
Network Working Group A. Bierman
Internet-Draft YumaWorks
Intended status: Standards Track M. Bjorklund
Expires: June 21, 2018 Tail-f Systems
 J. Dong
 Huawei Technologies
 D. Romascanu
 December 18, 2017

A YANG Data Model for Hardware Management
draft-ietf-netmod-entity-06

Abstract

 This document defines a YANG data model for the management of
 hardware on a single server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 21, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bierman, et al. Expires June 21, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft YANG Hardware Management December 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 2
1.2. Tree Diagrams . 3

2. Objectives . 3
3. Hardware Data Model . 3
3.1. The Components Lists 5

4. Relationship to ENTITY-MIB 5
5. Relationship to ENTITY-SENSOR-MIB 6
6. Relationship to ENTITY-STATE-MIB 7
7. Hardware YANG Module . 7
8. IANA Considerations . 35
8.1. URI Registrations . 35
8.2. YANG Module Registrations 35

9. Security Considerations 36
10. Acknowledgments . 37
11. References . 37
11.1. Normative References 37
11.2. Informative References 38

Appendix A. Hardware State Data Model 39
A.1. Hardware State YANG Module 40

 Authors' Addresses . 54

1. Introduction

 This document defines a YANG [RFC7950] data model for the management
 of hardware on a single server.

 The data model includes configuration and system state (status
 information and counters for the collection of statistics).

 The data model in this document is designed to be compliant with the
 Network Management Datastore Architecture (NMDA)
 [I-D.ietf-netmod-revised-datastores]. For implementations that do
 not yet support NMDA, a temporary module with system state data only
 is defined in Appendix A.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Bierman, et al. Expires June 21, 2018 [Page 2]

Internet-Draft YANG Hardware Management December 2017

 The following terms are defined in
 [I-D.ietf-netmod-revised-datastores] and are not redefined here:

 o client

 o server

 o configuration

 o system state

 o operational state

 o intended configuration

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [I-D.ietf-netmod-yang-tree-diagrams].

2. Objectives

 This section describes some of the design objectives for the hardware
 model.

 o There are many common properties used to identify hardware
 components, which need to be supported in the hardware data model.

 o There are many important information and states about the
 components, which needs to be collected from the devices which
 support the hardware data model.

 o The hardware data model SHOULD be suitable for new implementations
 to use as is.

 o The hardware data model defined in this document can be
 implemented on a system that also implements ENTITY-MIB, thus the
 mapping between the hardware data model and ENTITY-MIB SHOULD be
 clear.

 o The data model should support pre-provisioning of hardware
 components.

3. Hardware Data Model

 This document defines the YANG module "ietf-hardware", which has the
 following structure:

Bierman, et al. Expires June 21, 2018 [Page 3]

Internet-Draft YANG Hardware Management December 2017

 module: ietf-hardware
 +--rw hardware
 +--ro last-change? yang:date-and-time
 +--rw component* [name]
 +--rw name string
 +--rw class identityref
 +--ro physical-index? int32 {entity-mib}?
 +--ro description? string
 +--rw parent? -> ../../component/name
 +--rw parent-rel-pos? int32
 +--ro contains-child* -> ../../component/name
 +--ro hardware-rev? string
 +--ro firmware-rev? string
 +--ro software-rev? string
 +--ro serial-num? string
 +--rw mfg-name? string
 +--ro model-name? string
 +--rw alias? string
 +--rw asset-id? string
 +--ro is-fru? boolean
 +--ro mfg-date? yang:date-and-time
 +--rw uri* inet:uri
 +--ro uuid? yang:uuid
 +--rw state {hardware-state}?
 | +--ro state-last-changed? yang:date-and-time
 | +--rw admin-state? admin-state
 | +--ro oper-state? oper-state
 | +--ro usage-state? usage-state
 | +--ro alarm-state? alarm-state
 | +--ro standby-state? standby-state
 +--ro sensor-data {hardware-sensor}?
 +--ro value? sensor-value
 +--ro value-type? sensor-value-type
 +--ro value-scale? sensor-value-scale
 +--ro value-precision? sensor-value-precision
 +--ro oper-status? sensor-status
 +--ro units-display? string
 +--ro value-timestamp? yang:date-and-time
 +--ro value-update-rate? uint32

 notifications:
 +---n hardware-state-change
 +---n hardware-state-oper-enabled {hardware-state}?
 | +--ro name? -> /hardware/component/name
 | +--ro admin-state? -> /hardware/component/state/admin-state
 | +--ro alarm-state? -> /hardware/component/state/alarm-state
 +---n hardware-state-oper-disabled {hardware-state}?
 +--ro name? -> /hardware/component/name

Bierman, et al. Expires June 21, 2018 [Page 4]

Internet-Draft YANG Hardware Management December 2017

 +--ro admin-state? -> /hardware/component/state/admin-state
 +--ro alarm-state? -> /hardware/component/state/alarm-state

3.1. The Components Lists

 The data model for hardware presented in this document uses a flat
 list of components. Each component in the list is identified by its
 name. Furthermore, each component has a mandatory "class" leaf.

 The "iana-hardware" module defines YANG identities for the hardware
 types in the IANA-maintained "IANA-ENTITY-MIB" registry.

 The "class" leaf is a YANG identity that describes the type of the
 hardware. Vendors are encouraged to either directly use one of the
 common IANA-defined identities, or derive a more specific identity
 from one of them.

4. Relationship to ENTITY-MIB

 If the device implements the ENTITY-MIB [RFC6933], each entry in the
 "/hardware-state/component" list is mapped to one EntPhysicalEntry.
 Objects that are writable in the MIB are mapped to nodes in the
 "/hardware/component" list.

 The "physical-index" leaf MUST contain the value of the corresponding
 entPhysicalEntry's entPhysicalIndex.

 The "class" leaf is mapped to both entPhysicalClass and
 entPhysicalVendorType. If the value of the "class" leaf is an
 identity that is either derived from or is one of the identities in
 the "iana-hardware" module, then entPhysicalClass contains the
 corresponding IANAPhysicalClass enumeration value. Otherwise,
 entPhysicalClass contains the IANAPhysicalClass value "other(1)".
 Vendors are encouraged to define an identity (derived from an
 identity in "iana-hardware" if possible) for each enterprise-specific
 registration identifier used for entPhysicalVendorType, and use that
 identity for the "class" leaf.

 The following tables list the YANG data nodes with corresponding
 objects in the ENTITY-MIB.

https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 5]

Internet-Draft YANG Hardware Management December 2017

 +--------------------------------+----------------------------------+
 | YANG data node in | ENTITY-MIB object |
 | /hardware/component | |
 +--------------------------------+----------------------------------+
name	entPhysicalName
class	entPhysicalClass
	entPhysicalVendorType
physical-index	entPhysicalIndex
description	entPhysicalDescr
parent	entPhysicalContainedIn
parent-rel-pos	entPhysicalParentRelPos
contains-child	entPhysicalChildIndex
hardware-rev	entPhysicalHardwareRev
firmware-rev	entPhysicalFirmwareRev
software-rev	entPhysicalSoftwareRev
serial-num	entPhysicalSerialNum
mfg-name	entPhysicalMfgName
model-name	entPhysicalModelName
alias	entPhysicalAlias
asset-id	entPhysicalAssetID
is-fru	entPhysicalIsFRU
mfg-date	entPhysicalMfgDate
uri	entPhysicalUris
uuid	entPhysicalUUID
 +--------------------------------+----------------------------------+

 YANG Data Nodes and Related ENTITY-MIB Objects

5. Relationship to ENTITY-SENSOR-MIB

 If the device implements the ENTITY-SENSOR-MIB [RFC3433], each entry
 in the "/hardware/component" list where the container "sensor-data"
 exists is mapped to one EntPhySensorEntry.

https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 6]

Internet-Draft YANG Hardware Management December 2017

 +-------------------------------------+-----------------------------+
 | YANG data node in | ENTITY-SENSOR-MIB object |
 | /hardware/component/sensor-data | |
 +-------------------------------------+-----------------------------+
value	entPhySensorValue
value-type	entPhySensorType
value-scale	entPhySensorScale
value-precision	entPhySensorPrecision
oper-status	entPhySensorOperStatus
units-display	entPhySensorUnitsDisplay
value-timestamp	entPhySensorValueTimeStamp
value-update-rate	entPhySensorValueUpdateRate
 +-------------------------------------+-----------------------------+

 YANG Data Nodes and Related ENTITY-SENSOR-MIB Objects

6. Relationship to ENTITY-STATE-MIB

 If the device implements the ENTITY-STATE-MIB [RFC4268], each entry
 in the "/hardware/component" list where the container "state" exists
 is mapped to one EntStateEntry.

