
Network Working Group M. Bjorklund, Ed.
Internet-Draft Tail-f Systems
Obsoletes: 6020 (if approved) March 9, 2015
Intended status: Standards Track
Expires: September 10, 2015

YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF)

draft-ietf-netmod-rfc6020bis-04

Abstract

 YANG is a data modeling language used to model configuration and
 state data manipulated by the Network Configuration Protocol
 (NETCONF), NETCONF remote procedure calls, and NETCONF notifications.
 This document obsoletes RFC 6020.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bjorklund Expires September 10, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft YANG March 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 8
1.1. Summary of Changes from RFC 6020 8

2. Keywords . 10
3. Terminology . 10
3.1. Mandatory Nodes . 12

4. YANG Overview . 12
4.1. Functional Overview 12
4.2. Language Overview . 14
4.2.1. Modules and Submodules 14
4.2.2. Data Modeling Basics 15
4.2.3. State Data . 19
4.2.4. Built-In Types 19
4.2.5. Derived Types (typedef) 20
4.2.6. Reusable Node Groups (grouping) 21
4.2.7. Choices . 22
4.2.8. Extending Data Models (augment) 23
4.2.9. Operation Definitions 24
4.2.10. Notification Definitions 25

5. Language Concepts . 26
5.1. Modules and Submodules 26
5.1.1. Import and Include by Revision 27
5.1.2. Module Hierarchies 28

5.2. File Layout . 29
5.3. XML Namespaces . 30
5.3.1. YANG XML Namespace 30

5.4. Resolving Grouping, Type, and Identity Names 30
5.5. Nested Typedefs and Groupings 30
5.6. Conformance . 31
5.6.1. Basic Behavior 32
5.6.2. Optional Features 32
5.6.3. Deviations . 32

https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund Expires September 10, 2015 [Page 2]

Internet-Draft YANG March 2015

 5.6.4. Announcing Conformance Information in the <hello>
 Message . 33

5.7. Data Store Modification 33
6. YANG Syntax . 34
6.1. Lexical Tokenization 34
6.1.1. Comments . 34
6.1.2. Tokens . 34
6.1.3. Quoting . 34

6.2. Identifiers . 36
6.2.1. Identifiers and Their Namespaces 36

6.3. Statements . 37
6.3.1. Language Extensions 37

6.4. XPath Evaluations . 38
6.4.1. XPath Context . 38

6.5. Schema Node Identifier 40
7. YANG Statements . 40
7.1. The module Statement 41
7.1.1. The module's Substatements 42
7.1.2. The yang-version Statement 43
7.1.3. The namespace Statement 44
7.1.4. The prefix Statement 44
7.1.5. The import Statement 44
7.1.6. The include Statement 45
7.1.7. The organization Statement 46
7.1.8. The contact Statement 46
7.1.9. The revision Statement 46
7.1.10. Usage Example . 47

7.2. The submodule Statement 48
7.2.1. The submodule's Substatements 49
7.2.2. The belongs-to Statement 50
7.2.3. Usage Example . 51

7.3. The typedef Statement 51
7.3.1. The typedef's Substatements 52
7.3.2. The typedef's type Statement 52
7.3.3. The units Statement 52
7.3.4. The typedef's default Statement 52
7.3.5. Usage Example . 53

7.4. The type Statement 53
7.4.1. The type's Substatements 53

7.5. The container Statement 53
7.5.1. Containers with Presence 54
7.5.2. The container's Substatements 54
7.5.3. The must Statement 55
7.5.4. The must's Substatements 56
7.5.5. The presence Statement 57
7.5.6. The container's Child Node Statements 57
7.5.7. XML Mapping Rules 57
7.5.8. NETCONF <edit-config> Operations 58

Bjorklund Expires September 10, 2015 [Page 3]

Internet-Draft YANG March 2015

7.5.9. Usage Example . 58
7.6. The leaf Statement 59
7.6.1. The leaf's default value 60
7.6.2. The leaf's Substatements 60
7.6.3. The leaf's type Statement 61
7.6.4. The leaf's default Statement 61
7.6.5. The leaf's mandatory Statement 61
7.6.6. XML Mapping Rules 61
7.6.7. NETCONF <edit-config> Operations 62
7.6.8. Usage Example . 62

7.7. The leaf-list Statement 63
7.7.1. Ordering . 63
7.7.2. The leaf-list's default values 64
7.7.3. The leaf-list's Substatements 65
7.7.4. The leaf-list's default Statement 65
7.7.5. The min-elements Statement 65
7.7.6. The max-elements Statement 66
7.7.7. The ordered-by Statement 66
7.7.8. XML Mapping Rules 67
7.7.9. NETCONF <edit-config> Operations 67
7.7.10. Usage Example . 68

7.8. The list Statement 70
7.8.1. The list's Substatements 70
7.8.2. The list's key Statement 71
7.8.3. The list's unique Statement 72
7.8.4. The list's Child Node Statements 73
7.8.5. XML Mapping Rules 73
7.8.6. NETCONF <edit-config> Operations 74
7.8.7. Usage Example . 75

7.9. The choice Statement 78
7.9.1. The choice's Substatements 78
7.9.2. The choice's case Statement 79
7.9.3. The choice's default Statement 80
7.9.4. The choice's mandatory Statement 82
7.9.5. XML Mapping Rules 82
7.9.6. NETCONF <edit-config> Operations 82
7.9.7. Usage Example . 82

7.10. The anyxml Statement 83
7.10.1. The anyxml's Substatements 84
7.10.2. XML Mapping Rules 84
7.10.3. NETCONF <edit-config> Operations 84
7.10.4. Usage Example 85

7.11. The grouping Statement 85
7.11.1. The grouping's Substatements 86
7.11.2. Usage Example 86

7.12. The uses Statement 87
7.12.1. The uses's Substatements 87
7.12.2. The refine Statement 87

Bjorklund Expires September 10, 2015 [Page 4]

Internet-Draft YANG March 2015

7.12.3. XML Mapping Rules 88
7.12.4. Usage Example 88

7.13. The rpc Statement . 90
7.13.1. The rpc's Substatements 90
7.13.2. The input Statement 90
7.13.3. The output Statement 91
7.13.4. XML Mapping Rules 92
7.13.5. Usage Example 93

7.14. The action Statement 93
7.14.1. The action's Substatements 94
7.14.2. XML Mapping Rules 94
7.14.3. Usage Example 95

7.15. The notification Statement 96
7.15.1. The notification's Substatements 97
7.15.2. XML Mapping Rules 97
7.15.3. Usage Example 97

7.16. The augment Statement 98
7.16.1. The augment's Substatements 99
7.16.2. XML Mapping Rules 99
7.16.3. Usage Example 99

7.17. The identity Statement 101
7.17.1. The identity's Substatements 101
7.17.2. The base Statement 102
7.17.3. Usage Example 102

7.18. The extension Statement 103
7.18.1. The extension's Substatements 104
7.18.2. The argument Statement 104
7.18.3. Usage Example 105

7.19. Conformance-Related Statements 105
7.19.1. The feature Statement 105
7.19.2. The if-feature Statement 107
7.19.3. The deviation Statement 108

7.20. Common Statements . 110
7.20.1. The config Statement 110
7.20.2. The status Statement 111
7.20.3. The description Statement 112
7.20.4. The reference Statement 112
7.20.5. The when Statement 112

8. Constraints . 113
8.1. Constraints on Data 113
8.2. Hierarchy of Constraints 114
8.3. Constraint Enforcement Model 114
8.3.1. Payload Parsing 114
8.3.2. NETCONF <edit-config> Processing 115
8.3.3. Validation . 116

9. Built-In Types . 116
9.1. Canonical Representation 116
9.2. The Integer Built-In Types 117

Bjorklund Expires September 10, 2015 [Page 5]

Internet-Draft YANG March 2015

9.2.1. Lexical Representation 117
9.2.2. Canonical Form 118
9.2.3. Restrictions . 118
9.2.4. The range Statement 118
9.2.5. Usage Example . 119

9.3. The decimal64 Built-In Type 119
9.3.1. Lexical Representation 120
9.3.2. Canonical Form 120
9.3.3. Restrictions . 120
9.3.4. The fraction-digits Statement 120
9.3.5. Usage Example . 121

9.4. The string Built-In Type 121
9.4.1. Lexical Representation 121
9.4.2. Canonical Form 122
9.4.3. Restrictions . 122
9.4.4. The length Statement 122
9.4.5. The pattern Statement 123
9.4.6. The modifier Statement 123
9.4.7. Usage Example . 123

9.5. The boolean Built-In Type 124
9.5.1. Lexical Representation 125
9.5.2. Canonical Form 125
9.5.3. Restrictions . 125

9.6. The enumeration Built-In Type 125
9.6.1. Lexical Representation 125
9.6.2. Canonical Form 125
9.6.3. Restrictions . 125
9.6.4. The enum Statement 125
9.6.5. Usage Example . 126

9.7. The bits Built-In Type 128
9.7.1. Restrictions . 128
9.7.2. Lexical Representation 128
9.7.3. Canonical Form 128
9.7.4. The bit Statement 128
9.7.5. Usage Example . 129

9.8. The binary Built-In Type 130
9.8.1. Restrictions . 130
9.8.2. Lexical Representation 130
9.8.3. Canonical Form 130

9.9. The leafref Built-In Type 130
9.9.1. Restrictions . 131
9.9.2. The path Statement 131
9.9.3. The require-instance Statement 131
9.9.4. Lexical Representation 132
9.9.5. Canonical Form 132
9.9.6. Usage Example . 132

9.10. The identityref Built-In Type 136
9.10.1. Restrictions . 136

Bjorklund Expires September 10, 2015 [Page 6]

Internet-Draft YANG March 2015

9.10.2. The identityref's base Statement 136
9.10.3. Lexical Representation 136
9.10.4. Canonical Form 137
9.10.5. Usage Example 137

9.11. The empty Built-In Type 138
9.11.1. Restrictions . 138
9.11.2. Lexical Representation 138
9.11.3. Canonical Form 138
9.11.4. Usage Example 138

9.12. The union Built-In Type 139
9.12.1. Restrictions . 139
9.12.2. Lexical Representation 139
9.12.3. Canonical Form 139
9.12.4. Usage Example 139

9.13. The instance-identifier Built-In Type 140
9.13.1. Restrictions . 141
9.13.2. Lexical Representation 141
9.13.3. Canonical Form 141
9.13.4. Usage Example 141

10. XPath Functions . 142
10.1. Functions for Node Sets 142
10.1.1. current() . 142

10.2. Functions for Strings 142
10.2.1. re-match() . 142

 10.3. Functions for the YANG Types "leafref" and "instance-
 identifier" . 143

10.3.1. deref() . 143
10.4. Functions for the YANG Type "identityref" 144
10.4.1. derived-from() 144
10.4.2. derived-from-or-self() 144

10.5. Functions for the YANG Type "enumeration" 145
10.5.1. enum-value() . 145

10.6. Functions for the YANG Type "bits" 146
10.6.1. bit-is-set() . 146

11. Updating a Module . 147
12. YIN . 149
12.1. Formal YIN Definition 150
12.1.1. Usage Example 152

13. YANG ABNF Grammar . 153
14. Error Responses for YANG Related Errors 177

 14.1. Error Message for Data That Violates a unique Statement 177
 14.2. Error Message for Data That Violates a max-elements
 Statement . 177
 14.3. Error Message for Data That Violates a min-elements
 Statement . 177
 14.4. Error Message for Data That Violates a must Statement . 178
 14.5. Error Message for Data That Violates a require-instance
 Statement . 178

Bjorklund Expires September 10, 2015 [Page 7]

Internet-Draft YANG March 2015

 14.6. Error Message for Data That Does Not Match a leafref
 Type . 178
 14.7. Error Message for Data That Violates a mandatory choice
 Statement . 178

14.8. Error Message for the "insert" Operation 179
15. IANA Considerations . 179
15.1. Media type application/yang 180
15.2. Media type application/yin+xml 181

16. Security Considerations 183
17. Contributors . 183
18. Acknowledgements . 184
19. ChangeLog . 184
19.1. Version -04 . 184
19.2. Version -03 . 184
19.3. Version -02 . 184
19.4. Version -01 . 185
19.5. Version -00 . 185

20. References . 185
20.1. Normative References 185
20.2. Informative References 187

 Author's Address . 187

1. Introduction

 YANG is a data modeling language used to model configuration and
 state data manipulated by the Network Configuration Protocol
 (NETCONF), NETCONF remote procedure calls, and NETCONF notifications.
 YANG is used to model the operations and content layers of NETCONF
 (see the NETCONF Configuration Protocol [RFC6241], Section 1.2).

 This document describes the syntax and semantics of the YANG
 language, how the data model defined in a YANG module is represented
 in the Extensible Markup Language (XML), and how NETCONF operations
 are used to manipulate the data.

1.1. Summary of Changes from RFC 6020

 This document defines version 1.1 of the YANG language. YANG version
 1.1 is a maintenance release of the YANG language, addressing
 ambiguities and defects in the original specification [RFC6020].

 o Changed the YANG version from "1" to "1.1".

 o Made noncharacters illegal in the built-in type "string".

 o Defined the legal characters in YANG modules.

 o Made the "yang-version" statement mandatory.

https://datatracker.ietf.org/doc/html/rfc6241#section-1.2
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund Expires September 10, 2015 [Page 8]

Internet-Draft YANG March 2015

 o Changed the rules for the interpretation of escaped characters in
 double quoted strings. This is an backwards incompatible change
 from YANG 1.0. A module that uses a character sequence that is
 now illegal must change the string to match the new rules. See

Section 6.1.3 for details.

 o Extended the "if-feature" syntax to be a boolean expression over
 feature names.

 o Allow "if-feature" in "bit", "enum", and "identity".

 o Allow "if-feature" in "refine".

 o Made "when" and "if-feature" illegal on list keys, unless the
 parent is also conditional, and the condition matches the parent's
 condition.

 o Allow "choice" as a shorthand case statement (see Section 7.9).

 o Added a new substatement "modifier" to pattern (see
Section 9.4.6).

 o Allow "must" in "input", "output", and "notification".

 o Added a set of new XPath functions in Section 10.

 o Clarified the XPath context's tree in Section 6.4.1.

 o Defined the string value of an identityref in XPath expressions
 (see Section 9.10).

 o Clarified what unprefixed names means in leafrefs in typedefs (see
Section 9.9.2).

 o Allow identities to be derived from multiple base identities (see
Section 7.17 and Section 9.10).

 o Allow enumerations to be subtyped (see Section 9.6).

 o Allow leaf-lists to have default values (see Section 7.7.2).

 o Use [RFC7405] syntax for case-sensitive strings in the grammar.

 o Changed the module advertisement mechanism (see Section 5.6.4).

 o Changed the scoping rules for definitions in submodules. A
 submodule can now reference all defintions in all submodules that
 belong to the same module, without using the "include" statement.

https://datatracker.ietf.org/doc/html/rfc7405

Bjorklund Expires September 10, 2015 [Page 9]

Internet-Draft YANG March 2015

 o Added a new statement "action" that is used to define operations
 tied to data nodes.

2. Keywords

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

3. Terminology

 o action: An operation defined for a node in the data tree.

 o anyxml: A data node that can contain an unknown chunk of XML data.

 o augment: Adds new schema nodes to a previously defined schema
 node.

 o base type: The type from which a derived type was derived, which
 may be either a built-in type or another derived type.

 o built-in type: A YANG data type defined in the YANG language, such
 as uint32 or string.

 o choice: A schema node where only one of a number of identified
 alternatives is valid.

 o configuration data: The set of writable data that is required to
 transform a system from its initial default state into its current
 state [RFC6241].

 o conformance: A measure of how accurately a device follows a data
 model.

 o container: An interior data node that exists in at most one
 instance in the data tree. A container has no value, but rather a
 set of child nodes.

 o data definition statement: A statement that defines new data
 nodes. One of container, leaf, leaf-list, list, choice, case,
 augment, uses, and anyxml.

 o data model: A data model describes how data is represented and
 accessed.

 o data node: A node in the schema tree that can be instantiated in a
 data tree. One of container, leaf, leaf-list, list, and anyxml.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 10]

Internet-Draft YANG March 2015

 o data tree: The instantiated tree of configuration and state data
 on a device.

 o derived type: A type that is derived from a built-in type (such as
 uint32), or another derived type.

 o device deviation: A failure of the device to implement the module
 faithfully.

 o extension: An extension attaches non-YANG semantics to statements.
 The extension statement defines new statements to express these
 semantics.

 o feature: A mechanism for marking a portion of the model as
 optional. Definitions can be tagged with a feature name and are
 only valid on devices that support that feature.

 o grouping: A reusable set of schema nodes, which may be used
 locally in the module, in modules that include it, and by other
 modules that import from it. The grouping statement is not a data
 definition statement and, as such, does not define any nodes in
 the schema tree.

 o identifier: Used to identify different kinds of YANG items by
 name.

 o instance identifier: A mechanism for identifying a particular node
 in a data tree.

 o interior node: Nodes within a hierarchy that are not leaf nodes.

 o leaf: A data node that exists in at most one instance in the data
 tree. A leaf has a value but no child nodes.

 o leaf-list: Like the leaf node but defines a set of uniquely
 identifiable nodes rather than a single node. Each node has a
 value but no child nodes.

 o list: An interior data node that may exist in multiple instances
 in the data tree. A list has no value, but rather a set of child
 nodes.

 o module: A YANG module defines a hierarchy of nodes that can be
 used for NETCONF-based operations. With its definitions and the
 definitions it imports or includes from elsewhere, a module is
 self-contained and "compilable".

 o RPC: A Remote Procedure Call, as used within the NETCONF protocol.

Bjorklund Expires September 10, 2015 [Page 11]

Internet-Draft YANG March 2015

 o RPC operation: A specific Remote Procedure Call, as used within
 the NETCONF protocol. It is also called a protocol operation.

 o schema node: A node in the schema tree. One of container, leaf,
 leaf-list, list, choice, case, rpc, input, output, notification,
 and anyxml.

 o schema node identifier: A mechanism for identifying a particular
 node in the schema tree.

 o schema tree: The definition hierarchy specified within a module.

 o state data: The additional data on a system that is not
 configuration data such as read-only status information and
 collected statistics [RFC6241].

 o submodule: A partial module definition that contributes derived
 types, groupings, data nodes, RPCs, and notifications to a module.
 A YANG module can be constructed from a number of submodules.

 o top-level data node: A data node where there is no other data node
 between it and a module or submodule statement.

 o uses: The "uses" statement is used to instantiate the set of
 schema nodes defined in a grouping statement. The instantiated
 nodes may be refined and augmented to tailor them to any specific
 needs.

3.1. Mandatory Nodes

 A mandatory node is one of:

 o A leaf, choice, or anyxml node with a "mandatory" statement with
 the value "true".

 o A list or leaf-list node with a "min-elements" statement with a
 value greater than zero.

 o A container node without a "presence" statement, which has at
 least one mandatory node as a child.

4. YANG Overview

4.1. Functional Overview

 YANG is a language used to model data for the NETCONF protocol. A
 YANG module defines a hierarchy of data that can be used for NETCONF-
 based operations, including configuration, state data, Remote

https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 12]

Internet-Draft YANG March 2015

 Procedure Calls (RPCs), and notifications. This allows a complete
 description of all data sent between a NETCONF client and server.

 YANG models the hierarchical organization of data as a tree in which
 each node has a name, and either a value or a set of child nodes.
 YANG provides clear and concise descriptions of the nodes, as well as
 the interaction between those nodes.

 YANG structures data models into modules and submodules. A module
 can import data from other external modules, and include data from
 submodules. The hierarchy can be augmented, allowing one module to
 add data nodes to the hierarchy defined in another module. This
 augmentation can be conditional, with new nodes appearing only if
 certain conditions are met.

 YANG models can describe constraints to be enforced on the data,
 restricting the appearance or value of nodes based on the presence or
 value of other nodes in the hierarchy. These constraints are
 enforceable by either the client or the server, and valid content
 MUST abide by them.

 YANG defines a set of built-in types, and has a type mechanism
 through which additional types may be defined. Derived types can
 restrict their base type's set of valid values using mechanisms like
 range or pattern restrictions that can be enforced by clients or
 servers. They can also define usage conventions for use of the
 derived type, such as a string-based type that contains a host name.

 YANG permits the definition of reusable groupings of nodes. The
 instantiation of these groupings can refine or augment the nodes,
 allowing it to tailor the nodes to its particular needs. Derived
 types and groupings can be defined in one module or submodule and
 used in either that location or in another module or submodule that
 imports or includes it.

 YANG data hierarchy constructs include defining lists where list
 entries are identified by keys that distinguish them from each other.
 Such lists may be defined as either sorted by user or automatically
 sorted by the system. For user-sorted lists, operations are defined
 for manipulating the order of the list entries.

 YANG modules can be translated into an equivalent XML syntax called
 YANG Independent Notation (YIN) (Section 12), allowing applications
 using XML parsers and Extensible Stylesheet Language Transformations
 (XSLT) scripts to operate on the models. The conversion from YANG to
 YIN is lossless, so content in YIN can be round-tripped back into
 YANG.

Bjorklund Expires September 10, 2015 [Page 13]

Internet-Draft YANG March 2015

 YANG strikes a balance between high-level data modeling and low-level
 bits-on-the-wire encoding. The reader of a YANG module can see the
 high-level view of the data model while understanding how the data
 will be encoded in NETCONF operations.

 YANG is an extensible language, allowing extension statements to be
 defined by standards bodies, vendors, and individuals. The statement
 syntax allows these extensions to coexist with standard YANG
 statements in a natural way, while extensions in a YANG module stand
 out sufficiently for the reader to notice them.

 YANG resists the tendency to solve all possible problems, limiting
 the problem space to allow expression of NETCONF data models, not
 arbitrary XML documents or arbitrary data models. The data models
 described by YANG are designed to be easily operated upon by NETCONF
 operations.

 To the extent possible, YANG maintains compatibility with Simple
 Network Management Protocol's (SNMP's) SMIv2 (Structure of Management
 Information version 2 [RFC2578], [RFC2579]). SMIv2-based MIB modules
 can be automatically translated into YANG modules for read-only
 access. However, YANG is not concerned with reverse translation from
 YANG to SMIv2.

 Like NETCONF, YANG targets smooth integration with the device's
 native management infrastructure. This allows implementations to
 leverage their existing access control mechanisms to protect or
 expose elements of the data model.

4.2. Language Overview

 This section introduces some important constructs used in YANG that
 will aid in the understanding of the language specifics in later
 sections. This progressive approach handles the inter-related nature
 of YANG concepts and statements. A detailed description of YANG
 statements and syntax begins in Section 7.

4.2.1. Modules and Submodules

 A module contains three types of statements: module-header
 statements, revision statements, and definition statements. The
 module header statements describe the module and give information
 about the module itself, the revision statements give information
 about the history of the module, and the definition statements are
 the body of the module where the data model is defined.

 A NETCONF server may implement a number of modules, allowing multiple
 views of the same data, or multiple views of disjoint subsections of

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579

Bjorklund Expires September 10, 2015 [Page 14]

Internet-Draft YANG March 2015

 the device's data. Alternatively, the server may implement only one
 module that defines all available data.

 A module may be divided into submodules, based on the needs of the
 module owner. The external view remains that of a single module,
 regardless of the presence or size of its submodules.

 The "import" statement allows a module or submodule to reference
 material defined in other modules.

 The "include" statement is used by a module to incorporate the
 contents of its submodules into the module.

4.2.2. Data Modeling Basics

 YANG defines four types of nodes for data modeling. In each of the
 following subsections, the example shows the YANG syntax as well as a
 corresponding NETCONF XML representation.

4.2.2.1. Leaf Nodes

 A leaf node contains simple data like an integer or a string. It has
 exactly one value of a particular type and no child nodes.

 YANG Example:

 leaf host-name {
 type string;
 description "Hostname for this system";
 }

 NETCONF XML Example:

 <host-name>my.example.com</host-name>

 The "leaf" statement is covered in Section 7.6.

4.2.2.2. Leaf-List Nodes

 A leaf-list defines a sequence of values of a particular type.

 YANG Example:

 leaf-list domain-search {
 type string;
 description "List of domain names to search";
 }

Bjorklund Expires September 10, 2015 [Page 15]

Internet-Draft YANG March 2015

 NETCONF XML Example:

 <domain-search>high.example.com</domain-search>
 <domain-search>low.example.com</domain-search>
 <domain-search>everywhere.example.com</domain-search>

 The "leaf-list" statement is covered in Section 7.7.

4.2.2.3. Container Nodes

 A container node is used to group related nodes in a subtree. A
 container has only child nodes and no value. A container may contain
 any number of child nodes of any type (including leafs, lists,
 containers, and leaf-lists).

 YANG Example:

 container system {
 container login {
 leaf message {
 type string;
 description
 "Message given at start of login session";
 }
 }
 }

 NETCONF XML Example:

 <system>
 <login>
 <message>Good morning</message>
 </login>
 </system>

 The "container" statement is covered in Section 7.5.

4.2.2.4. List Nodes

 A list defines a sequence of list entries. Each entry is like a
 structure or a record instance, and is uniquely identified by the
 values of its key leafs. A list can define multiple key leafs and
 may contain any number of child nodes of any type (including leafs,
 lists, containers etc.).

 YANG Example:

Bjorklund Expires September 10, 2015 [Page 16]

Internet-Draft YANG March 2015

 list user {
 key "name";
 leaf name {
 type string;
 }
 leaf full-name {
 type string;
 }
 leaf class {
 type string;
 }
 }

 NETCONF XML Example:

 <user>
 <name>glocks</name>
 <full-name>Goldie Locks</full-name>
 <class>intruder</class>
 </user>
 <user>
 <name>snowey</name>
 <full-name>Snow White</full-name>
 <class>free-loader</class>
 </user>
 <user>
 <name>rzell</name>
 <full-name>Rapun Zell</full-name>
 <class>tower</class>
 </user>

 The "list" statement is covered in Section 7.8.

4.2.2.5. Example Module

 These statements are combined to define the module:

Bjorklund Expires September 10, 2015 [Page 17]

Internet-Draft YANG March 2015

 // Contents of "acme-system.yang"
 module acme-system {
 yang-version 1.1;
 namespace "http://acme.example.com/system";
 prefix "acme";

 organization "ACME Inc.";
 contact "joe@acme.example.com";
 description
 "The module for entities implementing the ACME system.";

 revision 2007-06-09 {
 description "Initial revision.";
 }

 container system {
 leaf host-name {
 type string;
 description "Hostname for this system";
 }

 leaf-list domain-search {
 type string;
 description "List of domain names to search";
 }

 container login {
 leaf message {
 type string;
 description
 "Message given at start of login session";
 }

 list user {
 key "name";
 leaf name {
 type string;
 }
 leaf full-name {
 type string;
 }
 leaf class {
 type string;
 }
 }
 }
 }
 }

Bjorklund Expires September 10, 2015 [Page 18]

Internet-Draft YANG March 2015

4.2.3. State Data

 YANG can model state data, as well as configuration data, based on
 the "config" statement. When a node is tagged with "config false",
 its subhierarchy is flagged as state data, to be reported using
 NETCONF's <get> operation, not the <get-config> operation. Parent
 containers, lists, and key leafs are reported also, giving the
 context for the state data.

 In this example, two leafs are defined for each interface, a
 configured speed and an observed speed. The observed speed is not
 configuration, so it can be returned with NETCONF <get> operations,
 but not with <get-config> operations. The observed speed is not
 configuration data, and it cannot be manipulated using <edit-config>.

 list interface {
 key "name";

 leaf name {
 type string;
 }
 leaf speed {
 type enumeration {
 enum 10m;
 enum 100m;
 enum auto;
 }
 }
 leaf observed-speed {
 type uint32;
 config false;
 }
 }

4.2.4. Built-In Types

 YANG has a set of built-in types, similar to those of many
 programming languages, but with some differences due to special
 requirements from the management domain. The following table
 summarizes the built-in types discussed in Section 9:

Bjorklund Expires September 10, 2015 [Page 19]

Internet-Draft YANG March 2015

 +---------------------+-------------------------------------+
 | Name | Description |
 +---------------------+-------------------------------------+
 | binary | Any binary data |
 | bits | A set of bits or flags |
 | boolean | "true" or "false" |
 | decimal64 | 64-bit signed decimal number |
 | empty | A leaf that does not have any value |
 | enumeration | Enumerated strings |
 | identityref | A reference to an abstract identity |
 | instance-identifier | References a data tree node |
 | int8 | 8-bit signed integer |
 | int16 | 16-bit signed integer |
 | int32 | 32-bit signed integer |
 | int64 | 64-bit signed integer |
 | leafref | A reference to a leaf instance |
 | string | Human-readable string |
 | uint8 | 8-bit unsigned integer |
 | uint16 | 16-bit unsigned integer |
 | uint32 | 32-bit unsigned integer |
 | uint64 | 64-bit unsigned integer |
 | union | Choice of member types |
 +---------------------+-------------------------------------+

 The "type" statement is covered in Section 7.4.

4.2.5. Derived Types (typedef)

 YANG can define derived types from base types using the "typedef"
 statement. A base type can be either a built-in type or a derived
 type, allowing a hierarchy of derived types.

 A derived type can be used as the argument for the "type" statement.

 YANG Example:

 typedef percent {
 type uint8 {
 range "0 .. 100";
 }
 description "Percentage";
 }

 leaf completed {
 type percent;
 }

 NETCONF XML Example:

Bjorklund Expires September 10, 2015 [Page 20]

Internet-Draft YANG March 2015

 <completed>20</completed>

 The "typedef" statement is covered in Section 7.3.

