
Network Working Group M. Bjorklund, Ed.
Internet-Draft Tail-f Systems
Intended status: Standards Track J. Schoenwaelder
Expires: June 22, 2017 Jacobs University
 P. Shafer
 K. Watsen
 Juniper
 R. Wilton
 Cisco
 December 19, 2016

A Revised Conceptual Model for YANG Datastores
draft-ietf-netmod-revised-datastores-00

Abstract

 Datastores are a fundamental concept binding the YANG data modeling
 language to protocols transporting data defined in YANG data models,
 such as NETCONF or RESTCONF. This document defines a revised
 conceptual model of datastores based on the experience gained with
 the initial simpler model and addressing requirements that were not
 well supported in the initial model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 22, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Bjorklund, et al. Expires June 22, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft December 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 3
3. Terminology . 4
4. Original Model of Datastores 4
5. Revised Model of Datastores 6
5.1. The <intended> datastore 8
5.2. The <applied> datastore 8
5.2.1. Missing Resources 9
5.2.2. System-controlled Resources 9

5.3. The <operational-state> datastore 9
6. Implications . 9
6.1. Implications on NETCONF 9
6.1.1. Migration Path 10

6.2. Implications on RESTCONF 10
6.3. Implications on YANG 11
6.4. Implications on Data Models 11

7. Data Model Design Guidelines 11
7.1. Auto-configured or Auto-negotiated Values 11

8. Data Model . 12
9. IANA Considerations . 14
10. Security Considerations 14
11. Acknowledgments . 14
12. References . 15
12.1. Normative References 15
12.2. Informative References 15

Appendix A. Example Data . 16
Appendix B. Open Issues . 19

 Authors' Addresses . 20

1. Introduction

 This document provides a revised architectural framework for
 datastores as they are used by network management protocols such as
 NETCONF [RFC6241], RESTCONF [I-D.ietf-netconf-restconf] and the YANG
 [RFC7950] data modeling language. Datastores are a fundamental
 concept binding management data models to network management
 protocols and agreement on a common architectural model of datastores
 ensures that data models can be written in a network management

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7950

Bjorklund, et al. Expires June 22, 2017 [Page 2]

Internet-Draft December 2016

 protocol agnostic way. This architectural framework identifies a set
 of conceptual datastores but it does not mandate that all network
 management protocols expose all these conceptual datastores.
 Furthermore, the architecture does not detail how data is encoded by
 network management protocols.

2. Background

 NETCONF [RFC6241] provides the following definitions:

 o datastore: A conceptual place to store and access information. A
 datastore might be implemented, for example, using files, a
 database, flash memory locations, or combinations thereof.

 o configuration datastore: The datastore holding the complete set of
 configuration data that is required to get a device from its
 initial default state into a desired operational state.

 YANG 1.1 [RFC7950] provides the following refinements when NETCONF is
 used with YANG (which is the usual case but note that NETCONF was
 defined before YANG did exist):

 o datastore: When modeled with YANG, a datastore is realized as an
 instantiated data tree.

 o configuration datastore: When modeled with YANG, a configuration
 datastore is realized as an instantiated data tree with
 configuration data.

RFC 6244 defined operational state data as follows:

 o Operational state data is a set of data that has been obtained by
 the system at runtime and influences the system's behavior similar
 to configuration data. In contrast to configuration data,
 operational state is transient and modified by interactions with
 internal components or other systems via specialized protocols.

Section 4.3.3 of RFC 6244 discusses operational state and among other
 things mentions the option to consider operational state as being
 stored in another datastore. Section 4.4 of this document then
 concludes that at the time of the writing, modeling state as a
 separate data tree is the recommended approach.

 Implementation experience and requests from operators
 [I-D.ietf-netmod-opstate-reqs], [I-D.openconfig-netmod-opstate]
 indicate that the datastore model initially designed for NETCONF and
 refined by YANG needs to be extended. In particular, the notion of
 intended configuration and applied configuration has developed.

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc6244
https://datatracker.ietf.org/doc/html/rfc6244#section-4.3.3

Bjorklund, et al. Expires June 22, 2017 [Page 3]

Internet-Draft December 2016

 Furthermore, separating operational state data from configuration
 data in a separate branch in the data model has been found
 operationally complicated. The relationship between the branches is
 not machine readable and filter expressions operating on
 configuration data and on related operational state data are
 different.