 +--+------------------------+
 | YANG data node in | ENTITY-STATE-MIB |
 | /hardware/component/state | object |
 +--+------------------------+
state-last-changed	entStateLastChanged
admin-state	entStateAdmin
oper-state	entStateOper
usage-state	entStateUsage
alarm-state	entStateAlarm
standby-state	entStateStandby
 +--+------------------------+

 YANG Data Nodes and Related ENTITY-SENSOR-MIB Objects

7. Hardware YANG Module

 <CODE BEGINS> file "ietf-hardware@2017-12-18.yang"

 module ietf-hardware {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-hardware";
 prefix hw;

 import ietf-inet-types {
 prefix inet;
 }

https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 7]

Internet-Draft YANG Hardware Management December 2017

 import ietf-yang-types {
 prefix yang;
 }
 import iana-hardware {
 prefix ianahw;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Editor: Jie Dong
 <mailto:jie.dong@huawei.com>

 Editor: Dan Romascanu
 <mailto:dromasca@gmail.com>";

 // RFC Ed.: replace XXXX and YYYY with actual RFC numbers and
 // remove this note.

 description
 "This module contains a collection of YANG definitions for
 managing hardware.

 This data model is designed for the Network Management Datastore
 Architecture defined in RFC YYYY.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

http://tools.ietf.org/wg/netmod/
http://trustee.ietf.org/license-info

Bierman, et al. Expires June 21, 2018 [Page 8]

Internet-Draft YANG Hardware Management December 2017

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2017-12-18 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for Hardware Management";
 }

 /*
 * Features
 */

 feature entity-mib {
 description
 "This feature indicates that the device implements
 the ENTITY-MIB.";
 reference "RFC 6933: Entity MIB (Version 4)";
 }

 feature hardware-state {
 description
 "Indicates the ENTITY-STATE-MIB objects are supported";
 reference "RFC 4268: Entity State MIB";
 }

 feature hardware-sensor {
 description
 "Indicates the ENTITY-SENSOR-MIB objects are supported";
 reference "RFC 3433: Entity Sensor MIB";
 }

 /*
 * Typedefs
 */

 typedef admin-state {
 type enumeration {
 enum unknown {
 value 1;
 description
 "The resource is unable to report administrative state.";
 }
 enum locked {
 value 2;
 description
 "The resource is administratively prohibited from use.";
 }

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 9]

Internet-Draft YANG Hardware Management December 2017

 enum shutting-down {
 value 3;
 description
 "The resource usage is administratively limited to current
 instances of use.";
 }
 enum unlocked {
 value 4;
 description
 "The resource is not administratively prohibited from
 use.";
 }
 }
 description
 "Represents the various possible administrative states.";
 reference "RFC 4268: EntityAdminState";
 }

 typedef oper-state {
 type enumeration {
 enum unknown {
 value 1;
 description
 "The resource is unable to report its operational state.";
 }
 enum disabled {
 value 2;
 description
 "The resource is totally inoperable.";
 }
 enum enabled {
 value 3;
 description
 "The resource is partially or fully operable.";
 }
 enum testing {
 value 4;
 description
 "The resource is currently being tested and cannot
 therefore report whether it is operational or not.";
 }
 }
 description
 "Represents the possible values of operational states.";
 reference "RFC 4268: EntityOperState";
 }

 typedef usage-state {

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 10]

Internet-Draft YANG Hardware Management December 2017

 type enumeration {
 enum unknown {
 value 1;
 description
 "The resource is unable to report usage state.";
 }
 enum idle {
 value 2;
 description
 "The resource is servicing no users.";
 }
 enum active {
 value 3;
 description
 "The resource is currently in use and it has sufficient
 spare capacity to provide for additional users.";
 }
 enum busy {
 value 4;
 description
 "The resource is currently in use, but it currently has no
 spare capacity to provide for additional users.";
 }
 }
 description
 "Represents the possible values of usage states.";
 reference "RFC 4268, EntityUsageState";
 }

 typedef alarm-state {
 type bits {
 bit unknown {
 position 0;
 description
 "The resource is unable to report alarm state.";
 }
 bit under-repair {
 position 1;
 description
 "The resource is currently being repaired, which, depending
 on the implementation, may make the other values in this
 bit string not meaningful.";
 }
 bit critical {
 position 2;
 description
 "One or more critical alarms are active against the
 resource.";

https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 11]

Internet-Draft YANG Hardware Management December 2017

 }
 bit major {
 position 3;
 description
 "One or more major alarms are active against the
 resource.";
 }
 bit minor {
 position 4;
 description
 "One or more minor alarms are active against the
 resource.";
 }
 bit warning {
 position 5;
 description
 "One or more warning alarms are active against the
 resource.";
 }
 bit indeterminate {
 position 6;
 description
 "One or more alarms of whose perceived severity cannot be
 determined are active against this resource.";
 }
 }
 description
 "Represents the possible values of alarm states. An alarm is a
 persistent indication of an error or warning condition.

 When no bits of this attribute are set, then no active alarms
 are known against this component and it is not under repair.";
 reference "RFC 4268: EntityAlarmStatus";
 }

 typedef standby-state {
 type enumeration {
 enum unknown {
 value 1;
 description
 "The resource is unable to report standby state.";
 }
 enum hot-standby {
 value 2;
 description
 "The resource is not providing service, but it will be
 immediately able to take over the role of the resource to
 be backed up, without the need for initialization

https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 12]

Internet-Draft YANG Hardware Management December 2017

 activity, and will contain the same information as the
 resource to be backed up.";
 }
 enum cold-standby {
 value 3;
 description
 "The resource is to back up another resource, but will not
 be immediately able to take over the role of a resource to
 be backed up, and will require some initialization
 activity.";
 }
 enum providing-service {
 value 4;
 description
 "The resource is providing service.";
 }
 }
 description
 "Represents the possible values of standby states.";
 reference "RFC 4268: EntityStandbyStatus";
 }

 typedef sensor-value-type {
 type enumeration {
 enum other {
 value 1;
 description
 "A measure other than those listed below.";
 }
 enum unknown {
 value 2;
 description
 "An unknown measurement, or arbitrary, relative numbers";
 }
 enum volts-AC {
 value 3;
 description
 "A measure of electric potential (alternating current).";
 }
 enum volts-DC {
 value 4;
 description
 "A measure of electric potential (direct current).";
 }
 enum amperes {
 value 5;
 description
 "A measure of electric current.";

https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 13]

Internet-Draft YANG Hardware Management December 2017

 }
 enum watts {
 value 6;
 description
 "A measure of power.";
 }
 enum hertz {
 value 7;
 description
 "A measure of frequency.";
 }
 enum celsius {
 value 8;
 description
 "A measure of temperature.";
 }
 enum percent-RH {
 value 9;
 description
 "A measure of percent relative humidity.";
 }
 enum rpm {
 value 10;
 description
 "A measure of shaft revolutions per minute.";
 }
 enum cmm {
 value 11;
 description
 "A measure of cubic meters per minute (airflow).";
 }
 enum truth-value {
 value 12;
 description
 "Value is one of 1 (true) or 2 (false)";
 }
 }
 description
 "A node using this data type represents the sensor measurement
 data type associated with a physical sensor value. The actual
 data units are determined by examining a node of this type
 together with the associated sensor-value-scale node.

