
Network Working Group A. Bierman
Internet-Draft YumaWorks
Obsoletes: 6087 (if approved) March 11, 2018
Intended status: BCP
Expires: September 12, 2018

Guidelines for Authors and Reviewers of YANG Data Model Documents
draft-ietf-netmod-rfc6087bis-19

Abstract

 This memo provides guidelines for authors and reviewers of
 specifications containing YANG data model modules. Recommendations
 and procedures are defined, which are intended to increase
 interoperability and usability of Network Configuration Protocol
 (NETCONF) and RESTCONF protocol implementations that utilize YANG
 data model modules. This document obsoletes RFC 6087.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bierman Expires September 12, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Guidelines for YANG Documents March 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Changes Since RFC 6087 5

2. Terminology . 8
2.1. Requirements Notation 8
2.2. NETCONF Terms . 8
2.3. YANG Terms . 8
2.4. NMDA Terms . 9
2.5. Terms . 9

3. General Documentation Guidelines 10
3.1. Module Copyright . 10
3.2. Code Components . 11
3.2.1. Example Modules 11

3.3. Terminology Section 11
3.4. Tree Diagrams . 12
3.5. Narrative Sections . 12
3.6. Definitions Section 13
3.7. Security Considerations Section 13
3.7.1. Security Considerations Section Template 14

3.8. IANA Considerations Section 15
3.8.1. Documents that Create a New Namespace 15
3.8.2. Documents that Extend an Existing Namespace 16

3.9. Reference Sections . 16
3.10. Validation Tools . 16
3.11. Module Extraction Tools 17
3.12. Module Usage Examples 17

4. YANG Usage Guidelines . 18
4.1. Module Naming Conventions 18
4.2. Prefixes . 19
4.3. Identifiers . 20
4.3.1. Identifier Naming Conventions 20

4.4. Defaults . 21
4.5. Conditional Statements 21
4.6. XPath Usage . 22
4.6.1. XPath Evaluation Contexts 22
4.6.2. Function Library 23
4.6.3. Axes . 24
4.6.4. Types . 24
4.6.5. Wildcards . 25
4.6.6. Boolean Expressions 26

4.7. YANG Definition Lifecycle Management 27
4.8. Module Header, Meta, and Revision Statements 28
4.9. Namespace Assignments 29

https://datatracker.ietf.org/doc/html/rfc6087

Bierman Expires September 12, 2018 [Page 2]

Internet-Draft Guidelines for YANG Documents March 2018

4.10. Top-Level Data Definitions 31
4.11. Data Types . 31
4.11.1. Fixed Value Extensibility 32
4.11.2. Patterns and Ranges 32
4.11.3. Enumerations and Bits 33
4.11.4. Union Types . 34
4.11.5. Empty and Boolean 35

4.12. Reusable Type Definitions 36
4.13. Reusable Groupings . 37
4.14. Data Definitions . 37
4.14.1. Non-Presence Containers 39
4.14.2. Top-Level Data Nodes 40

4.15. Operation Definitions 40
4.16. Notification Definitions 40
4.17. Feature Definitions 41
4.18. YANG Data Node Constraints 42
4.18.1. Controlling Quantity 42
4.18.2. must vs. when . 42

4.19. Augment Statements . 42
4.19.1. Conditional Augment Statements 43
4.19.2. Conditionally Mandatory Data Definition Statements . . 43

4.20. Deviation Statements 44
4.21. Extension Statements 45
4.22. Data Correlation . 46
4.22.1. Use of Leafref for Key Correlation 47

4.23. Operational State . 48
4.23.1. Combining Operational State and Configuration Data . . 48

 4.23.2. Representing Operational Values of Configuration
 Data . 49

4.23.3. NMDA Transition Guidelines 49
4.24. Performance Considerations 53
4.25. Open Systems Considerations 54
4.26. Guidelines for YANG 1.1 Specific Constructs 54
4.26.1. Importing Multiple Revisions 54
4.26.2. Using Feature Logic 54
4.26.3. anyxml vs. anydata 55
4.26.4. action vs. rpc . 55

4.27. Updating YANG Modules (Published vs. Unpublished) 56
5. IANA Considerations . 57
6. Security Considerations 58
7. Acknowledgments . 59
8. References . 60
8.1. Normative References 60
8.2. Informative References 61

Appendix A. Change Log . 63
A.1. v18 to v19 . 63
A.2. v17 to v18 . 63
A.3. v16 to v17 . 63

Bierman Expires September 12, 2018 [Page 3]

Internet-Draft Guidelines for YANG Documents March 2018

A.4. v15 to v16 . 63
A.5. v15 to v16 . 63
A.6. v14 to v15 . 63
A.7. v13 to v14 . 63
A.8. v12 to v13 . 64
A.9. v11 to v12 . 64
A.10. v10 to v11 . 64
A.11. v09 to v10 . 64
A.12. v08 to v09 . 64
A.13. v07 to v08 . 65
A.14. v06 to v07 . 65
A.15. v05 to v06 . 65
A.16. v04 to v05 . 66
A.17. v03 ot v04 . 66
A.18. v02 to v03 . 66
A.19. v01 to v02 . 67
A.20. v00 to v01 . 67

Appendix B. Module Review Checklist 68
Appendix C. YANG Module Template 70

 Author's Address . 72

Bierman Expires September 12, 2018 [Page 4]

Internet-Draft Guidelines for YANG Documents March 2018

1. Introduction

 The standardization of network configuration interfaces for use with
 network configuration management protocols, such as the Network
 Configuration Protocol [RFC6241] and RESTCONF [RFC8040], requires a
 modular set of data models, which can be reused and extended over
 time.

 This document defines a set of usage guidelines for documents
 containing YANG 1.1 [RFC7950] and YANG 1.0 [RFC6020] data models.
 YANG is used to define the data structures, protocol operations, and
 notification content used within a NETCONF and/or RESTCONF server. A
 NETCONF or RESTCONF server that supports a particular YANG module
 will support client NETCONF and/or RESTCONF operation requests, as
 indicated by the specific content defined in the YANG module.

 Many YANG constructs are defined as optional to use, such as the
 description statement. However, in order to make YANG modules more
 useful, it is desirable to define a set of usage guidelines that
 entails a higher level of compliance than the minimum level defined
 in the YANG specification.

 In addition, YANG allows constructs such as infinite length
 identifiers and string values, or top-level mandatory nodes, that a
 compliant server is not required to support. Only constructs that
 all servers are required to support can be used in IETF YANG modules.

 This document defines usage guidelines related to the NETCONF
 operations layer and NETCONF content layer, as defined in [RFC6241],
 and the RESTCONF methods and RESTCONF resources, as defined in
 [RFC8040],

 These guidelines are intended to be used by authors and reviewers to
 improve the readability and interoperability of published YANG data
 models.

 Note that this document is not a YANG tutorial and the reader is
 expected to know the YANG data modeling language before using this
 document.

1.1. Changes Since RFC 6087

 The following changes have been made to the guidelines published in
 [RFC6087]:

 o Updated NETCONF reference from RFC 4741 to RFC 6241

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc6241

Bierman Expires September 12, 2018 [Page 5]

Internet-Draft Guidelines for YANG Documents March 2018

 o Updated NETCONF over SSH citation from RFC 4742 to RFC 6242

 o Updated YANG Types reference from RFC 6021 to RFC 6991

 o Updated obsolete URLs for IETF resources

 o Changed top-level data node guideline

 o Clarified XPath usage for a literal value representing a YANG
 identity

 o Clarified XPath usage for a when-stmt

 o Clarified XPath usage for 'proceeding-sibling' and
 'following-sibling' axes

 o Added terminology guidelines

 o Added YANG tree diagram guidelines

 o Updated XPath guidelines for type conversions and function library
 usage.

 o Updated data types section

 o Updated notifications section

 o Clarified conditional key leaf nodes

 o Clarify usage of 'uint64' and 'int64' data types

 o Added text on YANG feature usage

 o Added Identifier Naming Conventions

 o Clarified use of mandatory nodes with conditional augmentations

 o Clarified namespace and domain conventions for example modules

 o Clarified conventions for identifying code components

 o Added YANG 1.1 guidelines

 o Added Data Model Constraints section

 o Added mention of RESTCONF protocol

https://datatracker.ietf.org/doc/html/rfc4742
https://datatracker.ietf.org/doc/html/rfc6242
https://datatracker.ietf.org/doc/html/rfc6021
https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires September 12, 2018 [Page 6]

Internet-Draft Guidelines for YANG Documents March 2018

 o Added guidelines for NMDA Revised Datastores

Bierman Expires September 12, 2018 [Page 7]

Internet-Draft Guidelines for YANG Documents March 2018

2. Terminology

2.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 [RFC2119]
 [RFC8174] when, and only when, they appear in all capitals, as shown
 here.