3. Terminology

 This document defines the following terms:

 o configuration data: Data that determines how a device behaves.
 Configuration data can originate from different sources. In YANG
 1.1, configuration data is the "config true" nodes.

 o static configuration data: Configuration data that is eventually
 persistent and used to get a device from its initial default state
 into its desired operational state.

 o dynamic configuration data: Configuration data that is obtained
 dynamically during the operation of a device through interaction
 with other systems and not persistent.

 o system configuration data: Configuration data that is supplied by
 the device itself.

 o data-model-defined configuration data: Configuration data that is
 not explicitly provided but for which a value defined in the data
 model is used. In YANG 1.1, such data can be defined with the
 "default" statement or in "description" statements.

4. Original Model of Datastores

 The following drawing shows the original model of datastores as it is
 currently used by NETCONF [RFC6241]:

https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund, et al. Expires June 22, 2017 [Page 4]

Internet-Draft December 2016

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 v
 operational state <--- control plane
 (cf, ro)

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote datastores

 Note that read-only (ro) and read-write (rw) is to be understood at a
 conceptual level. In NETCONF, for example, support for the
 <candidate> and <startup> datastores is optional and the <running>
 datastore does not have to be writable. Furthermore, the <startup>
 datastore can only be modified by copying <running> to <startup> in
 the standardized NETCONF datastore editing model. The RESTCONF
 protocol does not expose these differences and instead provides only
 a writable unified datastore, which hides whether edits are done
 through a <candidate> datastore or by directly modifying the
 <running> datastore or via some other implementation specific
 mechanism. RESTCONF also hides how configuration is made persistent.
 Note that implementations may also have additional datastores that
 can propagate changes to the <running> datastore. NETCONF explicitly
 mentions so called named datastores.

 Some observations:

 o Operational state has not been defined as a datastore although
 there were proposals in the past to introduce an operational state
 datastore.

 o The NETCONF <get/> operation returns the content of the <running>
 configuration datastore together with the operational state. It
 is therefore necessary that config false data is in a different
 branch than the config true data if the operational state data can
 have a different lifetime compared to configuration data or if
 configuration data is not immediately or successfully applied.

 o Several implementations have proprietary mechanisms that allow
 clients to store inactive data in the <running> datastore; this

Bjorklund, et al. Expires June 22, 2017 [Page 5]

Internet-Draft December 2016

 inactive data is only exposed to clients that indicate that they
 support the concept of inactive data; clients not indicating
 support for inactive data receive the content of the <running>
 datastore with the inactive data removed. Inactive data is
 conceptually removed during validation.

 o Some implementations have proprietary mechanisms that allow
 clients to define configuration templates in <running>. These
 templates are expanded automatically by the system, and the
 resulting configuration is applied internally.

 o Some operators have reported that it is essential for them to be
 able to retrieve the configuration that has actually been
 successfully applied, which may be a subset or a superset of the
 <running> configuration.

5. Revised Model of Datastores

 Below is a new conceptual model of datastores extending the original
 model in order reflect the experience gained with the original model.

Bjorklund, et al. Expires June 22, 2017 [Page 6]

Internet-Draft December 2016

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 | +-----------+ |
 +-------->| <running> |<--------+
 | (ct, rw) |
 +-----------+
 |
 | // e.g., removal of 'inactive'
 | // nodes, expansion of templates
 v
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 |
 | // e.g., missing resources or
 | // delays
 v
 +-----------+
 | <applied> |<---+--- dynamic configuration
 | (ct, ro) | | protocols
 +-----------+ +--- control-plane datastores
 |
 | +--- auto-discovery
 | +-----+--- control-plane protocols
 | | +--- control-plane datastores
 v v
 +---------------------+
 | <operational-state> |
 | (ct + cf, ro) |
 +---------------------+

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote datastores

 The model foresees control-plane datastores that are by definition
 not part of the persistent configuration of a device. In some
 contexts, these have been termed ephemeral datastores since the
 information is ephemeral, i.e., lost upon reboot. The control-plane
 datastores interact with the rest of the system through the <applied>
 or <operational-state> datastores, depending on the type of data they
 contain. Note that the ephemeral datastore discussed in I2RS
 documents maps to a control-plane datastore in the revised datastore
 model described here.

