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*" ~
"(::)(([0-9a-fA-F]{1,4}:)*([0-9a-TA-F]{1,4}))*(([0-9]1{1,3}" ~
"\L[0-97{12,3}\.[0-91{1,33\.[0-9]1{1,3})) (%[\p{NI\p{LI]+)?)"
}
inet-types__host = inet-types__ip-address | inet-types__domain-name
inet-types__domain-name =
xsd:string {
pattern =

"([a-zA-Z][a-zA-Z0-9\-]*[a-zA-ZO-9]\.)*" ~
"[a-zA-Z][a-zA-Z0-9\-]*[a-zA-ZO-9]"
pattern =
"([r-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9]\.)*" ~
"[a-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9]"
3
yang-types__date-and-time =
xsd:string {
pattern =
"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}" ~
"(\.d*)?2(Z| (\+]|-)\d{2}:\d{2})"
}
yang-types__phys-address = xsd:string

T0C

C.4. Schematron Schema for <get> Reply

<?xml version="1.0" encoding="utf-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron'">
<sch:ns uri="http://example.com/ns/dhcp" prefix="dhcp"/>
<sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0"
prefix="nc"/>
<sch:phase id="full">
<sch:active pattern="standard"/>
<sch:active pattern="ref-integrity"/>
</sch:phase>
<sch:phase id="noref">
<sch:active pattern="standard"/>
</sch:phase>
<sch:pattern id="standard">
<sch:rule id="std-id2246197" abstract="true">
<sch:report test="preceding-sibling::dhcp:subnet
[dhcp:net=current()/dhcp:net]">
Duplicate key of list dhcp:subnet
</sch:report>
</sch:rule>
<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:default-lease-time">
<sch:assert test=". <= ../dhcp:max-lease-time">
The default-lease-time must be less than max-lease-time
</sch:assert>
</sch:rule>
<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:subnet">
<sch:extends rule="std-id2246197"/>
</sch:rule>
<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:shared-networks/dhcp:shared-network">
<sch:report test="preceding-sibling: :dhcp:shared-network
[dhcp:name=current()/dhcp:name]">
Duplicate key of list dhcp:shared-network
</sch:report>
</sch:rule>
<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:shared-networks/dhcp:shared-network/
dhcp:subnet">
<sch:extends rule="std-id2246197"/>
</sch:rule>
<sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
dhcp:status/dhcp:leases">
<sch:report test="preceding-sibling::dhcp:leases
[dhcp:address=current()/dhcp:address]">
Duplicate key of list dhcp:leases
</sch:report>
</sch:rule>
</sch:pattern>

<sch:pattern id="ref-integrity"/>
</sch:schema>

C.5. DSRL Schema for <get> Reply TOC
TBD

Appendix D. Change Log T0C
D.1. Changes Between Versions -00 and -01 TOC

*Attributes @nma:min-elements and @nma:max-elements are attached
to <rng:element> (list entry) and not to <rng:zeroOrMore> or
<rng:oneOrMore>.

*Keys and all node identifiers in 'key' and 'unique' statements
are prefixed.

*Fixed the mapping of 'rpc' and 'notification'.
*Removed previous Sec. 7.5 "RPC Signatures and Notifications"

the same information is now contained in Section 10.47 (The rpc
Statement) and Section 10.34 (The notification Statement).

*Added initial "_" to mangled names of groupings.

*Mandated the use of @xmlns:xxx as the only method for declaring
the target namespace.

*Added section "Handling of XML Namespaces" to explain the
previous item.

*Completed DHCP example in Appendix C (Mapping DHCP Data Model - A
Complete Example).

*Almost all text about the second mapping step is new.