 A node of this type SHOULD be defined together with nodes of
 type sensor-value-scale and sensor-value-precision. These
 three types are used to identify the semantics of a node of
 type sensor-value.";
 reference "RFC 3433: EntitySensorDataType";

https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 14]

Internet-Draft YANG Hardware Management December 2017

 }

 typedef sensor-value-scale {
 type enumeration {
 enum yocto {
 value 1;
 description
 "Data scaling factor of 10^-24.";
 }
 enum zepto {
 value 2;
 description
 "Data scaling factor of 10^-21.";
 }
 enum atto {
 value 3;
 description
 "Data scaling factor of 10^-18.";
 }
 enum femto {
 value 4;
 description
 "Data scaling factor of 10^-15.";
 }
 enum pico {
 value 5;
 description
 "Data scaling factor of 10^-12.";
 }
 enum nano {
 value 6;
 description
 "Data scaling factor of 10^-9.";
 }
 enum micro {
 value 7;
 description
 "Data scaling factor of 10^-6.";
 }
 enum milli {
 value 8;
 description
 "Data scaling factor of 10^-3.";
 }
 enum units {
 value 9;
 description
 "Data scaling factor of 10^0.";

Bierman, et al. Expires June 21, 2018 [Page 15]

Internet-Draft YANG Hardware Management December 2017

 }
 enum kilo {
 value 10;
 description
 "Data scaling factor of 10^3.";
 }
 enum mega {
 value 11;
 description
 "Data scaling factor of 10^6.";
 }
 enum giga {
 value 12;
 description
 "Data scaling factor of 10^9.";
 }
 enum tera {
 value 13;
 description
 "Data scaling factor of 10^12.";
 }
 enum exa {
 value 14;
 description
 "Data scaling factor of 10^15.";
 }
 enum peta {
 value 15;
 description
 "Data scaling factor of 10^18.";
 }
 enum zetta {
 value 16;
 description
 "Data scaling factor of 10^21.";
 }
 enum yotta {
 value 17;
 description
 "Data scaling factor of 10^24.";
 }
 }
 description
 "A node using this data type represents a data scaling factor,
 represented with an International System of Units (SI) prefix.
 The actual data units are determined by examining a node of
 this type together with the associated sensor-value-type.

Bierman, et al. Expires June 21, 2018 [Page 16]

Internet-Draft YANG Hardware Management December 2017

 A node of this type SHOULD be defined together with nodes of
 type sensor-value-type and sensor-value-precision. Together,
 associated nodes of these three types are used to identify the
 semantics of a node of type sensor-value.";
 reference "RFC 3433: EntitySensorDataScale";
 }

 typedef sensor-value-precision {
 type int32 {
 range "-8 .. 9";
 }
 description
 "A node using this data type represents a sensor value
 precision range.

 A node of this type SHOULD be defined together with nodes of
 type sensor-value-type and sensor-value-scale. Together,
 associated nodes of these three types are used to identify the
 semantics of a node of type sensor-value.

 If a node of this type contains a value in the range 1 to 9,
 it represents the number of decimal places in the fractional
 part of an associated sensor-value fixed- point number.

 If a node of this type contains a value in the range -8 to -1,
 it represents the number of accurate digits in the associated
 sensor-value fixed-point number.

 The value zero indicates the associated sensor-value node is
 not a fixed-point number.

 Server implementers must choose a value for the associated
 sensor-value-precision node so that the precision and accuracy
 of the associated sensor-value node is correctly indicated.

 For example, a component representing a temperature sensor
 that can measure 0 degrees to 100 degrees C in 0.1 degree
 increments, +/- 0.05 degrees, would have an
 sensor-value-precision value of '1', an sensor-value-scale
 value of 'units', and an sensor-value ranging from '0' to
 '1000'. The sensor-value would be interpreted as
 'degrees C * 10'.";
 reference "RFC 3433: EntitySensorPrecision";
 }

 typedef sensor-value {
 type int32 {
 range "-1000000000 .. 1000000000";

https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 17]

Internet-Draft YANG Hardware Management December 2017

 }
 description
 "A node using this data type represents an sensor value.

 A node of this type SHOULD be defined together with nodes of
 type sensor-value-type, sensor-value-scale, and
 sensor-value-precision. Together, associated nodes of those
 three types are used to identify the semantics of a node of
 this data type.

 The semantics of a node using this data type are determined by
 the value of the associated sensor-value-type node.

 If the associated sensor-value-type node is equal to 'voltsAC',
 'voltsDC', 'amperes', 'watts', 'hertz', 'celsius', or 'cmm',
 then a node of this type MUST contain a fixed point number
 ranging from -999,999,999 to +999,999,999. The value
 -1000000000 indicates an underflow error. The value +1000000000
 indicates an overflow error. The sensor-value-precision
 indicates how many fractional digits are represented in the
 associated sensor-value node.

 If the associated sensor-value-type node is equal to
 'percentRH', then a node of this type MUST contain a number
 ranging from 0 to 100.

 If the associated sensor-value-type node is equal to 'rpm',
 then a node of this type MUST contain a number ranging from
 -999,999,999 to +999,999,999.

 If the associated sensor-value-type node is equal to
 'truth-value', then a node of this type MUST contain either the
 value 1 (true) or the value 2 (false)'.

 If the associated sensor-value-type node is equal to 'other' or
 unknown', then a node of this type MUST contain a number
 ranging from -1000000000 to 1000000000.";
 reference "RFC 3433: EntitySensorValue";
 }

 typedef sensor-status {
 type enumeration {
 enum ok {
 value 1;
 description
 "Indicates that the server can obtain the sensor value.";
 }
 enum unavailable {

https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 18]

Internet-Draft YANG Hardware Management December 2017

 value 2;
 description
 "Indicates that the server presently cannot obtain the
 sensor value.";
 }
 enum nonoperational {
 value 3;
 description
 "Indicates that the server believes the sensor is broken.
 The sensor could have a hard failure (disconnected wire),
 or a soft failure such as out-of-range, jittery, or wildly
 fluctuating readings.";
 }
 }
 description
 "A node using this data type represents the operational status
 of a physical sensor.";
 reference "RFC 3433: EntitySensorStatus";
 }

 /*
 * Data nodes
 */

 container hardware {
 description
 "Data nodes representing components.

 If the server supports configuration of hardware components,
 then this data model is instantiated in the configuration
 datastores supported by the server. The leaf-list 'datastore'
 for the module 'ietf-hardware' in the YANG library provides
 this information.";

 leaf last-change {
 type yang:date-and-time;
 config false;
 description
 "The time the '/hardware/component' list changed in the
 operational state.";
 }

 list component {
 key name;
 description
 "List of components.

 When the server detects a new hardware component, it

https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 19]

Internet-Draft YANG Hardware Management December 2017

 initializes a list entry in the operational state.

 If the server does not support configuration of hardware
 components, list entries in the operational state are
 initialized with values for all nodes as detected by the
 implementation.

 Otherwise, the following procedure is followed:

 1. If there is an entry in the /hardware/component list in
 the intended configuration with values for the nodes
 'class', 'parent', 'parent-rel-pos' that are equal to
 the detected values, then:

 1a. If the configured entry has a value for 'mfg-name'
 that is equal to the detected value, or if the
 'mfg-name' value cannot be detected, then the list
 entry in the operational state is initialized with the
 configured values for all configured nodes, including
 the 'name'.

 Otherwise, the list entry in the operational state is
 initialized with values for all nodes as detected by
 the implementation. The implementation may raise an
 alarm that informs about the 'mfg-name' mismatch
 condition. How this is done is outside the scope of
 this document.

 1b. Otherwise (i.e., there is no matching configuration
 entry), the list entry in the operational state is
 initialized with values for all nodes as detected by
 the implementation.

 If the /hardware/component list in the intended
 configuration is modified, then the system MUST behave as if
 it re-initializes itself, and follow the procedure in (1).";
 reference "RFC 6933: entPhysicalEntry";

 leaf name {
 type string;
 description
 "The name assigned to this component.