4.2.6. Reusable Node Groups (grouping)

 Groups of nodes can be assembled into reusable collections using the
 "grouping" statement. A grouping defines a set of nodes that are
 instantiated with the "uses" statement:

 grouping target {
 leaf address {
 type inet:ip-address;
 description "Target IP address";
 }
 leaf port {
 type inet:port-number;
 description "Target port number";
 }
 }

 container peer {
 container destination {
 uses target;
 }
 }

 NETCONF XML Example:

 <peer>
 <destination>
 <address>192.0.2.1</address>
 <port>830</port>
 </destination>
 </peer>

 The grouping can be refined as it is used, allowing certain
 statements to be overridden. In this example, the description is
 refined:

Bjorklund Expires September 10, 2015 [Page 21]

Internet-Draft YANG March 2015

 container connection {
 container source {
 uses target {
 refine "address" {
 description "Source IP address";
 }
 refine "port" {
 description "Source port number";
 }
 }
 }
 container destination {
 uses target {
 refine "address" {
 description "Destination IP address";
 }
 refine "port" {
 description "Destination port number";
 }
 }
 }
 }

 The "grouping" statement is covered in Section 7.11.

4.2.7. Choices

 YANG allows the data model to segregate incompatible nodes into
 distinct choices using the "choice" and "case" statements. The
 "choice" statement contains a set of "case" statements that define
 sets of schema nodes that cannot appear together. Each "case" may
 contain multiple nodes, but each node may appear in only one "case"
 under a "choice".

 When a node from one case is created in the data tree, all nodes from
 all other cases are implicitly deleted. The device handles the
 enforcement of the constraint, preventing incompatibilities from
 existing in the configuration.

 The choice and case nodes appear only in the schema tree, not in the
 data tree or NETCONF messages. The additional levels of hierarchy
 are not needed beyond the conceptual schema.

 YANG Example:

Bjorklund Expires September 10, 2015 [Page 22]

Internet-Draft YANG March 2015

 container food {
 choice snack {
 case sports-arena {
 leaf pretzel {
 type empty;
 }
 leaf beer {
 type empty;
 }
 }
 case late-night {
 leaf chocolate {
 type enumeration {
 enum dark;
 enum milk;
 enum first-available;
 }
 }
 }
 }
 }

 NETCONF XML Example:

 <food>
 <pretzel/>
 <beer/>
 </food>

 The "choice" statement is covered in Section 7.9.

4.2.8. Extending Data Models (augment)

 YANG allows a module to insert additional nodes into data models,
 including both the current module (and its submodules) or an external
 module. This is useful for example for vendors to add vendor-
 specific parameters to standard data models in an interoperable way.

 The "augment" statement defines the location in the data model
 hierarchy where new nodes are inserted, and the "when" statement
 defines the conditions when the new nodes are valid.

 YANG Example:

Bjorklund Expires September 10, 2015 [Page 23]

Internet-Draft YANG March 2015

 augment /system/login/user {
 when "class != 'wheel'";
 leaf uid {
 type uint16 {
 range "1000 .. 30000";
 }
 }
 }

 This example defines a "uid" node that only is valid when the user's
 "class" is not "wheel".

 If a module augments another module, the XML representation of the
 data will reflect the prefix of the augmenting module. For example,
 if the above augmentation were in a module with prefix "other", the
 XML would look like:

 NETCONF XML Example:

 <user>
 <name>alicew</name>
 <full-name>Alice N. Wonderland</full-name>
 <class>drop-out</class>
 <other:uid>1024</other:uid>
 </user>

 The "augment" statement is covered in Section 7.16.

4.2.9. Operation Definitions

 YANG allows the definition of operations. The operations' names,
 input parameters, and output parameters are modeled using YANG data
 definition statements. Operations on the top-level in a module are
 defined with the "rpc" statement. Operations can also be tied to a
 node in the data hierarchy. Such operations are defined with the
 "action" statement.

 YANG Example:

Bjorklund Expires September 10, 2015 [Page 24]

Internet-Draft YANG March 2015

 rpc activate-software-image {
 input {
 leaf image-name {
 type string;
 }
 }
 output {
 leaf status {
 type string;
 }
 }
 }

 NETCONF XML Example:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <activate-software-image xmlns="http://acme.example.com/system">
 <image-name>acmefw-2.3</image-name>
 </activate-software-image>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <status xmlns="http://acme.example.com/system">
 The image acmefw-2.3 is being installed.
 </status>
 </rpc-reply>

 The "rpc" statement is covered in Section 7.13, and the "action"
 statement in Section 7.14.

4.2.10. Notification Definitions

 YANG allows the definition of notifications suitable for NETCONF.
 YANG data definition statements are used to model the content of the
 notification.

 YANG Example:

Bjorklund Expires September 10, 2015 [Page 25]

Internet-Draft YANG March 2015

 notification link-failure {
 description "A link failure has been detected";
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf if-admin-status {
 type admin-status;
 }
 leaf if-oper-status {
 type oper-status;
 }
 }

 NETCONF XML Example:

 <notification
 xmlns="urn:ietf:params:netconf:capability:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 The "notification" statement is covered in Section 7.15.

5. Language Concepts

5.1. Modules and Submodules

 The module is the base unit of definition in YANG. A module defines
 a single data model. A module can define a complete, cohesive model,
 or augment an existing data model with additional nodes.

 Submodules are partial modules that contribute definitions to a
 module. A module may include any number of submodules, but each
 submodule may belong to only one module.

 The names of all standard modules and submodules MUST be unique.
 Developers of enterprise modules are RECOMMENDED to choose names for
 their modules that will have a low probability of colliding with
 standard or other enterprise modules, e.g., by using the enterprise
 or organization name as a prefix for the module name.

Bjorklund Expires September 10, 2015 [Page 26]

Internet-Draft YANG March 2015

 A module uses the "include" statement to include all its submodules,
 and the "import" statement to reference external modules. Similarly,
 a submodule uses the "import" statement to reference other modules.

 For backwards compatibility with YANG version 1, a submodule is
 allowed it use the "include" statement to reference other submodules
 within its module, but this is not necessary in YANG version 1.1. A
 submodule can reference any definition in the module it belongs to
 and in all submodules included by the module.

 A module or submodule MUST NOT include submodules from other modules,
 and a submodule MUST NOT import its own module.

 The import and include statements are used to make definitions
 available from other modules:

 o For a module or submodule to reference definitions in an external
 module, the external module MUST be imported.

 o A module MUST include all its submodules.

 o A module or submodule belonging to that module can reference
 definitions in the module and all submodules included by the
 module.

 There MUST NOT be any circular chains of imports or includes. For
 example, if module "a" imports module "b", "b" cannot import "a".

 When a definition in an external module is referenced, a locally
 defined prefix MUST be used, followed by ":", and then the external
 identifier. References to definitions in the local module MAY use
 the prefix notation. Since built-in data types do not belong to any
 module and have no prefix, references to built-in data types (e.g.,
 int32) cannot use the prefix notation. The syntax for a reference to
 a definition is formally defined by the rule "identifier-ref" in

Section 13.

5.1.1. Import and Include by Revision

 Published modules evolve independently over time. In order to allow
 for this evolution, modules need to be imported using specific
 revisions. When a module is written, it uses the current revisions
 of other modules, based on what is available at the time. As future
 revisions of the imported modules are published, the importing module
 is unaffected and its contents are unchanged. When the author of the
 module is prepared to move to the most recently published revision of
 an imported module, the module is republished with an updated
 "import" statement. By republishing with the new revision, the

Bjorklund Expires September 10, 2015 [Page 27]

Internet-Draft YANG March 2015

 authors explicitly indicate their acceptance of any changes in the
 imported module.

 For submodules, the issue is related but simpler. A module or
 submodule that includes submodules needs to specify the revision of
 the included submodules. If a submodule changes, any module or
 submodule that includes it needs to be updated.

 For example, module "b" imports module "a".

 module a {
 yang-version 1.1;
 namespace "http://example.com/a";
 prefix "a";

 revision 2008-01-01 { ... }
 grouping a {
 leaf eh { }
 }
 }

 module b {
 yang-version 1.1;
 namespace "http://example.com/b";
 prefix "b";

 import a {
 prefix p;
 revision-date 2008-01-01;
 }

 container bee {
 uses p:a;
 }
 }

 When the author of "a" publishes a new revision, the changes may not
 be acceptable to the author of "b". If the new revision is
 acceptable, the author of "b" can republish with an updated revision
 in the "import" statement.

5.1.2. Module Hierarchies

 YANG allows modeling of data in multiple hierarchies, where data may
 have more than one top-level node. Models that have multiple top-
 level nodes are sometimes convenient, and are supported by YANG.

Bjorklund Expires September 10, 2015 [Page 28]

Internet-Draft YANG March 2015

 NETCONF is capable of carrying any XML content as the payload in the
 <config> and <data> elements. The top-level nodes of YANG modules
 are encoded as child elements, in any order, within these elements.
 This encapsulation guarantees that the corresponding NETCONF messages
 are always well-formed XML documents.

 For example:

 module my-config {
 yang-version 1.1;
 namespace "http://example.com/schema/config";
 prefix "co";

 container system { ... }
 container routing { ... }
 }

 could be encoded in NETCONF as:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <!-- system data here -->
 </system>
 <routing xmlns="http://example.com/schema/config">
 <!-- routing data here -->
 </routing>
 </config>
 </edit-config>
 </rpc>

5.2. File Layout

 YANG modules and submodules are typically stored in files, one module
 or submodule per file. The name of the file SHOULD be of the form:

 module-or-submodule-name ['@' revision-date] ('.yang' / '.yin')

 YANG compilers can find imported modules and included submodules via
 this convention. While the YANG language defines modules, tools may
 compile submodules independently for performance and manageability
 reasons. Errors and warnings that cannot be detected during

Bjorklund Expires September 10, 2015 [Page 29]

Internet-Draft YANG March 2015

 submodule compilation may be delayed until the submodules are linked
 into a cohesive module.

5.3. XML Namespaces

 All YANG definitions are specified within a module that is bound to a
 particular XML namespace [XML-NAMES], which is a globally unique URI
 [RFC3986]. A NETCONF client or server uses the namespace during XML
 encoding of data.

 Namespaces for modules published in RFC streams [RFC4844] MUST be
 assigned by IANA, see Section 15.

 Namespaces for private modules are assigned by the organization
 owning the module without a central registry. Namespace URIs MUST be
 chosen so they cannot collide with standard or other enterprise
 namespaces, for example by using the enterprise or organization name
 in the namespace.

 The "namespace" statement is covered in Section 7.1.3.

5.3.1. YANG XML Namespace

 YANG defines an XML namespace for NETCONF <edit-config> operations,
 <error-info> content, and the <action> element. The name of this
 namespace is "urn:ietf:params:xml:ns:yang:1".

5.4. Resolving Grouping, Type, and Identity Names

 Grouping, type, and identity names are resolved in the context in
 which they are defined, rather than the context in which they are
 used. Users of groupings, typedefs, and identities are not required
 to import modules or include submodules to satisfy all references
 made by the original definition. This behaves like static scoping in
 a conventional programming language.

 For example, if a module defines a grouping in which a type is
 referenced, when the grouping is used in a second module, the type is
 resolved in the context of the original module, not the second
 module. There is no worry over conflicts if both modules define the
 type, since there is no ambiguity.

5.5. Nested Typedefs and Groupings

 Typedefs and groupings may appear nested under many YANG statements,
 allowing these to be lexically scoped by the hierarchy under which
 they appear. This allows types and groupings to be defined near

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4844

Bjorklund Expires September 10, 2015 [Page 30]

Internet-Draft YANG March 2015

 where they are used, rather than placing them at the top level of the
 hierarchy. The close proximity increases readability.

 Scoping also allows types to be defined without concern for naming
 conflicts between types in different submodules. Type names can be
 specified without adding leading strings designed to prevent name
 collisions within large modules.

 Finally, scoping allows the module author to keep types and groupings
 private to their module or submodule, preventing their reuse. Since
 only top-level types and groupings (i.e., those appearing as
 substatements to a module or submodule statement) can be used outside
 the module or submodule, the developer has more control over what
 pieces of their module are presented to the outside world, supporting
 the need to hide internal information and maintaining a boundary
 between what is shared with the outside world and what is kept
 private.

 Scoped definitions MUST NOT shadow definitions at a higher scope. A
 type or grouping cannot be defined if a higher level in the schema
 hierarchy has a definition with a matching identifier.

 A reference to an unprefixed type or grouping, or one which uses the
 prefix of the current module, is resolved by locating the closest
 matching "typedef" or "grouping" statement among the immediate
 substatements of each ancestor statement.

5.6. Conformance

 Conformance is a measure of how accurately a device follows the
 model. Generally speaking, devices are responsible for implementing
 the model faithfully, allowing applications to treat devices which
 implement the model identically. Deviations from the model can
 reduce the utility of the model and increase fragility of
 applications that use it.

 YANG modelers have three mechanisms for conformance:

 o the basic behavior of the model

 o optional features that are part of the model

 o deviations from the model

 We will consider each of these in sequence.

Bjorklund Expires September 10, 2015 [Page 31]

Internet-Draft YANG March 2015

5.6.1. Basic Behavior

 The model defines a contract between the NETCONF client and server,
 which allows both parties to have faith the other knows the syntax
 and semantics behind the modeled data. The strength of YANG lies in
 the strength of this contract.

5.6.2. Optional Features

 In many models, the modeler will allow sections of the model to be
 conditional. The device controls whether these conditional portions
 of the model are supported or valid for that particular device.

 For example, a syslog data model may choose to include the ability to
 save logs locally, but the modeler will realize that this is only
 possible if the device has local storage. If there is no local
 storage, an application should not tell the device to save logs.

 YANG supports this conditional mechanism using a construct called
 "feature". Features give the modeler a mechanism for making portions
 of the module conditional in a manner that is controlled by the
 device. The model can express constructs that are not universally
 present in all devices. These features are included in the model
 definition, allowing a consistent view and allowing applications to
 learn which features are supported and tailor their behavior to the
 device.

 A module may declare any number of features, identified by simple
 strings, and may make portions of the module optional based on those
 features. If the device supports a feature, then the corresponding
 portions of the module are valid for that device. If the device
 doesn't support the feature, those parts of the module are not valid,
 and applications should behave accordingly.

 Features are defined using the "feature" statement. Definitions in
 the module that are conditional to the feature are noted by the
 "if-feature" statement.

 Further details are available in Section 7.19.1.

5.6.3. Deviations

 In an ideal world, all devices would be required to implement the
 model exactly as defined, and deviations from the model would not be
 allowed. But in the real world, devices are often not able or
 designed to implement the model as written. For YANG-based
 automation to deal with these device deviations, a mechanism must

Bjorklund Expires September 10, 2015 [Page 32]

Internet-Draft YANG March 2015

 exist for devices to inform applications of the specifics of such
 deviations.

 For example, a BGP module may allow any number of BGP peers, but a
 particular device may only support 16 BGP peers. Any application
 configuring the 17th peer will receive an error. While an error may
 suffice to let the application know it cannot add another peer, it
 would be far better if the application had prior knowledge of this
 limitation and could prevent the user from starting down the path
 that could not succeed.

 Device deviations are declared using the "deviation" statement, which
 takes as its argument a string that identifies a node in the schema
 tree. The contents of the statement details the manner in which the
 device implementation deviates from the contract as defined in the
 module.

 Further details are available in Section 7.19.3.

5.6.4. Announcing Conformance Information in the <hello> Message

 This document defines the following mechanism for announcing
 conformance information. Other mechanisms may be defined by future
 specificiations.

 A NETCONF server announces the modules it implements by implementing
 the YANG module "ietf-yang-library" defined in
 [I-D.ietf-netconf-yang-library]. The server also advertises the
 following capability in the <hello> message (line-breaks and
 whitespaces are used for formatting reasons only):

 urn:ietf:params:netconf:capability:yang-library:1.0?
 module-set-id=<id>

 The parameter "module-set-id" has the same value as the leaf
 "/modules/module-set-id" from "ietf-yang-library". This parameter
 MUST be present.

 With this mechanism, a client can cache the supported modules for a
 server, and only update the cache if the "module-set-id" value in the
 <hello> message changes.

5.7. Data Store Modification

 Data models may allow the server to alter the configuration data
 store in ways not explicitly directed via NETCONF protocol messages.
 For example, a data model may define leafs that are assigned system-
 generated values when the client does not provide one. A formal

Bjorklund Expires September 10, 2015 [Page 33]

Internet-Draft YANG March 2015

 mechanism for specifying the circumstances where these changes are
 allowed is out of scope for this specification.

6. YANG Syntax

 The YANG syntax is similar to that of SMIng [RFC3780] and programming
 languages like C and C++. This C-like syntax was chosen specifically
 for its readability, since YANG values the time and effort of the
 readers of models above those of modules writers and YANG tool-chain
 developers. This section introduces the YANG syntax.

 YANG modules use the UTF-8 [RFC3629] character encoding.

 Legal characters in YANG modules are the Unicode and ISO/IEC 10646
 [ISO.10646] characters, including tab, carriage return, and line feed
 but excluding the other C0 control characters, the surrogate blocks,
 and the noncharacters. The character syntax is formally defined by
 the rule "yang-char" in Section 13.

6.1. Lexical Tokenization

 YANG modules are parsed as a series of tokens. This section details
 the rules for recognizing tokens from an input stream. YANG
 tokenization rules are both simple and powerful. The simplicity is
 driven by a need to keep the parsers easy to implement, while the
 power is driven by the fact that modelers need to express their
 models in readable formats.

6.1.1. Comments

 Comments are C++ style. A single line comment starts with "//" and
 ends at the end of the line. A block comment is enclosed within "/*"
 and "*/".

6.1.2. Tokens

 A token in YANG is either a keyword, a string, a semicolon (";"), or
 braces ("{" or "}"). A string can be quoted or unquoted. A keyword
 is either one of the YANG keywords defined in this document, or a
 prefix identifier, followed by ":", followed by a language extension
 keyword. Keywords are case sensitive. See Section 6.2 for a formal
 definition of identifiers.

6.1.3. Quoting

 If a string contains any space or tab characters, a semicolon (";"),
 braces ("{" or "}"), or comment sequences ("//", "/*", or "*/"), then
 it MUST be enclosed within double or single quotes.

https://datatracker.ietf.org/doc/html/rfc3780
https://datatracker.ietf.org/doc/html/rfc3629

Bjorklund Expires September 10, 2015 [Page 34]

Internet-Draft YANG March 2015

 If the double-quoted string contains a line break followed by space
 or tab characters that are used to indent the text according to the
 layout in the YANG file, this leading whitespace is stripped from the
 string, up to and including the column of the double quote character,
 or to the first non-whitespace character, whichever occurs first. In
 this process, a tab character is treated as 8 space characters.

 If the double-quoted string contains space or tab characters before a
 line break, this trailing whitespace is stripped from the string.

 A single-quoted string (enclosed within ' ') preserves each character
 within the quotes. A single quote character cannot occur in a
 single-quoted string, even when preceded by a backslash.

 Within a double-quoted string (enclosed within " "), a backslash
 character introduces a special character, which depends on the
 character that immediately follows the backslash:

 \n new line
 \t a tab character
 \" a double quote
 \\ a single backslash

 It is an error if any other character follows the backslash
 character.

 If a quoted string is followed by a plus character ("+"), followed by
 another quoted string, the two strings are concatenated into one
 string, allowing multiple concatenations to build one string.
 Whitespace trimming and substitution of backslash-escaped characters
 in double-quoted strings is done before concatenation.

6.1.3.1. Quoting Examples

 The following strings are equivalent:

 hello
 "hello"
 'hello'
 "hel" + "lo"
 'hel' + "lo"

 The following examples show some special strings:

Bjorklund Expires September 10, 2015 [Page 35]

Internet-Draft YANG March 2015

 "\"" - string containing a double quote
 '"' - string containing a double quote
 "\n" - string containing a new line character
 '\n' - string containing a backslash followed
 by the character n

 The following examples show some illegal strings:

 '''' - a single-quoted string cannot contain single quotes
 """ - a double quote must be escaped in a double-quoted string

 The following strings are equivalent:

 "first line
 second line"

 "first line\n" + " second line"

6.2. Identifiers

 Identifiers are used to identify different kinds of YANG items by
 name. Each identifier starts with an uppercase or lowercase ASCII
 letter or an underscore character, followed by zero or more ASCII
 letters, digits, underscore characters, hyphens, and dots.
 Implementations MUST support identifiers up to 64 characters in
 length. Identifiers are case sensitive. The identifier syntax is
 formally defined by the rule "identifier" in Section 13. Identifiers
 can be specified as quoted or unquoted strings.

6.2.1. Identifiers and Their Namespaces

 Each identifier is valid in a namespace that depends on the type of
 the YANG item being defined. All identifiers defined in a namespace
 MUST be unique.

 o All module and submodule names share the same global module
 identifier namespace.

 o All extension names defined in a module and its submodules share
 the same extension identifier namespace.

 o All feature names defined in a module and its submodules share the
 same feature identifier namespace.

 o All identity names defined in a module and its submodules share
 the same identity identifier namespace.

Bjorklund Expires September 10, 2015 [Page 36]

Internet-Draft YANG March 2015

 o All derived type names defined within a parent node or at the top
 level of the module or its submodules share the same type
 identifier namespace. This namespace is scoped to all descendant
 nodes of the parent node or module. This means that any
 descendent node may use that typedef, and it MUST NOT define a
 typedef with the same name.

 o All grouping names defined within a parent node or at the top
 level of the module or its submodules share the same grouping
 identifier namespace. This namespace is scoped to all descendant
 nodes of the parent node or module. This means that any
 descendent node may use that grouping, and it MUST NOT define a
 grouping with the same name.

 o All leafs, leaf-lists, lists, containers, choices, rpcs,
 notifications, and anyxmls defined (directly or through a uses
 statement) within a parent node or at the top level of the module
 or its submodules share the same identifier namespace. This
 namespace is scoped to the parent node or module, unless the
 parent node is a case node. In that case, the namespace is scoped
 to the closest ancestor node that is not a case or choice node.

 o All cases within a choice share the same case identifier
 namespace. This namespace is scoped to the parent choice node.

 Forward references are allowed in YANG.

6.3. Statements

 A YANG module contains a sequence of statements. Each statement
 starts with a keyword, followed by zero or one argument, followed
 either by a semicolon (";") or a block of substatements enclosed
 within braces ("{ }"):

 statement = keyword [argument] (";" / "{" *statement "}")

 The argument is a string, as defined in Section 6.1.2.

6.3.1. Language Extensions

 A module can introduce YANG extensions by using the "extension"
 keyword (see Section 7.18). The extensions can be imported by other
 modules with the "import" statement (see Section 7.1.5). When an
 imported extension is used, the extension's keyword MUST be qualified
 using the prefix with which the extension's module was imported. If
 an extension is used in the module where it is defined, the
 extension's keyword MUST be qualified with the module's prefix.

Bjorklund Expires September 10, 2015 [Page 37]

Internet-Draft YANG March 2015

 If a YANG compiler does not support a particular extension, which
 appears in a YANG module as an unknown-statement (see Section 13),
 the entire unknown-statement MAY be ignored by the compiler.

6.4. XPath Evaluations

 YANG relies on XML Path Language (XPath) 1.0 [XPATH] as a notation
 for specifying many inter-node references and dependencies. NETCONF
 clients and servers are not required to implement an XPath
 interpreter, but MUST ensure that the requirements encoded in the
 data model are enforced. The manner of enforcement is an
 implementation decision. The XPath expressions MUST be syntactically
 correct, and all prefixes used MUST be present in the XPath context
 (see Section 6.4.1). An implementation may choose to implement them
 by hand, rather than using the XPath expression directly.

 The data model used in the XPath expressions is the same as that used
 in XPath 1.0 [XPATH], with the same extension for root node children
 as used by XSLT 1.0 [XSLT] (Section 3.1). Specifically, it means
 that the root node may have any number of element nodes as its
 children.

 Numbers in XPath 1.0 are IEEE 754 double-precision floating-point
 values, see Section 3.5 in [XPATH]. This means that some values of
 int64, uint64 and decimal64 types (see Section 9.2 and Section 9.3)
 cannot be exactly represented in XPath expressions. Therefore, due
 caution should be exercised when using nodes with 64-bit numeric
 values in XPath expressions. In particular, numerical comparisons
 involving equality may yield unexpected results.

 For example, consider the following definition:

 leaf lxiv {
 type decimal64 {
 fraction-digits 18;
 }
 must ". <= 10";
 }

 An instance of the "lxiv" leaf having the value of
 10.0000000000000001 will then successfully pass validation.

6.4.1. XPath Context

 All YANG XPath expressions share the following XPath context
 definition:

Bjorklund Expires September 10, 2015 [Page 38]

Internet-Draft YANG March 2015

 o The set of namespace declarations is the set of all "import"
 statements' prefix and namespace pairs in the module where the
 XPath expression is specified, and the "prefix" statement's prefix
 for the "namespace" statement's URI.

 o Names without a namespace prefix belong to the same namespace as
 the identifier of the current node. Inside a grouping, that
 namespace is affected by where the grouping is used (see

Section 7.12). Inside a typedef, that namespace is affected by
 where the typedef is referenced. If a typedef is defined and
 referenced within a grouping, the namespace is affected by where
 the grouping is used (see Section 7.12).

 o The function library is the core function library defined in
 [XPATH], and the functions defined in Section 10.

 o The set of variable bindings is empty.

 The mechanism for handling unprefixed names is adopted from XPath 2.0
 [XPATH2.0], and helps simplify XPath expressions in YANG. No
 ambiguity may ever arise because YANG node identifiers are always
 qualified names with a non-null namespace URI.

 The accessible tree depends on where the statement with the XPath
 expression is defined:

 o If the XPath expression is defined in substatement to a data node
 that represents configuration, the accessible tree is the data in
 the NETCONF datastore where the context node exists. The root
 node has all top-level configuration data nodes in all modules as
 children.

 o If the XPath expression is defined in a substatement to a data
 node that represents state data, the accessible tree is all all
 state data on the device, and the "running" datastore. The root
 node has all top-level data nodes in all modules as children.

 o If the XPath expression is defined in a substatement to a
 "notification" statement, the accessible tree is the notification
 instance, all state data on the device, and the "running"
 datastore. The root node has the node representing the
 notification being defined and all top-level data nodes in all
 modules as children.

 o If the XPath expression is defined in a substatement to an "input"
 statement in an "rpc" statement, the accessible tree is the RPC
 operation instance, all state data on the device, and the
 "running" datastore. The root node has the node representing the

Bjorklund Expires September 10, 2015 [Page 39]

Internet-Draft YANG March 2015

 operation being defined and all top-level data nodes in all
 modules as children. The node representing the operation being
 defined has the operation's input parameters as children.

 o If the XPath expression is defined in a substatement to an
 "output" statement in an "rpc" statement, the accessible tree is
 the RPC operation's output, all state data on the device, and the
 "running" datastore. The root node has the node representing the
 operation being defined and all top-level data nodes in all
 modules as children. The node representing the operation being
 defined has the operation's output parameters as children.

 In the accessible tree, all leafs and leaf-lists with default values
 in use exist (See Section 7.6.1 and Section 7.7.2).

 If a node that exists in the accessible tree has a non-presence
 container as a child, then the non-presence container also exists in
 the tree.

 The context node varies with the YANG XPath expression, and is
 specified where the YANG statement with the XPath expression is
 defined.

6.5. Schema Node Identifier

 A schema node identifier is a string that identifies a node in the
 schema tree. It has two forms, "absolute" and "descendant", defined
 by the rules "absolute-schema-nodeid" and "descendant-schema-nodeid"
 in Section 13, respectively. A schema node identifier consists of a
 path of identifiers, separated by slashes ("/"). In an absolute
 schema node identifier, the first identifier after the leading slash
 is any top-level schema node in the local module or in all imported
 modules.

 References to identifiers defined in external modules MUST be
 qualified with appropriate prefixes, and references to identifiers
 defined in the current module and its submodules MAY use a prefix.

 For example, to identify the child node "b" of top-level node "a",
 the string "/a/b" can be used.

7. YANG Statements

 The following sections describe all of the YANG statements.

 Note that even a statement that does not have any substatements
 defined in YANG can have vendor-specific extensions as substatements.

Bjorklund Expires September 10, 2015 [Page 40]

Internet-Draft YANG March 2015

 For example, the "description" statement does not have any
 substatements defined in YANG, but the following is legal:

 description "some text" {
 acme:documentation-flag 5;
 }

7.1. The module Statement

 The "module" statement defines the module's name, and groups all
 statements that belong to the module together. The "module"
 statement's argument is the name of the module, followed by a block
 of substatements that hold detailed module information. The module
 name follows the rules for identifiers in Section 6.2.

 Names of modules published in RFC streams [RFC4844] MUST be assigned
 by IANA, see Section 15.

 Private module names are assigned by the organization owning the
 module without a central registry. It is RECOMMENDED to choose
 module names that will have a low probability of colliding with
 standard or other enterprise modules and submodules, e.g., by using
 the enterprise or organization name as a prefix for the module name.