Bjorklund, et al. Expires June 22, 2017 [Page 7]

Internet-Draft December 2016

5.1. The <intended> datastore

 The <intended> datastore is a read-only datastore that consists of
 config true nodes. It is tightly coupled to <running>. When data is
 written to <running>, the data that is to be validated is also
 conceptually written to <intended>. Validation is performed on the
 contents of <intended>.

 On a traditional NETCONF implementation, <running> and <intended> are
 always the same.

 Currently there are no standard mechanisms defined that affect
 <intended> so that it would have different contents than <running>,
 but this architecture allows for such mechanisms to be defined.

 One example of such a mechanism is support for marking nodes as
 inactive in <running>. Inactive nodes are not copied to <intended>,
 and are thus not taken into account when validating the
 configuration.

 Another example is support for templates. Templates are expanded
 when copied into <intended>, and the result is validated.

5.2. The <applied> datastore

 The <applied> datastore is a read-only datastore that consists of
 config true nodes. It contains the currently active configuration on
 the device. This data can come from several sources; from
 <intended>, from dynamic configuration protocols (e.g., DHCP), or
 from control-plane datastores.

 As data flows into the <applied> and <operational-state> datastores,
 it is conceptually marked with a metadata annotation ([RFC7952]) that
 indicates its origin. The "origin" metadata annotation is defined in

Section 8. The values are YANG identities. The following identities
 are defined:

 +-- origin
 +-- static
 +-- dynamic
 +-- data-model
 +-- system

 These identities can be further refined, e.g., there might be an
 identity "dhcp" derived from "dynamic".

https://datatracker.ietf.org/doc/html/rfc7952

Bjorklund, et al. Expires June 22, 2017 [Page 8]

Internet-Draft December 2016

 The <applied> datastore contains the subset of the instances in the
 <operational-state> datastore where the "origin" values are derived
 from or equal to "static" or "dynamic".

5.2.1. Missing Resources

 Sometimes some parts of <intended> configuration refer to resources
 that are not present and hence parts of the <intended> configuration
 cannot be applied. A typical example is an interface configuration
 that refers to an interface that is not currently present. In such a
 situation, the interface configuration remains in <intended> but the
 interface configuration will not appear in <applied>.

5.2.2. System-controlled Resources

 Sometimes resources are controlled by the device and such system
 controlled resources appear in (and disappear from) the
 <operational-state> dynamically. If a system controlled resource has
 matching configuration in <intended> when it appears, the system will
 try to apply the configuration, which causes the configuration to
 appear in <applied> eventually (if application of the configuration
 was successful).

5.3. The <operational-state> datastore

 The <operational-state> datastore is a read-only datastore that
 consists of config true and config false nodes. In the original
 NETCONF model the operational state only had config false nodes. The
 reason for incorporating config true nodes here is to be able to
 expose all operational settings without having to replicate
 definitions in the data models.

 The <operational-state> datastore contains all configura data
 actually used by the system, i.e., all applied configuration, system
 configuration and data-model-defined configuration. This data is
 marked with the "origin" metadata annotation. In addition, the
 <operational-state> datastore also contains state data.

 In the <operational-state> datastore, semantic constraints defined in
 the data model are not applied. See Appendix B.

6. Implications

6.1. Implications on NETCONF

 o A mechanism is needed to announce support for <intended>,
 <applied>, and <operational-state>.

Bjorklund, et al. Expires June 22, 2017 [Page 9]

Internet-Draft December 2016

 o Support for <intended>, <applied>, and <operational-state> should
 be optional to implement.

 o For systems supporting <intended> or <applied> configuration
 datastores, the <get-config/> operation may be used to retrieve
 data stored in these new datastores.

 o A new operation should be added to retrieve the operational state
 data store (e.g., <get-state/>). An alternative is to define a
 new operation to retrieve data from any datastore (e.g.,
 <get-data> with the name of the datastore as a parameter). In
 principle <get-config/> could work but it would be a confusing
 name.

 o The <get/> operation will be deprecated since it returns data from
 two datastores that may overlap in the revised datastore model.