2.2. NETCONF Terms

 The following terms are defined in [RFC6241] and are not redefined
 here:

 o capabilities

 o client

 o operation

 o server

2.3. YANG Terms

 The following terms are defined in [RFC7950] and are not redefined
 here:

 o data node

 o module

 o namespace

 o submodule

 o version

 o YANG

 o YIN

 Note that the term 'module' may be used as a generic term for a YANG
 module or submodule. When describing properties that are specific to
 submodules, the term 'submodule' is used instead.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7950

Bierman Expires September 12, 2018 [Page 8]

Internet-Draft Guidelines for YANG Documents March 2018

2.4. NMDA Terms

 The following terms are defined in the Network Management Datastore
 Architecture (NMDA) [I-D.ietf-netmod-revised-datastores]. and are not
 redefined here:

 o configuration

 o conventional configuration datastore

 o datastore

 o operational state

 o operational state datastore

2.5. Terms

 The following terms are used throughout this document:

 o published: A stable release of a module or submodule. For example
 the "Request for Comments" described in section 2.1 of [RFC2026]
 is considered a stable publication.

 o unpublished: An unstable release of a module or submodule. For
 example the "Internet-Draft" described in section 2.2 of [RFC2026]
 is considered an unstable publication that is a work-in-progress,
 subject to change at any time.

 o YANG fragment: A set of YANG statements that are not intended to
 represent a complete YANG module or submodule. These statements
 are not intended for actual use, except to provide an example of
 YANG statement usage. The invalid syntax "..." is sometimes used
 to indicate that additional YANG statements would be present in a
 real YANG module.

 o YANG tree diagram: a diagram representing the contents of a YANG
 module, as defined in [I-D.ietf-netmod-yang-tree-diagrams]. Also
 called a "tree diagram".

https://datatracker.ietf.org/doc/html/rfc2026#section-2.1
https://datatracker.ietf.org/doc/html/rfc2026#section-2.2

Bierman Expires September 12, 2018 [Page 9]

Internet-Draft Guidelines for YANG Documents March 2018

3. General Documentation Guidelines

 YANG data model modules under review are likely to be contained in
 Internet-Drafts. All guidelines for Internet-Draft authors
 [ID-Guidelines] MUST be followed. The RFC Editor provides guidelines
 for authors of RFCs, which are first published as Internet-Drafts.
 These guidelines should be followed and are defined in [RFC7322] and
 updated in [RFC7841], "RFC Document Style" [RFC-STYLE], and
 [I-D.flanagan-7322bis].

 The following sections MUST be present in an Internet-Draft
 containing a module:

 o Narrative sections

 o Definitions section

 o Security Considerations section

 o IANA Considerations section

 o References section

 There are three usage scenarios for YANG that can appear in an
 Internet-Draft or RFC:

 o normative module or submodule

 o example module or submodule

 o example YANG fragment not part of any module or submodule

 The guidelines in this document refer mainly to a normative module or
 submodule, but may be applicable to example modules and YANG
 fragments as well.

3.1. Module Copyright

 The module description statement MUST contain a reference to the
 latest approved IETF Trust Copyright statement, which is available
 online at:

https://trustee.ietf.org/license-info/

https://datatracker.ietf.org/doc/html/rfc7322
https://datatracker.ietf.org/doc/html/rfc7841
https://trustee.ietf.org/license-info/

Bierman Expires September 12, 2018 [Page 10]

Internet-Draft Guidelines for YANG Documents March 2018

3.2. Code Components

 Each normative YANG module or submodule contained within an Internet-
 Draft or RFC is considered to be a code component. The strings
 "<CODE BEGINS>" and "<CODE ENDS>" MUST be used to identify each code
 component.

 The "<CODE BEGINS>" tag SHOULD be followed by a string identifying
 the file name specified in Section 5.2 of [RFC7950]. The name string
 form that includes the revision-date SHOULD be used. The revision
 date MUST match the date used in the most recent revision of the
 module.

 The following example is for the '2016-03-20' revision of the
 'ietf-foo' module:

 <CODE BEGINS> file "ietf-foo@2016-03-20.yang"

 module ietf-foo {
 namespace "urn:ietf:params:xml:ns:yang:ietf-foo";
 prefix "foo";
 organization "...";
 contact "...";
 description "...";
 revision 2016-03-20 {
 description "Latest revision";
 reference "RFC XXXX";
 }
 // ... more statements
 }

 <CODE ENDS>

3.2.1. Example Modules

 Example modules are not code components. The <CODE BEGINS>
 convention MUST NOT be used for example modules.

 An example module SHOULD be named using the term "example", followed
 by a hyphen, followed by a descriptive name, e.g., "example-toaster".
 See Section 4.9 regarding the namespace guidelines for example
 modules.

3.3. Terminology Section

 A terminology section MUST be present if any terms are defined in the
 document or if any terms are imported from other documents.

https://datatracker.ietf.org/doc/html/rfc7950#section-5.2

Bierman Expires September 12, 2018 [Page 11]

Internet-Draft Guidelines for YANG Documents March 2018

3.4. Tree Diagrams

 YANG tree diagrams provide a concise representation of a YANG module,
 and SHOULD be included to help readers understand YANG module
 structure. Guidelines on tree diagrams can be found in Section 3 of
 [I-D.ietf-netmod-yang-tree-diagrams].

 If YANG tree diagrams are used, then an informative reference to the
 YANG tree diagrams specification MUST be included in the document.
 Refer to Section 2.2 of [I-D.ietf-netmod-rfc8022bis] for an example
 of such a reference.

3.5. Narrative Sections

 The narrative part MUST include an overview section that describes
 the scope and field of application of the module(s) defined by the
 specification and that specifies the relationship (if any) of these
 modules to other standards, particularly to standards containing
 other YANG modules. The narrative part SHOULD include one or more
 sections to briefly describe the structure of the modules defined in
 the specification.

 If the module(s) defined by the specification imports definitions
 from other modules (except for those defined in the [RFC7950] or
 [RFC6991] documents), or are always implemented in conjunction with
 other modules, then those facts MUST be noted in the overview
 section, as MUST be noted any special interpretations of definitions
 in other modules. Refer to section 2.3 of
 [I-D.ietf-netmod-rfc8022bis] for an example of this overview section.

 If the documents contains YANG module(s) that are compliant with the
 Network Management Datastore Architecture (NMDA)
 [I-D.ietf-netmod-revised-datastores], then the Introduction section
 should mention this fact.

 Example:

 The YANG model in this document conforms to the Network
 Management Datastore Architecture defined in
 [I-D.ietf-netmod-revised-datastores].

 Consistent indentation SHOULD be used for all examples, including
 YANG fragments and protocol message instance data. If line wrapping
 is done for formatting purposes, then this SHOULD be noted, as shown
 in the following example:

 [note: '\' line wrapping for formatting only]

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires September 12, 2018 [Page 12]

Internet-Draft Guidelines for YANG Documents March 2018

 <myleaf xmlns="tag:example.com,2017:example-two">\
 this is a long value so the line needs to wrap to stay\
 within 72 characters\
 </myleaf>

3.6. Definitions Section

 This section contains the module(s) defined by the specification.
 These modules SHOULD be written using the YANG 1.1 [RFC7950] syntax.
 YANG 1.0 [RFC6020] syntax MAY be used if no YANG 1.1 constructs or
 semantics are needed in the module. If any of the imported YANG
 modules are written using YANG 1.1, then the module MUST be written
 using YANG 1.1.

 A YIN syntax version of the module MAY also be present in the
 document. There MAY also be other types of modules present in the
 document, such as SMIv2, which are not affected by these guidelines.

 Note that if the module itself is considered normative and not an
 example module or example YANG fragment, then all YANG statements
 within a YANG module are considered normative. The use of keywords
 defined in [RFC2119] apply to YANG description statements in
 normative modules exactly as they would in any other normative
 section.

 Example YANG modules and example YANG fragments MUST NOT contain any
 normative text, including any all-uppercase reserved words from
 [RFC2119].

 Consistent indentation and formatting SHOULD be used in all YANG
 statements within a module.

 See Section 4 for guidelines on YANG usage.

3.7. Security Considerations Section

 Each specification that defines one or more modules MUST contain a
 section that discusses security considerations relevant to those
 modules.

 This section MUST be patterned after the latest approved template
 (available at

https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines).
Section 3.7.1 contains the security considerations template dated

 2013-05-08 and last updated 2017-12-21. Authors MUST check the WEB
 page at the URL listed above in case there is a more recent version
 available.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines

Bierman Expires September 12, 2018 [Page 13]

Internet-Draft Guidelines for YANG Documents March 2018

 In particular:

 o Writable data nodes that could be especially disruptive if abused
 MUST be explicitly listed by name and the associated security
 risks MUST be explained.

 o Readable data nodes that contain especially sensitive information
 or that raise significant privacy concerns MUST be explicitly
 listed by name and the reasons for the sensitivity/privacy
 concerns MUST be explained.

 o Operations (i.e., YANG 'rpc' statements) that are potentially
 harmful to system behavior or that raise significant privacy
 concerns MUST be explicitly listed by name and the reasons for the
 sensitivity/privacy concerns MUST be explained.