 A module typically has the following layout:

https://datatracker.ietf.org/doc/html/rfc4844

Bjorklund Expires September 10, 2015 [Page 41]

Internet-Draft YANG March 2015

 module <module-name> {

 // header information
 <yang-version statement>
 <namespace statement>
 <prefix statement>

 // linkage statements
 <import statements>
 <include statements>

 // meta information
 <organization statement>
 <contact statement>
 <description statement>
 <reference statement>

 // revision history
 <revision statements>

 // module definitions
 <other statements>
 }

7.1.1. The module's Substatements

Bjorklund Expires September 10, 2015 [Page 42]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | augment | 7.16 | 0..n |
 | choice | 7.9 | 0..n |
 | contact | 7.1.8 | 0..1 |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | deviation | 7.19.3 | 0..n |
 | extension | 7.18 | 0..n |
 | feature | 7.19.1 | 0..n |
 | grouping | 7.11 | 0..n |
 | identity | 7.17 | 0..n |
 | import | 7.1.5 | 0..n |
 | include | 7.1.6 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | namespace | 7.1.3 | 1 |
 | notification | 7.15 | 0..n |
 | organization | 7.1.7 | 0..1 |
 | prefix | 7.1.4 | 1 |
 | reference | 7.20.4 | 0..1 |
 | revision | 7.1.9 | 0..n |
 | rpc | 7.13 | 0..n |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 | yang-version | 7.1.2 | 1 |
 +--------------+---------+-------------+

7.1.2. The yang-version Statement

 The "yang-version" statement specifies which version of the YANG
 language was used in developing the module. The statement's argument
 is a string. It MUST contain the value "1.1", which is the current
 YANG version.

 A module or submodule that doesn't contain the "yang-version"
 statement, or one that contains the value "1", is developed for YANG
 version 1, defined in [RFC6020].

 Handling of the "yang-version" statement for versions other than
 "1.1" (the version defined here) is out of scope for this
 specification. Any document that defines a higher version will need
 to define the backward compatibility of such a higher version.

https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund Expires September 10, 2015 [Page 43]

Internet-Draft YANG March 2015

7.1.3. The namespace Statement

 The "namespace" statement defines the XML namespace that all
 identifiers defined by the module are qualified by, with the
 exception of data node identifiers defined inside a grouping (see

Section 7.12 for details). The argument to the "namespace" statement
 is the URI of the namespace.

 See also Section 5.3.

7.1.4. The prefix Statement

 The "prefix" statement is used to define the prefix associated with
 the module and its namespace. The "prefix" statement's argument is
 the prefix string that is used as a prefix to access a module. The
 prefix string MAY be used to refer to definitions contained in the
 module, e.g., "if:ifName". A prefix follows the same rules as an
 identifier (see Section 6.2).

 When used inside the "module" statement, the "prefix" statement
 defines the prefix to be used when this module is imported. To
 improve readability of the NETCONF XML, a NETCONF client or server
 that generates XML or XPath that use prefixes SHOULD use the prefix
 defined by the module, unless there is a conflict.

 When used inside the "import" statement, the "prefix" statement
 defines the prefix to be used when accessing definitions inside the
 imported module. When a reference to an identifier from the imported
 module is used, the prefix string for the imported module is used in
 combination with a colon (":") and the identifier, e.g.,
 "if:ifIndex". To improve readability of YANG modules, the prefix
 defined by a module SHOULD be used when the module is imported,
 unless there is a conflict. If there is a conflict, i.e., two
 different modules that both have defined the same prefix are
 imported, at least one of them MUST be imported with a different
 prefix.

 All prefixes, including the prefix for the module itself MUST be
 unique within the module or submodule.

7.1.5. The import Statement

 The "import" statement makes definitions from one module available
 inside another module or submodule. The argument is the name of the
 module to import, and the statement is followed by a block of
 substatements that holds detailed import information. When a module
 is imported, the importing module may:

Bjorklund Expires September 10, 2015 [Page 44]

Internet-Draft YANG March 2015

 o use any grouping and typedef defined at the top level in the
 imported module or its submodules.

 o use any extension, feature, and identity defined in the imported
 module or its submodules.

 o use any node in the imported module's schema tree in "must",
 "path", and "when" statements, or as the target node in "augment"
 and "deviation" statements.

 The mandatory "prefix" substatement assigns a prefix for the imported
 module that is scoped to the importing module or submodule. Multiple
 "import" statements may be specified to import from different
 modules.

 When the optional "revision-date" substatement is present, any
 typedef, grouping, extension, feature, and identity referenced by
 definitions in the local module are taken from the specified revision
 of the imported module. It is an error if the specified revision of
 the imported module does not exist. If no "revision-date"
 substatement is present, it is undefined from which revision of the
 module they are taken.

 Multiple revisions of the same module MUST NOT be imported.

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | prefix | 7.1.4 | 1 |
 | revision-date | 7.1.5.1 | 0..1 |
 +---------------+---------+-------------+

 The import's Substatements

7.1.5.1. The import's revision-date Statement

 The import's "revision-date" statement is used to specify the exact
 version of the module to import. The "revision-date" statement MUST
 match the most recent "revision" statement in the imported module.

7.1.6. The include Statement

 The "include" statement is used to make content from a submodule
 available to that submodule's parent module. The argument is an
 identifier that is the name of the submodule to include. Modules are
 only allowed to include submodules that belong to that module, as
 defined by the "belongs-to" statement (see Section 7.2.2).

Bjorklund Expires September 10, 2015 [Page 45]

Internet-Draft YANG March 2015

 Submodules are only allowed to include other submodules belonging to
 the same module.

 When a module includes a submodule, it incorporates the contents of
 the submodule into the node hierarchy of the module.

 For backwards compatibility with YANG version 1, a submodule is
 allowed to include another submodule belonging to the same module,
 but this is not necessary in YANG version 1.1.

 When the optional "revision-date" substatement is present, the
 specified revision of the submodule is included in the module. It is
 an error if the specified revision of the submodule does not exist.
 If no "revision-date" substatement is present, it is undefined which
 revision of the submodule is included.

 Multiple revisions of the same submodule MUST NOT be included.

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | revision-date | 7.1.5.1 | 0..1 |
 +---------------+---------+-------------+

 The includes's Substatements

7.1.7. The organization Statement

 The "organization" statement defines the party responsible for this
 module. The argument is a string that is used to specify a textual
 description of the organization(s) under whose auspices this module
 was developed.

7.1.8. The contact Statement

 The "contact" statement provides contact information for the module.
 The argument is a string that is used to specify contact information
 for the person or persons to whom technical queries concerning this
 module should be sent, such as their name, postal address, telephone
 number, and electronic mail address.

7.1.9. The revision Statement

 The "revision" statement specifies the editorial revision history of
 the module, including the initial revision. A series of revision
 statements detail the changes in the module's definition. The
 argument is a date string in the format "YYYY-MM-DD", followed by a
 block of substatements that holds detailed revision information. A

Bjorklund Expires September 10, 2015 [Page 46]

Internet-Draft YANG March 2015

 module SHOULD have at least one "revision" statement. For every
 published editorial change, a new one SHOULD be added in front of the
 revisions sequence, so that all revisions are in reverse
 chronological order.

7.1.9.1. The revision's Substatement

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +--------------+---------+-------------+

7.1.10. Usage Example

 module acme-system {
 yang-version 1.1;
 namespace "http://acme.example.com/system";
 prefix "acme";

 import ietf-yang-types {
 prefix "yang";
 }

 include acme-types;

 organization "ACME Inc.";
 contact
 "Joe L. User

 ACME, Inc.
 42 Anywhere Drive
 Nowhere, CA 95134
 USA

 Phone: +1 800 555 0100
 EMail: joe@acme.example.com";

 description
 "The module for entities implementing the ACME protocol.";

 revision "2007-06-09" {
 description "Initial revision.";
 }

 // definitions follow...
 }

Bjorklund Expires September 10, 2015 [Page 47]

Internet-Draft YANG March 2015

7.2. The submodule Statement

 While the primary unit in YANG is a module, a YANG module can itself
 be constructed out of several submodules. Submodules allow a module
 designer to split a complex model into several pieces where all the
 submodules contribute to a single namespace, which is defined by the
 module that includes the submodules.

 The "submodule" statement defines the submodule's name, and groups
 all statements that belong to the submodule together. The
 "submodule" statement's argument is the name of the submodule,
 followed by a block of substatements that hold detailed submodule
 information. The submodule name follows the rules for identifiers in

Section 6.2.

 Names of submodules published in RFC streams [RFC4844] MUST be
 assigned by IANA, see Section 15.

 Private submodule names are assigned by the organization owning the
 submodule without a central registry. It is RECOMMENDED to choose
 submodule names that will have a low probability of colliding with
 standard or other enterprise modules and submodules, e.g., by using
 the enterprise or organization name as a prefix for the submodule
 name.

 A submodule typically has the following layout:

 submodule <module-name> {

 <yang-version statement>

https://datatracker.ietf.org/doc/html/rfc4844

Bjorklund Expires September 10, 2015 [Page 48]

Internet-Draft YANG March 2015

 // module identification
 <belongs-to statement>

 // linkage statements
 <import statements>

 // meta information
 <organization statement>
 <contact statement>
 <description statement>
 <reference statement>

 // revision history
 <revision statements>

 // module definitions
 <other statements>
 }

7.2.1. The submodule's Substatements

Bjorklund Expires September 10, 2015 [Page 49]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | augment | 7.16 | 0..n |
 | belongs-to | 7.2.2 | 1 |
 | choice | 7.9 | 0..n |
 | contact | 7.1.8 | 0..1 |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | deviation | 7.19.3 | 0..n |
 | extension | 7.18 | 0..n |
 | feature | 7.19.1 | 0..n |
 | grouping | 7.11 | 0..n |
 | identity | 7.17 | 0..n |
 | import | 7.1.5 | 0..n |
 | include | 7.1.6 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | notification | 7.15 | 0..n |
 | organization | 7.1.7 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | revision | 7.1.9 | 0..n |
 | rpc | 7.13 | 0..n |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 | yang-version | 7.1.2 | 1 |
 +--------------+---------+-------------+

7.2.2. The belongs-to Statement

 The "belongs-to" statement specifies the module to which the
 submodule belongs. The argument is an identifier that is the name of
 the module.

 A submodule MUST only be included by the module to which it belongs,
 or by another submodule that belongs to that module.

 The mandatory "prefix" substatement assigns a prefix for the module
 to which the submodule belongs. All definitions in the module that
 the submodule belongs to and all its submodules can be accessed by
 using the prefix.

Bjorklund Expires September 10, 2015 [Page 50]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | prefix | 7.1.4 | 1 |
 +--------------+---------+-------------+

 The belongs-to's Substatements

7.2.3. Usage Example

 submodule acme-types {
 yang-version 1.1;
 belongs-to "acme-system" {
 prefix "acme";
 }

 import ietf-yang-types {
 prefix "yang";
 }

 organization "ACME Inc.";
 contact
 "Joe L. User

 ACME, Inc.
 42 Anywhere Drive
 Nowhere, CA 95134
 USA

 Phone: +1 800 555 0100
 EMail: joe@acme.example.com";

 description
 "This submodule defines common ACME types.";

 revision "2007-06-09" {
 description "Initial revision.";
 }

 // definitions follows...
 }

7.3. The typedef Statement

 The "typedef" statement defines a new type that may be used locally
 in the module or submodule, and by other modules that import from it,
 according to the rules in Section 5.5. The new type is called the
 "derived type", and the type from which it was derived is called the

Bjorklund Expires September 10, 2015 [Page 51]

Internet-Draft YANG March 2015

 "base type". All derived types can be traced back to a YANG built-in
 type.

 The "typedef" statement's argument is an identifier that is the name
 of the type to be defined, and MUST be followed by a block of
 substatements that holds detailed typedef information.

 The name of the type MUST NOT be one of the YANG built-in types. If
 the typedef is defined at the top level of a YANG module or
 submodule, the name of the type to be defined MUST be unique within
 the module.

7.3.1. The typedef's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | default | 7.3.4 | 0..1 |
 | description | 7.20.3 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | type | 7.3.2 | 1 |
 | units | 7.3.3 | 0..1 |
 +--------------+---------+-------------+

7.3.2. The typedef's type Statement

 The "type" statement, which MUST be present, defines the base type
 from which this type is derived. See Section 7.4 for details.

7.3.3. The units Statement

 The "units" statement, which is optional, takes as an argument a
 string that contains a textual definition of the units associated
 with the type.

7.3.4. The typedef's default Statement

 The "default" statement takes as an argument a string that contains a
 default value for the new type.

 The value of the "default" statement MUST be valid according to the
 type specified in the "type" statement.

 If the base type has a default value, and the new derived type does
 not specify a new default value, the base type's default value is
 also the default value of the new derived type.

Bjorklund Expires September 10, 2015 [Page 52]

Internet-Draft YANG March 2015

 If the type's default value is not valid according to the new
 restrictions specified in a derived type or leaf definition, the
 derived type or leaf definition MUST specify a new default value
 compatible with the restrictions.

7.3.5. Usage Example

 typedef listen-ipv4-address {
 type inet:ipv4-address;
 default "0.0.0.0";
 }

7.4. The type Statement

 The "type" statement takes as an argument a string that is the name
 of a YANG built-in type (see Section 9) or a derived type (see

Section 7.3), followed by an optional block of substatements that are
 used to put further restrictions on the type.

 The restrictions that can be applied depend on the type being
 restricted. The restriction statements for all built-in types are
 described in the subsections of Section 9.

7.4.1. The type's Substatements

 +------------------+---------+-------------+
 | substatement | section | cardinality |
 +------------------+---------+-------------+
 | base | 7.17.2 | 0..n |
 | bit | 9.7.4 | 0..n |
 | enum | 9.6.4 | 0..n |
 | fraction-digits | 9.3.4 | 0..1 |
 | length | 9.4.4 | 0..1 |
 | path | 9.9.2 | 0..1 |
 | pattern | 9.4.5 | 0..n |
 | range | 9.2.4 | 0..1 |
 | require-instance | 9.9.3 | 0..1 |
 | type | 7.4 | 0..n |
 +------------------+---------+-------------+

7.5. The container Statement

 The "container" statement is used to define an interior data node in
 the schema tree. It takes one argument, which is an identifier,
 followed by a block of substatements that holds detailed container
 information.

Bjorklund Expires September 10, 2015 [Page 53]

Internet-Draft YANG March 2015

 A container node does not have a value, but it has a list of child
 nodes in the data tree. The child nodes are defined in the
 container's substatements.

7.5.1. Containers with Presence

 YANG supports two styles of containers, those that exist only for
 organizing the hierarchy of data nodes, and those whose presence in
 the configuration has an explicit meaning.

 In the first style, the container has no meaning of its own, existing
 only to contain child nodes. This is the default style.

 For example, the set of scrambling options for Synchronous Optical
 Network (SONET) interfaces may be placed inside a "scrambling"
 container to enhance the organization of the configuration hierarchy,
 and to keep these nodes together. The "scrambling" node itself has
 no meaning, so removing the node when it becomes empty relieves the
 user from performing this task.

 In the second style, the presence of the container itself is
 configuration data, representing a single bit of configuration data.
 The container acts as both a configuration knob and a means of
 organizing related configuration. These containers are explicitly
 created and deleted.

 YANG calls this style a "presence container" and it is indicated
 using the "presence" statement, which takes as its argument a text
 string indicating what the presence of the node means.

 For example, an "ssh" container may turn on the ability to log into
 the device using ssh, but can also contain any ssh-related
 configuration knobs, such as connection rates or retry limits.

 The "presence" statement (see Section 7.5.5) is used to give
 semantics to the existence of the container in the data tree.

7.5.2. The container's Substatements

Bjorklund Expires September 10, 2015 [Page 54]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | action | 7.14 | 0..n |
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | config | 7.20.1 | 0..1 |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | if-feature | 7.19.2 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | must | 7.5.3 | 0..n |
 | presence | 7.5.5 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.5.3. The must Statement

 The "must" statement, which is optional, takes as an argument a
 string that contains an XPath expression (see Section 6.4). It is
 used to formally declare a constraint on valid data. The constraint
 is enforced according to the rules in Section 8.

 When a datastore is validated, all "must" constraints are
 conceptually evaluated once for each data node in the accessible tree
 (see Section 6.4.1).

 All such constraints MUST evaluate to true for the data to be valid.

 The XPath expression is conceptually evaluated in the following
 context, in addition to the definition in Section 6.4.1:

 o The context node is the node in the accessible tree for which the
 "must" statement is defined.

 The result of the XPath expression is converted to a boolean value
 using the standard XPath rules.

 Note that since all leaf values in the data tree are conceptually
 stored in their canonical form (see Section 7.6 and Section 7.7), any
 XPath comparisons are done on the canonical value.

Bjorklund Expires September 10, 2015 [Page 55]

Internet-Draft YANG March 2015

 Also note that the XPath expression is conceptually evaluated. This
 means that an implementation does not have to use an XPath evaluator
 on the device. How the evaluation is done in practice is an
 implementation decision.

7.5.4. The must's Substatements

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | error-app-tag | 7.5.4.2 | 0..1 |
 | error-message | 7.5.4.1 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +---------------+---------+-------------+

7.5.4.1. The error-message Statement

 The "error-message" statement, which is optional, takes a string as
 an argument. If the constraint evaluates to false, the string is
 passed as <error-message> in the <rpc-error>.

7.5.4.2. The error-app-tag Statement

 The "error-app-tag" statement, which is optional, takes a string as
 an argument. If the constraint evaluates to false, the string is
 passed as <error-app-tag> in the <rpc-error>.

7.5.4.3. Usage Example of must and error-message

Bjorklund Expires September 10, 2015 [Page 56]

Internet-Draft YANG March 2015

 container interface {
 leaf ifType {
 type enumeration {
 enum ethernet;
 enum atm;
 }
 }
 leaf ifMTU {
 type uint32;
 }
 must "ifType != 'ethernet' or " +
 "(ifType = 'ethernet' and ifMTU = 1500)" {
 error-message "An ethernet MTU must be 1500";
 }
 must "ifType != 'atm' or " +
 "(ifType = 'atm' and ifMTU <= 17966 and ifMTU >= 64)" {
 error-message "An atm MTU must be 64 .. 17966";
 }
 }

7.5.5. The presence Statement

 The "presence" statement assigns a meaning to the presence of a
 container in the data tree. It takes as an argument a string that
 contains a textual description of what the node's presence means.

 If a container has the "presence" statement, the container's
 existence in the data tree carries some meaning. Otherwise, the
 container is used to give some structure to the data, and it carries
 no meaning by itself.

 See Section 7.5.1 for additional information.

7.5.6. The container's Child Node Statements

 Within a container, the "container", "leaf", "list", "leaf-list",
 "uses", "choice", and "anyxml" statements can be used to define child
 nodes to the container.

7.5.7. XML Mapping Rules

 A container node is encoded as an XML element. The element's local
 name is the container's identifier, and its namespace is the module's
 XML namespace (see Section 7.1.3).

 The container's child nodes are encoded as subelements to the
 container element. If the container defines RPC input or output
 parameters, these subelements are encoded in the same order as they

Bjorklund Expires September 10, 2015 [Page 57]

Internet-Draft YANG March 2015

 are defined within the "container" statement. Otherwise, the
 subelements are encoded in any order.

 A NETCONF server that replies to a <get> or <get-config> request MAY
 choose not to send a container element if the container node does not
 have the "presence" statement and no child nodes exist. Thus, a
 client that receives an <rpc-reply> for a <get> or <get-config>
 request, must be prepared to handle the case that a container node
 without a "presence" statement is not present in the XML.

7.5.8. NETCONF <edit-config> Operations

 Containers can be created, deleted, replaced, and modified through
 <edit-config>, by using the "operation" attribute (see [RFC6241],
 Section 7.2) in the container's XML element.

 If a container does not have a "presence" statement and the last
 child node is deleted, the NETCONF server MAY delete the container.

 When a NETCONF server processes an <edit-config> request, the
 elements of procedure for the container node are:

 If the operation is "merge" or "replace", the node is created if
 it does not exist.

 If the operation is "create", the node is created if it does not
 exist. If the node already exists, a "data-exists" error is
 returned.

 If the operation is "delete", the node is deleted if it exists.
 If the node does not exist, a "data-missing" error is returned.

7.5.9. Usage Example

 Given the following container definition:

 container system {
 description "Contains various system parameters";
 container services {
 description "Configure externally available services";
 container "ssh" {
 presence "Enables SSH";
 description "SSH service specific configuration";
 // more leafs, containers and stuff here...
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc6241#section-7.2
https://datatracker.ietf.org/doc/html/rfc6241#section-7.2

Bjorklund Expires September 10, 2015 [Page 58]

Internet-Draft YANG March 2015

 A corresponding XML instance example:

 <system>
 <services>
 <ssh/>
 </services>
 </system>

 Since the <ssh> element is present, ssh is enabled.

 To delete a container with an <edit-config>:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <services>
 <ssh nc:operation="delete"/>
 </services>
 </system>
 </config>
 </edit-config>
 </rpc>

7.6. The leaf Statement

 The "leaf" statement is used to define a leaf node in the schema
 tree. It takes one argument, which is an identifier, followed by a
 block of substatements that holds detailed leaf information.

 A leaf node has a value, but no child nodes in the data tree.
 Conceptually, the value in the data tree is always in the canonical
 form (see Section 9.1).

 A leaf node exists in zero or one instances in the data tree.

 The "leaf" statement is used to define a scalar variable of a
 particular built-in or derived type.

Bjorklund Expires September 10, 2015 [Page 59]

Internet-Draft YANG March 2015

7.6.1. The leaf's default value

 The default value of a leaf is the value that the server uses if the
 leaf does not exist in the data tree. The usage of the default value
 depends on the leaf's closest ancestor node in the schema tree that
 is not a non-presence container:

 o If no such ancestor exists in the schema tree, the default value
 MUST be used.

 o Otherwise, if this ancestor is a case node, the default value MUST
 be used if any node from the case exists in the data tree, or if
 the case node is the choice's default case, and no nodes from any
 other case exist in the data tree.

 o Otherwise, the default value MUST be used if the ancestor node
 exists in the data tree.

 In these cases, the default value is said to be in use.

 When the default value is in use, the server MUST operationally
 behave as if the leaf was present in the data tree with the default
 value as its value.

 If a leaf has a "default" statement, the leaf's default value is the
 value of the "default" statement. Otherwise, if the leaf's type has
 a default value, and the leaf is not mandatory, then the leaf's
 default value is the type's default value. In all other cases, the
 leaf does not have a default value.

7.6.2. The leaf's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | config | 7.20.1 | 0..1 |
 | default | 7.6.4 | 0..1 |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | mandatory | 7.6.5 | 0..1 |
 | must | 7.5.3 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | type | 7.6.3 | 1 |
 | units | 7.3.3 | 0..1 |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

Bjorklund Expires September 10, 2015 [Page 60]

Internet-Draft YANG March 2015

7.6.3. The leaf's type Statement

 The "type" statement, which MUST be present, takes as an argument the
 name of an existing built-in or derived type. The optional
 substatements specify restrictions on this type. See Section 7.4 for
 details.

7.6.4. The leaf's default Statement

 The "default" statement, which is optional, takes as an argument a
 string that contains a default value for the leaf.

 The value of the "default" statement MUST be valid according to the
 type specified in the leaf's "type" statement.

 The "default" statement MUST NOT be present on nodes where
 "mandatory" is true.

7.6.5. The leaf's mandatory Statement

 The "mandatory" statement, which is optional, takes as an argument
 the string "true" or "false", and puts a constraint on valid data.
 If not specified, the default is "false".

 If "mandatory" is "true", the behavior of the constraint depends on
 the type of the leaf's closest ancestor node in the schema tree that
 is not a non-presence container (see Section 7.5.1):

 o If no such ancestor exists in the schema tree, the leaf MUST
 exist.

 o Otherwise, if this ancestor is a case node, the leaf MUST exist if
 any node from the case exists in the data tree.

 o Otherwise, the leaf MUST exist if the ancestor node exists in the
 data tree.

 This constraint is enforced according to the rules in Section 8.

7.6.6. XML Mapping Rules

 A leaf node is encoded as an XML element. The element's local name
 is the leaf's identifier, and its namespace is the module's XML
 namespace (see Section 7.1.3).

 The value of the leaf node is encoded to XML according to the type,
 and sent as character data in the element.

Bjorklund Expires September 10, 2015 [Page 61]

Internet-Draft YANG March 2015

 A NETCONF server that replies to a <get> or <get-config> request MAY
 choose not to send the leaf element if its value is the default
 value. Thus, a client that receives an <rpc-reply> for a <get> or
 <get-config> request, MUST be prepared to handle the case that a leaf
 node with a default value is not present in the XML. In this case,
 the value used by the server is known to be the default value.

 See Section 7.6.8 for an example.

7.6.7. NETCONF <edit-config> Operations

 When a NETCONF server processes an <edit-config> request, the
 elements of procedure for the leaf node are:

 If the operation is "merge" or "replace", the node is created if
 it does not exist, and its value is set to the value found in the
 XML RPC data.

 If the operation is "create", the node is created if it does not
 exist. If the node already exists, a "data-exists" error is
 returned.

 If the operation is "delete", the node is deleted if it exists.
 If the node does not exist, a "data-missing" error is returned.

7.6.8. Usage Example

 Given the following "leaf" statement, placed in the previously
 defined "ssh" container (see Section 7.5.9):

 leaf port {
 type inet:port-number;
 default 22;
 description "The port to which the SSH server listens"
 }

 A corresponding XML instance example:

 <port>2022</port>

 To set the value of a leaf with an <edit-config>:

Bjorklund Expires September 10, 2015 [Page 62]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <services>
 <ssh>
 <port>2022</port>
 </ssh>
 </services>
 </system>
 </config>
 </edit-config>
 </rpc>

7.7. The leaf-list Statement

 Where the "leaf" statement is used to define a simple scalar variable
 of a particular type, the "leaf-list" statement is used to define an
 array of a particular type. The "leaf-list" statement takes one
 argument, which is an identifier, followed by a block of
 substatements that holds detailed leaf-list information.

 The values in a leaf-list MUST be unique.

 Conceptually, the values in the data tree are always in the canonical
 form (see Section 9.1).

7.7.1. Ordering

 YANG supports two styles for ordering the entries within lists and
 leaf-lists. In many lists, the order of list entries does not impact
 the implementation of the list's configuration, and the device is
 free to sort the list entries in any reasonable order. The
 "description" string for the list may suggest an order to the device
 implementor. YANG calls this style of list "system ordered" and they
 are indicated with the statement "ordered-by system".

 For example, a list of valid users would typically be sorted
 alphabetically, since the order in which the users appeared in the
 configuration would not impact the creation of those users' accounts.

 In the other style of lists, the order of list entries matters for
 the implementation of the list's configuration and the user is

Bjorklund Expires September 10, 2015 [Page 63]

Internet-Draft YANG March 2015

 responsible for ordering the entries, while the device maintains that
 order. YANG calls this style of list "user ordered" and they are
 indicated with the statement "ordered-by user".

 For example, the order in which firewall filters entries are applied
 to incoming traffic may affect how that traffic is filtered. The
 user would need to decide if the filter entry that discards all TCP
 traffic should be applied before or after the filter entry that
 allows all traffic from trusted interfaces. The choice of order
 would be crucial.

 YANG provides a rich set of facilities within NETCONF's <edit-config>
 operation that allows the order of list entries in user-ordered lists
 to be controlled. List entries may be inserted or rearranged,
 positioned as the first or last entry in the list, or positioned
 before or after another specific entry.

 The "ordered-by" statement is covered in Section 7.7.7.

7.7.2. The leaf-list's default values

 The default values of a leaf-list are the values that the server uses
 if the leaf-list does not exist in the data tree. The usage of the
 default values depends on the leaf-list's closest ancestor node in
 the schema tree that is not a non-presence container:

 o If no such ancestor exists in the schema tree, the default values
 MUST be used.

 o Otherwise, if this ancestor is a case node, the default values
 MUST be used if any node from the case exists in the data tree, or
 if the case node is the choice's default case, and no nodes from
 any other case exist in the data tree.

 o Otherwise, the default values MUST be used if the ancestor node
 exists in the data tree.

 In these cases, the default values are said to be in use.

 When the default values are in use, the server MUST operationally
 behave as if the leaf-list was present in the data tree with the
 default values as its values.

 If a leaf-list has one or more "default" statement, the leaf-list's
 default value are the values of the "default" statements, and if the
 leaf-list is user-ordered, the default values are used in the order
 of the "default" statements. Otherwise, if the leaf-list's type has
 a default value, and the leaf-list does not have a "min-elements"

Bjorklund Expires September 10, 2015 [Page 64]

Internet-Draft YANG March 2015

 statement with a value greater than or equal to one, then the leaf-
 list's default value is the type's default value. In all other
 cases, the leaf-list does not have any default values.

7.7.3. The leaf-list's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | config | 7.20.1 | 0..1 |
 | default | 7.7.4 | 0..n |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | max-elements | 7.7.6 | 0..1 |
 | min-elements | 7.7.5 | 0..1 |
 | must | 7.5.3 | 0..n |
 | ordered-by | 7.7.7 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | type | 7.4 | 1 |
 | units | 7.3.3 | 0..1 |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.7.4. The leaf-list's default Statement

 The "default" statement, which is optional, takes as an argument a
 string that contains a default value for the leaf-list.

 The value of the "default" statement MUST be valid according to the
 type specified in the leaf-list's "type" statement.

 The "default" statement MUST NOT be present on nodes where
 "min-elements" has a value greater than or equal to one.

7.7.5. The min-elements Statement

 The "min-elements" statement, which is optional, takes as an argument
 a non-negative integer that puts a constraint on valid list entries.
 A valid leaf-list or list MUST have at least min-elements entries.

 If no "min-elements" statement is present, it defaults to zero.

 The behavior of the constraint depends on the type of the leaf-list's
 or list's closest ancestor node in the schema tree that is not a non-
 presence container (see Section 7.5.1):

Bjorklund Expires September 10, 2015 [Page 65]

Internet-Draft YANG March 2015

 o If this ancestor is a case node, the constraint is enforced if any
 other node from the case exists.

 o Otherwise, it is enforced if the ancestor node exists.