6.1.1. Migration Path

 A common approach in current data models is to have two separate
 trees "/foo" and "/foo-state", where the former contains config true
 nodes, and the latter config false nodes. A data model that is
 designed for the revised architectural framework presented in this
 document will have a single tree "/foo" with a combination of config
 true and config false nodes.

 A server that implements the <operational-state> datastore can
 implement a module of the old design. In this case, some instances
 are probably reported both in the "/foo" tree and in the "/foo-state"
 tree.

 A server that does not implement the <operational-state> datastore
 can implement a module of the new design, but with limited
 functionality. Specifically, it may not be possible to retrieve all
 operationally used instances (e.g., dynamically configured or system-
 controlled). The same limitation applies to a client that does not
 implement the <operational-state> datastore, but talks to a server
 that implements it.

6.2. Implications on RESTCONF

 o The {+restconf}/data resource represents the combined
 configuration and state data resources that can be accessed by a
 client. This is effectively bundling <running> together with
 <operational-state>, much like the <get/> operation of NETCONF.
 This design should be deprecated.

Bjorklund, et al. Expires June 22, 2017 [Page 10]

Internet-Draft December 2016

 o A new query parameter is needed to indicate that data from
 <operational-state> is requested.

6.3. Implications on YANG

 o Some clarifications may be needed if this revised model is
 adopted. YANG currently describes validation in terms of the
 <running> configuration datastore while it really happens on the
 <intended> configuration datastore.

6.4. Implications on Data Models

 o Since the NETCONF <get/> operation returns the content of the
 <running> configuration datastore and the operational state
 together in one tree, data models were often forced to branch at
 the top-level into a config true branch and a structurally similar
 config false branch that replicated some of the config true nodes
 and added state nodes. With the revised datastore model this is
 not needed anymore since the different datastores handle the
 different lifetimes of data objects. Introducing this model
 together with the deprecation of the <get/> operation makes it
 possible to write simpler models.

 o There may be some differences in the value set of some nodes that
 are used for both configuration and state. At this point of time,
 these are considered to be rare cases that can be dealt with using
 different nodes for the configured and state values.

 o It is important to design data models with clear semantics that
 work equally well for instantiation in a configuration datastore
 and instantiation in the <operational-state> datastore.

7. Data Model Design Guidelines

7.1. Auto-configured or Auto-negotiated Values

 Sometimes configuration leafs support special values that instruct
 the system to automatically configure a value. An example is an MTU
 that is configured to 'auto' to let the system determine a suitable
 MTU value. Another example is Ethernet auto-negotiation of link
 speed. In such a situation, it is recommended to model this as two
 separate leafs, one config true leaf for the input to the auto-
 negotiation process, and one config false leaf for the output from
 the process.

Bjorklund, et al. Expires June 22, 2017 [Page 11]

Internet-Draft December 2016

8. Data Model

 <CODE BEGINS> file "ietf-yang-architecture@2016-10-13.yang"

 module ietf-yang-architecture {
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-architecture";
 prefix arch;

 import ietf-yang-metadata {
 prefix md;
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "This YANG module defines an 'origin' metadata annotation,
 and a set of identities for the origin value. The 'origin'
 metadata annotation is used to mark data in the applied
 and operational state datastores with information on where
 the data originated.

 Copyright (c) 2016 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (http://www.rfc-editor.org/info/rfcxxxx); see the RFC itself
 for full legal notices.";

 revision 2016-10-13 {
 description
 "Initial revision.";
 reference

https://datatracker.ietf.org/wg/netmod/
http://trustee.ietf.org/license-info
http://www.rfc-editor.org/info/rfcxxxx

Bjorklund, et al. Expires June 22, 2017 [Page 12]

Internet-Draft December 2016

 "RFC XXXX: A Revised Conceptual Model for YANG Datastores";
 }

 /*
 * Identities
 */

 identity origin {
 description
 "Abstract base identitiy for the origin annotation.";
 }

 identity static {
 base origin;
 description
 "Denotes data from static configuration (e.g., <intended>).";
 }

 identity dynamic {
 base origin;
 description
 "Denotes data from dynamic configuration protocols
 or dynamic datastores (e.g., DHCP).";
 }

 identity system {
 base origin;
 description
 "Denotes data created by the system independently of what
 has been configured.";
 }

 identity data-model {
 base origin;
 description
 "Denotes data that does not have an explicitly configured
 value, but has a default value in use. Covers both simple
 defaults and complex defaults.";
 }

 /*
 * Metadata annotations
 */

 md:annotation origin {
 type identityref {
 base origin;
 }

Bjorklund, et al. Expires June 22, 2017 [Page 13]

Internet-Draft December 2016

 }

 }

 <CODE ENDS>

9. IANA Considerations

 TBD

10. Security Considerations

 This document discusses a conceptual model of datastores for network
 management using NETCONF/RESTCONF and YANG. It has no security
 impact on the Internet.