3.7.1. Security Considerations Section Template

 X. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF access control model [RFC6536] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 -- if you have any writeable data nodes (those are all the
 -- "config true" nodes, and remember, that is the default)
 -- describe their specific sensitivity or vulnerability.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc6242
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6536

Bierman Expires September 12, 2018 [Page 14]

Internet-Draft Guidelines for YANG Documents March 2018

 -- for all YANG modules you must evaluate whether any readable data
 -- nodes (those are all the "config false" nodes, but also all other
 -- nodes, because they can also be read via operations like get or
 -- get-config) are sensitive or vulnerable (for instance, if they
 -- might reveal customer information or violate personal privacy
 -- laws such as those of the European Union if exposed to
 -- unauthorized parties)

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- if your YANG module has defined any rpc operations
 -- describe their specific sensitivity or vulnerability.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 <list RPC operations and state why they are sensitive>

3.8. IANA Considerations Section

 In order to comply with IESG policy as set forth in
https://www.ietf.org/id-info/checklist.html, every Internet-Draft

 that is submitted to the IESG for publication MUST contain an IANA
 Considerations section. The requirements for this section vary
 depending on what actions are required of the IANA. If there are no
 IANA considerations applicable to the document, then the IANA
 Considerations section stating that there are no actions might be
 removed by the RFC Editor before publication. Refer to the
 guidelines in [RFC8126] for more details.

 Each normative YANG module MUST be registered in the XML namespace
 Registry [RFC3688], and the YANG Module Names Registry [RFC6020].
 This applies to new modules and updated modules. Examples of these
 registrations for the "ietf-template" module can be found in

Section 5.

3.8.1. Documents that Create a New Namespace

 If an Internet-Draft defines a new namespace that is to be
 administered by the IANA, then the document MUST include an IANA

https://www.ietf.org/id-info/checklist.html
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Bierman Expires September 12, 2018 [Page 15]

Internet-Draft Guidelines for YANG Documents March 2018

 Considerations section that specifies how the namespace is to be
 administered.

 Specifically, if any YANG module namespace statement value contained
 in the document is not already registered with IANA, then a new YANG
 Namespace registry entry MUST be requested from the IANA. The
 [RFC7950] specification includes the procedure for this purpose in
 its IANA Considerations section.

3.8.2. Documents that Extend an Existing Namespace

 It is possible to extend an existing namespace using a YANG submodule
 that belongs to an existing module already administered by IANA. In
 this case, the document containing the main module MUST be updated to
 use the latest revision of the submodule.

3.9. Reference Sections

 For every import or include statement that appears in a module
 contained in the specification, that identifies a module in a
 separate document, a corresponding normative reference to that
 document MUST appear in the Normative References section. The
 reference MUST correspond to the specific module version actually
 used within the specification.

 For every normative reference statement that appears in a module
 contained in the specification, that identifies a separate document,
 a corresponding normative reference to that document SHOULD appear in
 the Normative References section. The reference SHOULD correspond to
 the specific document version actually used within the specification.
 If the reference statement identifies an informative reference, that
 identifies a separate document, a corresponding informative reference
 to that document MAY appear in the Informative References section.

3.10. Validation Tools

 All modules need to be validated before submission in an Internet
 Draft. The 'pyang' YANG compiler is freely available from github:

https://github.com/mbj4668/pyang

 If the 'pyang' compiler is used to validate a normative module, then
 the "--ietf" command line option MUST be used to identify any IETF
 guideline issues.

 If the 'pyang' compiler is used to validate an example module, then
 the "--ietf" command line option MAY be used to identify any IETF
 guideline issues.

https://datatracker.ietf.org/doc/html/rfc7950
https://github.com/mbj4668/pyang

Bierman Expires September 12, 2018 [Page 16]

Internet-Draft Guidelines for YANG Documents March 2018

 The "yanglint" program is also freely available from github.

https://github.com/CESNET/libyang

 This tool can be used to validate XPath statements within YANG
 modules.

3.11. Module Extraction Tools

 A version of 'rfcstrip' is available which will extract YANG modules
 from an Internet Draft or RFC. The 'rfcstrip' tool which supports
 YANG module extraction is freely available:

http://www.yang-central.org/twiki/pub/Main/YangTools/rfcstrip

 This tool can be used to verify that the "<CODE BEGINS>" and "<CODE
 ENDS>" tags are used correctly and that the normative YANG modules
 can be extracted correctly.

 The "xym" tool is freely available on github and can be used to
 extract YANG modules from a document.

https://github.com/xym-tool/xym

3.12. Module Usage Examples

 Each specification that defines one or more modules SHOULD contain
 usage examples, either throughout the document or in an appendix.
 This includes example instance document snippets in an appropriate
 encoding (e.g., XML and/or JSON) to demonstrate the intended usage of
 the YANG module(s). Example modules MUST be validated. Refer to

Section 3.10 for tools which validate YANG modules. If IP addresses
 are used, then either a mix of IPv4 and IPv6 addresses or IPv6
 addresses exclusively SHOULD be used in the examples.

https://github.com/CESNET/libyang
http://www.yang-central.org/twiki/pub/Main/YangTools/rfcstrip
https://github.com/xym-tool/xym

Bierman Expires September 12, 2018 [Page 17]

Internet-Draft Guidelines for YANG Documents March 2018

4. YANG Usage Guidelines

 Modules in IETF Standards Track specifications MUST comply with all
 syntactic and semantic requirements of YANG 1.1 [RFC7950]. See the
 exception for YANG 1.0 in Section 3.6. The guidelines in this
 section are intended to supplement the YANG specification, which is
 intended to define a minimum set of conformance requirements.

 In order to promote interoperability and establish a set of practices
 based on previous experience, the following sections establish usage
 guidelines for specific YANG constructs.

 Only guidelines that clarify or restrict the minimum conformance
 requirements are included here.

4.1. Module Naming Conventions

 Normative modules contained in Standards Track documents MUST be
 named according to the guidelines in the IANA Considerations section
 of [RFC7950].

 A distinctive word or acronym (e.g., protocol name or working group
 acronym) SHOULD be used in the module name. If new definitions are
 being defined to extend one or more existing modules, then the same
 word or acronym should be reused, instead of creating a new one.

 All published module names MUST be unique. For a YANG module
 published in an RFC, this uniqueness is guaranteed by IANA. For
 unpublished modules, the authors need to check that no other work in
 progress is using the same module name.

 Example modules are non-normative, and SHOULD be named with the
 prefix "example-".

 It is suggested that a stable prefix be selected representing the
 entire organization. All normative YANG modules published by the
 IETF MUST begin with the prefix "ietf-". Another standards
 organization, such as the IEEE, might use the prefix "ieee-" for all
 YANG modules.

 Once a module name is published, it MUST NOT be reused, even if the
 RFC containing the module is reclassified to 'Historic' status. A
 module name cannot be changed in YANG, and this would be treated as a
 a new module, not a name change.

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950

Bierman Expires September 12, 2018 [Page 18]

Internet-Draft Guidelines for YANG Documents March 2018

4.2. Prefixes

 All YANG definitions are scoped by the module containing the
 definition being referenced. This allows definitions from multiple
 modules to be used, even if the names are not unique. In the example
 below, the identifier "foo" is used in all 3 modules:

 module example-foo {
 namespace "tag:example.com,2017:example-foo";
 prefix f;

 container foo;
 }

 module example-bar {
 namespace "tag:example.com,2017:example-bar";
 prefix b;

 typedef foo { type uint32; }
 }

 module example-one {
 namespace "tag:example.com,2017:example-one";
 prefix one;
 import example-foo { prefix f; }
 import example-bar { prefix b; }

 augment "/f:foo" {
 leaf foo { type b:foo; }
 }
 }

 YANG defines the following rules for prefix usage:

 o Prefixes are never used for built in data types and YANG keywords.

 o A prefix MUST be used for any external statement (i.e., a
 statement defined with the YANG "extension" statement)

 o The proper module prefix MUST be used for all identifiers imported
 from other modules

 o The proper module prefix MUST be used for all identifiers included
 from a submodule.

 The following guidelines apply to prefix usage of the current (local)
 module:

Bierman Expires September 12, 2018 [Page 19]

Internet-Draft Guidelines for YANG Documents March 2018

 o The local module prefix SHOULD be used instead of no prefix in all
 path expressions.

 o The local module prefix MUST be used instead of no prefix in all
 "default" statements for an "identityref" or "instance-identifier"
 data type

 o The local module prefix MAY be used for references to typedefs,
 groupings, extensions, features, and identities defined in the
 module.

 Prefix values SHOULD be short, but also likely to be unique. Prefix
 values SHOULD NOT conflict with known modules that have been
 previously published.

4.3. Identifiers

 Identifiers for all YANG identifiers in published modules MUST be
 between 1 and 64 characters in length. These include any construct
 specified as an 'identifier-arg-str' token in the ABNF in Section 13
 of [RFC7950].

4.3.1. Identifier Naming Conventions

 Identifiers SHOULD follow a consistent naming pattern throughout the
 module. Only lower-case letters, numbers, and dashes SHOULD be used
 in identifier names. Upper-case characters, the period character,
 and the underscore character MAY be used if the identifier represents
 a well-known value that uses these characters. YANG does not permit
 any other characters in YANG identifiers.

 Identifiers SHOULD include complete words and/or well-known acronyms
 or abbreviations. Child nodes within a container or list SHOULD NOT
 replicate the parent identifier. YANG identifiers are hierarchical
 and are only meant to be unique within the the set of sibling nodes
 defined in the same module namespace.

 It is permissible to use common identifiers such as "name" or "id" in
 data definition statements, especially if these data nodes share a
 common data type.