 The constraint is further enforced according to the rules in
Section 8.

7.7.6. The max-elements Statement

 The "max-elements" statement, which is optional, takes as an argument
 a positive integer or the string "unbounded", which puts a constraint
 on valid list entries. A valid leaf-list or list always has at most
 max-elements entries.

 If no "max-elements" statement is present, it defaults to
 "unbounded".

 The "max-elements" constraint is enforced according to the rules in
Section 8.

7.7.7. The ordered-by Statement

 The "ordered-by" statement defines whether the order of entries
 within a list are determined by the user or the system. The argument
 is one of the strings "system" or "user". If not present, order
 defaults to "system".

 This statement is ignored if the list represents state data, RPC
 output parameters, or notification content.

 See Section 7.7.1 for additional information.

7.7.7.1. ordered-by system

 The entries in the list are sorted according to an unspecified order.
 Thus, an implementation is free to sort the entries in the most
 appropriate order. An implementation SHOULD use the same order for
 the same data, regardless of how the data were created. Using a
 deterministic order will make comparisons possible using simple tools
 like "diff".

 This is the default order.

Bjorklund Expires September 10, 2015 [Page 66]

Internet-Draft YANG March 2015

7.7.7.2. ordered-by user

 The entries in the list are sorted according to an order defined by
 the user. This order is controlled by using special XML attributes
 in the <edit-config> request. See Section 7.7.9 for details.

7.7.8. XML Mapping Rules

 A leaf-list node is encoded as a series of XML elements. Each
 element's local name is the leaf-list's identifier, and its namespace
 is the module's XML namespace (see Section 7.1.3).

 The value of each leaf-list entry is encoded to XML according to the
 type, and sent as character data in the element.

 The XML elements representing leaf-list entries MUST appear in the
 order specified by the user if the leaf-list is "ordered-by user";
 otherwise, the order is implementation-dependent. The XML elements
 representing leaf-list entries MAY be interleaved with other sibling
 elements, unless the leaf-list defines RPC input or output
 parameters.

 See Section 7.7.10 for an example.

7.7.9. NETCONF <edit-config> Operations

 Leaf-list entries can be created and deleted, but not modified,
 through <edit-config>, by using the "operation" attribute in the
 leaf-list entry's XML element.

 In an "ordered-by user" leaf-list, the attributes "insert" and
 "value" in the YANG XML namespace (Section 5.3.1) can be used to
 control where in the leaf-list the entry is inserted. These can be
 used during "create" operations to insert a new leaf-list entry, or
 during "merge" or "replace" operations to insert a new leaf-list
 entry or move an existing one.

 The "insert" attribute can take the values "first", "last", "before",
 and "after". If the value is "before" or "after", the "value"
 attribute MUST also be used to specify an existing entry in the leaf-
 list.

 If no "insert" attribute is present in the "create" operation, it
 defaults to "last".

 If several entries in an "ordered-by user" leaf-list are modified in
 the same <edit-config> request, the entries are modified one at the
 time, in the order of the XML elements in the request.

Bjorklund Expires September 10, 2015 [Page 67]

Internet-Draft YANG March 2015

 In a <copy-config>, or an <edit-config> with a "replace" operation
 that covers the entire leaf-list, the leaf-list order is the same as
 the order of the XML elements in the request.

 When a NETCONF server processes an <edit-config> request, the
 elements of procedure for a leaf-list node are:

 If the operation is "merge" or "replace", the leaf-list entry is
 created if it does not exist.

 If the operation is "create", the leaf-list entry is created if it
 does not exist. If the leaf-list entry already exists, a
 "data-exists" error is returned.

 If the operation is "delete", the entry is deleted from the leaf-
 list if it exists. If the leaf-list entry does not exist, a
 "data-missing" error is returned.

7.7.10. Usage Example

 leaf-list allow-user {
 type string;
 description "A list of user name patterns to allow";
 }

 A corresponding XML instance example:

 <allow-user>alice</allow-user>
 <allow-user>bob</allow-user>

 To create a new element in this list, using the default <edit-config>
 operation "merge":

Bjorklund Expires September 10, 2015 [Page 68]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <services>
 <ssh>
 <allow-user>eric</allow-user>
 </ssh>
 </services>
 </system>
 </config>
 </edit-config>
 </rpc>

 Given the following ordered-by user leaf-list:

 leaf-list cipher {
 type string;
 ordered-by user;
 description "A list of ciphers";
 }

 The following would be used to insert a new cipher "blowfish-cbc"
 after "3des-cbc":

Bjorklund Expires September 10, 2015 [Page 69]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:yang="urn:ietf:params:xml:ns:yang:1">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <services>
 <ssh>
 <cipher nc:operation="create"
 yang:insert="after"
 yang:value="3des-cbc">blowfish-cbc</cipher>
 </ssh>
 </services>
 </system>
 </config>
 </edit-config>
 </rpc>

7.8. The list Statement

 The "list" statement is used to define an interior data node in the
 schema tree. A list node may exist in multiple instances in the data
 tree. Each such instance is known as a list entry. The "list"
 statement takes one argument, which is an identifier, followed by a
 block of substatements that holds detailed list information.

 A list entry is uniquely identified by the values of the list's keys,
 if defined.

7.8.1. The list's Substatements

Bjorklund Expires September 10, 2015 [Page 70]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | action | 7.14 | 0..n |
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | config | 7.20.1 | 0..1 |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | if-feature | 7.19.2 | 0..n |
 | key | 7.8.2 | 0..1 |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | max-elements | 7.7.6 | 0..1 |
 | min-elements | 7.7.5 | 0..1 |
 | must | 7.5.3 | 0..n |
 | ordered-by | 7.7.7 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 | unique | 7.8.3 | 0..n |
 | uses | 7.12 | 0..n |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.8.2. The list's key Statement

 The "key" statement, which MUST be present if the list represents
 configuration, and MAY be present otherwise, takes as an argument a
 string that specifies a space-separated list of leaf identifiers of
 this list. A leaf identifier MUST NOT appear more than once in the
 key. Each such leaf identifier MUST refer to a child leaf of the
 list. The leafs can be defined directly in substatements to the
 list, or in groupings used in the list.

 The combined values of all the leafs specified in the key are used to
 uniquely identify a list entry. All key leafs MUST be given values
 when a list entry is created. Thus, any default values in the key
 leafs or their types are ignored. It also implies that any mandatory
 statement in the key leafs are ignored.

 A leaf that is part of the key can be of any built-in or derived
 type, except it MUST NOT be the built-in type "empty".

 All key leafs in a list MUST have the same value for their "config"
 as the list itself.

Bjorklund Expires September 10, 2015 [Page 71]

Internet-Draft YANG March 2015

 The key string syntax is formally defined by the rule "key-arg" in
Section 13.

7.8.3. The list's unique Statement

 The "unique" statement is used to put constraints on valid list
 entries. It takes as an argument a string that contains a space-
 separated list of schema node identifiers, which MUST be given in the
 descendant form (see the rule "descendant-schema-nodeid" in

Section 13). Each such schema node identifier MUST refer to a leaf.

 If one of the referenced leafs represents configuration data, then
 all of the referenced leafs MUST represent configuration data.

 The "unique" constraint specifies that the combined values of all the
 leaf instances specified in the argument string, including leafs with
 default values, MUST be unique within all list entry instances in
 which all referenced leafs exist. The constraint is enforced
 according to the rules in Section 8.

 The unique string syntax is formally defined by the rule "unique-arg"
 in Section 13.

7.8.3.1. Usage Example

 With the following list:

 list server {
 key "name";
 unique "ip port";
 leaf name {
 type string;
 }
 leaf ip {
 type inet:ip-address;
 }
 leaf port {
 type inet:port-number;
 }
 }

 The following configuration is not valid:

Bjorklund Expires September 10, 2015 [Page 72]

Internet-Draft YANG March 2015

 <server>
 <name>smtp</name>
 <ip>192.0.2.1</ip>
 <port>25</port>
 </server>

 <server>
 <name>http</name>
 <ip>192.0.2.1</ip>
 <port>25</port>
 </server>

 The following configuration is valid, since the "http" and "ftp" list
 entries do not have a value for all referenced leafs, and are thus
 not taken into account when the "unique" constraint is enforced:

 <server>
 <name>smtp</name>
 <ip>192.0.2.1</ip>
 <port>25</port>
 </server>

 <server>
 <name>http</name>
 <ip>192.0.2.1</ip>
 </server>

 <server>
 <name>ftp</name>
 <ip>192.0.2.1</ip>
 </server>

7.8.4. The list's Child Node Statements

 Within a list, the "container", "leaf", "list", "leaf-list", "uses",
 "choice", and "anyxml" statements can be used to define child nodes
 to the list.

7.8.5. XML Mapping Rules

 A list is encoded as a series of XML elements, one for each entry in
 the list. Each element's local name is the list's identifier, and
 its namespace is the module's XML namespace (see Section 7.1.3).

 The list's key nodes are encoded as subelements to the list's
 identifier element, in the same order as they are defined within the
 "key" statement.

Bjorklund Expires September 10, 2015 [Page 73]

Internet-Draft YANG March 2015

 The rest of the list's child nodes are encoded as subelements to the
 list element, after the keys. If the list defines RPC input or
 output parameters, the subelements are encoded in the same order as
 they are defined within the "list" statement. Otherwise, the
 subelements are encoded in any order.

 The XML elements representing list entries MUST appear in the order
 specified by the user if the list is "ordered-by user", otherwise the
 order is implementation-dependent. The XML elements representing
 list entries MAY be interleaved with other sibling elements, unless
 the list defines RPC input or output parameters.

7.8.6. NETCONF <edit-config> Operations

 List entries can be created, deleted, replaced, and modified through
 <edit-config>, by using the "operation" attribute in the list's XML
 element. In each case, the values of all keys are used to uniquely
 identify a list entry. If all keys are not specified for a list
 entry, a "missing-element" error is returned.

 In an "ordered-by user" list, the attributes "insert" and "key" in
 the YANG XML namespace (Section 5.3.1) can be used to control where
 in the list the entry is inserted. These can be used during "create"
 operations to insert a new list entry, or during "merge" or "replace"
 operations to insert a new list entry or move an existing one.

 The "insert" attribute can take the values "first", "last", "before",
 and "after". If the value is "before" or "after", the "key"
 attribute MUST also be used, to specify an existing element in the
 list. The value of the "key" attribute is the key predicates of the
 full instance identifier (see Section 9.13) for the list entry.

 If no "insert" attribute is present in the "create" operation, it
 defaults to "last".

 If several entries in an "ordered-by user" list are modified in the
 same <edit-config> request, the entries are modified one at the time,
 in the order of the XML elements in the request.

 In a <copy-config>, or an <edit-config> with a "replace" operation
 that covers the entire list, the list entry order is the same as the
 order of the XML elements in the request.

 When a NETCONF server processes an <edit-config> request, the
 elements of procedure for a list node are:

 If the operation is "merge" or "replace", the list entry is
 created if it does not exist. If the list entry already exists

Bjorklund Expires September 10, 2015 [Page 74]

Internet-Draft YANG March 2015

 and the "insert" and "key" attributes are present, the list entry
 is moved according to the values of the "insert" and "key"
 attributes. If the list entry exists and the "insert" and "key"
 attributes are not present, the list entry is not moved.

 If the operation is "create", the list entry is created if it does
 not exist. If the list entry already exists, a "data-exists"
 error is returned.

 If the operation is "delete", the entry is deleted from the list
 if it exists. If the list entry does not exist, a "data-missing"
 error is returned.

7.8.7. Usage Example

 Given the following list:

 list user {
 key "name";
 config true;
 description "This is a list of users in the system.";

 leaf name {
 type string;
 }
 leaf type {
 type string;
 }
 leaf full-name {
 type string;
 }
 }

 A corresponding XML instance example:

 <user>
 <name>fred</name>
 <type>admin</type>
 <full-name>Fred Flintstone</full-name>
 </user>

 To create a new user "barney":

Bjorklund Expires September 10, 2015 [Page 75]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <user nc:operation="create">
 <name>barney</name>
 <type>admin</type>
 <full-name>Barney Rubble</full-name>
 </user>
 </system>
 </config>
 </edit-config>
 </rpc>

 To change the type of "fred" to "superuser":

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <user>
 <name>fred</name>
 <type>superuser</type>
 </user>
 </system>
 </config>
 </edit-config>
 </rpc>

 Given the following ordered-by user list:

Bjorklund Expires September 10, 2015 [Page 76]

Internet-Draft YANG March 2015

 list user {
 description "This is a list of users in the system.";
 ordered-by user;
 config true;

 key "name";

 leaf name {
 type string;
 }
 leaf type {
 type string;
 }
 leaf full-name {
 type string;
 }
 }

 The following would be used to insert a new user "barney" after the
 user "fred":

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:yang="urn:ietf:params:xml:ns:yang:1">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config"
 xmlns:ex="http://example.com/schema/config">
 <user nc:operation="create"
 yang:insert="after"
 yang:key="[ex:name='fred']">
 <name>barney</name>
 <type>admin</type>
 <full-name>Barney Rubble</full-name>
 </user>
 </system>
 </config>
 </edit-config>
 </rpc>

 The following would be used to move the user "barney" before the user
 "fred":

Bjorklund Expires September 10, 2015 [Page 77]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:yang="urn:ietf:params:xml:ns:yang:1">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config"
 xmlns:ex="http://example.com/schema/config">
 <user nc:operation="merge"
 yang:insert="before"
 yang:key="[ex:name='fred']">
 <name>barney</name>
 </user>
 </system>
 </config>
 </edit-config>
 </rpc>

7.9. The choice Statement

 The "choice" statement defines a set of alternatives, only one of
 which may exist at any one time. The argument is an identifier,
 followed by a block of substatements that holds detailed choice
 information. The identifier is used to identify the choice node in
 the schema tree. A choice node does not exist in the data tree.

 A choice consists of a number of branches, defined with the "case"
 substatement. Each branch contains a number of child nodes. The
 nodes from at most one of the choice's branches exist at the same
 time.

 See Section 8.3.2 for additional information.

7.9.1. The choice's Substatements

Bjorklund Expires September 10, 2015 [Page 78]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | case | 7.9.2 | 0..n |
 | choice | 7.9 | 0..n |
 | config | 7.20.1 | 0..1 |
 | container | 7.5 | 0..n |
 | default | 7.9.3 | 0..1 |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | mandatory | 7.9.4 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.9.2. The choice's case Statement

 The "case" statement is used to define branches of the choice. It
 takes as an argument an identifier, followed by a block of
 substatements that holds detailed case information.

 The identifier is used to identify the case node in the schema tree.
 A case node does not exist in the data tree.

 Within a "case" statement, the "anyxml", "choice", "container",
 "leaf", "list", "leaf-list", and "uses" statements can be used to
 define child nodes to the case node. The identifiers of all these
 child nodes MUST be unique within all cases in a choice. For
 example, the following is illegal:

 choice interface-type { // This example is illegal YANG
 case a {
 leaf ethernet { ... }
 }
 case b {
 container ethernet { ...}
 }
 }

 As a shorthand, the "case" statement can be omitted if the branch
 contains a single "anyxml", "choice", "container", "leaf", "list", or
 "leaf-list" statement. In this case, the identifier of the case node

Bjorklund Expires September 10, 2015 [Page 79]

Internet-Draft YANG March 2015

 is the same as the identifier in the branch statement. The following
 example:

 choice interface-type {
 container ethernet { ... }
 }

 is equivalent to:

 choice interface-type {
 case ethernet {
 container ethernet { ... }
 }
 }

 The case identifier MUST be unique within a choice.

7.9.2.1. The case's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | uses | 7.12 | 0..n |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.9.3. The choice's default Statement

 The "default" statement indicates if a case should be considered as
 the default if no child nodes from any of the choice's cases exist.
 The argument is the identifier of the "case" statement. If the
 "default" statement is missing, there is no default case.

 The "default" statement MUST NOT be present on choices where
 "mandatory" is true.

 The default case is only important when considering the default
 values of nodes under the cases. The default values for nodes under

Bjorklund Expires September 10, 2015 [Page 80]

Internet-Draft YANG March 2015

 the default case are used if none of the nodes under any of the cases
 are present.

 There MUST NOT be any mandatory nodes (Section 3.1) directly under
 the default case.

 Default values for child nodes under a case are only used if one of
 the nodes under that case is present, or if that case is the default
 case. If none of the nodes under a case are present and the case is
 not the default case, the default values of the cases' child nodes
 are ignored.

 In this example, the choice defaults to "interval", and the default
 value will be used if none of "daily", "time-of-day", or "manual" are
 present. If "daily" is present, the default value for "time-of-day"
 will be used.

 container transfer {
 choice how {
 default interval;
 case interval {
 leaf interval {
 type uint16;
 default 30;
 units minutes;
 }
 }
 case daily {
 leaf daily {
 type empty;
 }
 leaf time-of-day {
 type string;
 units 24-hour-clock;
 default 1am;
 }
 }
 case manual {
 leaf manual {
 type empty;
 }
 }
 }
 }

Bjorklund Expires September 10, 2015 [Page 81]

Internet-Draft YANG March 2015

7.9.4. The choice's mandatory Statement

 The "mandatory" statement, which is optional, takes as an argument
 the string "true" or "false", and puts a constraint on valid data.
 If "mandatory" is "true", at least one node from exactly one of the
 choice's case branches MUST exist.

 If not specified, the default is "false".

 The behavior of the constraint depends on the type of the choice's
 closest ancestor node in the schema tree which is not a non-presence
 container (see Section 7.5.1):

 o If this ancestor is a case node, the constraint is enforced if any
 other node from the case exists.

 o Otherwise, it is enforced if the ancestor node exists.

 The constraint is further enforced according to the rules in
Section 8.

7.9.5. XML Mapping Rules

 The choice and case nodes are not visible in XML.

 The child nodes of the selected "case" statement MUST be encoded in
 the same order as they are defined in the "case" statement if they
 are part of an RPC input or output parameter definition. Otherwise,
 the subelements are encoded in any order.

7.9.6. NETCONF <edit-config> Operations

 Since only one of the choice's cases can be valid at any time, the
 creation of a node from one case implicitly deletes all nodes from
 all other cases. If an <edit-config> operation creates a node from a
 case, the NETCONF server will delete any existing nodes that are
 defined in other cases inside the choice.

7.9.7. Usage Example

 Given the following choice:

Bjorklund Expires September 10, 2015 [Page 82]

Internet-Draft YANG March 2015

 container protocol {
 choice name {
 case a {
 leaf udp {
 type empty;
 }
 }
 case b {
 leaf tcp {
 type empty;
 }
 }
 }
 }

 A corresponding XML instance example:

 <protocol>
 <tcp/>
 </protocol>

 To change the protocol from tcp to udp:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <system xmlns="http://example.com/schema/config">
 <protocol>
 <udp nc:operation="create"/>
 </protocol>
 </system>
 </config>
 </edit-config>
 </rpc>

7.10. The anyxml Statement

 The "anyxml" statement defines an interior node in the schema tree.
 It takes one argument, which is an identifier, followed by a block of
 substatements that holds detailed anyxml information.

 The "anyxml" statement is used to represent an unknown chunk of XML.
 No restrictions are placed on the XML. This can be useful, for

Bjorklund Expires September 10, 2015 [Page 83]

Internet-Draft YANG March 2015

 example, in RPC replies. An example is the <filter> parameter in the
 <get-config> operation.

 An anyxml node cannot be augmented (see Section 7.16).

 Since the use of anyxml limits the manipulation of the content, it is
 RECOMMENDED that the "anyxml" statement not be used to represent
 configuration data.

 An anyxml node exists in zero or one instances in the data tree.

7.10.1. The anyxml's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | config | 7.20.1 | 0..1 |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | mandatory | 7.6.5 | 0..1 |
 | must | 7.5.3 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.10.2. XML Mapping Rules

 An anyxml node is encoded as an XML element. The element's local
 name is the anyxml's identifier, and its namespace is the module's
 XML namespace (see Section 7.1.3). The value of the anyxml node is
 encoded as XML content of this element.

 Note that any prefixes used in the encoding are local to each
 instance encoding. This means that the same XML may be encoded
 differently by different implementations.

7.10.3. NETCONF <edit-config> Operations

 An anyxml node is treated as an opaque chunk of data. This data can
 be modified in its entirety only.

 Any "operation" attributes present on subelements of an anyxml node
 are ignored by the NETCONF server.

 When a NETCONF server processes an <edit-config> request, the
 elements of procedure for the anyxml node are:

Bjorklund Expires September 10, 2015 [Page 84]

Internet-Draft YANG March 2015

 If the operation is "merge" or "replace", the node is created if
 it does not exist, and its value is set to the XML content of the
 anyxml node found in the XML RPC data.

 If the operation is "create", the node is created if it does not
 exist, and its value is set to the XML content of the anyxml node
 found in the XML RPC data. If the node already exists, a
 "data-exists" error is returned.

 If the operation is "delete", the node is deleted if it exists.
 If the node does not exist, a "data-missing" error is returned.

7.10.4. Usage Example

 Given the following "anyxml" statement:

 anyxml data;

 The following are two valid encodings of the same anyxml value:

 <data xmlns:if="http://example.com/ns/interface">
 <if:interface>
 <if:ifIndex>1</if:ifIndex>
 </if:interface>
 </data>

 <data>
 <interface xmlns="http://example.com/ns/interface">
 <ifIndex>1</ifIndex>
 </interface>
 </data>

7.11. The grouping Statement

 The "grouping" statement is used to define a reusable block of nodes,
 which may be used locally in the module or submodule, and by other
 modules that import from it, according to the rules in Section 5.5.
 It takes one argument, which is an identifier, followed by a block of
 substatements that holds detailed grouping information.

 The "grouping" statement is not a data definition statement and, as
 such, does not define any nodes in the schema tree.

 A grouping is like a "structure" or a "record" in conventional
 programming languages.

Bjorklund Expires September 10, 2015 [Page 85]

Internet-Draft YANG March 2015

 Once a grouping is defined, it can be referenced in a "uses"
 statement (see Section 7.12). A grouping MUST NOT reference itself,
 neither directly nor indirectly through a chain of other groupings.

 If the grouping is defined at the top level of a YANG module or
 submodule, the grouping's identifier MUST be unique within the
 module.

 A grouping is more than just a mechanism for textual substitution,
 but defines a collection of nodes. Identifiers appearing inside the
 grouping are resolved relative to the scope in which the grouping is
 defined, not where it is used. Prefix mappings, type names, grouping
 names, and extension usage are evaluated in the hierarchy where the
 "grouping" statement appears. For extensions, this means that
 extensions are applied to the grouping node, not the uses node.

7.11.1. The grouping's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | action | 7.14 | 0..n |
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 +--------------+---------+-------------+

7.11.2. Usage Example

Bjorklund Expires September 10, 2015 [Page 86]

Internet-Draft YANG March 2015

 import ietf-inet-types {
 prefix "inet";
 }

 grouping endpoint {
 description "A reusable endpoint group.";
 leaf ip {
 type inet:ip-address;
 }
 leaf port {
 type inet:port-number;
 }
 }

7.12. The uses Statement

 The "uses" statement is used to reference a "grouping" definition.
 It takes one argument, which is the name of the grouping.

 The effect of a "uses" reference to a grouping is that the nodes
 defined by the grouping are copied into the current schema tree, and
 then updated according to the "refine" and "augment" statements.

 The identifiers defined in the grouping are not bound to a namespace
 until the contents of the grouping are added to the schema tree via a
 "uses" statement that does not appear inside a "grouping" statement,
 at which point they are bound to the namespace of the current module.

7.12.1. The uses's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | augment | 7.16 | 0..n |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | refine | 7.12.2 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.12.2. The refine Statement

 Some of the properties of each node in the grouping can be refined
 with the "refine" statement. The argument is a string that
 identifies a node in the grouping. This node is called the refine's
 target node. If a node in the grouping is not present as a target

Bjorklund Expires September 10, 2015 [Page 87]

Internet-Draft YANG March 2015

 node of a "refine" statement, it is not refined, and thus used
 exactly as it was defined in the grouping.

 The argument string is a descendant schema node identifier (see
Section 6.5).

 The following refinements can be done:

 o A leaf or choice node may get a default value, or a new default
 value if it already had one.

 o Any node may get a specialized "description" string.

 o Any node may get a specialized "reference" string.

 o Any node may get a different "config" statement.

 o A leaf, anyxml, or choice node may get a different "mandatory"
 statement.

 o A container node may get a "presence" statement.

 o A leaf, leaf-list, list, container, or anyxml node may get
 additional "must" expressions.

 o A leaf-list or list node may get a different "min-elements" or
 "max-elements" statement.

 o A leaf, leaf-list, list, container, or anyxml node may get
 additional "if-feature" expressions.

7.12.3. XML Mapping Rules

 Each node in the grouping is encoded as if it was defined inline,
 even if it is imported from another module with another XML
 namespace.

7.12.4. Usage Example

 To use the "endpoint" grouping defined in Section 7.11.2 in a
 definition of an HTTP server in some other module, we can do:

Bjorklund Expires September 10, 2015 [Page 88]

Internet-Draft YANG March 2015

 import acme-system {
 prefix "acme";
 }

 container http-server {
 leaf name {
 type string;
 }
 uses acme:endpoint;
 }

 A corresponding XML instance example:

 <http-server>
 <name>extern-web</name>
 <ip>192.0.2.1</ip>
 <port>80</port>
 </http-server>

 If port 80 should be the default for the HTTP server, default can be
 added:

 container http-server {
 leaf name {
 type string;
 }
 uses acme:endpoint {
 refine port {
 default 80;
 }
 }
 }

 If we want to define a list of servers, and each server has the ip
 and port as keys, we can do:

 list server {
 key "ip port";
 leaf name {
 type string;
 }
 uses acme:endpoint;
 }

 The following is an error:

Bjorklund Expires September 10, 2015 [Page 89]

Internet-Draft YANG March 2015

 container http-server {
 uses acme:endpoint;
 leaf ip { // illegal - same identifier "ip" used twice
 type string;
 }
 }

7.13. The rpc Statement

 The "rpc" statement is used to define an RPC operation. It takes one
 argument, which is an identifier, followed by a block of
 substatements that holds detailed rpc information. This argument is
 the name of the RPC, and is used as the element name directly under
 the <rpc> element, as designated by the substitution group
 "rpcOperation" in [RFC6241].

 The "rpc" statement defines an rpc node in the schema tree. Under
 the rpc node, a schema node with the name "input", and a schema node
 with the name "output" are also defined. The nodes "input" and
 "output" are defined in the module's namespace.

7.13.1. The rpc's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | if-feature | 7.19.2 | 0..n |
 | input | 7.13.2 | 0..1 |
 | output | 7.13.3 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 +--------------+---------+-------------+

7.13.2. The input Statement

 The "input" statement, which is optional, is used to define input
 parameters to the operation. It does not take an argument. The
 substatements to "input" define nodes under the operation's input
 node.

 If a leaf in the input tree has a "mandatory" statement with the
 value "true", the leaf MUST be present in a NETCONF RPC invocation.
 Otherwise, the server MUST return a "missing-element" error.

https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 90]

Internet-Draft YANG March 2015

 If a leaf in the input tree has a default value, the NETCONF server
 MUST use this value in the same cases as described in Section 7.6.1.
 In these cases, the server MUST operationally behave as if the leaf
 was present in the NETCONF RPC invocation with the default value as
 its value.

 If a leaf-list in the input tree has one or more default values, the
 NETCONF server MUST use these values in the same cases as described
 in Section 7.7.2. In these cases, the server MUST operationally
 behave as if the leaf-list was present in the NETCONF RPC invocation
 with the default values as its values.

 If a "config" statement is present for any node in the input tree,
 the "config" statement is ignored.

 If any node has a "when" statement that would evaluate to false, then
 this node MUST NOT be present in the input tree.

7.13.2.1. The input's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | grouping | 7.11 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | must | 7.5.3 | 0..n |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 +--------------+---------+-------------+

7.13.3. The output Statement

 The "output" statement, which is optional, is used to define output
 parameters to the RPC operation. It does not take an argument. The
 substatements to "output" define nodes under the operation's output
 node.

 If a leaf in the output tree has a "mandatory" statement with the
 value "true", the leaf MUST be present in a NETCONF RPC reply.

 If a leaf in the output tree has a default value, the NETCONF client
 MUST use this value in the same cases as described in Section 7.6.1.
 In these cases, the client MUST operationally behave as if the leaf

Bjorklund Expires September 10, 2015 [Page 91]

Internet-Draft YANG March 2015

 was present in the NETCONF RPC reply with the default value as its
 value.

 If a leaf-list in the output tree has one or more default values, the
 NETCONF client MUST use these values in the same cases as described
 in Section 7.7.2. In these cases, the client MUST operationally
 behave as if the leaf-list was present in the NETCONF RPC reply with
 the default values as its values.

 If a "config" statement is present for any node in the output tree,
 the "config" statement is ignored.

 If any node has a "when" statement that would evaluate to false, then
 this node MUST NOT be present in the output tree.

7.13.3.1. The output's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | grouping | 7.11 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | must | 7.5.3 | 0..n |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 +--------------+---------+-------------+

7.13.4. XML Mapping Rules

 An rpc node is encoded as a child XML element to the <rpc> element
 defined in [RFC6241]. The element's local name is the rpc's
 identifier, and its namespace is the module's XML namespace (see

Section 7.1.3).

 Input parameters are encoded as child XML elements to the rpc node's
 XML element, in the same order as they are defined within the "input"
 statement.