 This name is not required to be the same as
 entPhysicalName.";
 }

 leaf class {

https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 20]

Internet-Draft YANG Hardware Management December 2017

 type identityref {
 base ianahw:hardware-class;
 }
 mandatory true;
 description
 "An indication of the general hardware type of the
 component.";
 reference "RFC 6933: entPhysicalClass";
 }

 leaf physical-index {
 if-feature entity-mib;
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "The entPhysicalIndex for the entPhysicalEntry represented
 by this list entry.";
 reference "RFC 6933: entPhysicalIndex";
 }

 leaf description {
 type string;
 config false;
 description
 "A textual description of component. This node should
 contain a string that identifies the manufacturer's name
 for the component and should be set to a distinct value
 for each version or model of the component.";
 reference "RFC 6933: entPhysicalDescr";
 }

 leaf parent {
 type leafref {
 path "../../component/name";
 require-instance false;
 }
 description
 "The name of the component that physically contains this
 component.

 If this leaf is not instantiated, it indicates that this
 component is not contained in any other component.

 In the event that a physical component is contained by
 more than one physical component (e.g., double-wide
 modules), this node contains the name of one of these

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 21]

Internet-Draft YANG Hardware Management December 2017

 components. An implementation MUST use the same name
 every time this node is instantiated.";
 reference "RFC 6933: entPhysicalContainedIn";
 }

 leaf parent-rel-pos {
 type int32 {
 range "0 .. 2147483647";
 }
 description
 "An indication of the relative position of this child
 component among all its sibling components. Sibling
 components are defined as components that:

 o Share the same value of the 'parent' node; and

 o Share a common base identity for the 'class' node.

 Note that the last rule gives implementations flexibility
 in how components are numbered. For example, some
 implementations might have a single number series for all
 components derived from 'ianahw:port', while some others
 might have different number series for different
 components with identities derived from 'ianahw:port' (for
 example, one for RJ45 and one for SFP).";

 reference "RFC 6933: entPhysicalParentRelPos";
 }

 leaf-list contains-child {
 type leafref {
 path "../../component/name";
 }
 config false;
 description
 "The name of the contained component.";
 reference "RFC 6933: entPhysicalChildIndex";
 }

 leaf hardware-rev {
 type string;
 config false;
 description
 "The vendor-specific hardware revision string for the
 component. The preferred value is the hardware revision
 identifier actually printed on the component itself (if
 present).";
 reference "RFC 6933: entPhysicalHardwareRev";

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 22]

Internet-Draft YANG Hardware Management December 2017

 }

 leaf firmware-rev {
 type string;
 config false;
 description
 "The vendor-specific firmware revision string for the
 component.";
 reference "RFC 6933: entPhysicalFirmwareRev";
 }

 leaf software-rev {
 type string;
 config false;
 description
 "The vendor-specific software revision string for the
 component.";
 reference "RFC 6933: entPhysicalSoftwareRev";
 }

 leaf serial-num {
 type string;
 config false;
 description
 "The vendor-specific serial number string for the
 component. The preferred value is the serial number
 string actually printed on the component itself (if
 present).";
 reference "RFC 6933: entPhysicalSerialNum";
 }

 leaf mfg-name {
 type string;
 description
 "The name of the manufacturer of this physical component.
 The preferred value is the manufacturer name string
 actually printed on the component itself (if present).

 Note that comparisons between instances of the model-name,
 firmware-rev, software-rev, and the serial-num nodes are
 only meaningful amongst component with the same value of
 mfg-name.

 If the manufacturer name string associated with the
 physical component is unknown to the server, then this
 node is not instantiated.";
 reference "RFC 6933: entPhysicalMfgName";
 }

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 23]

Internet-Draft YANG Hardware Management December 2017

 leaf model-name {
 type string;
 config false;
 description
 "The vendor-specific model name identifier string
 associated with this physical component. The preferred
 value is the customer-visible part number, which may be
 printed on the component itself.

 If the model name string associated with the physical
 component is unknown to the server, then this node is not
 instantiated.";
 reference "RFC 6933: entPhysicalModelName";
 }

 leaf alias {
 type string;
 description
 "An 'alias' name for the component, as specified by a
 network manager, and provides a non-volatile 'handle' for
 the component.

 If no configured value exists, the server MAY set the
 value of this node to a locally unique value in the
 operational state.

 A server implementation MAY map this leaf to the
 entPhysicalAlias MIB object. Such an implementation needs
 to use some mechanism to handle the differences in size
 and characters allowed between this leaf and
 entPhysicalAlias. The definition of such a mechanism is
 outside the scope of this document.";
 reference "RFC 6933: entPhysicalAlias";
 }

 leaf asset-id {
 type string;
 description
 "This node is a user-assigned asset tracking identifier for
 the component.

 A server implementation MAY map this leaf to the
 entPhysicalAssetID MIB object. Such an implementation
 needs to use some mechanism to handle the differences in
 size and characters allowed between this leaf and
 entPhysicalAssetID. The definition of such a mechanism is
 outside the scope of this document.";
 reference "RFC 6933: entPhysicalAssetID";

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 24]

Internet-Draft YANG Hardware Management December 2017

 }

 leaf is-fru {
 type boolean;
 config false;
 description
 "This node indicates whether or not this component is
 considered a 'field replaceable unit' by the vendor. If
 this node contains the value 'true', then this component
 identifies a field replaceable unit. For all components
 that are permanently contained within a field replaceable
 unit, the value 'false' should be returned for this
 node.";
 reference "RFC 6933: entPhysicalIsFRU";
 }

 leaf mfg-date {
 type yang:date-and-time;
 config false;
 description
 "The date of manufacturing of the managed component.";
 reference "RFC 6933: entPhysicalMfgDate";
 }

 leaf-list uri {
 type inet:uri;
 description
 "This node contains identification information about the
 component.";
 reference "RFC 6933: entPhysicalUris";
 }

 leaf uuid {
 type yang:uuid;
 config false;
 description
 "A Universally Unique Identifier of the component.";
 reference "RFC 6933: entPhysicalUUID";
 }

 container state {
 if-feature hardware-state;
 description
 "State-related nodes";
 reference "RFC 4268: Entity State MIB";

 leaf state-last-changed {
 type yang:date-and-time;

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 25]

Internet-Draft YANG Hardware Management December 2017

 config false;
 description
 "The date and time when the value of any of the
 admin-state, oper-state, usage-state, alarm-state, or
 standby-state changed for this component.

 If there has been no change since the last
 re-initialization of the local system, this node
 contains the date and time of local system
 initialization. If there has been no change since the
 component was added to the local system, this node
 contains the date and time of the insertion.";
 reference "RFC 4268: entStateLastChanged";
 }

 leaf admin-state {
 type admin-state;
 description
 "The administrative state for this component.

 This node refers to a component's administrative
 permission to service both other components within its
 containment hierarchy as well other users of its
 services defined by means outside the scope of this
 module.

 Some components exhibit only a subset of the remaining
 administrative state values. Some components cannot be
 locked, and hence this node exhibits only the 'unlocked'
 state. Other components cannot be shutdown gracefully,
 and hence this node does not exhibit the 'shutting-down'
 state.";
 reference "RFC 4268: entStateAdmin";
 }

 leaf oper-state {
 type oper-state;
 config false;
 description
 "The operational state for this component.

 Note that this node does not follow the administrative
 state. An administrative state of down does not predict
 an operational state of disabled.

 Note that some implementations may not be able to
 accurately report oper-state while the admin-state node
 has a value other than 'unlocked'. In these cases, this

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 26]

Internet-Draft YANG Hardware Management December 2017

 node MUST have a value of 'unknown'.";
 reference "RFC 4268: entStateOper";
 }

 leaf usage-state {
 type usage-state;
 config false;
 description
 "The usage state for this component.

 This node refers to a component's ability to service
 more components in a containment hierarchy.

 Some components will exhibit only a subset of the usage
 state values. Components that are unable to ever
 service any components within a containment hierarchy
 will always have a usage state of 'busy'. Some
 components will only ever be able to support one
 component within its containment hierarchy and will
 therefore only exhibit values of 'idle' and 'busy'.";
 reference "RFC 4268, entStateUsage";
 }

 leaf alarm-state {
 type alarm-state;
 config false;
 description
 "The alarm state for this component. It does not
 include the alarms raised on child components within its
 containment hierarchy.";
 reference "RFC 4268: entStateAlarm";
 }

 leaf standby-state {
 type standby-state;
 config false;
 description
 "The standby state for this component.