 Identifiers SHOULD NOT carry any special semantics that identify data
 modelling properties. Only YANG statements and YANG extension
 statements are designed to convey machine readable data modelling
 properties. For example, naming an object "config" or "state" does
 not change whether it is configuration data or state data. Only
 defined YANG statements or YANG extension statements can be used to
 assign semantics in a machine readable format in YANG.

https://datatracker.ietf.org/doc/html/rfc7950#section-13
https://datatracker.ietf.org/doc/html/rfc7950#section-13

Bierman Expires September 12, 2018 [Page 20]

Internet-Draft Guidelines for YANG Documents March 2018

4.4. Defaults

 In general, it is suggested that substatements containing very common
 default values SHOULD NOT be present. The following substatements
 are commonly used with the default value, which would make the module
 difficult to read if used everywhere they are allowed.

 +--------------+---------------+
 | Statement | Default Value |
 +--------------+---------------+
 | config | true |
 | mandatory | false |
 | max-elements | unbounded |
 | min-elements | 0 |
 | ordered-by | system |
 | status | current |
 | yin-element | false |
 +--------------+---------------+

 Statement Defaults

4.5. Conditional Statements

 A module may be conceptually partitioned in several ways, using the
 'if-feature' and/or 'when' statements.

 Data model designers need to carefully consider all modularity
 aspects, including the use of YANG conditional statements.

 If a data definition is optional, depending on server support for a
 NETCONF or RESTCONF protocol capability, then a YANG 'feature'
 statement SHOULD be defined. The defined "feature" statement SHOULD
 then be used in the conditional "if-feature" statement referencing
 the optional data definition.

 If any notification data, or any data definition, for a non-
 configuration data node is not mandatory, then the server may or may
 not be required to return an instance of this data node. If any
 conditional requirements exist for returning the data node in a
 notification payload or retrieval request, they MUST be documented
 somewhere. For example, a 'when' or 'if-feature' statement could
 apply to the data node, or the conditional requirements could be
 explained in a 'description' statement within the data node or one of
 its ancestors (if any).

 If any 'if-feature' statements apply to a list node, then the same
 'if-feature' statements MUST apply to any key leaf nodes for the
 list. There MUST NOT be any 'if-feature' statements applied to any

Bierman Expires September 12, 2018 [Page 21]

Internet-Draft Guidelines for YANG Documents March 2018

 key leaf that do not also apply to the parent list node.

 There SHOULD NOT be any 'when' statements applied to a key leaf node.
 It is possible that a 'when' statement for an ancestor node of a key
 leaf will have the exact node-set result as the key leaf. In such a
 case, the 'when' statement for the key leaf is redundant and SHOULD
 be avoided.

4.6. XPath Usage

 This section describes guidelines for using the XML Path Language
 [W3C.REC-xpath-19991116] (XPath) within YANG modules.

4.6.1. XPath Evaluation Contexts

 YANG defines 5 separate contexts for evaluation of XPath statements:

 1) The "running" datastore: collection of all YANG configuration data
 nodes. The document root is the conceptual container, (e.g.,
 "config" in the "edit-config" operation), which is the parent of all
 top-level data definition statements with a "config" statement value
 of "true".

 2) State data + the "running" datastore: collection of all YANG data
 nodes. The document root is the conceptual container, parent of all
 top-level data definition statements.

 3) Notification: an event notification document. The document root
 is the notification element.

 4) RPC Input: The document root is the conceptual "input" node, which
 is the parent of all RPC input parameter definitions.

 5) RPC Output: The document root is the conceptual "output" node,
 which is the parent of all RPC output parameter definitions.

 Note that these XPath contexts cannot be mixed. For example, a
 "when" statement in a notification context cannot reference
 configuration data.

Bierman Expires September 12, 2018 [Page 22]

Internet-Draft Guidelines for YANG Documents March 2018

 notification foo {
 leaf mtu {
 // NOT OK because when-stmt context is this notification
 when "/if:interfaces/if:interface[name='eth0']";
 type leafref {
 // OK because path-stmt has a different context
 path "/if:interfaces/if:interface/if:mtu";
 }
 }
 }

 It is especially important to consider the XPath evaluation context
 for XPath expressions defined in groupings. An XPath expression
 defined in a grouping may not be portable, meaning it cannot be used
 in multiple contexts and produce proper results.

 If the XPath expressions defined in a grouping are intended for a
 particular context, then this context SHOULD be identified in the
 "description" statement for the grouping.

4.6.2. Function Library

 The 'position' and 'last' functions SHOULD NOT be used. This applies
 to implicit use of the 'position' function as well (e.g.,
 '//chapter[42]'). A server is only required to maintain the relative
 XML document order of all instances of a particular user-ordered list
 or leaf-list. The 'position' and 'last' functions MAY be used if
 they are evaluated in a context where the context node is a user-
 ordered 'list' or 'leaf-list'.

 The 'id' function SHOULD NOT be used. The 'ID' attribute is not
 present in YANG documents so this function has no meaning. The YANG
 compiler SHOULD return an empty string for this function.

 The 'namespace-uri' and 'name' functions SHOULD NOT be used.
 Expanded names in XPath are different than YANG. A specific
 canonical representation of a YANG expanded name does not exist.

 The 'lang' function SHOULD NOT be used. This function does not apply
 to YANG because there is no 'lang' attribute set with the document.
 The YANG compiler SHOULD return 'false' for this function.

 The 'local-name', 'namespace-uri', 'name', 'string', and 'number'
 functions SHOULD NOT be used if the argument is a node-set. If so,
 the function result will be determined by the document order of the
 node-set. Since this order can be different on each server, the
 function results can also be different. Any function call that
 implicitly converts a node-set to a string will also have this issue.

Bierman Expires September 12, 2018 [Page 23]

Internet-Draft Guidelines for YANG Documents March 2018

 The 'local-name' function SHOULD NOT be used to reference local names
 outside of the YANG module defining the must or when expression
 containing the 'local-name' function. Example of a local-name
 function that should not be used:

 /*[local-name()='foo']

 The 'derived-from-or-self' function SHOULD be used instead of an
 equality expression for identityref values. This allows the
 identities to be conceptually augmented.

 Example:

 // do not use
 when "md-name-format = 'name-format-null'";

 // this is preferred
 when "derived-from-or-self(md-name-format, 'name-format-null')";

4.6.3. Axes

 The 'attribute' and 'namespace' axes are not supported in YANG, and
 MAY be empty in a NETCONF or RESTCONF server implementation.

 The 'preceding', and 'following' axes SHOULD NOT be used. These
 constructs rely on XML document order within a NETCONF or RESTCONF
 server configuration database, which may not be supported
 consistently or produce reliable results across implementations.
 Predicate expressions based on static node properties (e.g., element
 name or value, 'ancestor' or 'descendant' axes) SHOULD be used
 instead. The 'preceding' and 'following' axes MAY be used if
 document order is not relevant to the outcome of the expression
 (e.g., check for global uniqueness of a parameter value).

 The 'preceding-sibling' and 'following-sibling' axes SHOULD NOT used,
 however they MAY be used if document order is not relevant to the
 outcome of the expression.

 A server is only required to maintain the relative XML document order
 of all instances of a particular user-ordered list or leaf-list. The
 'preceding-sibling' and 'following-sibling' axes MAY be used if they
 are evaluated in a context where the context node is a user-ordered
 'list' or 'leaf-list'.

4.6.4. Types

 Data nodes that use the 'int64' and 'uint64' built-in type SHOULD NOT
 be used within numeric or boolean expressions. There are boundary

Bierman Expires September 12, 2018 [Page 24]

Internet-Draft Guidelines for YANG Documents March 2018

 conditions in which the translation from the YANG 64-bit type to an
 XPath number can cause incorrect results. Specifically, an XPath
 'double' precision floating point number cannot represent very large
 positive or negative 64-bit numbers because it only provides a total
 precision of 53 bits. The 'int64' and 'uint64' data types MAY be
 used in numeric expressions if the value can be represented with no
 more than 53 bits of precision.

 Data modelers need to be careful not to confuse the YANG value space
 and the XPath value space. The data types are not the same in both,
 and conversion between YANG and XPath data types SHOULD be considered
 carefully.

 Explicit XPath data type conversions MAY be used (e.g., 'string',
 'boolean', or 'number' functions), instead of implicit XPath data
 type conversions.

 XPath expressions that contain a literal value representing a YANG
 identity SHOULD always include the declared prefix of the module
 where the identity is defined.

 XPath expressions for 'when' statements SHOULD NOT reference the
 context node or any descendant nodes of the context node. They MAY
 reference descendant nodes if the 'when' statement is contained
 within an 'augment' statement, and the referenced nodes are not
 defined within the 'augment' statement.

 Example:

 augment "/rt:active-route/rt:input/rt:destination-address" {
 when "rt:address-family='v4ur:ipv4-unicast'" {
 description
 "This augment is valid only for IPv4 unicast.";
 }
 // nodes defined here within the augment-stmt
 // cannot be referenced in the when-stmt
 }

4.6.5. Wildcards

 It is possible to construct XPath expressions that will evaluate
 differently when combined with several modules within a server
 implementation, then when evaluated within the single module. This
 is due to augmenting nodes from other modules.