 If the RPC operation invocation succeeded, and no output parameters
 are returned, the <rpc-reply> contains a single <ok/> element defined
 in [RFC6241]. If output parameters are returned, they are encoded as
 child elements to the <rpc-reply> element defined in [RFC6241], in
 the same order as they are defined within the "output" statement.

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 92]

Internet-Draft YANG March 2015

7.13.5. Usage Example

 The following example defines an RPC operation:

 module rock {
 yang-version 1.1;
 namespace "http://example.net/rock";
 prefix "rock";

 rpc rock-the-house {
 input {
 leaf zip-code {
 type string;
 }
 }
 }
 }

 A corresponding XML instance example of the complete rpc and rpc-
 reply:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rock-the-house xmlns="http://example.net/rock">
 <zip-code>27606-0100</zip-code>
 </rock-the-house>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

7.14. The action Statement

 The "action" statement is used to define an operation connected to a
 specific container or list data node. It takes one argument, which
 is an identifier, followed by a block of substatements that holds
 detailed action information. The argument is the name of the action.

 The "action" statement defines an action node in the schema tree.
 Under the action node, a schema node with the name "input", and a
 schema node with the name "output" are also defined. The nodes
 "input" and "output" are defined in the module's namespace.

 An action MUST NOT be defined within an rpc, another action or a
 notification, i.e., an action node MUST NOT have an rpc, action, or a
 notification node as one of its ancestors in the schema tree. For

Bjorklund Expires September 10, 2015 [Page 93]

Internet-Draft YANG March 2015

 example, this means that it is an error if a grouping that contains
 an action is used in a notification definition.

 The difference between an action and an rpc is that an action is tied
 to a node in the data tree, whereas an rpc is not. When an action is
 invoked, the node in the data tree is specified along with the name
 of the action and the input parameters.

7.14.1. The action's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | if-feature | 7.19.2 | 0..n |
 | input | 7.13.2 | 0..1 |
 | output | 7.13.3 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 +--------------+---------+-------------+

7.14.2. XML Mapping Rules

 When an action is invoked, an element with the local name "action" in
 the namespace "urn:ietf:params:xml:ns:yang:1" (see Section 5.3.1) is
 encoded as a child XML element to the <rpc> element defined in
 [RFC6241], as designated by the substitution group "rpcOperation" in
 [RFC6241].

 The "action" element contains an hierarchy of nodes that identifies
 the node in the data tree. It MUST contain all containers and list
 nodes from the top level down to the list or container containing the
 action. For lists, all key leafs MUST also be included. The last
 container or list contains an XML element that carries the name of
 the defined action. Within this element the input parameters are
 encoded as child XML elements, in the same order as they are defined
 within the "input" statement.

 Only one action can be invoked in one <rpc>. If more than one
 actions are present in the <rpc>, the server MUST reply with an
 "bad-element" error-tag in the <rpc-error>.

 If the action operation invocation succeeded, and no output
 parameters are returned, the <rpc-reply> contains a single <ok/>
 element defined in [RFC6241]. If output parameters are returned,
 they are encoded as child elements to the <rpc-reply> element defined

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 94]

Internet-Draft YANG March 2015

 in [RFC6241], in the same order as they are defined within the
 "output" statement.

7.14.3. Usage Example

 The following example defines an action to reset one server at a
 server farm:

 module server-farm {
 yang-version 1.1;
 namespace "http://example.net/server-farm";
 prefix "sfarm";

 import ietf-yang-types {
 prefix "yang";
 }

 list server {
 key name;
 leaf name {
 type string;
 }
 action reset {
 input {
 leaf reset-at {
 type yang:date-and-time;
 mandatory true;
 }
 }
 output {
 leaf reset-finished-at {
 type yang:date-and-time;
 mandatory true;
 }
 }
 }
 }
 }

 A corresponding XML instance example of the complete rpc and rpc-
 reply:

https://datatracker.ietf.org/doc/html/rfc6241

Bjorklund Expires September 10, 2015 [Page 95]

Internet-Draft YANG March 2015

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <server xmlns="http://example.net/server-farm">
 <name>apache-1</name>
 <reset>
 <reset-at>2014-07-29T13:42:00Z</reset-at>
 </reset>
 </server>
 </action>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <reset-finished-at xmlns="http://example.net/server-farm">
 2014-07-29T13:42:12Z
 </reset-at>
 </rpc-reply>

7.15. The notification Statement

 The "notification" statement is used to define a NETCONF
 notification. It takes one argument, which is an identifier,
 followed by a block of substatements that holds detailed notification
 information. The "notification" statement defines a notification
 node in the schema tree.

 If a leaf in the notification tree has a "mandatory" statement with
 the value "true", the leaf MUST be present in a NETCONF notification.

 If a leaf in the notification tree has a default value, the NETCONF
 client MUST use this value in the same cases as described in

Section 7.6.1. In these cases, the client MUST operationally behave
 as if the leaf was present in the NETCONF notification with the
 default value as its value.

 If a leaf-list in the notification tree has one or more default
 values, the NETCONF client MUST use these values in the same cases as
 described in Section 7.7.2. In these cases, the client MUST
 operationally behave as if the leaf-list was present in the NETCONF
 notification with the default values as its values.

 If a "config" statement is present for any node in the notification
 tree, the "config" statement is ignored.

Bjorklund Expires September 10, 2015 [Page 96]

Internet-Draft YANG March 2015

7.15.1. The notification's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | anyxml | 7.10 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | grouping | 7.11 | 0..n |
 | if-feature | 7.19.2 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | must | 7.5.3 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | typedef | 7.3 | 0..n |
 | uses | 7.12 | 0..n |
 +--------------+---------+-------------+

7.15.2. XML Mapping Rules

 A notification node is encoded as a child XML element to the
 <notification> element defined in NETCONF Event Notifications
 [RFC5277]. The element's local name is the notification's
 identifier, and its namespace is the module's XML namespace (see

Section 7.1.3).

7.15.3. Usage Example

 The following example defines a notification:

 module event {
 yang-version 1.1;
 namespace "http://example.com/event";
 prefix "ev";

 notification event {
 leaf event-class {
 type string;
 }
 anyxml reporting-entity;
 leaf severity {
 type string;
 }
 }
 }

https://datatracker.ietf.org/doc/html/rfc5277

Bjorklund Expires September 10, 2015 [Page 97]

Internet-Draft YANG March 2015

 A corresponding XML instance example of the complete notification:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2008-07-08T00:01:00Z</eventTime>
 <event xmlns="http://example.com/event">
 <event-class>fault</event-class>
 <reporting-entity>
 <card>Ethernet0</card>
 </reporting-entity>
 <severity>major</severity>
 </event>
 </notification>

7.16. The augment Statement

 The "augment" statement allows a module or submodule to add to the
 schema tree defined in an external module, or the current module and
 its submodules, and to add to the nodes from a grouping in a "uses"
 statement. The argument is a string that identifies a node in the
 schema tree. This node is called the augment's target node. The
 target node MUST be either a container, list, choice, case, input,
 output, or notification node. It is augmented with the nodes defined
 in the substatements that follow the "augment" statement.

 The argument string is a schema node identifier (see Section 6.5).
 If the "augment" statement is on the top level in a module or
 submodule, the absolute form (defined by the rule
 "absolute-schema-nodeid" in Section 13) of a schema node identifier
 MUST be used. If the "augment" statement is a substatement to the
 "uses" statement, the descendant form (defined by the rule
 "descendant-schema-nodeid" in Section 13) MUST be used.

 If the target node is a container, list, case, input, output, or
 notification node, the "container", "leaf", "list", "leaf-list",
 "uses", and "choice" statements can be used within the "augment"
 statement.

 If the target node is a choice node, the "case" statement, or a case
 shorthand statement (see Section 7.9.2) can be used within the
 "augment" statement.

 If the target node is in another module, then nodes added by the
 augmentation MUST NOT be mandatory nodes (see Section 3.1).

 The "augment" statement MUST NOT add multiple nodes with the same
 name from the same module to the target node.

Bjorklund Expires September 10, 2015 [Page 98]

Internet-Draft YANG March 2015

7.16.1. The augment's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | action | 7.14 | 0..n |
 | anyxml | 7.10 | 0..n |
 | case | 7.9.2 | 0..n |
 | choice | 7.9 | 0..n |
 | container | 7.5 | 0..n |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | leaf | 7.6 | 0..n |
 | leaf-list | 7.7 | 0..n |
 | list | 7.8 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | uses | 7.12 | 0..n |
 | when | 7.20.5 | 0..1 |
 +--------------+---------+-------------+

7.16.2. XML Mapping Rules

 All data nodes defined in the "augment" statement are defined as XML
 elements in the XML namespace of the module where the "augment" is
 specified.

 When a node is augmented, the augmenting child nodes are encoded as
 subelements to the augmented node, in any order.

7.16.3. Usage Example

 In namespace http://example.com/schema/interfaces, we have:

Bjorklund Expires September 10, 2015 [Page 99]

Internet-Draft YANG March 2015

 container interfaces {
 list ifEntry {
 key "ifIndex";

 leaf ifIndex {
 type uint32;
 }
 leaf ifDescr {
 type string;
 }
 leaf ifType {
 type iana:IfType;
 }
 leaf ifMtu {
 type int32;
 }
 }
 }

 Then, in namespace http://example.com/schema/ds0, we have:

 import interface-module {
 prefix "if";
 }
 augment "/if:interfaces/if:ifEntry" {
 when "if:ifType='ds0'";
 leaf ds0ChannelNumber {
 type ChannelNumber;
 }
 }

 A corresponding XML instance example:

 <interfaces xmlns="http://example.com/schema/interfaces"
 xmlns:ds0="http://example.com/schema/ds0">
 <ifEntry>
 <ifIndex>1</ifIndex>
 <ifDescr>Flintstone Inc Ethernet A562</ifDescr>
 <ifType>ethernetCsmacd</ifType>
 <ifMtu>1500</ifMtu>
 </ifEntry>
 <ifEntry>
 <ifIndex>2</ifIndex>
 <ifDescr>Flintstone Inc DS0</ifDescr>
 <ifType>ds0</ifType>
 <ds0:ds0ChannelNumber>1</ds0:ds0ChannelNumber>
 </ifEntry>
 </interfaces>

Bjorklund Expires September 10, 2015 [Page 100]

Internet-Draft YANG March 2015

 As another example, suppose we have the choice defined in
Section 7.9.7. The following construct can be used to extend the

 protocol definition:

 augment /ex:system/ex:protocol/ex:name {
 case c {
 leaf smtp {
 type empty;
 }
 }
 }

 A corresponding XML instance example:

 <ex:system>
 <ex:protocol>
 <ex:tcp/>
 </ex:protocol>
 </ex:system>

 or

 <ex:system>
 <ex:protocol>
 <other:smtp/>
 </ex:protocol>
 </ex:system>

7.17. The identity Statement

 The "identity" statement is used to define a new globally unique,
 abstract, and untyped identity. Its only purpose is to denote its
 name, semantics, and existence. An identity can either be defined
 from scratch or derived from one or more base identities. The
 identity's argument is an identifier that is the name of the
 identity. It is followed by a block of substatements that holds
 detailed identity information.

 The built-in datatype "identityref" (see Section 9.10) can be used to
 reference identities within a data model.

7.17.1. The identity's Substatements

Bjorklund Expires September 10, 2015 [Page 101]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | base | 7.17.2 | 0..n |
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 +--------------+---------+-------------+

7.17.2. The base Statement

 The "base" statement, which is optional, takes as an argument a
 string that is the name of an existing identity, from which the new
 identity is derived. If no "base" statement is present, the identity
 is defined from scratch. If multiple "base" statements are present,
 the identity is derived from all of them.

 If a prefix is present on the base name, it refers to an identity
 defined in the module that was imported with that prefix, or the
 local module if the prefix matches the local module's prefix.
 Otherwise, an identity with the matching name MUST be defined in the
 current module or an included submodule.

 An identity MUST NOT reference itself, neither directly nor
 indirectly through a chain of other identities.

 The derivation of identities has the following properties:

 o It is irreflexive, which means that an identity is not derived
 from itself.

 o It is transitive, which means that if identity B is derived from A
 and C is derived from B, then C is also derived from A.

7.17.3. Usage Example

Bjorklund Expires September 10, 2015 [Page 102]

Internet-Draft YANG March 2015

 module crypto-base {
 yang-version 1.1;
 namespace "http://example.com/crypto-base";
 prefix "crypto";

 identity crypto-alg {
 description
 "Base identity from which all crypto algorithms
 are derived.";
 }
 }

 module des {
 yang-version 1.1;
 namespace "http://example.com/des";
 prefix "des";

 import "crypto-base" {
 prefix "crypto";
 }

 identity des {
 base "crypto:crypto-alg";
 description "DES crypto algorithm";
 }

 identity des3 {
 base "crypto:crypto-alg";
 description "Triple DES crypto algorithm";
 }
 }

7.18. The extension Statement

 The "extension" statement allows the definition of new statements
 within the YANG language. This new statement definition can be
 imported and used by other modules.

 The statement's argument is an identifier that is the new keyword for
 the extension and must be followed by a block of substatements that
 holds detailed extension information. The purpose of the "extension"
 statement is to define a keyword, so that it can be imported and used
 by other modules.

 The extension can be used like a normal YANG statement, with the
 statement name followed by an argument if one is defined by the
 "extension" statement, and an optional block of substatements. The
 statement's name is created by combining the prefix of the module in

Bjorklund Expires September 10, 2015 [Page 103]

Internet-Draft YANG March 2015

 which the extension was defined, a colon (":"), and the extension's
 keyword, with no interleaving whitespace. The substatements of an
 extension are defined by the "extension" statement, using some
 mechanism outside the scope of this specification. Syntactically,
 the substatements MUST be YANG statements, or also extensions defined
 using "extension" statements. YANG statements in extensions MUST
 follow the syntactical rules in Section 13.

7.18.1. The extension's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | argument | 7.18.2 | 0..1 |
 | description | 7.20.3 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 +--------------+---------+-------------+

7.18.2. The argument Statement

 The "argument" statement, which is optional, takes as an argument a
 string that is the name of the argument to the keyword. If no
 argument statement is present, the keyword expects no argument when
 it is used.

 The argument's name is used in the YIN mapping, where it is used as
 an XML attribute or element name, depending on the argument's
 "yin-element" statement.

7.18.2.1. The argument's Substatements

 +--------------+----------+-------------+
 | substatement | section | cardinality |
 +--------------+----------+-------------+
 | yin-element | 7.18.2.2 | 0..1 |
 +--------------+----------+-------------+

7.18.2.2. The yin-element Statement

 The "yin-element" statement, which is optional, takes as an argument
 the string "true" or "false". This statement indicates if the
 argument is mapped to an XML element in YIN or to an XML attribute
 (see Section 12).

 If no "yin-element" statement is present, it defaults to "false".

Bjorklund Expires September 10, 2015 [Page 104]

Internet-Draft YANG March 2015

7.18.3. Usage Example

 To define an extension:

 module my-extensions {
 ...

 extension c-define {
 description
 "Takes as argument a name string.
 Makes the code generator use the given name in the
 #define.";
 argument "name";
 }
 }

 To use the extension:

 module my-interfaces {
 ...
 import my-extensions {
 prefix "myext";
 }
 ...

 container interfaces {
 ...
 myext:c-define "MY_INTERFACES";
 }
 }

7.19. Conformance-Related Statements

 This section defines statements related to conformance, as described
 in Section 5.6.

7.19.1. The feature Statement

 The "feature" statement is used to define a mechanism by which
 portions of the schema are marked as conditional. A feature name is
 defined that can later be referenced using the "if-feature" statement
 (see Section 7.19.2). Schema nodes tagged with an "if-feature"
 statement are ignored by the device unless the device supports the
 given feature expression. This allows portions of the YANG module to
 be conditional based on conditions on the device. The model can
 represent the abilities of the device within the model, giving a
 richer model that allows for differing device abilities and roles.

Bjorklund Expires September 10, 2015 [Page 105]

Internet-Draft YANG March 2015

 The argument to the "feature" statement is the name of the new
 feature, and follows the rules for identifiers in Section 6.2. This
 name is used by the "if-feature" statement to tie the schema nodes to
 the feature.

 In this example, a feature called "local-storage" represents the
 ability for a device to store syslog messages on local storage of
 some sort. This feature is used to make the "local-storage-limit"
 leaf conditional on the presence of some sort of local storage. If
 the device does not report that it supports this feature, the
 "local-storage-limit" node is not supported.

 module syslog {
 ...
 feature local-storage {
 description
 "This feature means the device supports local
 storage (memory, flash or disk) that can be used to
 store syslog messages.";
 }

 container syslog {
 leaf local-storage-limit {
 if-feature local-storage;
 type uint64;
 units "kilobyte";
 config false;
 description
 "The amount of local storage that can be
 used to hold syslog messages.";
 }
 }
 }

 The "if-feature" statement can be used in many places within the YANG
 syntax. Definitions tagged with "if-feature" are ignored when the
 device does not support that feature.

 A feature MUST NOT reference itself, neither directly nor indirectly
 through a chain of other features.

 In order for a device to implement a feature that is dependent on any
 other features (i.e., the feature has one or more "if-feature"
 substatements), the device MUST also implement all the dependant
 features.

Bjorklund Expires September 10, 2015 [Page 106]

Internet-Draft YANG March 2015

7.19.1.1. The feature's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | status | 7.20.2 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +--------------+---------+-------------+

7.19.2. The if-feature Statement

 The "if-feature" statement makes its parent statement conditional.
 The argument is a boolean expression over feature names. In this
 expression, a feature name evaluates to "true" if and only if the
 feature is implemented by the server. The parent statement is
 implemented by servers where the boolean expression evaluates to
 "true".

 The if-feature boolean expression syntax is formally defined by the
 rule "if-feature-expr" in Section 13. When this boolean expression
 is evaluated, the operator order of precedence is (highest precedence
 first): "not", "and", "or".

 If a prefix is present on a feature name in the boolean expression,
 the prefixed name refers to a feature defined in the module that was
 imported with that prefix, or the local module if the prefix matches
 the local module's prefix. Otherwise, a feature with the matching
 name MUST be defined in the current module or an included submodule.

 A leaf that is a list key MUST NOT have any "if-feature" statements,
 unless the conditions specified in the "if-feature" statements are
 the same as the "if-feature" conditions in effect on the leaf's
 parent node.

7.19.2.1. Usage Example

 In this example, the container "target" is implemented if any of the
 features "outbound-tls" or "outbound-ssh" is implemented by the
 server.

 container target {
 if-feature "outbound-tls or outbound-ssh";
 ...
 }

Bjorklund Expires September 10, 2015 [Page 107]

Internet-Draft YANG March 2015

7.19.3. The deviation Statement

 The "deviation" statement defines a hierarchy of a module that the
 device does not implement faithfully. The argument is a string that
 identifies the node in the schema tree where a deviation from the
 module occurs. This node is called the deviation's target node. The
 contents of the "deviation" statement give details about the
 deviation.

 The argument string is an absolute schema node identifier (see
Section 6.5).

 Deviations define the way a device or class of devices deviate from a
 standard. This means that deviations MUST never be part of a
 published standard, since they are the mechanism for learning how
 implementations vary from the standards.

 Device deviations are strongly discouraged and MUST only be used as a
 last resort. Telling the application how a device fails to follow a
 standard is no substitute for implementing the standard correctly. A
 device that deviates from a module is not fully compliant with the
 module.

 However, in some cases, a particular device may not have the hardware
 or software ability to support parts of a standard module. When this
 occurs, the device makes a choice either to treat attempts to
 configure unsupported parts of the module as an error that is
 reported back to the unsuspecting application or ignore those
 incoming requests. Neither choice is acceptable.

 Instead, YANG allows devices to document portions of a base module
 that are not supported or supported but with different syntax, by
 using the "deviation" statement.

7.19.3.1. The deviation's Substatements

 +--------------+----------+-------------+
 | substatement | section | cardinality |
 +--------------+----------+-------------+
 | description | 7.20.3 | 0..1 |
 | deviate | 7.19.3.2 | 1..n |
 | reference | 7.20.4 | 0..1 |
 +--------------+----------+-------------+

Bjorklund Expires September 10, 2015 [Page 108]

Internet-Draft YANG March 2015

7.19.3.2. The deviate Statement

 The "deviate" statement defines how the device's implementation of
 the target node deviates from its original definition. The argument
 is one of the strings "not-supported", "add", "replace", or "delete".

 The argument "not-supported" indicates that the target node is not
 implemented by this device.

 The argument "add" adds properties to the target node. The
 properties to add are identified by substatements to the "deviate"
 statement. If a property can only appear once, the property MUST NOT
 exist in the target node.

 The argument "replace" replaces properties of the target node. The
 properties to replace are identified by substatements to the
 "deviate" statement. The properties to replace MUST exist in the
 target node.

 The argument "delete" deletes properties from the target node. The
 properties to delete are identified by substatements to the "delete"
 statement. The substatement's keyword MUST match a corresponding
 keyword in the target node, and the argument's string MUST be equal
 to the corresponding keyword's argument string in the target node.

 +--------------+-------------+-------------+
 | substatement | section | cardinality |
 +--------------+-------------+-------------+
 | config | 7.20.1 | 0..1 |
 | default | 7.6.4 7.7.4 | 0..n |
 | mandatory | 7.6.5 | 0..1 |
 | max-elements | 7.7.6 | 0..1 |
 | min-elements | 7.7.5 | 0..1 |
 | must | 7.5.3 | 0..n |
 | type | 7.4 | 0..1 |
 | unique | 7.8.3 | 0..n |
 | units | 7.3.3 | 0..1 |
 +--------------+-------------+-------------+

 The deviate's Substatements

7.19.3.3. Usage Example

 In this example, the device is informing client applications that it
 does not support the "daytime" service in the style of RFC 867.

https://datatracker.ietf.org/doc/html/rfc867

Bjorklund Expires September 10, 2015 [Page 109]

Internet-Draft YANG March 2015

 deviation /base:system/base:daytime {
 deviate not-supported;
 }

 The following example sets a device-specific default value to a leaf
 that does not have a default value defined:

 deviation /base:system/base:user/base:type {
 deviate add {
 default "admin"; // new users are 'admin' by default
 }
 }

 In this example, the device limits the number of name servers to 3:

 deviation /base:system/base:name-server {
 deviate replace {
 max-elements 3;
 }
 }

 If the original definition is:

 container system {
 must "daytime or time";
 ...
 }

 a device might remove this must constraint by doing:

 deviation "/base:system" {
 deviate delete {
 must "daytime or time";
 }
 }

7.20. Common Statements

 This section defines substatements common to several other
 statements.

7.20.1. The config Statement

 The "config" statement takes as an argument the string "true" or
 "false". If "config" is "true", the definition represents
 configuration. Data nodes representing configuration will be part of
 the reply to a <get-config> request, and can be sent in a
 <copy-config> or <edit-config> request.

Bjorklund Expires September 10, 2015 [Page 110]

Internet-Draft YANG March 2015

 If "config" is "false", the definition represents state data. Data
 nodes representing state data will be part of the reply to a <get>,
 but not to a <get-config> request, and cannot be sent in a
 <copy-config> or <edit-config> request.

 If "config" is not specified, the default is the same as the parent
 schema node's "config" value. If the parent node is a "case" node,
 the value is the same as the "case" node's parent "choice" node.

 If the top node does not specify a "config" statement, the default is
 "true".

 If a node has "config" set to "false", no node underneath it can have
 "config" set to "true".

7.20.2. The status Statement

 The "status" statement takes as an argument one of the strings
 "current", "deprecated", or "obsolete".

 o "current" means that the definition is current and valid.

 o "deprecated" indicates an obsolete definition, but it permits new/
 continued implementation in order to foster interoperability with
 older/existing implementations.

 o "obsolete" means the definition is obsolete and SHOULD NOT be
 implemented and/or can be removed from implementations.

 If no status is specified, the default is "current".

 If a definition is "current", it MUST NOT reference a "deprecated" or
 "obsolete" definition within the same module.

 If a definition is "deprecated", it MUST NOT reference an "obsolete"
 definition within the same module.

 For example, the following is illegal:

 typedef my-type {
 status deprecated;
 type int32;
 }

 leaf my-leaf {
 status current;
 type my-type; // illegal, since my-type is deprecated
 }

Bjorklund Expires September 10, 2015 [Page 111]

Internet-Draft YANG March 2015

7.20.3. The description Statement

 The "description" statement takes as an argument a string that
 contains a human-readable textual description of this definition.
 The text is provided in a language (or languages) chosen by the
 module developer; for the sake of interoperability, it is RECOMMENDED
 to choose a language that is widely understood among the community of
 network administrators who will use the module.

7.20.4. The reference Statement

 The "reference" statement takes as an argument a string that is used
 to specify a textual cross-reference to an external document, either
 another module that defines related management information, or a
 document that provides additional information relevant to this
 definition.

 For example, a typedef for a "uri" data type could look like:

 typedef uri {
 type string;
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax";
 ...
 }

7.20.5. The when Statement

 The "when" statement makes its parent data definition statement
 conditional. The node defined by the parent data definition
 statement is only valid when the condition specified by the "when"
 statement is satisfied. The statement's argument is an XPath
 expression (see Section 6.4), which is used to formally specify this
 condition. If the XPath expression conceptually evaluates to "true"
 for a particular instance, then the node defined by the parent data
 definition statement is valid; otherwise, it is not.

 A leaf that is a list key MUST NOT have a "when" statement, unless
 the condition specified in the "when" statement is the same as the
 "when" condition in effect on the leaf's parent node.

 See Section 8.3.2 for additional information.

 The XPath expression is conceptually evaluated in the following
 context, in addition to the definition in Section 6.4.1:

 o If the "when" statement is a child of an "augment" statement, then
 the context node is the augment's target node in the data tree, if

https://datatracker.ietf.org/doc/html/rfc3986

Bjorklund Expires September 10, 2015 [Page 112]

Internet-Draft YANG March 2015

 the target node is a data node. Otherwise, the context node is
 the closest ancestor node to the target node that is also a data
 node.

 o If the "when" statement is a child of a "uses", "choice", or
 "case" statement, then the context node is the closest ancestor
 node to the "uses", "choice", or "case" node that is also a data
 node.

 o If the "when" statement is a child of any other data definition
 statement, the context node is the node in the accessible tree for
 which the "when" statement is defined.

 The result of the XPath expression is converted to a boolean value
 using the standard XPath rules.

 If the XPath expression references any node that also has associated
 "when" statements, these "when" expressions MUST be evaluated first.
 There MUST NOT be any circular dependencies in these "when"
 expressions.

 Note that the XPath expression is conceptually evaluated. This means
 that an implementation does not have to use an XPath evaluator on the
 device. The "when" statement can very well be implemented with
 specially written code.

8. Constraints

8.1. Constraints on Data

 Several YANG statements define constraints on valid data. These
 constraints are enforced in different ways, depending on what type of
 data the statement defines.

 o If the constraint is defined on configuration data, it MUST be
 true in a valid configuration data tree.

 o If the constraint is defined on state data, it MUST be true in a
 reply to a <get> operation without a filter.

 o If the constraint is defined on notification content, it MUST be
 true in any notification instance.

 o If the constraint is defined on RPC input parameters, it MUST be
 true in an invocation of the RPC operation.

 o If the constraint is defined on RPC output parameters, it MUST be
 true in the RPC reply.

Bjorklund Expires September 10, 2015 [Page 113]

Internet-Draft YANG March 2015

8.2. Hierarchy of Constraints

 Conditions on parent nodes affect constraints on child nodes as a
 natural consequence of the hierarchy of nodes. "must", "mandatory",
 "min-elements", and "max-elements" constraints are not enforced if
 the parent node has a "when" or "if-feature" property that is not
 satisfied on the current device.

 In this example, the "mandatory" constraint on the "longitude" leaf
 is not enforced on devices that lack the "has-gps" feature:

 container location {
 if-feature has-gps;
 leaf longitude {
 mandatory true;
 ...
 }
 }

8.3. Constraint Enforcement Model

 For configuration data, there are three windows when constraints MUST
 be enforced:

 o during parsing of RPC payloads

 o during processing of NETCONF operations

 o during validation

 Each of these scenarios is considered in the following sections.

8.3.1. Payload Parsing

 When content arrives in RPC payloads, it MUST be well-formed XML,
 following the hierarchy and content rules defined by the set of
 models the device implements.

 o If a leaf data value does not match the type constraints for the
 leaf, including those defined in the type's "range", "length", and
 "pattern" properties, the server MUST reply with an
 "invalid-value" error-tag in the rpc-error, and with the error-
 app-tag and error-message associated with the constraint, if any
 exist.

 o If all keys of a list entry are not present, the server MUST reply
 with a "missing-element" error-tag in the rpc-error.

Bjorklund Expires September 10, 2015 [Page 114]

Internet-Draft YANG March 2015

 o If data for more than one case branch of a choice is present, the
 server MUST reply with a "bad-element" in the rpc-error.

 o If data for a node tagged with "if-feature" is present, and the
 if-feature expression evaluates to "false" on the device, the
 server MUST reply with an "unknown-element" error-tag in the rpc-
 error.

 o If data for a node tagged with "when" is present, and the "when"
 condition evaluates to "false", the server MUST reply with an
 "unknown-element" error-tag in the rpc-error.

 o For insert handling, if the value for the attributes "before" and
 "after" are not valid for the type of the appropriate key leafs,
 the server MUST reply with a "bad-attribute" error-tag in the rpc-
 error.

 o If the attributes "before" and "after" appears in any element that
 is not a list whose "ordered-by" property is "user", the server
 MUST reply with an "unknown-attribute" error-tag in the rpc-error.