 Some components will exhibit only a subset of the
 remaining standby state values. If this component
 cannot operate in a standby role, the value of this node
 will always be 'providing-service'.";
 reference "RFC 4268: entStateStandby";
 }
 }

 container sensor-data {

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 27]

Internet-Draft YANG Hardware Management December 2017

 when 'derived-from-or-self(../class,
 "ianahw:sensor")' {
 description
 "Sensor data nodes present for any component of type
 'sensor'";
 }
 if-feature hardware-sensor;
 config false;

 description
 "Sensor-related nodes.";
 reference "RFC 3433: Entity Sensor MIB";

 leaf value {
 type sensor-value;
 description
 "The most recent measurement obtained by the server
 for this sensor.

 A client that periodically fetches this node should also
 fetch the nodes 'value-type', 'value-scale', and
 'value-precision', since they may change when the value
 is changed.";
 reference "RFC 3433: entPhySensorValue";
 }

 leaf value-type {
 type sensor-value-type;
 description
 "The type of data units associated with the
 sensor value";
 reference "RFC 3433: entPhySensorType";
 }

 leaf value-scale {
 type sensor-value-scale;
 description
 "The (power of 10) scaling factor associated
 with the sensor value";
 reference "RFC 3433: entPhySensorScale";
 }

 leaf value-precision {
 type sensor-value-precision;
 description
 "The number of decimal places of precision
 associated with the sensor value";
 reference "RFC 3433: entPhySensorPrecision";

https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 28]

Internet-Draft YANG Hardware Management December 2017

 }

 leaf oper-status {
 type sensor-status;
 description
 "The operational status of the sensor.";
 reference "RFC 3433: entPhySensorOperStatus";
 }

 leaf units-display {
 type string;
 description
 "A textual description of the data units that should be
 used in the display of the sensor value.";
 reference "RFC 3433: entPhySensorUnitsDisplay";
 }

 leaf value-timestamp {
 type yang:date-and-time;
 description
 "The time the status and/or value of this sensor was last
 obtained by the server.";
 reference "RFC 3433: entPhySensorValueTimeStamp";
 }

 leaf value-update-rate {
 type uint32;
 units "milliseconds";
 description
 "An indication of the frequency that the server updates
 the associated 'value' node, representing in
 milliseconds. The value zero indicates:

 - the sensor value is updated on demand (e.g.,
 when polled by the server for a get-request),
 - the sensor value is updated when the sensor
 value changes (event-driven),
 - the server does not know the update rate.";
 reference "RFC 3433: entPhySensorValueUpdateRate";
 }
 }
 }
 }

 /*
 * Notifications
 */

https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 29]

Internet-Draft YANG Hardware Management December 2017

 notification hardware-state-change {
 description
 "A hardware-state-change notification is generated when the
 value of /hardware/last-change changes in the operational
 state.";
 reference "RFC 6933, entConfigChange";
 }

 notification hardware-state-oper-enabled {
 if-feature hardware-state;
 description
 "A hardware-state-oper-enabled notification signifies that a
 component has transitioned into the 'enabled' state.";

 leaf name {
 type leafref {
 path "/hardware/component/name";
 }
 description
 "The name of the component that has transitioned into the
 'enabled' state.";
 }
 leaf admin-state {
 type leafref {
 path "/hardware/component/state/admin-state";
 }
 description
 "The administrative state for the component.";
 }
 leaf alarm-state {
 type leafref {
 path "/hardware/component/state/alarm-state";
 }
 description
 "The alarm state for the component.";
 }
 reference "RFC 4268, entStateOperEnabled";
 }

 notification hardware-state-oper-disabled {
 if-feature hardware-state;
 description
 "A hardware-state-oper-disabled notification signifies that a
 component has transitioned into the 'disabled' state.";

 leaf name {
 type leafref {
 path "/hardware/component/name";

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 30]

Internet-Draft YANG Hardware Management December 2017

 }
 description
 "The name of the component that has transitioned into the
 'disabled' state.";
 }
 leaf admin-state {
 type leafref {
 path "/hardware/component/state/admin-state";
 }
 description
 "The administrative state for the component.";
 }
 leaf alarm-state {
 type leafref {
 path "/hardware/component/state/alarm-state";
 }
 description
 "The alarm state for the component.";
 }
 reference "RFC 4268, entStateOperDisabled";
 }

 }

 <CODE ENDS>

 <CODE BEGINS> file "iana-hardware@2017-12-18.yang"

 module iana-hardware {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-hardware";
 prefix ianahw;

 organization "IANA";
 contact
 " Internet Assigned Numbers Authority

 Postal: ICANN
 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292

 Tel: +1 310 823 9358
 <mailto:iana@iana.org>";

 description
 "IANA defined identities for hardware class.";
 reference

https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 31]

Internet-Draft YANG Hardware Management December 2017

 // RFC Ed.: replace XXXX with actual path and remove this note.
 "https://www.iana.org/assignments/XXXX";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2017-12-18 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for Hardware Management";
 }

 /*
 * Identities
 */

 identity hardware-class {
 description
 "This identity is the base for all hardware class
 identifiers.";
 }

 identity unknown {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is unknown
 to the server.";
 }

 identity chassis {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is an
 overall container for networking equipment. Any class of
 physical component, except a stack, may be contained within a
 chassis; a chassis may only be contained within a stack.";
 }

 identity backplane {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of device for aggregating and forwarding networking traffic,
 such as a shared backplane in a modular ethernet switch. Note
 that an implementation may model a backplane as a single

Bierman, et al. Expires June 21, 2018 [Page 32]

Internet-Draft YANG Hardware Management December 2017

 physical component, which is actually implemented as multiple
 discrete physical components (within a chassis or stack).";
 }

 identity container {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is capable
 of containing one or more removable physical entities,
 possibly of different types. For example, each (empty or
 full) slot in a chassis will be modeled as a container. Note
 that all removable physical components should be modeled
 within a container component, such as field-replaceable
 modules, fans, or power supplies. Note that all known
 containers should be modeled by the agent, including empty
 containers.";
 }

 identity power-supply {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is a
 power-supplying component.";
 }

 identity fan {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is a fan or
 other heat-reduction component.";
 }

 identity sensor {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of sensor, such as a temperature sensor within a router
 chassis.";
 }

 identity module {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of self-contained sub-system. If a module component is
 removable, then it should be modeled within a container
 component; otherwise, it should be modeled directly within
 another physical component (e.g., a chassis or another

Bierman, et al. Expires June 21, 2018 [Page 33]

Internet-Draft YANG Hardware Management December 2017

 module).";
 }

 identity port {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of networking port, capable of receiving and/or transmitting
 networking traffic.";
 }

 identity stack {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of super-container (possibly virtual) intended to group
 together multiple chassis entities. A stack may be realized
 by a virtual cable, a real interconnect cable attached to
 multiple chassis, or multiple interconnect cables. A stack
 should not be modeled within any other physical components,
 but a stack may be contained within another stack. Only
 chassis components should be contained within a stack.";
 }

 identity cpu {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of central processing unit.";
 }

 identity energy-object {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of energy object, i.e., a piece of equipment that is part of
 or attached to a communications network that is monitored,
 controlled, or aids in the management of another device for
 Energy Management.";
 }

 identity battery {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of battery.";
 }

Bierman, et al. Expires June 21, 2018 [Page 34]

Internet-Draft YANG Hardware Management December 2017

 identity storage-drive {
 base ianahw:hardware-class;
 description
 "This identity is applicable if the hardware class is some sort
 of component with data storage capability as main
 functionality, e.g., disk drive (HDD), solid state device
 (SSD), hybrid (SSHD), object storage (OSD) or other.";
 }
 }

 <CODE ENDS>

8. IANA Considerations

 This document defines the initial version of the IANA-maintained
 "iana-hardware" YANG module.

 The "iana-hardware" YANG module is intended to reflect the
 "IANA-ENTITY-MIB" MIB module so that if a new enumeration is added to
 the "IANAPhysicalClass" TEXTUAL-CONVENTION, the same class is added
 as an identity derived from "ianahw:hardware-class".

 When the "iana-hardware" YANG module is updated, a new "revision"
 statement must be added in front of the existing revision statements.