11. Acknowledgments

 This document grew out of many discussions that took place since
 2010. Several Internet-Drafts ([I-D.bjorklund-netmod-operational],
 [I-D.wilton-netmod-opstate-yang], [I-D.ietf-netmod-opstate-reqs],
 [I-D.kwatsen-netmod-opstate], [I-D.openconfig-netmod-opstate]) and
 [RFC6244] touched on some of the problems of the original datastore
 model. The following people were authors to these Internet-Drafts or
 otherwise actively involved in the discussions that led to this
 document:

 o Lou Berger, LabN Consulting, L.L.C., <lberger@labn.net>

 o Andy Bierman, YumaWorks, <andy@yumaworks.com>

 o Marcus Hines, Google, <hines@google.com>

 o Christian Hopps, Deutsche Telekom, <chopps@chopps.org>

 o Acee Lindem, Cisco Systems, <acee@cisco.com>

 o Ladislav Lhotka, CZ.NIC, <lhotka@nic.cz>

 o Thomas Nadeau, Brocade Networks, <tnadeau@lucidvision.com>

 o Anees Shaikh, Google, <aashaikh@google.com>

 o Rob Shakir, Google, <robjs@google.com>

 Juergen Schoenwaelder was partly funded by Flamingo, a Network of
 Excellence project (ICT-318488) supported by the European Commission
 under its Seventh Framework Programme.

https://datatracker.ietf.org/doc/html/rfc6244

Bjorklund, et al. Expires June 22, 2017 [Page 14]

Internet-Draft December 2016

12. References

12.1. Normative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-18 (work in
 progress), October 2016.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <http://www.rfc-editor.org/info/rfc7952>.

12.2. Informative References

 [I-D.bjorklund-netmod-operational]
 Bjorklund, M. and L. Lhotka, "Operational Data in NETCONF
 and YANG", draft-bjorklund-netmod-operational-00 (work in
 progress), October 2012.

 [I-D.ietf-netmod-opstate-reqs]
 Watsen, K. and T. Nadeau, "Terminology and Requirements
 for Enhanced Handling of Operational State", draft-ietf-

netmod-opstate-reqs-04 (work in progress), January 2016.

 [I-D.kwatsen-netmod-opstate]
 Watsen, K., Bierman, A., Bjorklund, M., and J.
 Schoenwaelder, "Operational State Enhancements for YANG,
 NETCONF, and RESTCONF", draft-kwatsen-netmod-opstate-02
 (work in progress), February 2016.

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-

netmod-opstate-01 (work in progress), July 2015.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-18
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc7950
http://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc7952
http://www.rfc-editor.org/info/rfc7952
https://datatracker.ietf.org/doc/html/draft-bjorklund-netmod-operational-00
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-opstate-reqs-04
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-opstate-reqs-04
https://datatracker.ietf.org/doc/html/draft-kwatsen-netmod-opstate-02
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01

Bjorklund, et al. Expires June 22, 2017 [Page 15]

Internet-Draft December 2016

 [I-D.wilton-netmod-opstate-yang]
 Wilton, R., ""With-config-state" Capability for NETCONF/
 RESTCONF", draft-wilton-netmod-opstate-yang-02 (work in
 progress), December 2015.

 [RFC6244] Shafer, P., "An Architecture for Network Management Using
 NETCONF and YANG", RFC 6244, DOI 10.17487/RFC6244, June
 2011, <http://www.rfc-editor.org/info/rfc6244>.