8.3.2. NETCONF <edit-config> Processing

 After the incoming data is parsed, the NETCONF server performs the
 <edit-config> operation by applying the data to the configuration
 datastore. During this processing, the following errors MUST be
 detected:

 o Delete requests for non-existent data.

 o Create requests for existent data.

 o Insert requests with "before" or "after" parameters that do not
 exist.

 During <edit-config> processing:

 o If the NETCONF operation creates data nodes under a "choice", any
 existing nodes from other "case" branches are deleted by the
 server.

 o If the NETCONF operation modifies a data node such that any node's
 "when" expression becomes false, then the node with the "when"
 expression is deleted by the server.

Bjorklund Expires September 10, 2015 [Page 115]

Internet-Draft YANG March 2015

8.3.3. Validation

 When datastore processing is complete, the final contents MUST obey
 all validation constraints. This validation processing is performed
 at differing times according to the datastore. If the datastore is
 "running" or "startup", these constraints MUST be enforced at the end
 of the <edit-config> or <copy-config> operation. If the datastore is
 "candidate", the constraint enforcement is delayed until a <commit>
 or <validate> operation.

 o Any "must" constraints MUST evaluate to "true".

 o Any referential integrity constraints defined via the "path"
 statement MUST be satisfied.

 o Any "unique" constraints on lists MUST be satisfied.

 o The "min-elements" and "max-elements" constraints are enforced for
 lists and leaf-lists.

9. Built-In Types

 YANG has a set of built-in types, similar to those of many
 programming languages, but with some differences due to special
 requirements from the management information model.

 Additional types may be defined, derived from those built-in types or
 from other derived types. Derived types may use subtyping to
 formally restrict the set of possible values.

 The different built-in types and their derived types allow different
 kinds of subtyping, namely length and regular expression restrictions
 of strings (Section 9.4.4, Section 9.4.5) and range restrictions of
 numeric types (Section 9.2.4).

 The lexical representation of a value of a certain type is used in
 the NETCONF messages and when specifying default values and numerical
 ranges in YANG modules.

9.1. Canonical Representation

 For most types, there is a single canonical representation of the
 type's values. Some types allow multiple lexical representations of
 the same value, for example, the positive integer "17" can be
 represented as "+17" or "17". Implementations MUST support all
 lexical representations specified in this document.

 When a NETCONF server sends data, it MUST be in the canonical form.

Bjorklund Expires September 10, 2015 [Page 116]

Internet-Draft YANG March 2015

 Some types have a lexical representation that depends on the XML
 context in which they occur. These types do not have a canonical
 form.

9.2. The Integer Built-In Types

 The integer built-in types are int8, int16, int32, int64, uint8,
 uint16, uint32, and uint64. They represent signed and unsigned
 integers of different sizes:

 int8 represents integer values between -128 and 127, inclusively.

 int16 represents integer values between -32768 and 32767,
 inclusively.

 int32 represents integer values between -2147483648 and 2147483647,
 inclusively.

 int64 represents integer values between -9223372036854775808 and
 9223372036854775807, inclusively.

 uint8 represents integer values between 0 and 255, inclusively.

 uint16 represents integer values between 0 and 65535, inclusively.

 uint32 represents integer values between 0 and 4294967295,
 inclusively.

 uint64 represents integer values between 0 and 18446744073709551615,
 inclusively.

9.2.1. Lexical Representation

 An integer value is lexically represented as an optional sign ("+" or
 "-"), followed by a sequence of decimal digits. If no sign is
 specified, "+" is assumed.

 For convenience, when specifying a default value for an integer in a
 YANG module, an alternative lexical representation can be used, which
 represents the value in a hexadecimal or octal notation. The
 hexadecimal notation consists of an optional sign ("+" or "-"), the
 characters "0x" followed a number of hexadecimal digits, where
 letters may be uppercase or lowercase. The octal notation consists
 of an optional sign ("+" or "-"), the character "0" followed a number
 of octal digits.

 Note that if a default value in a YANG module has a leading zero
 ("0"), it is interpreted as an octal number. In the XML instance

Bjorklund Expires September 10, 2015 [Page 117]

Internet-Draft YANG March 2015

 documents, an integer is always interpreted as a decimal number, and
 leading zeros are allowed.

 Examples:

 // legal values
 +4711 // legal positive value
 4711 // legal positive value
 -123 // legal negative value
 0xf00f // legal positive hexadecimal value
 -0xf // legal negative hexadecimal value
 052 // legal positive octal value

 // illegal values
 - 1 // illegal intermediate space

9.2.2. Canonical Form

 The canonical form of a positive integer does not include the sign
 "+". Leading zeros are prohibited. The value zero is represented as
 "0".

9.2.3. Restrictions

 All integer types can be restricted with the "range" statement
 (Section 9.2.4).

9.2.4. The range Statement

 The "range" statement, which is an optional substatement to the
 "type" statement, takes as an argument a range expression string. It
 is used to restrict integer and decimal built-in types, or types
 derived from those.

 A range consists of an explicit value, or a lower-inclusive bound,
 two consecutive dots "..", and an upper-inclusive bound. Multiple
 values or ranges can be given, separated by "|". If multiple values
 or ranges are given, they all MUST be disjoint and MUST be in
 ascending order. If a range restriction is applied to an already
 range-restricted type, the new restriction MUST be equal or more
 limiting, that is raising the lower bounds, reducing the upper
 bounds, removing explicit values or ranges, or splitting ranges into
 multiple ranges with intermediate gaps. Each explicit value and
 range boundary value given in the range expression MUST match the
 type being restricted, or be one of the special values "min" or
 "max". "min" and "max" mean the minimum and maximum value accepted
 for the type being restricted, respectively.

Bjorklund Expires September 10, 2015 [Page 118]

Internet-Draft YANG March 2015

 The range expression syntax is formally defined by the rule
 "range-arg" in Section 13.

9.2.4.1. The range's Substatements

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | error-app-tag | 7.5.4.2 | 0..1 |
 | error-message | 7.5.4.1 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +---------------+---------+-------------+

9.2.5. Usage Example

 typedef my-base-int32-type {
 type int32 {
 range "1..4 | 10..20";
 }
 }

 typedef my-type1 {
 type my-base-int32-type {
 // legal range restriction
 range "11..max"; // 11..20
 }
 }

 typedef my-type2 {
 type my-base-int32-type {
 // illegal range restriction
 range "11..100";
 }
 }

9.3. The decimal64 Built-In Type

 The decimal64 type represents a subset of the real numbers, which can
 be represented by decimal numerals. The value space of decimal64 is
 the set of numbers that can be obtained by multiplying a 64-bit
 signed integer by a negative power of ten, i.e., expressible as "i x
 10^-n" where i is an integer64 and n is an integer between 1 and 18,
 inclusively.

Bjorklund Expires September 10, 2015 [Page 119]

Internet-Draft YANG March 2015

9.3.1. Lexical Representation

 A decimal64 value is lexically represented as an optional sign ("+"
 or "-"), followed by a sequence of decimal digits, optionally
 followed by a period ('.') as a decimal indicator and a sequence of
 decimal digits. If no sign is specified, "+" is assumed.

9.3.2. Canonical Form

 The canonical form of a positive decimal64 does not include the sign
 "+". The decimal point is required. Leading and trailing zeros are
 prohibited, subject to the rule that there MUST be at least one digit
 before and after the decimal point. The value zero is represented as
 "0.0".

9.3.3. Restrictions

 A decimal64 type can be restricted with the "range" statement
 (Section 9.2.4).

9.3.4. The fraction-digits Statement

 The "fraction-digits" statement, which is a substatement to the
 "type" statement, MUST be present if the type is "decimal64". It
 takes as an argument an integer between 1 and 18, inclusively. It
 controls the size of the minimum difference between values of a
 decimal64 type, by restricting the value space to numbers that are
 expressible as "i x 10^-n" where n is the fraction-digits argument.

 The following table lists the minimum and maximum value for each
 fraction-digit value:

Bjorklund Expires September 10, 2015 [Page 120]

Internet-Draft YANG March 2015

 +----------------+-----------------------+----------------------+
 | fraction-digit | min | max |
 +----------------+-----------------------+----------------------+
 | 1 | -922337203685477580.8 | 922337203685477580.7 |
 | 2 | -92233720368547758.08 | 92233720368547758.07 |
 | 3 | -9223372036854775.808 | 9223372036854775.807 |
 | 4 | -922337203685477.5808 | 922337203685477.5807 |
 | 5 | -92233720368547.75808 | 92233720368547.75807 |
 | 6 | -9223372036854.775808 | 9223372036854.775807 |
 | 7 | -922337203685.4775808 | 922337203685.4775807 |
 | 8 | -92233720368.54775808 | 92233720368.54775807 |
 | 9 | -9223372036.854775808 | 9223372036.854775807 |
 | 10 | -922337203.6854775808 | 922337203.6854775807 |
 | 11 | -92233720.36854775808 | 92233720.36854775807 |
 | 12 | -9223372.036854775808 | 9223372.036854775807 |
 | 13 | -922337.2036854775808 | 922337.2036854775807 |
 | 14 | -92233.72036854775808 | 92233.72036854775807 |
 | 15 | -9223.372036854775808 | 9223.372036854775807 |
 | 16 | -922.3372036854775808 | 922.3372036854775807 |
 | 17 | -92.23372036854775808 | 92.23372036854775807 |
 | 18 | -9.223372036854775808 | 9.223372036854775807 |
 +----------------+-----------------------+----------------------+

9.3.5. Usage Example

 typedef my-decimal {
 type decimal64 {
 fraction-digits 2;
 range "1 .. 3.14 | 10 | 20..max";
 }
 }

9.4. The string Built-In Type

 The string built-in type represents human-readable strings in YANG.
 Legal characters are the Unicode and ISO/IEC 10646 [ISO.10646]
 characters, including tab, carriage return, and line feed but
 excluding the other C0 control characters, the surrogate blocks, and
 the noncharacters. The string syntax is formally defined by the rule
 "yang-string" in Section 13.

9.4.1. Lexical Representation

 A string value is lexically represented as character data in the XML
 instance documents.

Bjorklund Expires September 10, 2015 [Page 121]

Internet-Draft YANG March 2015

9.4.2. Canonical Form

 The canonical form is the same as the lexical representation. No
 Unicode normalization is performed of string values.

9.4.3. Restrictions

 A string can be restricted with the "length" (Section 9.4.4) and
 "pattern" (Section 9.4.5) statements.

9.4.4. The length Statement

 The "length" statement, which is an optional substatement to the
 "type" statement, takes as an argument a length expression string.
 It is used to restrict the built-in types "string" and "binary" or
 types derived from them.

 A "length" statement restricts the number of Unicode characters in
 the string.

 A length range consists of an explicit value, or a lower bound, two
 consecutive dots "..", and an upper bound. Multiple values or ranges
 can be given, separated by "|". Length-restricting values MUST NOT
 be negative. If multiple values or ranges are given, they all MUST
 be disjoint and MUST be in ascending order. If a length restriction
 is applied to an already length-restricted type, the new restriction
 MUST be equal or more limiting, that is, raising the lower bounds,
 reducing the upper bounds, removing explicit length values or ranges,
 or splitting ranges into multiple ranges with intermediate gaps. A
 length value is a non-negative integer, or one of the special values
 "min" or "max". "min" and "max" mean the minimum and maximum length
 accepted for the type being restricted, respectively. An
 implementation is not required to support a length value larger than
 18446744073709551615.

 The length expression syntax is formally defined by the rule
 "length-arg" in Section 13.

9.4.4.1. The length's Substatements

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | error-app-tag | 7.5.4.2 | 0..1 |
 | error-message | 7.5.4.1 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +---------------+---------+-------------+

Bjorklund Expires September 10, 2015 [Page 122]

Internet-Draft YANG March 2015

9.4.5. The pattern Statement

 The "pattern" statement, which is an optional substatement to the
 "type" statement, takes as an argument a regular expression string,
 as defined in [XSD-TYPES]. It is used to restrict the built-in type
 "string", or types derived from "string", to values that match the
 pattern.

 If the type has multiple "pattern" statements, the expressions are
 ANDed together, i.e., all such expressions have to match.

 If a pattern restriction is applied to an already pattern-restricted
 type, values must match all patterns in the base type, in addition to
 the new patterns.

9.4.5.1. The pattern's Substatements

 +---------------+---------+-------------+
 | substatement | section | cardinality |
 +---------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | error-app-tag | 7.5.4.2 | 0..1 |
 | error-message | 7.5.4.1 | 0..1 |
 | modifier | 9.4.6 | 0..1 |
 | reference | 7.20.4 | 0..1 |
 +---------------+---------+-------------+

9.4.6. The modifier Statement

9.4.7. Usage Example

 With the following typedef:

 typedef my-base-str-type {
 type string {
 length "1..255";
 }
 }

 the following refinement is legal:

 type my-base-str-type {
 // legal length refinement
 length "11 | 42..max"; // 11 | 42..255
 }

 and the following refinement is illegal:

Bjorklund Expires September 10, 2015 [Page 123]

Internet-Draft YANG March 2015

 type my-base-str-type {
 // illegal length refinement
 length "1..999";
 }

 With the following type:

 type string {
 length "0..4";
 pattern "[0-9a-fA-F]*";
 }

 the following strings match:

 AB // legal
 9A00 // legal

 and the following strings do not match:

 00ABAB // illegal, too long
 xx00 // illegal, bad characters

 With the following type:

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 pattern '[xX][mM][lL].*' {
 modifier invert-match;
 }
 }
 }

 the following string match:

 enabled // legal

 and the following strings do not match:

 10-mbit // illegal, starts with a number
 xml-element // illegal, starts with illegal sequence

9.5. The boolean Built-In Type

 The boolean built-in type represents a boolean value.

Bjorklund Expires September 10, 2015 [Page 124]

Internet-Draft YANG March 2015

9.5.1. Lexical Representation

 The lexical representation of a boolean value is a string with a
 value of "true" or "false". These values MUST be in lowercase.

9.5.2. Canonical Form

 The canonical form is the same as the lexical representation.

9.5.3. Restrictions

 A boolean cannot be restricted.

9.6. The enumeration Built-In Type

 The enumeration built-in type represents values from a set of
 assigned names.

9.6.1. Lexical Representation

 The lexical representation of an enumeration value is the assigned
 name string.

9.6.2. Canonical Form

 The canonical form is the assigned name string.

9.6.3. Restrictions

 An enumeration can be restricted with the "enum" (Section 9.6.4)
 statement.

9.6.4. The enum Statement

 The "enum" statement, which is a substatement to the "type"
 statement, MUST be present if the type is "enumeration". It is
 repeatedly used to specify each assigned name of an enumeration type.
 It takes as an argument a string which is the assigned name. The
 string MUST NOT be empty and MUST NOT have any leading or trailing
 whitespace characters. The use of Unicode control codes SHOULD be
 avoided.

 The statement is optionally followed by a block of substatements that
 holds detailed enum information.

 All assigned names in an enumeration MUST be unique.

Bjorklund Expires September 10, 2015 [Page 125]

Internet-Draft YANG March 2015

 When an existing enumeration type is restricted, the set of assigned
 names in the new type MUST be a subset of the base type's set of
 assigned names. The value of such an assigned name MUST not be
 changed.

9.6.4.1. The enum's Substatements

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | value | 9.6.4.2 | 0..1 |
 +--------------+---------+-------------+

9.6.4.2. The value Statement

 The "value" statement, which is optional, is used to associate an
 integer value with the assigned name for the enum. This integer
 value MUST be in the range -2147483648 to 2147483647, and it MUST be
 unique within the enumeration type.

 If a value is not specified, then one will be automatically assigned.
 If the "enum" substatement is the first one defined, the assigned
 value is zero (0); otherwise, the assigned value is one greater than
 the current highest enum value (i.e., the highest enum value,
 implicit or explicit, prior to the current "enum" substatement in the
 parent "type" statement).

 If the current highest value is equal to 2147483647, then an enum
 value MUST be specified for "enum" substatements following the one
 with the current highest value.

 When an existing enumeration type is restricted, the "value"
 statement MUST either have the same value as the in the base type or
 not be present, in which case the value is the same as in the base
 type.

9.6.5. Usage Example

Bjorklund Expires September 10, 2015 [Page 126]

Internet-Draft YANG March 2015

 leaf myenum {
 type enumeration {
 enum zero;
 enum one;
 enum seven {
 value 7;
 }
 }
 }

 The lexical representation of the leaf "myenum" with value "seven"
 is:

 <myenum>seven</myenum>

 With the following typedef:

 typedef my-base-enumeration-type {
 type enumeration {
 enum white {
 value 1;
 }
 enum yellow {
 value 2;
 }
 enum red {
 value 3;
 }
 }
 }

 the following refinement is legal:

 type my-base-enumeration-type {
 // legal enum refinement
 enum yellow;
 enum red {
 value 3;
 }
 }

 and the following refinement is illegal:

Bjorklund Expires September 10, 2015 [Page 127]

Internet-Draft YANG March 2015

 type my-base-enumeration-type {
 // illegal enum refinement
 enum yellow {
 value 4; // illegal value change
 }
 enum black; // illegal addition of new name
 }

9.7. The bits Built-In Type

 The bits built-in type represents a bit set. That is, a bits value
 is a set of flags identified by small integer position numbers
 starting at 0. Each bit number has an assigned name.

9.7.1. Restrictions

 A bits type cannot be restricted.

9.7.2. Lexical Representation

 The lexical representation of the bits type is a space-separated list
 of the individual bit values that are set. An empty string thus
 represents a value where no bits are set.

9.7.3. Canonical Form

 In the canonical form, the bit values are separated by a single space
 character and they appear ordered by their position (see

Section 9.7.4.2).

9.7.4. The bit Statement

 The "bit" statement, which is a substatement to the "type" statement,
 MUST be present if the type is "bits". It is repeatedly used to
 specify each assigned named bit of a bits type. It takes as an
 argument a string that is the assigned name of the bit. It is
 followed by a block of substatements that holds detailed bit
 information. The assigned name follows the same syntax rules as an
 identifier (see Section 6.2).

 All assigned names in a bits type MUST be unique.

9.7.4.1. The bit's Substatements

Bjorklund Expires September 10, 2015 [Page 128]

Internet-Draft YANG March 2015

 +--------------+---------+-------------+
 | substatement | section | cardinality |
 +--------------+---------+-------------+
 | description | 7.20.3 | 0..1 |
 | if-feature | 7.19.2 | 0..n |
 | reference | 7.20.4 | 0..1 |
 | status | 7.20.2 | 0..1 |
 | position | 9.7.4.2 | 0..1 |
 +--------------+---------+-------------+

9.7.4.2. The position Statement

 The "position" statement, which is optional, takes as an argument a
 non-negative integer value that specifies the bit's position within a
 hypothetical bit field. The position value MUST be in the range 0 to
 4294967295, and it MUST be unique within the bits type. The value is
 unused by YANG and the NETCONF messages, but is carried as a
 convenience to implementors.

 If a bit position is not specified, then one will be automatically
 assigned. If the "bit" substatement is the first one defined, the
 assigned value is zero (0); otherwise, the assigned value is one
 greater than the current highest bit position (i.e., the highest bit
 position, implicit or explicit, prior to the current "bit"
 substatement in the parent "type" statement).

 If the current highest bit position value is equal to 4294967295,
 then a position value MUST be specified for "bit" substatements
 following the one with the current highest position value.

9.7.5. Usage Example

 Given the following leaf:

 leaf mybits {
 type bits {
 bit disable-nagle {
 position 0;
 }
 bit auto-sense-speed {
 position 1;
 }
 bit ten-Mb-only {
 position 2;
 }
 }
 default "auto-sense-speed";
 }

Bjorklund Expires September 10, 2015 [Page 129]

Internet-Draft YANG March 2015

 The lexical representation of this leaf with bit values disable-nagle
 and ten-Mb-only set would be:

 <mybits>disable-nagle ten-Mb-only</mybits>

9.8. The binary Built-In Type

 The binary built-in type represents any binary data, i.e., a sequence
 of octets.

9.8.1. Restrictions

 A binary can be restricted with the "length" (Section 9.4.4)
 statement. The length of a binary value is the number of octets it
 contains.

9.8.2. Lexical Representation

 Binary values are encoded with the base64 encoding scheme (see
[RFC4648], Section 4).

9.8.3. Canonical Form

 The canonical form of a binary value follows the rules in [RFC4648].

9.9. The leafref Built-In Type

 The leafref type is used to declare a constraint on the value space
 of a leaf, based on a reference to a set of leaf instances in the
 data tree. The "path" substatement (Section 9.9.2) selects a set of
 leaf instances, and the leafref value space is the set of values of
 these leaf instances.

 If the leaf with the leafref type represents configuration data, and
 the "require-instance" property (Section 9.9.3) is "true", the leaf
 it refers to MUST also represent configuration. Such a leaf puts a
 constraint on valid data. All such nodes MUST reference existing
 leaf instances or leafs with default values in use (see Section 7.6.1
 and Section 7.7.2) for the data to be valid. This constraint is
 enforced according to the rules in Section 8.

 There MUST NOT be any circular chains of leafrefs.

 If the leaf that the leafref refers to is conditional based on one or
 more features (see Section 7.19.2), then the leaf with the leafref
 type MUST also be conditional based on at least the same set of
 features.

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648

Bjorklund Expires September 10, 2015 [Page 130]

Internet-Draft YANG March 2015

9.9.1. Restrictions

 A leafref can be restricted with the "require-instance" statement
 (Section 9.9.3).

9.9.2. The path Statement

 The "path" statement, which is a substatement to the "type"
 statement, MUST be present if the type is "leafref". It takes as an
 argument a string that MUST refer to a leaf or leaf-list node.

 The syntax for a path argument is a subset of the XPath abbreviated
 syntax. Predicates are used only for constraining the values for the
 key nodes for list entries. Each predicate consists of exactly one
 equality test per key, and multiple adjacent predicates MAY be
 present if a list has multiple keys. The syntax is formally defined
 by the rule "path-arg" in Section 13.

 The predicates are only used when more than one key reference is
 needed to uniquely identify a leaf instance. This occurs if a list
 has multiple keys, or a reference to a leaf other than the key in a
 list is needed. In these cases, multiple leafrefs are typically
 specified, and predicates are used to tie them together.

 The "path" expression evaluates to a node set consisting of zero,
 one, or more nodes. If the leaf with the leafref type represents
 configuration data, this node set MUST be non-empty.

 The "path" XPath expression is conceptually evaluated in the
 following context, in addition to the definition in Section 6.4.1:

 o If the "path" statement is defined within a typedef, the context
 node is the leaf or leaf-list node in the data tree that
 references the typedef.

 o Otherwise, the context node is the node in the data tree for which
 the "path" statement is defined.

9.9.3. The require-instance Statement

 The "require-instance" statement, which is a substatement to the
 "type" statement, MAY be present if the type is "instance-identifier"
 or "leafref". It takes as an argument the string "true" or "false".
 If this statement is not present, it defaults to "true".

 If "require-instance" is "true", it means that the instance being
 referred MUST exist for the data to be valid. This constraint is
 enforced according to the rules in Section 8.

Bjorklund Expires September 10, 2015 [Page 131]

Internet-Draft YANG March 2015

 If "require-instance" is "false", it means that the instance being
 referred MAY exist in valid data.

9.9.4. Lexical Representation

 A leafref value is encoded the same way as the leaf it references.

9.9.5. Canonical Form

 The canonical form of a leafref is the same as the canonical form of
 the leaf it references.

9.9.6. Usage Example

 With the following list:

 list interface {
 key "name";
 leaf name {
 type string;
 }
 leaf admin-status {
 type admin-status;
 }
 list address {
 key "ip";
 leaf ip {
 type yang:ip-address;
 }
 }
 }

 The following leafref refers to an existing interface:

 leaf mgmt-interface {
 type leafref {
 path "../interface/name";
 }
 }

 An example of a corresponding XML snippet:

Bjorklund Expires September 10, 2015 [Page 132]

Internet-Draft YANG March 2015

 <interface>
 <name>eth0</name>
 </interface>
 <interface>
 <name>lo</name>
 </interface>

 <mgmt-interface>eth0</mgmt-interface>

 The following leafrefs refer to an existing address of an interface:

 container default-address {
 leaf ifname {
 type leafref {
 path "../../interface/name";
 }
 }
 leaf address {
 type leafref {
 path "../../interface[name = current()/../ifname]"
 + "/address/ip";
 }
 }
 }

 An example of a corresponding XML snippet:

Bjorklund Expires September 10, 2015 [Page 133]

Internet-Draft YANG March 2015

 <interface>
 <name>eth0</name>
 <admin-status>up</admin-status>
 <address>
 <ip>192.0.2.1</ip>
 </address>
 <address>
 <ip>192.0.2.2</ip>
 </address>
 </interface>
 <interface>
 <name>lo</name>
 <admin-status>up</admin-status>
 <address>
 <ip>127.0.0.1</ip>
 </address>
 </interface>

 <default-address>
 <ifname>eth0</ifname>
 <address>192.0.2.2</address>
 </default-address>

 The following list uses a leafref for one of its keys. This is
 similar to a foreign key in a relational database.

 list packet-filter {
 key "if-name filter-id";
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf filter-id {
 type uint32;
 }
 ...
 }

 An example of a corresponding XML snippet:

Bjorklund Expires September 10, 2015 [Page 134]

Internet-Draft YANG March 2015

 <interface>
 <name>eth0</name>
 <admin-status>up</admin-status>
 <address>
 <ip>192.0.2.1</ip>
 </address>
 <address>
 <ip>192.0.2.2</ip>
 </address>
 </interface>

 <packet-filter>
 <if-name>eth0</if-name>
 <filter-id>1</filter-id>
 ...
 </packet-filter>
 <packet-filter>
 <if-name>eth0</if-name>
 <filter-id>2</filter-id>
 ...
 </packet-filter>

 The following notification defines two leafrefs to refer to an
 existing admin-status:

 notification link-failure {
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf admin-status {
 type leafref {
 path
 "/interface[name = current()/../if-name]"
 + "/admin-status";
 }
 }
 }

 An example of a corresponding XML notification:

Bjorklund Expires September 10, 2015 [Page 135]

Internet-Draft YANG March 2015

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2008-04-01T00:01:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>eth0</if-name>
 <admin-status>up</admin-status>
 </link-failure>
 </notification>

9.10. The identityref Built-In Type

 The identityref type is used to reference an existing identity (see
Section 7.17).

9.10.1. Restrictions

 An identityref cannot be restricted.

9.10.2. The identityref's base Statement

 The "base" statement, which is a substatement to the "type"
 statement, MUST be present at least once if the type is
 "identityref". The argument is the name of an identity, as defined
 by an "identity" statement. If a prefix is present on the identity
 name, it refers to an identity defined in the module that was
 imported with that prefix. Otherwise, an identity with the matching
 name MUST be defined in the current module or an included submodule.

 Valid values for an identityref are any identities derived from all
 the identityref's base identities. On a particular server, the valid
 values are further restricted to the set of identities defined in the
 modules supported by the server.

9.10.3. Lexical Representation

 An identityref is encoded as the referred identity's qualified name
 as defined in [XML-NAMES]. If the prefix is not present, the
 namespace of the identityref is the default namespace in effect on
 the element that contains the identityref value.

 When an identityref is given a default value using the "default"
 statement, the identity name in the default value MAY have a prefix.
 If a prefix is present on the identity name, it refers to an identity
 defined in the module that was imported with that prefix, or the
 prefix for the current module if the identity is defined in the
 current module or one of its submodules. Otherwise, an identity with
 the matching name MUST be defined in the current module or one of its
 submodules.

Bjorklund Expires September 10, 2015 [Page 136]

Internet-Draft YANG March 2015

 The string value of a node of type identityref in a "must" or "when"
 XPath expression is the referred identity's qualified name with the
 prefix present. If the referred identity is defined in an imported
 module, the prefix in the string value is the prefix defined in the
 corresponding "import" statement. Otherwise, the prefix in the
 string value is the prefix for the current module.

9.10.4. Canonical Form

 Since the lexical form depends on the XML context in which the value
 occurs, this type does not have a canonical form.

9.10.5. Usage Example

 With the identity definitions in Section 7.17.3 and the following
 module:

 module my-crypto {
 yang-version 1.1;
 namespace "http://example.com/my-crypto";
 prefix mc;

 import "crypto-base" {
 prefix "crypto";
 }

 identity aes {
 base "crypto:crypto-alg";
 }

 leaf crypto {
 type identityref {
 base "crypto:crypto-alg";
 }
 }

 container aes-parameters {
 when "../crypto = 'mc:aes'";
 ...
 }
 }

 the following is an example how the leaf "crypto" can be encoded, if
 the value is the "des3" identity defined in the "des" module:

 <crypto xmlns:des="http://example.com/des">des:des3</crypto>

Bjorklund Expires September 10, 2015 [Page 137]

Internet-Draft YANG March 2015

 Any prefixes used in the encoding are local to each instance
 encoding. This means that the same identityref may be encoded
 differently by different implementations. For example, the following
 example encodes the same leaf as above:

 <crypto xmlns:x="http://example.com/des">x:des3</crypto>

 If the "crypto" leaf's value instead is "aes" defined in the
 "my-crypto" module, it can be encoded as:

 <crypto xmlns:mc="http://example.com/my-crypto">mc:aes</crypto>

 or, using the default namespace:

 <crypto>aes</crypto>

9.11. The empty Built-In Type

 The empty built-in type represents a leaf that does not have any
 value, it conveys information by its presence or absence.

 An empty type cannot have a default value.

9.11.1. Restrictions

 An empty type cannot be restricted.