8.1. URI Registrations

 This document registers three URIs in the IETF XML registry
 [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested to be made.

 URI: urn:ietf:params:xml:ns:yang:iana-hardware
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-hardware
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-hardware-state
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

8.2. YANG Module Registrations

 This document registers three YANG modules in the YANG Module Names
 registry [RFC6020].

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Bierman, et al. Expires June 21, 2018 [Page 35]

Internet-Draft YANG Hardware Management December 2017

 name: iana-hardware
 namespace: urn:ietf:params:xml:ns:yang:iana-hardware
 prefix: ianahw
 reference: RFC XXXX

 name: ietf-hardware
 namespace: urn:ietf:params:xml:ns:yang:ietf-hardware
 prefix: hw
 reference: RFC XXXX

 name: ietf-hardware-state
 namespace: urn:ietf:params:xml:ns:yang:ietf-hardware-state
 prefix: hw-state
 reference: RFC XXXX

9. Security Considerations

 The YANG modules defined in this document are designed to be accessed
 via network management protocols such as NETCONF [RFC6241] or
 RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport
 layer, and the mandatory-to-implement secure transport is Secure
 Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the
 mandatory-to-implement secure transport is TLS [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in the YANG module
 "ietf-hardware" that are writable/creatable/deletable (i.e., config
 true, which is the default). These data nodes may be considered
 sensitive or vulnerable in some network environments. Write
 operations (e.g., edit-config) to these data nodes without proper
 protection can have a negative effect on network operations. These
 are the subtrees and data nodes and their sensitivity/vulnerability:

 /hardware/component/admin-state: Setting this node to 'locked' or
 'shutting-down' can cause disruption of services ranging from
 those running on a port to those on an entire device, depending on
 the type of component.

 Some of the readable data nodes in these YANG modules may be
 considered sensitive or vulnerable in some network environments. It
 is thus important to control read access (e.g., via get, get-config,
 or notification) to these data nodes. These are the subtrees and
 data nodes and their sensitivity/vulnerability:

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc6242
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6536

Bierman, et al. Expires June 21, 2018 [Page 36]

Internet-Draft YANG Hardware Management December 2017

 /hardware/component: The leafs in this list expose information about
 the physical components in a device, which may be used to identify
 the vendor, model, version, and specific device-identification
 information of each system component.

 /hardware/component/sensor-data/value: This node may expose the
 values of particular physical sensors in a device.

 /hardware/component/state: Access to this node allows one to figure
 out what the active and standby resources in a device are.

10. Acknowledgments

 The authors wish to thank the following individuals, who all provided
 helpful comments on various draft versions of this document: Bart
 Bogaert, Timothy Carey, William Lupton, Juergen Schoenwaelder.

11. References

11.1. Normative References

 [I-D.ietf-netmod-revised-datastores]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore
 Architecture", draft-ietf-netmod-revised-datastores-07
 (work in progress), November 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC3433] Bierman, A., Romascanu, D., and K. Norseth, "Entity Sensor
 Management Information Base", RFC 3433,
 DOI 10.17487/RFC3433, December 2002, <https://www.rfc-

editor.org/info/rfc3433>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

 [RFC4268] Chisholm, S. and D. Perkins, "Entity State MIB", RFC 4268,
 DOI 10.17487/RFC4268, November 2005, <https://www.rfc-

editor.org/info/rfc4268>.

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-revised-datastores-07
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3433
https://www.rfc-editor.org/info/rfc3433
https://www.rfc-editor.org/info/rfc3433
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://datatracker.ietf.org/doc/html/rfc4268
https://www.rfc-editor.org/info/rfc4268
https://www.rfc-editor.org/info/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 37]

Internet-Draft YANG Hardware Management December 2017

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-

editor.org/info/rfc5246>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012, <https://www.rfc-

editor.org/info/rfc6536>.

 [RFC6933] Bierman, A., Romascanu, D., Quittek, J., and M.
 Chandramouli, "Entity MIB (Version 4)", RFC 6933,
 DOI 10.17487/RFC6933, May 2013, <https://www.rfc-

editor.org/info/rfc6933>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-netmod-yang-tree-diagrams]
 Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-

ietf-netmod-yang-tree-diagrams-02 (work in progress),
 October 2017.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://datatracker.ietf.org/doc/html/rfc6536
https://www.rfc-editor.org/info/rfc6536
https://www.rfc-editor.org/info/rfc6536
https://datatracker.ietf.org/doc/html/rfc6933
https://www.rfc-editor.org/info/rfc6933
https://www.rfc-editor.org/info/rfc6933
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-tree-diagrams-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-tree-diagrams-02

Bierman, et al. Expires June 21, 2018 [Page 38]

Internet-Draft YANG Hardware Management December 2017

Appendix A. Hardware State Data Model

 This non-normative appendix contains a data model designed as a
 temporary solution for implementations that do not yet support the
 Network Management Datastore Architecture (NMDA) defined in
 [I-D.ietf-netmod-revised-datastores]. It has the following
 structure:

 module: ietf-hardware-state
 +--ro hardware
 +--ro last-change? yang:date-and-time
 +--ro component* [name]
 +--ro name string
 +--ro class identityref
 +--ro physical-index? int32 {entity-mib}?
 +--ro description? string
 +--ro parent? -> ../../component/name
 +--ro parent-rel-pos? int32
 +--ro contains-child* -> ../../component/name
 +--ro hardware-rev? string
 +--ro firmware-rev? string
 +--ro software-rev? string
 +--ro serial-num? string
 +--ro mfg-name? string
 +--ro model-name? string
 +--ro alias? string
 +--ro asset-id? string
 +--ro is-fru? boolean
 +--ro mfg-date? yang:date-and-time
 +--ro uri* inet:uri
 +--ro uuid? yang:uuid
 +--ro state {hardware-state}?
 | +--ro state-last-changed? yang:date-and-time
 | +--ro admin-state? hw:admin-state
 | +--ro oper-state? hw:oper-state
 | +--ro usage-state? hw:usage-state
 | +--ro alarm-state? hw:alarm-state
 | +--ro standby-state? hw:standby-state
 +--ro sensor-data {hardware-sensor}?
 +--ro value? hw:sensor-value
 +--ro value-type? hw:sensor-value-type
 +--ro value-scale? hw:sensor-value-scale
 +--ro value-precision? hw:sensor-value-precision
 +--ro oper-status? hw:sensor-status
 +--ro units-display? string
 +--ro value-timestamp? yang:date-and-time
 +--ro value-update-rate? uint32

Bierman, et al. Expires June 21, 2018 [Page 39]

Internet-Draft YANG Hardware Management December 2017

 notifications:
 +---n hardware-state-change
 +---n hardware-state-oper-enabled {hardware-state}?
 | +--ro name? -> /hardware/component/name
 | +--ro admin-state? -> /hardware/component/state/admin-state
 | +--ro alarm-state? -> /hardware/component/state/alarm-state
 +---n hardware-state-oper-disabled {hardware-state}?
 +--ro name? -> /hardware/component/name
 +--ro admin-state? -> /hardware/component/state/admin-state
 +--ro alarm-state? -> /hardware/component/state/alarm-state

A.1. Hardware State YANG Module

 <CODE BEGINS> file "ietf-hardware-state@2017-12-18.yang"

 module ietf-hardware-state {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-hardware-state";
 prefix hw-state;

 import ietf-inet-types {
 prefix inet;
 }
 import ietf-yang-types {
 prefix yang;
 }
 import iana-hardware {
 prefix ianahw;
 }
 import ietf-hardware {
 prefix hw;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>

 Editor: Jie Dong
 <mailto:jie.dong@huawei.com>

http://tools.ietf.org/wg/netmod/

Bierman, et al. Expires June 21, 2018 [Page 40]

Internet-Draft YANG Hardware Management December 2017

 Editor: Dan Romascanu
 <mailto:dromasca@gmail.com>";

 // RFC Ed.: replace XXXX and YYYY with actual RFC numbers and
 // remove this note.

 description
 "This module contains a collection of YANG definitions for
 monitoring hardware.