Appendix A. Example Data

 In this example, the following fictional module is used:

 module example-system {
 yang-version 1.1;
 namespace urn:example:system;
 prefix sys;

 import ietf-inet-types {
 prefix inet;
 }

 container system {
 leaf hostname {
 type string;
 }

 list interface {
 key name;

 leaf name {
 type string;
 }

 container auto-negotiation {
 leaf enabled {
 type boolean;
 default true;
 }
 leaf speed {
 type uint32;
 units mbps;
 description
 "The advertised speed, in mbps.";
 }
 }

 leaf speed {

https://datatracker.ietf.org/doc/html/draft-wilton-netmod-opstate-yang-02
https://datatracker.ietf.org/doc/html/rfc6244
http://www.rfc-editor.org/info/rfc6244

Bjorklund, et al. Expires June 22, 2017 [Page 16]

Internet-Draft December 2016

 type uint32;
 units mbps;
 config false;
 description
 "The speed of the interface, in mbps.";
 }

 list address {
 key ip;

 leaf ip {
 type inet:ip-address;
 }
 leaf prefix-length {
 type uint8;
 }
 }
 }
 }
 }

 The operator has configured the host name and two interfaces, so the
 contents of <intended> is:

 <system xmlns="urn:example:system">

 <hostname>foo</hostname>

 <interface>
 <name>eth0</name>
 <auto-negotiation>
 <speed>1000</speed>
 </auto-negotiation>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 <interface>
 <name>eth1</name>
 <address>
 <ip>2001:db8::20</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 </system>

Bjorklund, et al. Expires June 22, 2017 [Page 17]

Internet-Draft December 2016

 The system has detected that the hardware for one of the configured
 interfaces ("eth1") is not yet present, so the configuration for that
 interface is not applied. Further, the system has received a host
 name and an additional IP address for "eth0" over DHCP. This is
 reflected in <applied>:

 <system
 xmlns="urn:example:system"
 xmlns:arch="urn:ietf:params:xml:ns:yang:ietf-yang-architecture">

 <hostname arch:origin="arch:dynamic">bar</hostname>

 <interface arch:origin="arch:static">
 <name>eth0</name>
 <auto-negotiation>
 <speed>1000</speed>
 </auto-negotiation>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 <address arch:origin="arch:dynamic">
 <ip>2001:db8::1:100</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 </system>

 In <operational-state>, all data from <applied> is present, in
 addition to a default value, a loopback interface automatically added
 by the system, and the result of the "speed" auto-negotiation:

Bjorklund, et al. Expires June 22, 2017 [Page 18]

Internet-Draft December 2016

 <system
 xmlns="urn:example:system"
 xmlns:arch="urn:ietf:params:xml:ns:yang:ietf-yang-architecture">

 <hostname arch:origin="arch:dynamic">bar</hostname>

 <interface arch:origin="arch:static">
 <name>eth0</name>
 <auto-negotiation>
 <enabled arch:origin="arch:data-model">true</enabled>
 <speed>1000</speed>
 </auto-negotiation>
 <speed>100</speed>
 <address>
 <ip>2001:db8::10</ip>
 <prefix-length>32</prefix-length>
 </address>
 <address arch:origin="arch:dynamic">
 <ip>2001:db8::1:100</ip>
 <prefix-length>32</prefix-length>
 </address>
 </interface>

 <interface arch:origin="arch:system">
 <name>lo0</name>
 <address>
 <ip>::1</ip>
 <prefix-length>128</prefix-length>
 </address>
 </interface>

 </system>

Appendix B. Open Issues

 1. Do we need another DS <active> inbetween <running> and
 <intended>? This DS would allow a client to see all active
 nodes, including unexpanded templates.

 2. How do we handle semantical constraints in <operational-state>?
 Are they just ignored? Do we need a new YANG statement to define
 if a "must" constraints applies to the <operational-state>?

 3. Should it be possible to ask for <applied> in RESTCONF?

 4. Better name for "static configuration"?

 5. Better name for "intended"?

Bjorklund, et al. Expires June 22, 2017 [Page 19]

Internet-Draft December 2016

Authors' Addresses

 Martin Bjorklund (editor)
 Tail-f Systems

 Email: mbj@tail-f.com

 Juergen Schoenwaelder
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

 Phil Shafer
 Juniper

 Email: phil@juniper.net

 Kent Watsen
 Juniper

 Email: kwatsen@juniper.net

 Rob Wilton
 Cisco

 Email: rwilton@cisco.com

Bjorklund, et al. Expires June 22, 2017 [Page 20]