9.11.2. Lexical Representation

 Not applicable.

9.11.3. Canonical Form

 Not applicable.

9.11.4. Usage Example

 With the following leaf

 leaf enable-qos {
 type empty;
 }

 the following is an example of a valid encoding

 <enable-qos/>

 if the leaf exists.

Bjorklund Expires September 10, 2015 [Page 138]

Internet-Draft YANG March 2015

9.12. The union Built-In Type

 The union built-in type represents a value that corresponds to one of
 its member types.

 When the type is "union", the "type" statement (Section 7.4) MUST be
 present. It is used to repeatedly specify each member type of the
 union. It takes as an argument a string that is the name of a member
 type.

 A member type can be of any built-in or derived type.

 A value representing a union data type is validated consecutively
 against each member type, in the order they are specified in the
 "type" statement, until a match is found. The type that matched will
 be the type of the value for the node that was validated.

 Any default value or "units" property defined in the member types is
 not inherited by the union type.

9.12.1. Restrictions

 A union cannot be restricted. However, each member type can be
 restricted, based on the rules defined in Section 9.

9.12.2. Lexical Representation

 The lexical representation of a union is a value that corresponds to
 the representation of any one of the member types.

9.12.3. Canonical Form

 The canonical form of a union value is the same as the canonical form
 of the member type of the value.

9.12.4. Usage Example

 The following is a union of an int32 an enumeration:

 type union {
 type int32;
 type enumeration {
 enum "unbounded";
 }
 }

 Care must be taken when a member type is a leafref where the
 "require-instance" property (Section 9.9.3) is "true". If a leaf of

Bjorklund Expires September 10, 2015 [Page 139]

Internet-Draft YANG March 2015

 such a type refers to an existing instance, the leaf's value must be
 re-validated if the target instance is deleted. For example, with
 the following definitions:

 list filter {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 leaf outbound-filter {
 type union {
 type leafref {
 path "/filter/name";
 }
 type enumeration {
 enum default-filter;
 }
 }
 }

 assume that there exists an entry in the filter list with the name
 "http", and that the outbound-filter leaf has this value:

 <filter>
 <name>http</name>
 </filter>
 <outbound-filter>http</outbound-filter>

 If the filter entry "http" is removed, the outbound-filter leaf's
 value doesn't match the leafref, and the next member type is checked.
 The current value ("http") doesn't match the enumeration, so the
 resulting configuration is invalid.

 If the second member type in the union had been of type "string"
 instead of an enumeration, the current value would have matched, and
 the resulting configuration would have been valid.

9.13. The instance-identifier Built-In Type

 The instance-identifier built-in type is used to uniquely identify a
 particular instance node in the data tree.

 The syntax for an instance-identifier is a subset of the XPath
 abbreviated syntax, formally defined by the rule
 "instance-identifier" in Section 13. It is used to uniquely identify

Bjorklund Expires September 10, 2015 [Page 140]

Internet-Draft YANG March 2015

 a node in the data tree. Predicates are used only for specifying the
 values for the key nodes for list entries, a value of a leaf-list
 entry, or a positional index for a list without keys. For
 identifying list entries with keys, each predicate consists of one
 equality test per key, and each key MUST have a corresponding
 predicate.

 If the leaf with the instance-identifier type represents
 configuration data, and the "require-instance" property
 (Section 9.9.3) is "true", the node it refers to MUST also represent
 configuration. Such a leaf puts a constraint on valid data. All
 such leaf nodes MUST reference existing nodes or leaf or leaf-list
 nodes with their default value in use (see Section 7.6.1 and

Section 7.7.2) for the data to be valid. This constraint is enforced
 according to the rules in Section 8.

 The "instance-identifier" XPath expression is conceptually evaluated
 in the following context, in addition to the definition in

Section 6.4.1:

 o The context node is the root node in the accessible tree.

9.13.1. Restrictions

 An instance-identifier can be restricted with the "require-instance"
 statement (Section 9.9.3).

9.13.2. Lexical Representation

 An instance-identifier value is lexically represented as a string.
 All node names in an instance-identifier value MUST be qualified with
 explicit namespace prefixes, and these prefixes MUST be declared in
 the XML namespace scope in the instance-identifier's XML element.

 Any prefixes used in the encoding are local to each instance
 encoding. This means that the same instance-identifier may be
 encoded differently by different implementations.

9.13.3. Canonical Form

 Since the lexical form depends on the XML context in which the value
 occurs, this type does not have a canonical form.

9.13.4. Usage Example

 The following are examples of instance identifiers:

Bjorklund Expires September 10, 2015 [Page 141]

Internet-Draft YANG March 2015

 /* instance-identifier for a container */
 /ex:system/ex:services/ex:ssh

 /* instance-identifier for a leaf */
 /ex:system/ex:services/ex:ssh/ex:port

 /* instance-identifier for a list entry */
 /ex:system/ex:user[ex:name='fred']

 /* instance-identifier for a leaf in a list entry */
 /ex:system/ex:user[ex:name='fred']/ex:type

 /* instance-identifier for a list entry with two keys */
 /ex:system/ex:server[ex:ip='192.0.2.1'][ex:port='80']

 /* instance-identifier for a leaf-list entry */
 /ex:system/ex:services/ex:ssh/ex:cipher[.='blowfish-cbc']

 /* instance-identifier for a list entry without keys */
 /ex:stats/ex:port[3]

10. XPath Functions

 This document defines two generic XPath functions and four YANG type-
 specific XPath functions. The function signatures are specified with
 the syntax used in [XPATH].

10.1. Functions for Node Sets

10.1.1. current()

 node-set current()

 The function current() takes no input parameters, and returns a node
 set with the initial context node as its only member.

10.2. Functions for Strings

10.2.1. re-match()

 boolean re-match(string subject, string pattern)

 The re-match() function returns true if the "subject" string matches
 the regular expression "pattern"; otherwise it returns false.

 The function "re-match" checks if a string matches a given regular
 expression. The regular expressions used are the XML Schema regular

Bjorklund Expires September 10, 2015 [Page 142]

Internet-Draft YANG March 2015

 expressions [XSD-TYPES]. Note that this includes implicit anchoring
 of the regular expression at the head and tail.

10.2.1.1. Usage Example

 The expression:

 re-match('1.22.333', '\d{1,3}\.\d{1,3}\.\d{1,3}')

 returns true.

 To count all logical interfaces called eth0.<number>, do:

 count(/interface[re-match(name, 'eth0\.\d+')])

10.3. Functions for the YANG Types "leafref" and "instance-identifier"

10.3.1. deref()

 node-set deref(node-set nodes)

 The deref() function follows the reference defined by the first node
 in document order in the argument "nodes", and returns the nodes it
 refers to.

 If the first argument node is of type instance-identifier, the
 function returns a node set that contains the single node that the
 instance identifier refers to, if it exists. If no such node exists,
 an empty node-set is returned.

 If the first argument node is of type leafref, the function returns a
 node set that contains the nodes that the leafref refers to.

 If the first argument node is of any other type, an empty node set is
 returned.

10.3.1.1. Usage Example

Bjorklund Expires September 10, 2015 [Page 143]

Internet-Draft YANG March 2015

 list interface {
 key name;
 leaf name { ... }
 leaf enabled {
 type boolean;
 }
 ...
 }

 leaf mgmt-interface {
 type leafref {
 path "/interface/name";
 }
 must 'deref(.)/../enabled = "true"' {
 error-message
 "The management interface cannot be disabled.";
 }
 }

10.4. Functions for the YANG Type "identityref"

10.4.1. derived-from()

 boolean derived-from(node-set nodes,
 string module-name,
 string identity-name)

 The derived-from() function returns true if the first node in
 document order in the argument "nodes" is a node of type identityref,
 and its value is an identity that is derived from the identity
 "identity-name" defined in the YANG module "module-name"; otherwise
 it returns false.

10.4.2. derived-from-or-self()

 boolean derived-from-or-self(node-set nodes,
 string module-name,
 string identity-name)

 The derived-from-or-self() function returns true if the first node in
 document order in the argument "nodes" is a node of type identityref,
 and its value is an identity that is equal to or derived from the
 identity "identity-name" defined in the YANG module "module-name";
 otherwise it returns false.

Bjorklund Expires September 10, 2015 [Page 144]

Internet-Draft YANG March 2015

10.4.2.1. Usage Example

 module example-interface {
 ...

 identity interface-type;

 identity ethernet {
 base interface-type;
 }

 identity fast-ethernet {
 base ethernet;
 }

 identity gigabit-ethernet {
 base ethernet;
 }

 list interface {
 key name;
 ...
 leaf type {
 type identityref {
 base interface-type;
 }
 }
 ...
 }

 augment "/interface" {
 when 'derived-from(type,
 "example-interface",
 "ethernet")';
 // ethernet-specific definitions here
 }
 }

10.5. Functions for the YANG Type "enumeration"

10.5.1. enum-value()

 number enum-value(node-set nodes)

 The enum-value() function checks if the first node in document order
 in the argument "nodes" is a node of type enumeration, and returns
 the enum's integer value. If the "nodes" node set is empty, or if
 the first node in "nodes" is not of type enumeration, it returns NaN.

Bjorklund Expires September 10, 2015 [Page 145]

Internet-Draft YANG March 2015

10.5.1.1. Usage Example

 With this data model:

 list alarm {
 ...
 leaf severity {
 type enumeration {
 enum cleared {
 value 1;
 }
 enum indeterminate {
 value 2;
 }
 enum minor {
 value 3;
 }
 enum warning {
 value 4;
 }
 enum major {
 value 5;
 }
 enum critical {
 value 6;
 }
 }
 }
 }

 the following XPath expression selects only alarms that are of
 severity "major" or higher:

 /alarm[enum-value(severity) >= 5]

10.6. Functions for the YANG Type "bits"

10.6.1. bit-is-set()

 boolean bit-is-set(node-set nodes, string bit-name)

 The bit-is-set() function returns true if the first node in document
 order in the argument "nodes" is a node of type bits, and its value
 has the bit "'bit-name" set; otherwise it returns false.

Bjorklund Expires September 10, 2015 [Page 146]

Internet-Draft YANG March 2015

10.6.1.1. Usage Example

 If an interface has this leaf:

 leaf flags {
 type bits {
 bit UP;
 bit PROMISCUOUS
 bit DISABLED;
 }
 }

 the following XPath expression can be used to select all interfaces
 with the UP flag set:

 /interface[bit-is-set(flags, "UP")]

11. Updating a Module

 As experience is gained with a module, it may be desirable to revise
 that module. However, changes are not allowed if they have any
 potential to cause interoperability problems between a client using
 an original specification and a server using an updated
 specification.

 For any published change, a new "revision" statement (Section 7.1.9)
 MUST be included in front of the existing "revision" statements. If
 there are no existing "revision" statements, then one MUST be added
 to identify the new revision. Furthermore, any necessary changes
 MUST be applied to any meta-data statements, including the
 "organization" and "contact" statements (Section 7.1.7,

Section 7.1.8).

 Note that definitions contained in a module are available to be
 imported by any other module, and are referenced in "import"
 statements via the module name. Thus, a module name MUST NOT be
 changed. Furthermore, the "namespace" statement MUST NOT be changed,
 since all XML elements are qualified by the namespace.

 Obsolete definitions MUST NOT be removed from modules since their
 identifiers may still be referenced by other modules.

 A definition may be revised in any of the following ways:

 o An "enumeration" type may have new enums added, provided the old
 enums's values do not change.

Bjorklund Expires September 10, 2015 [Page 147]

Internet-Draft YANG March 2015

 o A "bits" type may have new bits added, provided the old bit
 positions do not change.

 o A "range", "length", or "pattern" statement may expand the allowed
 value space.

 o A "default" statement may be added to a leaf that does not have a
 default value (either directly or indirectly through its type).

 o A "units" statement may be added.

 o A "reference" statement may be added or updated.

 o A "must" statement may be removed or its constraint relaxed.

 o A "mandatory" statement may be removed or changed from "true" to
 "false".

 o A "min-elements" statement may be removed, or changed to require
 fewer elements.

 o A "max-elements" statement may be removed, or changed to allow
 more elements.

 o A "description" statement may be added or clarified without
 changing the semantics of the definition.

 o A "base" statement may be added to an "identity" statement.

 o A "base" statement may be removed from an "identityref" type,
 provided there is at least one "base" statement left.

 o New typedefs, groupings, rpcs, notifications, extensions,
 features, and identities may be added.

 o New data definition statements may be added if they do not add
 mandatory nodes (Section 3.1) to existing nodes or at the top
 level in a module or submodule, or if they are conditionally
 dependent on a new feature (i.e., have an "if-feature" statement
 that refers to a new feature).

 o A new "case" statement may be added.

 o A node that represented state data may be changed to represent
 configuration, provided it is not mandatory (Section 3.1).

 o An "if-feature" statement may be removed, provided its node is not
 mandatory (Section 3.1).

Bjorklund Expires September 10, 2015 [Page 148]

Internet-Draft YANG March 2015

 o A "status" statement may be added, or changed from "current" to
 "deprecated" or "obsolete", or from "deprecated" to "obsolete".

 o A "type" statement may be replaced with another "type" statement
 that does not change the syntax or semantics of the type. For
 example, an inline type definition may be replaced with a typedef,
 but an int8 type cannot be replaced by an int16, since the syntax
 would change.

 o Any set of data definition nodes may be replaced with another set
 of syntactically and semantically equivalent nodes. For example,
 a set of leafs may be replaced by a uses of a grouping with the
 same leafs.

 o A module may be split into a set of submodules, or a submodule may
 be removed, provided the definitions in the module do not change
 in any other way than allowed here.

 o The "prefix" statement may be changed, provided all local uses of
 the prefix also are changed.

 Otherwise, if the semantics of any previous definition are changed
 (i.e., if a non-editorial change is made to any definition other than
 those specifically allowed above), then this MUST be achieved by a
 new definition with a new identifier.

 In statements that have any data definition statements as
 substatements, those data definition substatements MUST NOT be
 reordered.

12. YIN

 A YANG module can be translated into an alternative XML-based syntax
 called YIN. The translated module is called a YIN module. This
 section describes symmetric mapping rules between the two formats.

 The YANG and YIN formats contain equivalent information using
 different notations. The YIN notation enables developers to
 represent YANG data models in XML and therefore use the rich set of
 XML-based tools for data filtering and validation, automated
 generation of code and documentation, and other tasks. Tools like
 XSLT or XML validators can be utilized.

 The mapping between YANG and YIN does not modify the information
 content of the model. Comments and whitespace are not preserved.

Bjorklund Expires September 10, 2015 [Page 149]

Internet-Draft YANG March 2015

12.1. Formal YIN Definition

 There is a one-to-one correspondence between YANG keywords and YIN
 elements. The local name of a YIN element is identical to the
 corresponding YANG keyword. This means, in particular, that the
 document element (root) of a YIN document is always <module> or
 <submodule>.

 YIN elements corresponding to the YANG keywords belong to the
 namespace whose associated URI is
 "urn:ietf:params:xml:ns:yang:yin:1".

 YIN elements corresponding to extension keywords belong to the
 namespace of the YANG module where the extension keyword is declared
 via the "extension" statement.

 The names of all YIN elements MUST be properly qualified with their
 namespaces specified above using the standard mechanisms of
 [XML-NAMES], i.e., "xmlns" and "xmlns:xxx" attributes.

 The argument of a YANG statement is represented in YIN either as an
 XML attribute or a subelement of the keyword element. Table 1
 defines the mapping for the set of YANG keywords. For extensions,
 the argument mapping is specified within the "extension" statement
 (see Section 7.18). The following rules hold for arguments:

 o If the argument is represented as an attribute, this attribute has
 no namespace.

 o If the argument is represented as an element, it is qualified by
 the same namespace as its parent keyword element.

 o If the argument is represented as an element, it MUST be the first
 child of the keyword element.

 Substatements of a YANG statement are represented as (additional)
 children of the keyword element and their relative order MUST be the
 same as the order of substatements in YANG.

 Comments in YANG MAY be mapped to XML comments.

 +------------------+---------------+-------------+
 | keyword | argument name | yin-element |
 +------------------+---------------+-------------+
 | anyxml | name | false |
 | argument | name | false |
 | augment | target-node | false |
 | base | name | false |

Bjorklund Expires September 10, 2015 [Page 150]

Internet-Draft YANG March 2015

 | belongs-to | module | false |
 | bit | name | false |
 | case | name | false |
 | choice | name | false |
 | config | value | false |
 | contact | text | true |
 | container | name | false |
 | default | value | false |
 | description | text | true |
 | deviate | value | false |
 | deviation | target-node | false |
 | enum | name | false |
 | error-app-tag | value | false |
 | error-message | value | true |
 | extension | name | false |
 | feature | name | false |
 | fraction-digits | value | false |
 | grouping | name | false |
 | identity | name | false |
 | if-feature | name | false |
 | import | module | false |
 | include | module | false |
 | input | <no argument> | n/a |
 | key | value | false |
 | leaf | name | false |
 | leaf-list | name | false |
 | length | value | false |
 | list | name | false |
 | mandatory | value | false |
 | max-elements | value | false |
 | min-elements | value | false |
 | module | name | false |
 | must | condition | false |
 | namespace | uri | false |
 | notification | name | false |
 | ordered-by | value | false |
 | organization | text | true |
 | output | <no argument> | n/a |
 | path | value | false |
 | pattern | value | false |
 | position | value | false |
 | prefix | value | false |
 | presence | value | false |
 | range | value | false |
 | reference | text | true |
 | refine | target-node | false |
 | require-instance | value | false |
 | revision | date | false |

Bjorklund Expires September 10, 2015 [Page 151]

Internet-Draft YANG March 2015

 | revision-date | date | false |
 | rpc | name | false |
 | status | value | false |
 | submodule | name | false |
 | type | name | false |
 | typedef | name | false |
 | unique | tag | false |
 | units | name | false |
 | uses | name | false |
 | value | value | false |
 | when | condition | false |
 | yang-version | value | false |
 | yin-element | value | false |
 +------------------+---------------+-------------+

 Table 1: Mapping of arguments of the YANG statements.

12.1.1. Usage Example

 The following YANG module:

 module acme-foo {
 yang-version 1.1;
 namespace "http://acme.example.com/foo";
 prefix "acfoo";

 import my-extensions {
 prefix "myext";
 }

 list interface {
 key "name";
 leaf name {
 type string;
 }

 leaf mtu {
 type uint32;
 description "The MTU of the interface.";
 myext:c-define "MY_MTU";
 }
 }
 }

 where the extension "c-define" is defined in Section 7.18.3, is
 translated into the following YIN:

Bjorklund Expires September 10, 2015 [Page 152]

Internet-Draft YANG March 2015

 <module name="acme-foo"
 xmlns="urn:ietf:params:xml:ns:yang:yin:1"
 xmlns:acfoo="http://acme.example.com/foo"
 xmlns:myext="http://example.com/my-extensions">

 <namespace uri="http://acme.example.com/foo"/>
 <prefix value="acfoo"/>

 <import module="my-extensions">
 <prefix value="myext"/>
 </import>

 <list name="interface">
 <key value="name"/>
 <leaf name="name">
 <type name="string"/>
 </leaf>
 <leaf name="mtu">
 <type name="uint32"/>
 <description>
 <text>The MTU of the interface.</text>
 </description>
 <myext:c-define name="MY_MTU"/>
 </leaf>
 </list>
 </module>

13. YANG ABNF Grammar

 In YANG, almost all statements are unordered. The ABNF grammar
 [RFC5234] [RFC7405] defines the canonical order. To improve module
 readability, it is RECOMMENDED that clauses be entered in this order.

 Within the ABNF grammar, unordered statements are marked with
 comments.

 This grammar assumes that the scanner replaces YANG comments with a
 single space character.

 <CODE BEGINS> file "yang.abnf"

 module-stmt = optsep module-keyword sep identifier-arg-str
 optsep
 "{" stmtsep
 module-header-stmts
 linkage-stmts
 meta-stmts
 revision-stmts

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7405

Bjorklund Expires September 10, 2015 [Page 153]

Internet-Draft YANG March 2015

 body-stmts
 "}" optsep

 submodule-stmt = optsep submodule-keyword sep identifier-arg-str
 optsep
 "{" stmtsep
 submodule-header-stmts
 linkage-stmts
 meta-stmts
 revision-stmts
 body-stmts
 "}" optsep

 module-header-stmts = ;; these stmts can appear in any order
 yang-version-stmt
 namespace-stmt
 prefix-stmt

 submodule-header-stmts =
 ;; these stmts can appear in any order
 yang-version-stmt
 belongs-to-stmt

 meta-stmts = ;; these stmts can appear in any order
 [organization-stmt]
 [contact-stmt]
 [description-stmt]
 [reference-stmt]

 linkage-stmts = ;; these stmts can appear in any order
 *import-stmt
 *include-stmt

 revision-stmts = *revision-stmt

 body-stmts = *(extension-stmt /
 feature-stmt /
 identity-stmt /
 typedef-stmt /
 grouping-stmt /
 data-def-stmt /
 augment-stmt /
 rpc-stmt /
 notification-stmt /
 deviation-stmt)

 data-def-stmt = container-stmt /
 leaf-stmt /

Bjorklund Expires September 10, 2015 [Page 154]

Internet-Draft YANG March 2015

 leaf-list-stmt /
 list-stmt /
 choice-stmt /
 anyxml-stmt /
 uses-stmt

 yang-version-stmt = yang-version-keyword sep yang-version-arg-str
 stmtend

 yang-version-arg-str = < a string that matches the rule >
 < yang-version-arg >

 yang-version-arg = "1.1"

 import-stmt = import-keyword sep identifier-arg-str optsep
 "{" stmtsep
 prefix-stmt
 [revision-date-stmt]
 "}" stmtsep

 include-stmt = include-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 [revision-date-stmt]
 "}") stmtsep

 namespace-stmt = namespace-keyword sep uri-str stmtend

 uri-str = < a string that matches the rule >
 < URI in RFC 3986 >

 prefix-stmt = prefix-keyword sep prefix-arg-str stmtend

 belongs-to-stmt = belongs-to-keyword sep identifier-arg-str
 optsep
 "{" stmtsep
 prefix-stmt
 "}" stmtsep

 organization-stmt = organization-keyword sep string stmtend

 contact-stmt = contact-keyword sep string stmtend

 description-stmt = description-keyword sep string stmtend

 reference-stmt = reference-keyword sep string stmtend

 units-stmt = units-keyword sep string stmtend

https://datatracker.ietf.org/doc/html/rfc3986

Bjorklund Expires September 10, 2015 [Page 155]

Internet-Draft YANG March 2015

 revision-stmt = revision-keyword sep revision-date optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 revision-date = date-arg-str

 revision-date-stmt = revision-date-keyword sep revision-date stmtend

 extension-stmt = extension-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [argument-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 argument-stmt = argument-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 [yin-element-stmt]
 "}") stmtsep

 yin-element-stmt = yin-element-keyword sep yin-element-arg-str
 stmtend

 yin-element-arg-str = < a string that matches the rule >
 < yin-element-arg >

 yin-element-arg = true-keyword / false-keyword

 identity-stmt = identity-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 *base-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 base-stmt = base-keyword sep identifier-ref-arg-str

Bjorklund Expires September 10, 2015 [Page 156]

Internet-Draft YANG March 2015

 stmtend

 feature-stmt = feature-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 if-feature-stmt = if-feature-keyword sep if-feature-expr-str
 stmtend

 if-feature-expr-str = < a string that matches the rule >
 < if-feature-expr >

 if-feature-expr = "(" if-feature-expr ")" /
 if-feature-expr sep boolean-operator sep
 if-feature-expr /
 not-keyword sep if-feature-expr /
 identifier-ref-arg

 boolean-operator = and-keyword / or-keyword

 typedef-stmt = typedef-keyword sep identifier-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 type-stmt
 [units-stmt]
 [default-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}" stmtsep

 type-stmt = type-keyword sep identifier-ref-arg-str optsep
 (";" /
 "{" stmtsep
 [type-body-stmts]
 "}") stmtsep

 type-body-stmts = numerical-restrictions /
 decimal64-specification /
 string-restrictions /
 enum-specification /
 leafref-specification /

Bjorklund Expires September 10, 2015 [Page 157]

Internet-Draft YANG March 2015

 identityref-specification /
 instance-identifier-specification /
 bits-specification /
 union-specification /
 binary-specification

 numerical-restrictions = range-stmt

 range-stmt = range-keyword sep range-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [error-message-stmt]
 [error-app-tag-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 decimal64-specification = ;; these stmts can appear in any order
 fraction-digits-stmt
 [range-stmt]

 fraction-digits-stmt = fraction-digits-keyword sep
 fraction-digits-arg-str stmtend

 fraction-digits-arg-str = < a string that matches the rule >
 < fraction-digits-arg >

 fraction-digits-arg = ("1" ["0" / "1" / "2" / "3" / "4" /
 "5" / "6" / "7" / "8"])
 / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"

 string-restrictions = ;; these stmts can appear in any order
 [length-stmt]
 *pattern-stmt

 length-stmt = length-keyword sep length-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [error-message-stmt]
 [error-app-tag-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 pattern-stmt = pattern-keyword sep string optsep
 (";" /

Bjorklund Expires September 10, 2015 [Page 158]

Internet-Draft YANG March 2015

 "{" stmtsep
 ;; these stmts can appear in any order
 [modifier-stmt]
 [error-message-stmt]
 [error-app-tag-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 modifier-stmt = modifier-keyword sep modifier-arg-str stmtend

 modifier-arg-str = < a string that matches the rule >
 < modifier-arg >

 modifier-arg = invert-match-keyword

 default-stmt = default-keyword sep string stmtend

 enum-specification = 1*enum-stmt

 enum-stmt = enum-keyword sep string optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 [value-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 leafref-specification =
 ;; these stmts can appear in any order
 path-stmt
 [require-instance-stmt]

 path-stmt = path-keyword sep path-arg-str stmtend

 require-instance-stmt = require-instance-keyword sep
 require-instance-arg-str stmtend

 require-instance-arg-str = < a string that matches the rule >
 < require-instance-arg >

 require-instance-arg = true-keyword / false-keyword

 instance-identifier-specification =

Bjorklund Expires September 10, 2015 [Page 159]

Internet-Draft YANG March 2015

 [require-instance-stmt]

 identityref-specification =
 1*base-stmt

 union-specification = 1*type-stmt

 binary-specification = [length-stmt]

 bits-specification = 1*bit-stmt

 bit-stmt = bit-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 [position-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 position-stmt = position-keyword sep
 position-value-arg-str stmtend

 position-value-arg-str = < a string that matches the rule >
 < position-value-arg >

 position-value-arg = non-negative-integer-value

 status-stmt = status-keyword sep status-arg-str stmtend

 status-arg-str = < a string that matches the rule >
 < status-arg >

 status-arg = current-keyword /
 obsolete-keyword /
 deprecated-keyword

 config-stmt = config-keyword sep
 config-arg-str stmtend

 config-arg-str = < a string that matches the rule >
 < config-arg >

 config-arg = true-keyword / false-keyword

 mandatory-stmt = mandatory-keyword sep

Bjorklund Expires September 10, 2015 [Page 160]

Internet-Draft YANG March 2015

 mandatory-arg-str stmtend

 mandatory-arg-str = < a string that matches the rule >
 < mandatory-arg >

 mandatory-arg = true-keyword / false-keyword

 presence-stmt = presence-keyword sep string stmtend

 ordered-by-stmt = ordered-by-keyword sep
 ordered-by-arg-str stmtend

 ordered-by-arg-str = < a string that matches the rule >
 < ordered-by-arg >

 ordered-by-arg = user-keyword / system-keyword

 must-stmt = must-keyword sep string optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [error-message-stmt]
 [error-app-tag-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 error-message-stmt = error-message-keyword sep string stmtend

 error-app-tag-stmt = error-app-tag-keyword sep string stmtend

 min-elements-stmt = min-elements-keyword sep
 min-value-arg-str stmtend

 min-value-arg-str = < a string that matches the rule >
 < min-value-arg >

 min-value-arg = non-negative-integer-value

 max-elements-stmt = max-elements-keyword sep
 max-value-arg-str stmtend

 max-value-arg-str = < a string that matches the rule >
 < max-value-arg >

 max-value-arg = unbounded-keyword /
 positive-integer-value

Bjorklund Expires September 10, 2015 [Page 161]

Internet-Draft YANG March 2015

 value-stmt = value-keyword sep integer-value-str stmtend

 integer-value-str = < a string that matches the rule >
 < integer-value >

 grouping-stmt = grouping-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 *data-def-stmt
 *action-stmt
 "}") stmtsep

 container-stmt = container-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 *must-stmt
 [presence-stmt]
 [config-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 *data-def-stmt
 *action-stmt
 "}") stmtsep

 leaf-stmt = leaf-keyword sep identifier-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 type-stmt
 [units-stmt]
 *must-stmt
 [default-stmt]
 [config-stmt]
 [mandatory-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]

Bjorklund Expires September 10, 2015 [Page 162]

Internet-Draft YANG March 2015

 "}" stmtsep

 leaf-list-stmt = leaf-list-keyword sep identifier-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 type-stmt stmtsep
 [units-stmt]
 *must-stmt
 *default-stmt
 [config-stmt]
 [min-elements-stmt]
 [max-elements-stmt]
 [ordered-by-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}" stmtsep

 list-stmt = list-keyword sep identifier-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 *must-stmt
 [key-stmt]
 *unique-stmt
 [config-stmt]
 [min-elements-stmt]
 [max-elements-stmt]
 [ordered-by-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 1*data-def-stmt
 *action-stmt
 "}" stmtsep

 key-stmt = key-keyword sep key-arg-str stmtend

 key-arg-str = < a string that matches the rule >
 < key-arg >

 key-arg = node-identifier *(sep node-identifier)

 unique-stmt = unique-keyword sep unique-arg-str stmtend

Bjorklund Expires September 10, 2015 [Page 163]