 This data model is designed as a temporary solution for
 implementations that do not yet support the Network Management
 Datastore Architecture (NMDA) defined in RFC YYYY. Such an
 implementation cannot implement the module 'ietf-hardware'
 properly, since without NMDA support, it is not possible to
 distinguish between instances of nodes in the running
 configuration and operational state.

 The data model in this module is the same as the data model in
 'ietf-hardware', except all nodes are marked as 'config false'.

 If a server that implements this module but doesn't support NMDA
 also supports configuration of hardware components, it SHOULD
 also implement the module 'ietf-hardware' in the configuration
 datastores. The corresponding state data is found in the
 '/hw-state:hardware' subtree.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2017-12-18 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for Hardware Management";
 }

http://trustee.ietf.org/license-info

Bierman, et al. Expires June 21, 2018 [Page 41]

Internet-Draft YANG Hardware Management December 2017

 /*
 * Features
 */

 feature entity-mib {
 description
 "This feature indicates that the device implements
 the ENTITY-MIB.";
 reference "RFC 6933: Entity MIB (Version 4)";
 }

 feature hardware-state {
 description
 "Indicates the ENTITY-STATE-MIB objects are supported";
 reference "RFC 4268: Entity State MIB";
 }

 feature hardware-sensor {
 description
 "Indicates the ENTITY-SENSOR-MIB objects are supported";
 reference "RFC 3433: Entity Sensor MIB";
 }

 /*
 * Data nodes
 */

 container hardware {
 config false;
 description
 "Data nodes representing components.";

 leaf last-change {
 type yang:date-and-time;
 description
 "The time the '/hardware/component' list changed in the
 operational state.";
 }

 list component {
 key name;
 description
 "List of components.

 When the server detects a new hardware component, it
 initializes a list entry in the operational state.

 If the server does not support configuration of hardware

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 42]

Internet-Draft YANG Hardware Management December 2017

 components, list entries in the operational state are
 initialized with values for all nodes as detected by the
 implementation.

 Otherwise, the following procedure is followed:

 1. If there is an entry in the /hardware/component list in
 the intended configuration with values for the nodes
 'class', 'parent', 'parent-rel-pos' that are equal to
 the detected values, then:

 1a. If the configured entry has a value for 'mfg-name'
 that is equal to the detected value, or if the
 'mfg-name' value cannot be detected, then the list
 entry in the operational state is initialized with the
 configured values for all configured nodes, including
 the 'name'.

 Otherwise, the list entry in the operational state is
 initialized with values for all nodes as detected by
 the implementation. The implementation may raise an
 alarm that informs about the 'mfg-name' mismatch
 condition. How this is done is outside the scope of
 this document.

 1b. Otherwise (i.e., there is no matching configuration
 entry), the list entry in the operational state is
 initialized with values for all nodes as detected by
 the implementation.

 If the /hardware/component list in the intended
 configuration is modified, then the system MUST behave as if
 it re-initializes itself, and follow the procedure in (1).";
 reference "RFC 6933: entPhysicalEntry";

 leaf name {
 type string;
 description
 "The name assigned to this component.

 This name is not required to be the same as
 entPhysicalName.";
 }

 leaf class {
 type identityref {
 base ianahw:hardware-class;
 }

https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 43]

Internet-Draft YANG Hardware Management December 2017

 mandatory true;
 description
 "An indication of the general hardware type of the
 component.";
 reference "RFC 6933: entPhysicalClass";
 }

 leaf physical-index {
 if-feature entity-mib;
 type int32 {
 range "1..2147483647";
 }
 description
 "The entPhysicalIndex for the entPhysicalEntry represented
 by this list entry.";
 reference "RFC 6933: entPhysicalIndex";
 }

 leaf description {
 type string;
 description
 "A textual description of component. This node should
 contain a string that identifies the manufacturer's name
 for the component and should be set to a distinct value
 for each version or model of the component.";
 reference "RFC 6933: entPhysicalDescr";
 }

 leaf parent {
 type leafref {
 path "../../component/name";
 require-instance false;
 }
 description
 "The name of the component that physically contains this
 component.

 If this leaf is not instantiated, it indicates that this
 component is not contained in any other component.

 In the event that a physical component is contained by
 more than one physical component (e.g., double-wide
 modules), this node contains the name of one of these
 components. An implementation MUST use the same name
 every time this node is instantiated.";
 reference "RFC 6933: entPhysicalContainedIn";
 }

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 44]

Internet-Draft YANG Hardware Management December 2017

 leaf parent-rel-pos {
 type int32 {
 range "0 .. 2147483647";
 }
 description
 "An indication of the relative position of this child
 component among all its sibling components. Sibling
 components are defined as components that:

 o Share the same value of the 'parent' node; and

 o Share a common base identity for the 'class' node.

 Note that the last rule gives implementations flexibility
 in how components are numbered. For example, some
 implementations might have a single number series for all
 components derived from 'ianahw:port', while some others
 might have different number series for different
 components with identities derived from 'ianahw:port' (for
 example, one for RJ45 and one for SFP).";

 reference "RFC 6933: entPhysicalParentRelPos";
 }

 leaf-list contains-child {
 type leafref {
 path "../../component/name";
 }
 description
 "The name of the contained component.";
 reference "RFC 6933: entPhysicalChildIndex";
 }

 leaf hardware-rev {
 type string;
 description
 "The vendor-specific hardware revision string for the
 component. The preferred value is the hardware revision
 identifier actually printed on the component itself (if
 present).";
 reference "RFC 6933: entPhysicalHardwareRev";
 }

 leaf firmware-rev {
 type string;
 description
 "The vendor-specific firmware revision string for the
 component.";

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 45]

Internet-Draft YANG Hardware Management December 2017

 reference "RFC 6933: entPhysicalFirmwareRev";
 }

 leaf software-rev {
 type string;
 description
 "The vendor-specific software revision string for the
 component.";
 reference "RFC 6933: entPhysicalSoftwareRev";
 }

 leaf serial-num {
 type string;
 description
 "The vendor-specific serial number string for the
 component. The preferred value is the serial number
 string actually printed on the component itself (if
 present).";
 reference "RFC 6933: entPhysicalSerialNum";
 }

 leaf mfg-name {
 type string;
 description
 "The name of the manufacturer of this physical component.
 The preferred value is the manufacturer name string
 actually printed on the component itself (if present).

 Note that comparisons between instances of the model-name,
 firmware-rev, software-rev, and the serial-num nodes are
 only meaningful amongst component with the same value of
 mfg-name.

 If the manufacturer name string associated with the
 physical component is unknown to the server, then this
 node is not instantiated.";
 reference "RFC 6933: entPhysicalMfgName";
 }

 leaf model-name {
 type string;
 description
 "The vendor-specific model name identifier string
 associated with this physical component. The preferred
 value is the customer-visible part number, which may be
 printed on the component itself.

 If the model name string associated with the physical

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 46]

Internet-Draft YANG Hardware Management December 2017

 component is unknown to the server, then this node is not
 instantiated.";
 reference "RFC 6933: entPhysicalModelName";
 }

 leaf alias {
 type string;
 description
 "An 'alias' name for the component, as specified by a
 network manager, and provides a non-volatile 'handle' for
 the component.

 If no configured value exists, the server MAY set the
 value of this node to a locally unique value in the
 operational state.

 A server implementation MAY map this leaf to the
 entPhysicalAlias MIB object. Such an implementation needs
 to use some mechanism to handle the differences in size
 and characters allowed between this leaf and
 entPhysicalAlias. The definition of such a mechanism is
 outside the scope of this document.";
 reference "RFC 6933: entPhysicalAlias";
 }

 leaf asset-id {
 type string;
 description
 "This node is a user-assigned asset tracking identifier for
 the component.