 Wildcard expansion is done within a server against all the nodes from
 all namespaces, so it is possible for a 'must' or 'when' expression
 that uses the '*' operator will always evaluate to false if processed

Bierman Expires September 12, 2018 [Page 25]

Internet-Draft Guidelines for YANG Documents March 2018

 within a single YANG module. In such cases, the 'description'
 statement SHOULD clarify that augmenting objects are expected to
 match the wildcard expansion.

 when /foo/services/*/active {
 description
 "No services directly defined in this module.
 Matches objects that have augmented the services container.";
 }

4.6.6. Boolean Expressions

 The YANG "must" and "when" statements use an XPath boolean expression
 to define the test condition for the statement. It is important to
 specify these expressions in a way that will not cause inadvertent
 changes in the result if the objects referenced in the expression are
 updated in future revisions of the module.

 For example, the leaf "foo2" must exist if the leaf "foo1" is equal
 to "one" or "three":

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 }
 }

 leaf foo2 {
 // INCORRECT
 must "/f:foo1 != 'two'";
 type string;
 }

 leaf foo2 {
 // CORRECT
 must "/f:foo1 = 'one' or /f:foo1 = 'three'";
 type string;
 }

 In the next revision of the module, leaf "foo1" is extended with a
 new enum named "four":

Bierman Expires September 12, 2018 [Page 26]

Internet-Draft Guidelines for YANG Documents March 2018

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 enum four;
 }
 }

 Now the first XPath expression will allow the enum "four" to be
 accepted in addition to the "one" and "three" enum values.

4.7. YANG Definition Lifecycle Management

 The YANG status statement MUST be present within a definition if its
 value is 'deprecated' or 'obsolete'. The status SHOULD NOT be
 changed from 'current' directly to 'obsolete'. An object SHOULD be
 available for at least one year with 'deprecated' status before it is
 changed to 'obsolete'.

 The module or submodule name MUST NOT be changed, once the document
 containing the module or submodule is published.

 The module namespace URI value MUST NOT be changed, once the document
 containing the module is published.

 The revision-date substatement within the import statement SHOULD be
 present if any groupings are used from the external module.

 The revision-date substatement within the include statement SHOULD be
 present if any groupings are used from the external submodule.

 If an import statement is for a module from a stable source (e.g., an
 RFC for an IETF module), then a reference-stmt SHOULD be present
 within an import statement.

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991";
 }

 If submodules are used, then the document containing the main module
 MUST be updated so that the main module revision date is equal or
 more recent than the revision date of any submodule that is (directly
 or indirectly) included by the main module.

 Definitions for future use SHOULD NOT be specified in a module. Do
 not specify placeholder objects like the "reserved" example below:

https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires September 12, 2018 [Page 27]

Internet-Draft Guidelines for YANG Documents March 2018

 leaf reserved {
 type string;
 description
 "This object has no purpose at this time, but a future
 revision of this module might define a purpose
 for this object.";
 }
 }

4.8. Module Header, Meta, and Revision Statements

 For published modules, the namespace MUST be a globally unique URI,
 as defined in [RFC3986]. This value is usually assigned by the IANA.

 The organization statement MUST be present. If the module is
 contained in a document intended for IETF Standards Track status,
 then the organization SHOULD be the IETF working group chartered to
 write the document. For other standards organizations, a similar
 approach is also suggested.

 The contact statement MUST be present. If the module is contained in
 a document intended for Standards Track status, then the working
 group web and mailing information SHOULD be present, and the main
 document author or editor contact information SHOULD be present. If
 additional authors or editors exist, their contact information MAY be
 present. There is no need to include the contact information for
 Working Group chairs.

 The description statement MUST be present. For modules published
 within IETF documents, the appropriate IETF Trust Copyright text MUST
 be present, as described in Section 3.1.

 If the module relies on information contained in other documents,
 which are not the same documents implied by the import statements
 present in the module, then these documents MUST be identified in the
 reference statement.

 A revision statement MUST be present for each published version of
 the module. The revision statement MUST have a reference
 substatement. It MUST identify the published document that contains
 the module. Modules are often extracted from their original
 documents, and it is useful for developers and operators to know how
 to find the original source document in a consistent manner. The
 revision statement MAY have a description substatement.

 The following example shows the revision statement for a published
 YANG module:

https://datatracker.ietf.org/doc/html/rfc3986

Bierman Expires September 12, 2018 [Page 28]

Internet-Draft Guidelines for YANG Documents March 2018

 revision "2012-02-22" {
 description
 "Initial version";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

 For an unpublished module, a complete history of each unpublished
 module revision is not required. That is, within a sequence of draft
 versions, only the most recent revision need be recorded in the
 module. Do not remove or reuse a revision statement for a published
 module. A new revision date is not required unless the module
 contents have changed. If the module contents have changed, then the
 revision date of that new module version MUST be updated to a date
 later than that of the previous version.

 The following example shows the two revision statements for an
 unpublished update to a published YANG module:

 revision "2017-12-11" {
 description
 "Added support for YANG 1.1 actions and notifications tied to
 data nodes. Clarify how NACM extensions can be used by other
 data models.";
 reference
 "RFC XXXX: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

 revision "2012-02-22" {
 description
 "Initial version";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

4.9. Namespace Assignments

 It is RECOMMENDED that only valid YANG modules be included in
 documents, whether or not the modules are published yet. This
 allows:

 o the module to compile correctly instead of generating disruptive
 fatal errors.

https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc6536

Bierman Expires September 12, 2018 [Page 29]

Internet-Draft Guidelines for YANG Documents March 2018

 o early implementors to use the modules without picking a random
 value for the XML namespace.

 o early interoperability testing since independent implementations
 will use the same XML namespace value.

 Until a URI is assigned by the IANA, a proposed namespace URI MUST be
 provided for the namespace statement in a YANG module. A value
 SHOULD be selected that is not likely to collide with other YANG
 namespaces. Standard module names, prefixes, and URI strings already
 listed in the YANG Module Registry MUST NOT be used.

 A standard namespace statement value SHOULD have the following form:

 <URN prefix string>:<module-name>

 The following URN prefix string SHOULD be used for published and
 unpublished YANG modules:

 urn:ietf:params:xml:ns:yang:

 The following example URNs would be valid namespace statement values
 for Standards Track modules:

 urn:ietf:params:xml:ns:yang:ietf-netconf-partial-lock

 urn:ietf:params:xml:ns:yang:ietf-netconf-state

 urn:ietf:params:xml:ns:yang:ietf-netconf

 Note that a different URN prefix string SHOULD be used for non-
 Standards-Track modules. The string SHOULD be selected according to
 the guidelines in [RFC7950].

 The following URIs exemplify what might be used by non Standards
 Track modules. Note that the domain "example.com" SHOULD be used by
 example modules in IETF drafts. These URIs are not intended to be
 de-referenced. They are used for module namespace identification
 only.

 Example URIs using URLs per RFC 3986 [RFC3986]:

 https://example.com/ns/example-interfaces

 https://example.com/ns/example-system

 Example URIs using tags per RFC 4151 [RFC4151]:

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4151
https://datatracker.ietf.org/doc/html/rfc4151

Bierman Expires September 12, 2018 [Page 30]

Internet-Draft Guidelines for YANG Documents March 2018

 tag:example.com,2017:example-interfaces

 tag:example.com,2017:example-system

4.10. Top-Level Data Definitions

 The top-level data organization SHOULD be considered carefully, in
 advance. Data model designers need to consider how the functionality
 for a given protocol or protocol family will grow over time.

 The separation of configuration data and operational state SHOULD be
 considered carefully. It is sometimes useful to define separate top-
 level containers for configuration and non-configuration data. For
 some existing top-level data nodes, configuration data was not in
 scope, so only one container representing operational state was
 created. Refer to the Network Management Datastore Architecture
 (NMDA) [I-D.ietf-netmod-revised-datastores]. for details.

 The number of top-level data nodes within a module SHOULD be
 minimized. It is often useful to retrieve related information within
 a single subtree. If data is too distributed, is becomes difficult
 to retrieve all at once.

 The names and data organization SHOULD reflect persistent
 information, such as the name of a protocol. The name of the working
 group SHOULD NOT be used because this may change over time.

 A mandatory database data definition is defined as a node that a
 client must provide for the database to be valid. The server is not
 required to provide a value.

 Top-level database data definitions MUST NOT be mandatory. If a
 mandatory node appears at the top level, it will immediately cause
 the database to be invalid. This can occur when the server boots or
 when a module is loaded dynamically at runtime.

4.11. Data Types

 Selection of an appropriate data type (i.e., built-in type, existing
 derived type, or new derived type) is very subjective, and therefore
 few requirements can be specified on that subject.

 Data model designers SHOULD use the most appropriate built-in data
 type for the particular application.

 The signed numeric data types (i.e., 'int8', 'int16', 'int32', and
 'int64') SHOULD NOT be used unless negative values are allowed for
 the desired semantics.