Internet-Draft YANG March 2015

 unique-arg-str = < a string that matches the rule >
 < unique-arg >

 unique-arg = descendant-schema-nodeid
 *(sep descendant-schema-nodeid)

 choice-stmt = choice-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 [default-stmt]
 [config-stmt]
 [mandatory-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(short-case-stmt / case-stmt)
 "}") stmtsep

 short-case-stmt = choice-stmt /
 container-stmt /
 leaf-stmt /
 leaf-list-stmt /
 list-stmt /
 anyxml-stmt

 case-stmt = case-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *data-def-stmt
 "}") stmtsep

 anyxml-stmt = anyxml-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 *must-stmt
 [config-stmt]

Bjorklund Expires September 10, 2015 [Page 164]

Internet-Draft YANG March 2015

 [mandatory-stmt]
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 uses-stmt = uses-keyword sep identifier-ref-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *refine-stmt
 *uses-augment-stmt
 "}") stmtsep

 refine-stmt = refine-keyword sep refine-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 *must-stmt
 [presence-stmt]
 [default-stmt]
 [config-stmt]
 [mandatory-stmt]
 [min-elements-stmt]
 [max-elements-stmt]
 [description-stmt]
 [reference-stmt]
 "}" stmtsep

 refine-arg-str = < a string that matches the rule >
 < refine-arg >

 refine-arg = descendant-schema-nodeid

 uses-augment-stmt = augment-keyword sep uses-augment-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 1*(data-def-stmt / case-stmt / action-stmt)

Bjorklund Expires September 10, 2015 [Page 165]

Internet-Draft YANG March 2015

 "}" stmtsep

 uses-augment-arg-str = < a string that matches the rule >
 < uses-augment-arg >

 uses-augment-arg = descendant-schema-nodeid

 augment-stmt = augment-keyword sep augment-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [when-stmt]
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 1*(data-def-stmt / case-stmt / action-stmt)
 "}" stmtsep

 augment-arg-str = < a string that matches the rule >
 < augment-arg >

 augment-arg = absolute-schema-nodeid

 when-stmt = when-keyword sep string optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [description-stmt]
 [reference-stmt]
 "}") stmtsep

 rpc-stmt = rpc-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 [input-stmt]
 [output-stmt]
 "}") stmtsep

 action-stmt = action-keyword sep identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order

Bjorklund Expires September 10, 2015 [Page 166]

Internet-Draft YANG March 2015

 *if-feature-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 [input-stmt]
 [output-stmt]
 "}") stmtsep

 input-stmt = input-keyword optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 *must-stmt
 *(typedef-stmt / grouping-stmt)
 1*data-def-stmt
 "}" stmtsep

 output-stmt = output-keyword optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 *must-stmt
 *(typedef-stmt / grouping-stmt)
 1*data-def-stmt
 "}" stmtsep

 notification-stmt = notification-keyword sep
 identifier-arg-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 *if-feature-stmt
 *must-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 *data-def-stmt
 "}") stmtsep

 deviation-stmt = deviation-keyword sep
 deviation-arg-str optsep
 "{" stmtsep
 ;; these stmts can appear in any order
 [description-stmt]
 [reference-stmt]
 (deviate-not-supported-stmt /
 1*(deviate-add-stmt /
 deviate-replace-stmt /

Bjorklund Expires September 10, 2015 [Page 167]

Internet-Draft YANG March 2015

 deviate-delete-stmt))
 "}" stmtsep

 deviation-arg-str = < a string that matches the rule >
 < deviation-arg >

 deviation-arg = absolute-schema-nodeid

 deviate-not-supported-stmt =
 deviate-keyword sep
 not-supported-keyword-str stmtend

 deviate-add-stmt = deviate-keyword sep add-keyword-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [units-stmt]
 *must-stmt
 *unique-stmt
 [default-stmt]
 [config-stmt]
 [mandatory-stmt]
 [min-elements-stmt]
 [max-elements-stmt]
 "}") stmtsep

 deviate-delete-stmt = deviate-keyword sep delete-keyword-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [units-stmt]
 *must-stmt
 *unique-stmt
 [default-stmt]
 "}") stmtsep

 deviate-replace-stmt = deviate-keyword sep replace-keyword-str optsep
 (";" /
 "{" stmtsep
 ;; these stmts can appear in any order
 [type-stmt]
 [units-stmt]
 [default-stmt]
 [config-stmt]
 [mandatory-stmt]
 [min-elements-stmt]
 [max-elements-stmt]
 "}") stmtsep

Bjorklund Expires September 10, 2015 [Page 168]

Internet-Draft YANG March 2015

 not-supported-keyword-str = < a string that matches the rule >
 < not-supported-keyword >

 add-keyword-str = < a string that matches the rule >
 < add-keyword >

 delete-keyword-str = < a string that matches the rule >
 < delete-keyword >

 replace-keyword-str = < a string that matches the rule >
 < replace-keyword >

 ;; represents the usage of an extension statement
 unknown-statement = prefix ":" identifier [sep string] optsep
 (";" /
 "{" optsep
 *((yang-stmt / unknown-statement) optsep)
 "}") stmtsep

 yang-stmt = action-stmt /
 anyxml-stmt /
 argument-stmt /
 augment-stmt /
 base-stmt /
 belongs-to-stmt /
 bit-stmt /
 case-stmt /
 choice-stmt /
 config-stmt /
 contact-stmt /
 container-stmt /
 default-stmt /
 description-stmt /
 deviate-add-stmt /
 deviate-delete-stmt /
 deviate-not-supported-stmt /
 deviate-replace-stmt /
 deviation-stmt /
 enum-stmt /
 error-app-tag-stmt /
 error-message-stmt /
 extension-stmt /
 feature-stmt /
 fraction-digits-stmt /
 grouping-stmt /
 identity-stmt /
 if-feature-stmt /
 import-stmt /

Bjorklund Expires September 10, 2015 [Page 169]

Internet-Draft YANG March 2015

 include-stmt /
 input-stmt /
 key-stmt /
 leaf-list-stmt /
 leaf-stmt /
 length-stmt /
 list-stmt /
 mandatory-stmt /
 max-elements-stmt /
 min-elements-stmt /
 modifier-stmt /
 module-stmt /
 must-stmt /
 namespace-stmt /
 notification-stmt /
 ordered-by-stmt /
 organization-stmt /
 output-stmt /
 path-stmt /
 pattern-stmt /
 position-stmt /
 prefix-stmt /
 presence-stmt /
 range-stmt /
 reference-stmt /
 refine-stmt /
 require-instance-stmt /
 revision-date-stmt /
 revision-stmt /
 rpc-stmt /
 status-stmt /
 submodule-stmt /
 typedef-stmt /
 type-stmt /
 unique-stmt /
 units-stmt /
 uses-augment-stmt /
 uses-stmt /
 value-stmt /
 when-stmt /
 yang-version-stmt /
 yin-element-stmt

 ;; Ranges

 range-arg-str = < a string that matches the rule >
 < range-arg >

Bjorklund Expires September 10, 2015 [Page 170]

Internet-Draft YANG March 2015

 range-arg = range-part *(optsep "|" optsep range-part)

 range-part = range-boundary
 [optsep ".." optsep range-boundary]

 range-boundary = min-keyword / max-keyword /
 integer-value / decimal-value

 ;; Lengths

 length-arg-str = < a string that matches the rule >
 < length-arg >

 length-arg = length-part *(optsep "|" optsep length-part)

 length-part = length-boundary
 [optsep ".." optsep length-boundary]

 length-boundary = min-keyword / max-keyword /
 non-negative-integer-value

 ;; Date

 date-arg-str = < a string that matches the rule >
 < date-arg >

 date-arg = 4DIGIT "-" 2DIGIT "-" 2DIGIT

 ;; Schema Node Identifiers

 schema-nodeid = absolute-schema-nodeid /
 descendant-schema-nodeid

 absolute-schema-nodeid = 1*("/" node-identifier)

 descendant-schema-nodeid =
 node-identifier
 [absolute-schema-nodeid]

 node-identifier = [prefix ":"] identifier

 ;; Instance Identifiers

 instance-identifier = 1*("/" (node-identifier *predicate))

 predicate = "[" *WSP (predicate-expr / pos) *WSP "]"

Bjorklund Expires September 10, 2015 [Page 171]

Internet-Draft YANG March 2015

 predicate-expr = (node-identifier / ".") *WSP "=" *WSP
 ((DQUOTE string DQUOTE) /
 (SQUOTE string SQUOTE))

 pos = non-negative-integer-value

 ;; leafref path

 path-arg-str = < a string that matches the rule >
 < path-arg >

 path-arg = absolute-path / relative-path

 absolute-path = 1*("/" (node-identifier *path-predicate))

 relative-path = 1*(".." "/") descendant-path

 descendant-path = node-identifier
 [*path-predicate absolute-path]

 path-predicate = "[" *WSP path-equality-expr *WSP "]"

 path-equality-expr = node-identifier *WSP "=" *WSP path-key-expr

 path-key-expr = current-function-invocation *WSP "/" *WSP
 rel-path-keyexpr

 rel-path-keyexpr = 1*(".." *WSP "/" *WSP)
 *(node-identifier *WSP "/" *WSP)
 node-identifier

 ;;; Keywords, using RFC 7405 syntax for case-sensitive strings

 ;; statement keywords
 action-keyword = %s"action"
 anyxml-keyword = %s"anyxml"
 argument-keyword = %s"argument"
 augment-keyword = %s"augment"
 base-keyword = %s"base"
 belongs-to-keyword = %s"belongs-to"
 bit-keyword = %s"bit"
 case-keyword = %s"case"
 choice-keyword = %s"choice"
 config-keyword = %s"config"
 contact-keyword = %s"contact"
 container-keyword = %s"container"
 default-keyword = %s"default"

https://datatracker.ietf.org/doc/html/rfc7405

Bjorklund Expires September 10, 2015 [Page 172]

Internet-Draft YANG March 2015

 description-keyword = %s"description"
 enum-keyword = %s"enum"
 error-app-tag-keyword = %s"error-app-tag"
 error-message-keyword = %s"error-message"
 extension-keyword = %s"extension"
 deviation-keyword = %s"deviation"
 deviate-keyword = %s"deviate"
 feature-keyword = %s"feature"
 fraction-digits-keyword = %s"fraction-digits"
 grouping-keyword = %s"grouping"
 identity-keyword = %s"identity"
 if-feature-keyword = %s"if-feature"
 import-keyword = %s"import"
 include-keyword = %s"include"
 input-keyword = %s"input"
 key-keyword = %s"key"
 leaf-keyword = %s"leaf"
 leaf-list-keyword = %s"leaf-list"
 length-keyword = %s"length"
 list-keyword = %s"list"
 mandatory-keyword = %s"mandatory"
 max-elements-keyword = %s"max-elements"
 min-elements-keyword = %s"min-elements"
 modifier-keyword = %s"modifier"
 module-keyword = %s"module"
 must-keyword = %s"must"
 namespace-keyword = %s"namespace"
 notification-keyword= %s"notification"
 ordered-by-keyword = %s"ordered-by"
 organization-keyword= %s"organization"
 output-keyword = %s"output"
 path-keyword = %s"path"
 pattern-keyword = %s"pattern"
 position-keyword = %s"position"
 prefix-keyword = %s"prefix"
 presence-keyword = %s"presence"
 range-keyword = %s"range"
 reference-keyword = %s"reference"
 refine-keyword = %s"refine"
 require-instance-keyword = %s"require-instance"
 revision-keyword = %s"revision"
 revision-date-keyword = %s"revision-date"
 rpc-keyword = %s"rpc"
 status-keyword = %s"status"
 submodule-keyword = %s"submodule"
 type-keyword = %s"type"
 typedef-keyword = %s"typedef"
 unique-keyword = %s"unique"

Bjorklund Expires September 10, 2015 [Page 173]

Internet-Draft YANG March 2015

 units-keyword = %s"units"
 uses-keyword = %s"uses"
 value-keyword = %s"value"
 when-keyword = %s"when"
 yang-version-keyword= %s"yang-version"
 yin-element-keyword = %s"yin-element"

 ;; other keywords

 add-keyword = %s"add"
 current-keyword = %s"current"
 delete-keyword = %s"delete"
 deprecated-keyword = %s"deprecated"
 false-keyword = %s"false"
 invert-match-keyword = %s"invert-match"
 max-keyword = %s"max"
 min-keyword = %s"min"
 not-supported-keyword = %s"not-supported"
 obsolete-keyword = %s"obsolete"
 replace-keyword = %s"replace"
 system-keyword = %s"system"
 true-keyword = %s"true"
 unbounded-keyword = %s"unbounded"
 user-keyword = %s"user"

 and-keyword = %s"and"
 or-keyword = %s"or"
 not-keyword = %s"not"

 current-function-invocation = current-keyword *WSP "(" *WSP ")"

 ;;; Basic Rules

 prefix-arg-str = < a string that matches the rule >
 < prefix-arg >

 prefix-arg = prefix

 prefix = identifier

 identifier-arg-str = < a string that matches the rule >
 < identifier-arg >

 identifier-arg = identifier

 ;; An identifier MUST NOT start with (('X'|'x') ('M'|'m') ('L'|'l'))
 identifier = (ALPHA / "_")
 *(ALPHA / DIGIT / "_" / "-" / ".")

Bjorklund Expires September 10, 2015 [Page 174]

Internet-Draft YANG March 2015

 identifier-ref-arg-str = < a string that matches the rule >
 < identifier-ref-arg >

 identifier-ref-arg = identifier-ref

 identifier-ref = [prefix ":"] identifier

 string = < an unquoted string as returned by >
 < the scanner, that matches the rule >
 < yang-string >

 yang-string = *yang-char

 ;; any Unicode character including tab, carriage return, and line
 ;; feed, but excluding the other C0 control characters, the surrogate
 ;; blocks, and the noncharacters.
 yang-char = %x9 / %xA / %xD / %x20-D7FF /
 ; exclude surrogate blocks %xD800-DFFF
 %xE000-FDCF / ; exclude noncharacters %xFDD0-FDEF
 %xFDF0-FFFD / ; exclude noncharacters %xFFFE-FFFF
 %x10000-1FFFD / ; exclude noncharacters %x1FFFE-1FFFF
 %x20000-2FFFD / ; exclude noncharacters %x2FFFE-2FFFF
 %x30000-3FFFD / ; exclude noncharacters %x3FFFE-3FFFF
 %x40000-4FFFD / ; exclude noncharacters %x4FFFE-4FFFF
 %x50000-5FFFD / ; exclude noncharacters %x5FFFE-5FFFF
 %x60000-6FFFD / ; exclude noncharacters %x6FFFE-6FFFF
 %x70000-7FFFD / ; exclude noncharacters %x7FFFE-7FFFF
 %x80000-8FFFD / ; exclude noncharacters %x8FFFE-8FFFF
 %x90000-9FFFD / ; exclude noncharacters %x9FFFE-9FFFF
 %xA0000-AFFFD / ; exclude noncharacters %xAFFFE-AFFFF
 %xB0000-BFFFD / ; exclude noncharacters %xBFFFE-BFFFF
 %xC0000-CFFFD / ; exclude noncharacters %xCFFFE-CFFFF
 %xD0000-DFFFD / ; exclude noncharacters %xDFFFE-DFFFF
 %xE0000-EFFFD / ; exclude noncharacters %xEFFFE-EFFFF
 %xF0000-FFFFD / ; exclude noncharacters %xFFFFE-FFFFF
 %x100000-10FFFD ; exclude noncharacters %x10FFFE-10FFFF

 integer-value = ("-" non-negative-integer-value) /
 non-negative-integer-value

 non-negative-integer-value = "0" / positive-integer-value

 positive-integer-value = (non-zero-digit *DIGIT)

 zero-integer-value = 1*DIGIT

 stmtend = optsep (";" / "{" stmtsep "}") stmtsep

Bjorklund Expires September 10, 2015 [Page 175]

Internet-Draft YANG March 2015

 sep = 1*(WSP / line-break)
 ; unconditional separator

 optsep = *(WSP / line-break)

 stmtsep = *(WSP / line-break / unknown-statement)

 line-break = CRLF / LF

 non-zero-digit = %x31-39

 decimal-value = integer-value ("." zero-integer-value)

 SQUOTE = %x27
 ; ' (Single Quote)

 ;;; RFC 5234 core rules.

 ALPHA = %x41-5A / %x61-7A
 ; A-Z / a-z

 CR = %x0D
 ; carriage return

 CRLF = CR LF
 ; Internet standard new line

 DIGIT = %x30-39
 ; 0-9

 DQUOTE = %x22
 ; double quote

 HEXDIG = DIGIT /
 %x61 / %x62 / %x63 / %x64 / %x65 / %x66
 ; only lower-case a..f

 HTAB = %x09
 ; horizontal tab

 LF = %x0A
 ; linefeed

 SP = %x20
 ; space

 VCHAR = %x21-7E
 ; visible (printing) characters

https://datatracker.ietf.org/doc/html/rfc5234

Bjorklund Expires September 10, 2015 [Page 176]

Internet-Draft YANG March 2015

 WSP = SP / HTAB
 ; whitespace

 <CODE ENDS>

14. Error Responses for YANG Related Errors

 A number of NETCONF error responses are defined for error cases
 related to the data-model handling. If the relevant YANG statement
 has an "error-app-tag" substatement, that overrides the default value
 specified below.

14.1. Error Message for Data That Violates a unique Statement

 If a NETCONF operation would result in configuration data where a
 unique constraint is invalidated, the following error is returned:

 error-tag: operation-failed
 error-app-tag: data-not-unique
 error-info: <non-unique>: Contains an instance identifier that
 points to a leaf that invalidates the unique
 constraint. This element is present once for each
 non-unique leaf.

 The <non-unique> element is in the YANG
 namespace ("urn:ietf:params:xml:ns:yang:1").

14.2. Error Message for Data That Violates a max-elements Statement

 If a NETCONF operation would result in configuration data where a
 list or a leaf-list would have too many entries the following error
 is returned:

 error-tag: operation-failed
 error-app-tag: too-many-elements

 This error is returned once, with the error-path identifying the list
 node, even if there are more than one extra child present.

14.3. Error Message for Data That Violates a min-elements Statement

 If a NETCONF operation would result in configuration data where a
 list or a leaf-list would have too few entries the following error is
 returned:

 error-tag: operation-failed
 error-app-tag: too-few-elements

Bjorklund Expires September 10, 2015 [Page 177]

Internet-Draft YANG March 2015

 This error is returned once, with the error-path identifying the list
 node, even if there are more than one child missing.

14.4. Error Message for Data That Violates a must Statement

 If a NETCONF operation would result in configuration data where the
 restrictions imposed by a "must" statement is violated the following
 error is returned, unless a specific "error-app-tag" substatement is
 present for the "must" statement.

 error-tag: operation-failed
 error-app-tag: must-violation

14.5. Error Message for Data That Violates a require-instance Statement

 If a NETCONF operation would result in configuration data where a
 leaf of type "instance-identifier" marked with require-instance
 "true" refers to a non-existing instance, the following error is
 returned:

 error-tag: data-missing
 error-app-tag: instance-required
 error-path: Path to the instance-identifier leaf.

14.6. Error Message for Data That Does Not Match a leafref Type

 If a NETCONF operation would result in configuration data where a
 leaf of type "leafref" refers to a non-existing instance, the
 following error is returned:

 error-tag: data-missing
 error-app-tag: instance-required
 error-path: Path to the leafref leaf.

14.7. Error Message for Data That Violates a mandatory choice Statement

 If a NETCONF operation would result in configuration data where no
 nodes exists in a mandatory choice, the following error is returned:

 error-tag: data-missing
 error-app-tag: missing-choice
 error-path: Path to the element with the missing choice.
 error-info: <missing-choice>: Contains the name of the missing
 mandatory choice.

 The <missing-choice> element is in the YANG
 namespace ("urn:ietf:params:xml:ns:yang:1").

Bjorklund Expires September 10, 2015 [Page 178]

Internet-Draft YANG March 2015

14.8. Error Message for the "insert" Operation

 If the "insert" and "key" or "value" attributes are used in an
 <edit-config> for a list or leaf-list node, and the "key" or "value"
 refers to a non-existing instance, the following error is returned:

 error-tag: bad-attribute
 error-app-tag: missing-instance

15. IANA Considerations

 This document defines a registry for YANG module and submodule names.
 The name of the registry is "YANG Module Names".

 The registry shall record for each entry:

 o the name of the module or submodule

 o for modules, the assigned XML namespace

 o for modules, the prefix of the module

 o for submodules, the name of the module it belongs to

 o a reference to the (sub)module's documentation (e.g., the RFC
 number)

 There are no initial assignments.

 For allocation, RFC publication is required as per RFC 5226
 [RFC5226]. All registered YANG module names MUST comply with the
 rules for identifiers stated in Section 6.2, and MUST have a module
 name prefix.

 The module name prefix 'ietf-' is reserved for IETF stream documents
 [RFC4844], while the module name prefix 'irtf-' is reserved for IRTF
 stream documents. Modules published in other RFC streams MUST have a
 similar suitable prefix.

 All module and submodule names in the registry MUST be unique.

 All XML namespaces in the registry MUST be unique.

 This document registers two URIs for the YANG and YIN XML namespaces
 in the IETF XML registry [RFC3688]. Following the format in RFC

3688, the following have been registered.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4844
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688

Bjorklund Expires September 10, 2015 [Page 179]

Internet-Draft YANG March 2015

 URI: urn:ietf:params:xml:ns:yang:yin:1
 URI: urn:ietf:params:xml:ns:yang:1

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one capability identifier URN from the
 "Network Configuration Protocol (NETCONF) Capability URNs" registry:

 urn:ietf:params:netconf:capability:yang-library:1.0

 This document registers two new media types as defined in the
 following sections.

15.1. Media type application/yang

Bjorklund Expires September 10, 2015 [Page 180]

Internet-Draft YANG March 2015

 MIME media type name: application

 MIME subtype name: yang

 Mandatory parameters: none

 Optional parameters: none

 Encoding considerations: 8-bit

 Security considerations: See Section 15 in RFC XXXX

 Interoperability considerations: None

 Published specification: RFC XXXX

 Applications that use this media type:

 YANG module validators, web servers used for downloading YANG
 modules, email clients, etc.

 Additional information:

 Magic Number: None

 File Extension: .yang

 Macintosh file type code: 'TEXT'

 Personal and email address for further information:
 Martin Bjorklund <mbj@tail-f.com>

 Intended usage: COMMON

 Author:
 This specification is a work item of the IETF NETMOD working
 group, with mailing list address <netmod@ietf.org>.

 Change controller:
 The IESG <iesg@ietf.org>

15.2. Media type application/yin+xml

Bjorklund Expires September 10, 2015 [Page 181]

Internet-Draft YANG March 2015

 MIME media type name: application

 MIME subtype name: yin+xml

 Mandatory parameters: none

 Optional parameters:

 "charset": This parameter has identical semantics to the
 charset parameter of the "application/xml" media type as
 specified in [RFC3023].

 Encoding considerations:

 Identical to those of "application/xml" as
 described in [RFC3023], Section 3.2.

 Security considerations: See Section 15 in RFC XXXX

 Interoperability considerations: None

 Published specification: RFC XXXX

 Applications that use this media type:

 YANG module validators, web servers used for downloading YANG
 modules, email clients, etc.

 Additional information:

 Magic Number: As specified for "application/xml" in [RFC3023],
 Section 3.2.

 File Extension: .yin

 Macintosh file type code: 'TEXT'

 Personal and email address for further information:
 Martin Bjorklund <mbj@tail-f.com>

 Intended usage: COMMON

 Author:
 This specification is a work item of the IETF NETMOD working
 group, with mailing list address <netmod@ietf.org>.

 Change controller:
 The IESG <iesg@ietf.org>

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-3.2
https://datatracker.ietf.org/doc/html/rfc3023#section-3.2
https://datatracker.ietf.org/doc/html/rfc3023#section-3.2

Bjorklund Expires September 10, 2015 [Page 182]

Internet-Draft YANG March 2015

16. Security Considerations

 This document defines a language with which to write and read
 descriptions of management information. The language itself has no
 security impact on the Internet.

 The same considerations are relevant as for the base NETCONF protocol
 (see [RFC6241], Section 9).

 Data modeled in YANG might contain sensitive information. RPCs or
 notifications defined in YANG might transfer sensitive information.

 Security issues are related to the usage of data modeled in YANG.
 Such issues shall be dealt with in documents describing the data
 models and documents about the interfaces used to manipulate the data
 e.g., the NETCONF documents.

 Data modeled in YANG is dependent upon:

 o the security of the transmission infrastructure used to send
 sensitive information.

 o the security of applications that store or release such sensitive
 information.

 o adequate authentication and access control mechanisms to restrict
 the usage of sensitive data.

 YANG parsers need to be robust with respect to malformed documents.
 Reading malformed documents from unknown or untrusted sources could
 result in an attacker gaining privileges of the user running the YANG
 parser. In an extreme situation, the entire machine could be
 compromised.

17. Contributors

 The following people all contributed significantly to the initial
 YANG document:

 - Andy Bierman (Brocade)
 - Balazs Lengyel (Ericsson)
 - David Partain (Ericsson)
 - Juergen Schoenwaelder (Jacobs University Bremen)
 - Phil Shafer (Juniper Networks)

https://datatracker.ietf.org/doc/html/rfc6241#section-9

Bjorklund Expires September 10, 2015 [Page 183]

Internet-Draft YANG March 2015

18. Acknowledgements

 The editor wishes to thank the following individuals, who all
 provided helpful comments on various versions of this document:
 Mehmet Ersue, Washam Fan, Joel Halpern, Leif Johansson, Ladislav
 Lhotka, Gerhard Muenz, Tom Petch, Randy Presuhn, David Reid, and Bert
 Wijnen.

19. ChangeLog

 RFC Editor: remove this section upon publication as an RFC.

19.1. Version -04

 o Incorporated changes to ABNF grammar after review and errata for
RFC 6020.

 o Included solution Y16-03.

 o Included solution Y49-04.

 o Included solution Y58-01.

 o Included solution Y59-01.

19.2. Version -03

 o Incorporated changes from WG reviews.

 o Included solution Y05-01.

 o Included solution Y10-01.

 o Included solution Y13-01.

 o Included solution Y28-02.

 o Included solution Y55-01 (parts of it was included in -01).

19.3. Version -02

 o Included solution Y02-01.

 o Included solution Y04-02.

 o Included solution Y11-01.

 o Included solution Y41-01.

https://datatracker.ietf.org/doc/html/rfc6020

Bjorklund Expires September 10, 2015 [Page 184]

Internet-Draft YANG March 2015

 o Included solution Y56-01.

19.4. Version -01

 o Included solution Y01-01.

 o Included solution Y03-01.

 o Included solution Y06-02.

 o Included solution Y07-01.

 o Included solution Y14-01.

 o Included solution Y20-01.

 o Included solution Y23-01.

 o Included solution Y29-01.

 o Included solution Y30-01.

 o Included solution Y31-01.

 o Included solution Y35-01.

19.5. Version -00

 o Applied all reported errata for RFC 6020.

 o Updated YANG version to 1.1, and made the "yang-version" statement
 mandatory.

20. References

20.1. Normative References

 [I-D.ietf-netconf-yang-library]
 Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", draft-ietf-netconf-yang-library (work in
 progress), January 2015.

 [ISO.10646]
 International Organization for Standardization,
 "Information Technology - Universal Multiple-Octet Coded
 Character Set (UCS)", ISO Standard 10646:2003, 2003.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-library

Bjorklund Expires September 10, 2015 [Page 185]

Internet-Draft YANG March 2015

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC

6241, June 2011.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC
7405, December 2014.

 [XML-NAMES]
 Hollander, D., Tobin, R., Thompson, H., Bray, T., and A.
 Layman, "Namespaces in XML 1.0 (Third Edition)", World
 Wide Web Consortium Recommendation REC-xml-names-20091208,
 December 2009,
 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium Recommendation
 REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc7405
http://www.w3.org/TR/2009/REC-xml-names-20091208
http://www.w3.org/TR/1999/REC-xpath-19991116

Bjorklund Expires September 10, 2015 [Page 186]

Internet-Draft YANG March 2015

 [XSD-TYPES]
 Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium Recommendation
 REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

20.2. Informative References

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD
 58, RFC 2579, April 1999.

 [RFC3780] Strauss, F. and J. Schoenwaelder, "SMIng - Next Generation
 Structure of Management Information", RFC 3780, May 2004.

 [RFC4844] Daigle, L. and Internet Architecture Board, "The RFC
 Series and RFC Editor", RFC 4844, July 2007.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [XPATH2.0]
 Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
 Kay, M., Robie, J., and J. Simeon, "XML Path Language
 (XPath) 2.0", World Wide Web Consortium Recommendation
 REC-xpath20-20070123, January 2007,
 <http://www.w3.org/TR/2007/REC-xpath20-20070123>.

 [XSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xslt-19991116>.

Author's Address

 Martin Bjorklund (editor)
 Tail-f Systems

 Email: mbj@tail-f.com

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc3780
https://datatracker.ietf.org/doc/html/rfc4844
https://datatracker.ietf.org/doc/html/rfc6020
http://www.w3.org/TR/2007/REC-xpath20-20070123
http://www.w3.org/TR/1999/REC-xslt-19991116

Bjorklund Expires September 10, 2015 [Page 187]