 A server implementation MAY map this leaf to the
 entPhysicalAssetID MIB object. Such an implementation
 needs to use some mechanism to handle the differences in
 size and characters allowed between this leaf and
 entPhysicalAssetID. The definition of such a mechanism is
 outside the scope of this document.";
 reference "RFC 6933: entPhysicalAssetID";
 }

 leaf is-fru {
 type boolean;
 description
 "This node indicates whether or not this component is
 considered a 'field replaceable unit' by the vendor. If
 this node contains the value 'true', then this component
 identifies a field replaceable unit. For all components
 that are permanently contained within a field replaceable

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 47]

Internet-Draft YANG Hardware Management December 2017

 unit, the value 'false' should be returned for this
 node.";
 reference "RFC 6933: entPhysicalIsFRU";
 }

 leaf mfg-date {
 type yang:date-and-time;
 description
 "The date of manufacturing of the managed component.";
 reference "RFC 6933: entPhysicalMfgDate";
 }

 leaf-list uri {
 type inet:uri;
 description
 "This node contains identification information about the
 component.";
 reference "RFC 6933: entPhysicalUris";
 }

 leaf uuid {
 type yang:uuid;
 description
 "A Universally Unique Identifier of the component.";
 reference "RFC 6933: entPhysicalUUID";
 }

 container state {
 if-feature hardware-state;
 description
 "State-related nodes";
 reference "RFC 4268: Entity State MIB";

 leaf state-last-changed {
 type yang:date-and-time;
 description
 "The date and time when the value of any of the
 admin-state, oper-state, usage-state, alarm-state, or
 standby-state changed for this component.

 If there has been no change since the last
 re-initialization of the local system, this node
 contains the date and time of local system
 initialization. If there has been no change since the
 component was added to the local system, this node
 contains the date and time of the insertion.";
 reference "RFC 4268: entStateLastChanged";
 }

https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc6933
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 48]

Internet-Draft YANG Hardware Management December 2017

 leaf admin-state {
 type hw:admin-state;
 description
 "The administrative state for this component.

 This node refers to a component's administrative
 permission to service both other components within its
 containment hierarchy as well other users of its
 services defined by means outside the scope of this
 module.

 Some components exhibit only a subset of the remaining
 administrative state values. Some components cannot be
 locked, and hence this node exhibits only the 'unlocked'
 state. Other components cannot be shutdown gracefully,
 and hence this node does not exhibit the 'shutting-down'
 state.";
 reference "RFC 4268: entStateAdmin";
 }

 leaf oper-state {
 type hw:oper-state;
 description
 "The operational state for this component.

 Note that this node does not follow the administrative
 state. An administrative state of down does not predict
 an operational state of disabled.

 Note that some implementations may not be able to
 accurately report oper-state while the admin-state node
 has a value other than 'unlocked'. In these cases, this
 node MUST have a value of 'unknown'.";
 reference "RFC 4268: entStateOper";
 }

 leaf usage-state {
 type hw:usage-state;
 description
 "The usage state for this component.

 This node refers to a component's ability to service
 more components in a containment hierarchy.

 Some components will exhibit only a subset of the usage
 state values. Components that are unable to ever
 service any components within a containment hierarchy
 will always have a usage state of 'busy'. Some

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 49]

Internet-Draft YANG Hardware Management December 2017

 components will only ever be able to support one
 component within its containment hierarchy and will
 therefore only exhibit values of 'idle' and 'busy'.";
 reference "RFC 4268, entStateUsage";
 }

 leaf alarm-state {
 type hw:alarm-state;
 description
 "The alarm state for this component. It does not
 include the alarms raised on child components within its
 containment hierarchy.";
 reference "RFC 4268: entStateAlarm";
 }

 leaf standby-state {
 type hw:standby-state;
 description
 "The standby state for this component.

 Some components will exhibit only a subset of the
 remaining standby state values. If this component
 cannot operate in a standby role, the value of this node
 will always be 'providing-service'.";
 reference "RFC 4268: entStateStandby";
 }
 }

 container sensor-data {
 when 'derived-from-or-self(../class,
 "ianahw:sensor")' {
 description
 "Sensor data nodes present for any component of type
 'sensor'";
 }
 if-feature hardware-sensor;

 description
 "Sensor-related nodes.";
 reference "RFC 3433: Entity Sensor MIB";

 leaf value {
 type hw:sensor-value;
 description
 "The most recent measurement obtained by the server
 for this sensor.

 A client that periodically fetches this node should also

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 50]

Internet-Draft YANG Hardware Management December 2017

 fetch the nodes 'value-type', 'value-scale', and
 'value-precision', since they may change when the value
 is changed.";
 reference "RFC 3433: entPhySensorValue";
 }

 leaf value-type {
 type hw:sensor-value-type;
 description
 "The type of data units associated with the
 sensor value";
 reference "RFC 3433: entPhySensorType";
 }

 leaf value-scale {
 type hw:sensor-value-scale;
 description
 "The (power of 10) scaling factor associated
 with the sensor value";
 reference "RFC 3433: entPhySensorScale";
 }

 leaf value-precision {
 type hw:sensor-value-precision;
 description
 "The number of decimal places of precision
 associated with the sensor value";
 reference "RFC 3433: entPhySensorPrecision";
 }

 leaf oper-status {
 type hw:sensor-status;
 description
 "The operational status of the sensor.";
 reference "RFC 3433: entPhySensorOperStatus";
 }

 leaf units-display {
 type string;
 description
 "A textual description of the data units that should be
 used in the display of the sensor value.";
 reference "RFC 3433: entPhySensorUnitsDisplay";
 }

 leaf value-timestamp {
 type yang:date-and-time;
 description

https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433

Bierman, et al. Expires June 21, 2018 [Page 51]

Internet-Draft YANG Hardware Management December 2017

 "The time the status and/or value of this sensor was last
 obtained by the server.";
 reference "RFC 3433: entPhySensorValueTimeStamp";
 }

 leaf value-update-rate {
 type uint32;
 units "milliseconds";
 description
 "An indication of the frequency that the server updates
 the associated 'value' node, representing in
 milliseconds. The value zero indicates:

 - the sensor value is updated on demand (e.g.,
 when polled by the server for a get-request),
 - the sensor value is updated when the sensor
 value changes (event-driven),
 - the server does not know the update rate.";
 reference "RFC 3433: entPhySensorValueUpdateRate";
 }
 }
 }
 }

 /*
 * Notifications
 */

 notification hardware-state-change {
 description
 "A hardware-state-change notification is generated when the
 value of /hardware/last-change changes in the operational
 state.";
 reference "RFC 6933, entConfigChange";
 }

 notification hardware-state-oper-enabled {
 if-feature hardware-state;
 description
 "A hardware-state-oper-enabled notification signifies that a
 component has transitioned into the 'enabled' state.";

 leaf name {
 type leafref {
 path "/hardware/component/name";
 }
 description
 "The name of the component that has transitioned into the

https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc3433
https://datatracker.ietf.org/doc/html/rfc6933

Bierman, et al. Expires June 21, 2018 [Page 52]

Internet-Draft YANG Hardware Management December 2017

 'enabled' state.";
 }
 leaf admin-state {
 type leafref {
 path "/hardware/component/state/admin-state";
 }
 description
 "The administrative state for the component.";
 }
 leaf alarm-state {
 type leafref {
 path "/hardware/component/state/alarm-state";
 }
 description
 "The alarm state for the component.";
 }
 reference "RFC 4268, entStateOperEnabled";
 }

 notification hardware-state-oper-disabled {
 if-feature hardware-state;
 description
 "A hardware-state-oper-disabled notification signifies that a
 component has transitioned into the 'disabled' state.";

 leaf name {
 type leafref {
 path "/hardware/component/name";
 }
 description
 "The name of the component that has transitioned into the
 'disabled' state.";
 }
 leaf admin-state {
 type leafref {
 path "/hardware/component/state/admin-state";
 }
 description
 "The administrative state for the component.";
 }
 leaf alarm-state {
 type leafref {
 path "/hardware/component/state/alarm-state";
 }
 description
 "The alarm state for the component.";
 }
 reference "RFC 4268, entStateOperDisabled";

https://datatracker.ietf.org/doc/html/rfc4268
https://datatracker.ietf.org/doc/html/rfc4268

Bierman, et al. Expires June 21, 2018 [Page 53]

Internet-Draft YANG Hardware Management December 2017

 }

 }

 <CODE ENDS>

Authors' Addresses

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Jie Dong
 Huawei Technologies

 Email: jie.dong@huawei.com

 Dan Romascanu

 Email: dromasca@gmail.com

Bierman, et al. Expires June 21, 2018 [Page 54]