Bierman Expires September 12, 2018 [Page 31]

Internet-Draft Guidelines for YANG Documents March 2018

4.11.1. Fixed Value Extensibility

 If the set of values is fixed and the data type contents are
 controlled by a single naming authority, then an enumeration data
 type SHOULD be used.

 leaf foo {
 type enumeration {
 enum one;
 enum two;
 }
 }

 If extensibility of enumerated values is required, then the
 'identityref' data type SHOULD be used instead of an enumeration or
 other built-in type.

 identity foo-type {
 description "Base for the extensible type";
 }

 identity one {
 base f:foo-type;
 }
 identity two {
 base f:foo-type;
 }

 leaf foo {
 type identityref {
 base f:foo-type;
 }
 }

 Note that any module can declare an identity with base "foo-type"
 that is valid for the "foo" leaf. Identityref values are considered
 to be qualified names.

4.11.2. Patterns and Ranges

 For string data types, if a machine-readable pattern can be defined
 for the desired semantics, then one or more pattern statements SHOULD
 be present. A single quoted string SHOULD be used to specify the
 pattern, since a double-quoted string can modify the content. If the
 patterns used in a type definition have known limitations such as
 false negative or false positive matches, then these limitations
 SHOULD be documented within the typedef or data definition.

Bierman Expires September 12, 2018 [Page 32]

Internet-Draft Guidelines for YANG Documents March 2018

 The following typedef from [RFC6991] demonstrates the proper use of
 the "pattern" statement:

 typedef ipv4-address-no-zone {
 type inet:ipv4-address {
 pattern '[0-9\.]*';
 }
 ...
 }

 For string data types, if the length of the string is required to be
 bounded in all implementations, then a length statement MUST be
 present.

 The following typedef from [RFC6991] demonstrates the proper use of
 the "length" statement:

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
 pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
 }
 ...
 }

 For numeric data types, if the values allowed by the intended
 semantics are different than those allowed by the unbounded intrinsic
 data type (e.g., 'int32'), then a range statement SHOULD be present.

 The following typedef from [RFC6991] demonstrates the proper use of
 the "range" statement:

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 ...
 }

4.11.3. Enumerations and Bits

 For 'enumeration' or 'bits' data types, the semantics for each 'enum'
 or 'bit' SHOULD be documented. A separate description statement
 (within each 'enum' or 'bit' statement) SHOULD be present.

https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires September 12, 2018 [Page 33]

Internet-Draft Guidelines for YANG Documents March 2018

 leaf foo {
 // INCORRECT
 type enumeration {
 enum one;
 enum two;
 }
 description
 "The foo enum...
 one: The first enum
 two: The second enum";
 }

 leaf foo {
 // CORRECT
 type enumeration {
 enum one {
 description "The first enum";
 }
 enum two {
 description "The second enum";
 }
 }
 description
 "The foo enum... ";
 }

4.11.4. Union Types

 The YANG "union" type is evaluated by testing a value against each
 member type in the union. The first type definition that accepts a
 value as valid is the member type used. In general, member types
 SHOULD be ordered from most restrictive to least restrictive types.

 In the following example, the "enumeration" type will never be
 matched because the preceding "string" type will match everything.

 Incorrect:

 type union {
 type string;
 type enumeration {
 enum up;
 enum down;
 }
 }

 Correct:

Bierman Expires September 12, 2018 [Page 34]

Internet-Draft Guidelines for YANG Documents March 2018

 type union {
 type enumeration {
 enum up;
 enum down;
 }
 type string;
 }

 It is possible for different member types to match, depending on the
 input encoding format. In XML, all values are passed as string
 nodes, but in JSON there are different value types for numbers,
 booleans, and strings.

 In the following example, a JSON numeric value will always be matched
 by the "int32" type but in XML the string value representing a number
 will be matched by the "string" type. The second version will match
 the "int32" member type no matter how the input is encoded.

 Incorrect:

 type union {
 type string;
 type int32;
 }

 Correct:

 type union {
 type int32;
 type string;
 }

4.11.5. Empty and Boolean

 YANG provides an "empty" data type, which has one value (i.e.,
 present). The default is "not present", which is not actually a
 value. When used within a list key, only one value can (and must)
 exist for this key leaf. The type "empty" SHOULD NOT be used for a
 key leaf since it is pointless.

 There is really no difference between a leaf of type "empty" and a
 leaf-list of type "empty". Both are limited to one instance. The
 type "empty" SHOULD NOT be used for a leaf-list.

 The advantage of using type "empty" instead of type "boolean" is that
 the default (not present) does not take up any bytes in a
 representation. The disadvantage is that the client may not be sure
 if an empty leaf is missing because it was filtered somehow or not

Bierman Expires September 12, 2018 [Page 35]

Internet-Draft Guidelines for YANG Documents March 2018

 implemented. The client may not have a complete and accurate schema
 for the data returned by the server, and not be aware of the missing
 leaf.

 The YANG "boolean" data type provides two values ("true" and
 "false"). When used within a list key, two entries can exist for
 this key leaf. Default values are ignored for key leafs, but a
 default statement is often used for plain boolean leafs. The
 advantage of the "boolean" type is that the leaf or leaf-list has a
 clear representation for both values. The default value is usually
 not returned unless explicitly requested by the client, so no bytes
 are used in a typical representation.

 In general, the "boolean" data type SHOULD be used instead of the
 "empty" data type, as shown in the example below:

 Incorrect:

 leaf flag1 {
 type empty;
 }

 Correct:

 leaf flag2 {
 type boolean;
 default false;
 }

4.12. Reusable Type Definitions

 If an appropriate derived type exists in any standard module, such as
 [RFC6991], then it SHOULD be used instead of defining a new derived
 type.

 If an appropriate units identifier can be associated with the desired
 semantics, then a units statement SHOULD be present.

 If an appropriate default value can be associated with the desired
 semantics, then a default statement SHOULD be present.

 If a significant number of derived types are defined, and it is
 anticipated that these data types will be reused by multiple modules,
 then these derived types SHOULD be contained in a separate module or
 submodule, to allow easier reuse without unnecessary coupling.

 The description statement MUST be present.

https://datatracker.ietf.org/doc/html/rfc6991

Bierman Expires September 12, 2018 [Page 36]

Internet-Draft Guidelines for YANG Documents March 2018

 If the type definition semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then the reference statement MUST be present.

4.13. Reusable Groupings

 A reusable grouping is a YANG grouping that can be imported by
 another module, and is intended for use by other modules. This is
 not the same as a grouping that is used within the module it is
 defined, but happens to be exportable to another module because it is
 defined at the top-level of the YANG module.

 The following guidelines apply to reusable groupings, in order to
 make them as robust as possible:

 o Clearly identify the purpose of the grouping in the "description"
 statement.

 o There are 5 different XPath contexts in YANG (rpc/input, rpc/
 output, notification, config=true data nodes, and all data nodes).
 Clearly identify which XPath contexts are applicable or excluded
 for the grouping.

 o Do not reference data outside the grouping in any "path", "must",
 or "when" statements.

 o Do not include a "default" sub-statement on a leaf or choice
 unless the value applies on all possible contexts.

 o Do not include a "config" sub-statement on a data node unless the
 value applies on all possible contexts.

 o Clearly identify any external dependencies in the grouping
 "description" statement, such as nodes referenced by absolute path
 from a "path", "must", or "when" statement.

4.14. Data Definitions

 The description statement MUST be present in the following YANG
 statements:

 o anyxml

 o augment

 o choice

Bierman Expires September 12, 2018 [Page 37]

Internet-Draft Guidelines for YANG Documents March 2018

 o container

 o extension

 o feature

 o grouping

 o identity

 o leaf

 o leaf-list

 o list

 o notification

 o rpc

 o typedef

 If the data definition semantics are defined in an external document,
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

 The 'anyxml' construct may be useful to represent an HTML banner
 containing markup elements, such as '' and '', and
 MAY be used in such cases. However, this construct SHOULD NOT be
 used if other YANG data node types can be used instead to represent
 the desired syntax and semantics.

 It has been found that the 'anyxml' statement is not implemented
 consistently across all servers. It is possible that mixed mode XML
 will not be supported, or configuration anyxml nodes will not
 supported.

 If there are referential integrity constraints associated with the
 desired semantics that can be represented with XPath, then one or
 more 'must' statements SHOULD be present.

 For list and leaf-list data definitions, if the number of possible
 instances is required to be bounded for all implementations, then the
 max-elements statements SHOULD be present.

 If any 'must' or 'when' statements are used within the data
 definition, then the data definition description statement SHOULD
 describe the purpose of each one.

Bierman Expires September 12, 2018 [Page 38]

Internet-Draft Guidelines for YANG Documents March 2018

 The "choice" statement is allowed to be directly present within a
 "case" statement in YANG 1.1. This needs to be considered carefully.
 Consider simply including the nested "choice" as additional "case"
 statements within the parent "choice" statement. Note that the
 "mandatory" and "default" statements within a nested "choice"
 statement only apply if the "case" containing the nested "choice"
 statement is first selected.

 If a list defines any key leafs, then these leafs SHOULD be defined
 in order, as the first child nodes within the list. The key leafs
 MAY be in a different order in some cases, e.g., they are defined in
 a grouping, not inline in the list statement.

4.14.1. Non-Presence Containers

 A non-presence container is used to organize data into specific
 subtrees. It is not intended to have semantics within the data model
 beyond this purpose, although YANG allows it (e.g., "must" statement
 within the non-presence container).