Authors' Addresses TOC

Ladislav Lhotka
CESNET
Email: lhotka@cesnet.cz

Rohan Mahy
Plantronics
Email: rohan@ekabal.com

Sharon Chisholm
Nortel
Email: schishol@nortel.com

mailto:lhotka@cesnet.cz
mailto:rohan@ekabal.com
mailto:schishol@nortel.com

	Mapping YANG to Document Schema Definition Languages and Validating NETCONF Contentdraft-ietf-netmod-dsdl-map-01
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Objectives and Motivation
	3. DSDL Schema Languages
	3.1. RELAX NG
	3.2. Schematron
	3.3. Document Semantics Renaming Language (DSRL)
	4. Additional Annotations
	4.1. Dublin Core Metadata Elements
	4.2. RELAX NG DTD Compatibility Annotations
	4.3. NETMOD-specific Annotations
	5. Overview of the Mapping
	6. Design Considerations
	6.1. Conceptual Data Tree
	6.2. Modularity
	6.3. Granularity
	6.4. Handling of XML Namespaces
	7. Mapping YANG Data Models to the Conceptual Tree Schema
	7.1. Optional and Mandatory Content
	7.2. Mapping YANG Groupings and Typedefs
	7.2.1. YANG Refinements and Augments
	7.2.2. Type derivation chains
	7.3. Translation of XPath Expressions
	7.4. YANG Language Extensions
	8. Mapping Conceptual Tree Schema to DSDL
	8.1. Generating RELAX NG Schemas for Various Document Types
	8.1.1. Reply to <get> or <get-config>
	8.1.2. Remote Procedure Calls
	8.1.3. Notifications
	8.2. Mapping Semantic Constraints to Schematron
	8.2.1. Validation Phases
	8.3. Mapping Default Values to DSRL
	9. NETCONF Content Validation
	10. Mapping YANG Statements to Annotated RELAX NG
	10.1. The anyxml Statement
	10.2. The argument Statement
	10.3. The augment Statement
	10.4. The base Statement
	10.5. The belongs-to Statement
	10.6. The bit Statement
	10.7. The case Statement
	10.8. The choice Statement
	10.9. The config Statement
	10.10. The contact Statement
	10.11. The container Statement
	10.12. The default Statement
	10.13. The description Statement
	10.14. The enum Statement
	10.15. The error-app-tag Statement
	10.16. The error-message Statement
	10.17. The extension Statement
	10.18. The grouping Statement
	10.19. The identity Statement
	10.20. The import Statement
	10.21. The include Statement
	10.22. The input Statement
	10.23. The key Statement
	10.24. The leaf Statement
	10.25. The leaf-list Statement
	10.26. The length Statement
	10.27. The list Statement
	10.28. The mandatory Statement
	10.29. The max-elements Statement
	10.30. The min-elements Statement
	10.31. The module Statement
	10.32. The must Statement
	10.33. The namespace Statement
	10.34. The notification Statement
	10.35. The ordered-by Statement
	10.36. The organization Statement
	10.37. The output Statement
	10.38. The path Statement
	10.39. The pattern Statement
	10.40. The position Statement
	10.41. The prefix Statement
	10.42. The presence Statement
	10.43. The range Statement
	10.44. The reference Statement
	10.45. The require-instance Statement
	10.46. The revision Statement
	10.47. The rpc Statement
	10.48. The status Statement
	10.49. The submodule Statement
	10.50. The type Statement
	10.50.1. The empty Type
	10.50.2. The boolean and binary Types
	10.50.3. The bits Type
	10.50.4. The enumeration and union Types
	10.50.5. The identityref Type
	10.50.6. The instance-identifier Type
	10.50.7. The leafref Type
	10.50.8. The numeric Types
	10.50.9. The string Type
	10.50.10. Derived Types
	10.51. The typedef Statement
	10.52. The unique Statement
	10.53. The units Statement
	10.54. The uses Statement
	10.55. The value Statement
	10.56. The when Statement
	10.57. The yang-version Statement
	10.58. The yin-element Statement
	11. Mapping NETMOD-specific annotations to DSDL Schema Languages
	11.1. The @nma:config Annotation
	11.2. The @nma:default Annotation
	11.3. The @nma:default-case Annotation
	11.4. The <nma:error-app-tag> Annotation
	11.5. The <nma:error-message> Annotation
	11.6. The <nma:instance-identifier> Annotation
	11.7. The @nma:key Annotation
	11.8. The <nma:leafref> Annotation
	11.9. The @nma:min-elements Annotation
	11.10. The @nma:max-elements Annotation
	11.11. The <nma:must> Annotation
	11.12. The <nma:ordered-by> Annotation
	11.13. The <nma:status> Annotation
	11.14. The @nma:unique Annotation
	11.15. The @nma:when Annotation
	12. IANA Considerations
	13. References
	Appendix A. RELAX NG Schema for NETMOD-specific Annotations
	A.1. XML Syntax
	A.2. Compact Syntax
	Appendix B. Schema-Independent Library
	B.1. XML Syntax
	B.2. Compact Syntax
	Appendix C. Mapping DHCP Data Model - A Complete Example
	C.1. Input YANG Module
	C.2. Conceptual Tree Schema
	C.2.1. XML Syntax
	C.2.2. Compact Syntax
	C.3. Final DSDL Schemas
	C.3.1. RELAX NG Schema for <get> Reply - XML Syntax
	C.3.2. RELAX NG Schema for <get> Reply - Compact Syntax
	C.4. Schematron Schema for <get> Reply
	C.5. DSRL Schema for <get> Reply
	Appendix D. Change Log
	D.1. Changes Between Versions -00 and -01
	Authors' Addresses