 Example using container wrappers:

 container top {
 container foos {
 list foo { ... }
 }
 container bars {
 list bar { ... }
 }
 }

 Example without container wrappers:

 container top {
 list foo { ... }
 list bar { ... }
 }

 Use of non-presence containers to organize data is a subjective
 matter similar to use of sub-directories in a file system. Although
 these containers do not have any semantics, they can impact protocol
 operations for the descendant data nodes within a non-presence
 container, so use of these containers SHOULD be considered carefully.

 The NETCONF and RESTCONF protocols do not currently support the
 ability to delete all list (or leaf-list) entries at once. This
 deficiency is sometimes avoided by use of a parent container (i.e.,
 deleting the container also removes all child entries).

Bierman Expires September 12, 2018 [Page 39]

Internet-Draft Guidelines for YANG Documents March 2018

4.14.2. Top-Level Data Nodes

 Use of top-level objects needs to be considered carefully:

 o top-level siblings are not ordered

 o top-level siblings not are not static, and depends on the modules
 that are loaded

 o for sub-tree filtering, retrieval of a top-level leaf-list will be
 treated as a content-match node for all top-level-siblings

 o a top-level list with many instances may impact performance

4.15. Operation Definitions

 If the operation semantics are defined in an external document (other
 than another YANG module indicated by an import statement), then a
 reference statement MUST be present.

 If the operation impacts system behavior in some way, it SHOULD be
 mentioned in the description statement.

 If the operation is potentially harmful to system behavior in some
 way, it MUST be mentioned in the Security Considerations section of
 the document.

4.16. Notification Definitions

 The description statement MUST be present.

 If the notification semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

 If the notification refers to a specific resource instance, then this
 instance SHOULD be identified in the notification data. This is
 usually done by including 'leafref' leaf nodes with the key leaf
 values for the resource instance. For example:

 notification interface-up {
 description "Sent when an interface is activated.";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 }

Bierman Expires September 12, 2018 [Page 40]

Internet-Draft Guidelines for YANG Documents March 2018

 Note that there are no formal YANG statements to identify any data
 node resources associated with a notification. The description
 statement for the notification SHOULD specify if and how the
 notification identifies any data node resources associated with the
 specific event.

4.17. Feature Definitions

 The YANG "feature" statement is used to define a label for a set of
 optional functionality within a module. The "if-feature" statement
 is used in the YANG statements associated with a feature. The
 description-stmt within a feature-stmt MUST specify any interactions
 with other features.

 The set of YANG features defined in a module should be considered
 carefully. Very fine granular features increase interoperability
 complexity and should be avoided. A likely misuse of the feature
 mechanism is the tagging of individual leafs (e.g., counters) with
 separate features.

 If there is a large set of objects associated with a YANG feature,
 then consider moving those objects to a separate module, instead of
 using a YANG feature. Note that the set of features within a module
 is easily discovered by the reader, but the set of related modules
 within the entire YANG library is not as easy to identity. Module
 names with a common prefix can help readers identity the set of
 related modules, but this assumes the reader will have discovered and
 installed all the relevant modules.

 Another consideration for deciding whether to create a new module or
 add a YANG feature is the stability of the module in question. It
 may be desirable to have a stable base module that is not changed
 frequently. If new functionality is placed in a separate module,
 then the base module does not need to be republished. If it is
 designed as a YANG feature then the module will need to be
 republished.

 If one feature requires implementation of another feature, then an
 "if-feature" statement SHOULD be used in the dependent "feature"
 statement.

 For example, feature2 requires implementation of feature1:

Bierman Expires September 12, 2018 [Page 41]

Internet-Draft Guidelines for YANG Documents March 2018

 feature feature1 {
 description "Some protocol feature";
 }

 feature feature2 {
 if-feature "feature1";
 description "Another protocol feature";
 }

4.18. YANG Data Node Constraints

4.18.1. Controlling Quantity

 The "min-elements" and "max-elements" statements can be use to
 control how many list or leaf-list instances are required for a
 particular data node. YANG constraint statements SHOULD be used to
 identify conditions that apply to all implementations of the data
 model. If platform-specific limitations (e.g., the "max-elements"
 supported for a particular list) are relevant to operations, then a
 data model definition statement (e.g., "max-ports" leaf) SHOULD be
 used to identify the limit.

4.18.2. must vs. when

 The "must" and "when" YANG statements are used to provide cross-
 object referential tests. They have very different behavior. The
 "when" statement causes data node instances to be silently deleted as
 soon as the condition becomes false. A false "when" expression is
 not considered to be an error.

 The "when" statement SHOULD be used together with the "augment" or
 "uses" statements to achieve conditional model composition. The
 condition SHOULD be based on static properties of the augmented entry
 (e.g., list key leafs).

 The "must" statement causes a datastore validation error if the
 condition is false. This statement SHOULD be used for enforcing
 parameter value restrictions that involve more than one data node
 (e.g., end-time parameter must be after the start-time parameter).

4.19. Augment Statements

 The YANG "augment" statement is used to define a set of data
 definition statements that will be added as child nodes of a target
 data node. The module namespace for these data nodes will be the
 augmenting module, not the augmented module.

 A top-level "augment" statement SHOULD NOT be used if the target data

Bierman Expires September 12, 2018 [Page 42]

Internet-Draft Guidelines for YANG Documents March 2018

 node is in the same module or submodule as the evaluated "augment"
 statement. The data definition statements SHOULD be added inline
 instead.

4.19.1. Conditional Augment Statements

 The "augment" statement is often used together with the "when"
 statement and/or "if-feature" statement to make the augmentation
 conditional on some portion of the data model.

 The following example from [RFC7223] shows how a conditional
 container called "ethernet" is added to the "interface" list only for
 entries of the type "ethernetCsmacd".

 augment "/if:interfaces/if:interface" {
 when "if:type = 'ianaift:ethernetCsmacd'";

 container ethernet {
 leaf duplex {
 ...
 }
 }
 }

4.19.2. Conditionally Mandatory Data Definition Statements

 YANG has very specific rules about how configuration data can be
 updated in new releases of a module. These rules allow an "old
 client" to continue interoperating with a "new server".

 If data nodes are added to an existing entry, the old client MUST NOT
 be required to provide any mandatory parameters that were not in the
 original module definition.

 It is possible to add conditional augment statements such that the
 old client would not know about the new condition, and would not
 specify the new condition. The conditional augment statement can
 contain mandatory objects only if the condition is false unless
 explicitly requested by the client.

 Only a conditional augment statement that uses the "when" statement
 form of condition can be used in this manner. The YANG features
 enabled on the server cannot be controlled by the client in any way,
 so it is not safe to add mandatory augmenting data nodes based on the
 "if-feature" statement.

 The XPath "when" statement condition MUST NOT reference data outside
 of target data node because the client does not have any control over

https://datatracker.ietf.org/doc/html/rfc7223

Bierman Expires September 12, 2018 [Page 43]

Internet-Draft Guidelines for YANG Documents March 2018

 this external data.

 In the following dummy example, it is OK to augment the "interface"
 entry with "mandatory-leaf" because the augmentation depends on
 support for "some-new-iftype". The old client does not know about
 this type so it would never select this type, and therefore not be
 adding a mandatory data node.

 module example-module {
 namespace "tag:example.com,2017:example-module";
 prefix mymod;

 import iana-if-type { prefix iana; }
 import ietf-interfaces { prefix if; }

 identity some-new-iftype {
 base iana:iana-interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = 'mymod:some-new-iftype'";

 leaf mandatory-leaf {
 mandatory true;
 ...
 }
 }
 }

 Note that this practice is safe only for creating data resources. It
 is not safe for replacing or modifying resources if the client does
 not know about the new condition. The YANG data model MUST be
 packaged in a way that requires the client to be aware of the
 mandatory data nodes if it is aware of the condition for this data.
 In the example above, the "some-new-iftype" identity is defined in
 the same module as the "mandatory-leaf" data definition statement.

 This practice is not safe for identities defined in a common module
 such as "iana-if-type" because the client is not required to know
 about "my-module" just because it knows about the "iana-if-type"
 module.

4.20. Deviation Statements

 Per RFC 7950, 7.20.3, the YANG "deviation" statement is not allowed
 to appear in IETF YANG modules, but it can be useful for documenting
 server capabilities. Deviation statements are not reusable and
 typically not shared across all platforms.

https://datatracker.ietf.org/doc/html/rfc7950

Bierman Expires September 12, 2018 [Page 44]

Internet-Draft Guidelines for YANG Documents March 2018

 There are several reasons that deviations might be needed in an
 implementation, e.g., an object cannot be supported on all platforms,
 or feature delivery is done in multiple development phases.
 Deviation statements can also be used to add annotations to a module,
 which does not affect the conformance requirements for the module.

 It is suggested that deviation statements be defined in separate
 modules from regular YANG definitions. This allows the deviations to
 be platform-specific and/or temporary.

 The order that deviation statements are evaluated can affect the
 result. Therefore multiple deviation statements in the same module,
 for the same target object, SHOULD NOT be used.

 The "max-elements" statement is intended to describe an architectural
 limit to the number of list entries. It is not intended to describe
 platform limitations. It is better to use a "deviation" statement
 for the platforms that have a hard resource limit.

 Example documenting platform resource limits:

 Wrong: (max-elements in the list itself)

 container backups {
 list backup {
 ...
 max-elements 10;
 ...
 }
 }

 Correct: (max-elements in a deviation)

 deviation /bk:backups/bk:backup {
 deviate add {
 max-elements 10;
 }
 }

4.21. Extension Statements

 The YANG "extension" statement is used to specify external
 definitions. This appears in the YANG syntax as an
 "unknown-statement". Usage of extension statements in a published
 module needs to be considered carefully.

 The following guidelines apply to the usage of YANG extensions:

Bierman Expires September 12, 2018 [Page 45]

Internet-Draft Guidelines for YANG Documents March 2018

 o The semantics of the extension MUST NOT contradict any YANG
 statements. Extensions can add semantics not covered by the
 normal YANG statements.

 o The module containing the extension statement MUST clearly
 identify the conformance requirements for the extension. It
 should be clear whether all implementations of the YANG module
 containing the extension need to also implement the extension. If
 not, identify what conditions apply that would require
 implementation of the extension.

 o The extension MUST clearly identify where it can be used within
 other YANG statements.

 o The extension MUST clearly identify if YANG statements or other
 extensions are allowed or required within the extension as sub-
 statements.

4.22. Data Correlation

 Data can be correlated in various ways, using common data types,
 common data naming, and common data organization. There are several
 ways to extend the functionality of a module, based on the degree of
 coupling between the old and new functionality:

 o inline: update the module with new protocol-accessible objects.
 The naming and data organization of the original objects is used.
 The new objects are in the original module namespace.

 o augment: create a new module with new protocol-accessible objects
 that augment the original data structure. The naming and data
 organization of the original objects is used. The new objects are
 in the new module namespace.

 o mirror: create new objects in a new module or the original module,
 except use new a naming scheme and data location. The naming can
 be coupled in different ways. Tight coupling is achieved with a
 "leafref" data type, with the "require-instance" sub-statement set
 to "true". This method SHOULD be used.

 If the new data instances are not limited to the values in use in the
 original data structure, then the "require-instance" sub-statement
 MUST be set to "false". Loose coupling is achieved by using key
 leafs with the same data type as the original data structure. This
 has the same semantics as setting the "require-instance" sub-
 statement to "false".

 The relationship between configuration and operational state has been

Bierman Expires September 12, 2018 [Page 46]

Internet-Draft Guidelines for YANG Documents March 2018

 clarified in NMDA [I-D.ietf-netmod-revised-datastores].

4.22.1. Use of Leafref for Key Correlation

 Sometimes it is not practical to augment a data structure. For
 example, the correlated data could have different keys or contain
 mandatory nodes.

 The following example shows the use of the "leafref" data type for
 data correlation purposes:

 Not preferred:

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type string;
 }
 ...
 }

 Preferred:

Bierman Expires September 12, 2018 [Page 47]

Internet-Draft Guidelines for YANG Documents March 2018

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type leafref {
 path "/foo/name";
 require-instance false;
 }
 }
 leaf addon {
 type string;
 mandatory true;
 }
 }

4.23. Operational State

 The modeling of operational state with YANG has been refined over
 time. At first, only data that has a "config" statement value of
 "false" was considered to be operational state. This data was not
 considered to be part of any datastore, which made YANG XPath
 definition much more complicated.

 Operational state is now modeled using YANG according to the new NMDA
 [I-D.ietf-netmod-revised-datastores], and is now conceptually
 contained in the operational state datastore, which also includes the
 operational values of configuration data. There is no longer any
 need to duplicate data structures to provide separate configuration
 and operational state sections.

 This section describes some data modeling issues related to
 operational state, and guidelines for transitioning YANG data model
 design to be NMDA-compatible.

4.23.1. Combining Operational State and Configuration Data

 If possible, operational state SHOULD be combined with its associated
 configuration data. This prevents duplication of key leafs and
 ancestor nodes. It also prevents race conditions for retrieval of
 dynamic entries, and allows configuration and operational state to be

Bierman Expires September 12, 2018 [Page 48]

Internet-Draft Guidelines for YANG Documents March 2018

 retrieved together with minimal message overhead.

 container foo {
 ...
 // contains config=true and config=false nodes that have
 // no corresponding config=true object (e.g., counters)
 }

4.23.2. Representing Operational Values of Configuration Data

 If possible the same data type SHOULD be used to represent the
 configured value and the operational value, for a given leaf or leaf-
 list object.

 Sometimes the configured value set is different than the operational
 value set for that object. For example, the "admin-state" and
 "oper-state" leafs in [RFC7223]. In this case a separate object MAY
 be used to represent the configured and operational values.

 Sometimes the list keys are not identical for configuration data and
 the corresponding operational state. In this case separate lists MAY
 be used to represent the configured and operational values.

 If it is not possible to combine configuration and operational state,
 then the keys used to represent list entries SHOULD be the same type.
 The "leafref" data type SHOULD be used in operational state for key
 leafs that have corresponding configuration instances. The
 "require-instance" statement MAY be set to "false" (in YANG 1.1
 modules only) to indicate instances are allowed in the operational
 state that do not exist in the associated configuration data.

 The need to replicate objects or define different operational state
 objects depends on the data model. It is not possible to define one
 approach that will be optimal for all data models.

 Designers SHOULD describe and justify any NMDA exceptions in detail,
 such as the use of separate subtrees and/or separate leafs. The
 "description" statements for both the configuration and the
 operational state SHOULD be used for this purpose.

4.23.3. NMDA Transition Guidelines

 YANG modules SHOULD be designed assuming they will be used on servers
 supporting the operational state datastore. With this in mind, YANG
 modules SHOULD define config "false" wherever they make sense to the
 data model. Config "false" nodes SHOULD NOT be defined to provide
 the operational value for configuration nodes, except when the value
 space of a configured and operational values may differ, in which

https://datatracker.ietf.org/doc/html/rfc7223

Bierman Expires September 12, 2018 [Page 49]

Internet-Draft Guidelines for YANG Documents March 2018

 case a distinct config "false" node SHOULD be defined to hold the
 operational value for the configured node.

 The following guidelines are meant to help modelers develop YANG
 modules that will maximize the utility of the model with both current
 and new implementations.

 New modules and modules that are not concerned with the operational
 state of configuration information SHOULD immediately be structured
 to be NMDA-compatible, as described in Section 4.23.1. This
 transition MAY be deferred if the module does not contain any
 configuration datastore objects.

 The remaining are options that MAY be followed during the time that
 NMDA mechanisms are being defined.

 (a) Modules that require immediate support for the NMDA features
 SHOULD be structured for NMDA. A temporary non-NMDA version of this
 type of module MAY exist, either an existing model or a model created
 either by hand or with suitable tools that mirror the current
 modeling strategies. Both the NMDA and the non-NMDA modules SHOULD
 be published in the same document, with NMDA modules in the document
 main body and the non-NMDA modules in a non-normative appendix. The
 use of the non-NMDA module will allow temporary bridging of the time
 period until NMDA implementations are available.

 (b) For published models, the model should be republished with an
 NMDA-compatible structure, deprecating non-NMDA constructs. For
 example, the "ietf-interfaces" model in [RFC7223] has been
 restructured as an NMDA-compatible model in
 [I-D.ietf-netmod-rfc7223bis]. The "/interfaces-state" hierarchy has
 been marked "status deprecated". Models that mark their "/foo-state"
 hierarchy with "status deprecated" will allow NMDA-capable
 implementations to avoid the cost of duplicating the state nodes,
 while enabling non-NMDA-capable implementations to utilize them for
 access to the operational values.

 (c) For models that augment models which have not been structured
 with the NMDA, the modeler will have to consider the structure of the
 base model and the guidelines listed above. Where possible, such
 models should move to new revisions of the base model that are NMDA-
 compatible. When that is not possible, augmenting "state" containers
 SHOULD be avoided, with the expectation that the base model will be
 re-released with the state containers marked as deprecated. It is
 RECOMMENDED to augment only the "/foo" hierarchy of the base model.
 Where this recommendation cannot be followed, then any new "state"
 elements SHOULD be included in their own module.

https://datatracker.ietf.org/doc/html/rfc7223

Bierman Expires September 12, 2018 [Page 50]

Internet-Draft Guidelines for YANG Documents March 2018

4.23.3.1. Temporary non-NMDA Modules

 A temporary non-NMDA module allows a non-NMDA aware client to access
 operational state from an NMDA-compliant server. It contains the
 top-level config=false data nodes that would have been defined in a
 legacy YANG module (before NMDA).

 A server that needs to support both NMDA and non-NMDA clients can
 advertise both the new NMDA module and the temporary non-NMDA module.
 A non-NMDA client can use separate "foo" and "foo-state" subtrees,
 except the "foo-state" subtree is located in a different (temporary)
 module. The NMDA module can be used by a non-NMDA client to access
 the conventional configuration datastores, and the deprecated <get>
 operation to access nested config=false data nodes.

 To create the temporary non-NMDA model from an NMDA model, the
 following steps can be taken:

 o Change the module name by appending "-state" to the original
 module name

 o Change the namespace by appending "-state" to the original
 namespace value

 o Change the prefix by appending "-s" to the original prefix value

 o Add an import to the original module (e.g., for typedef
 definitions)

 o Retain or create only the top-level nodes that have a "config"
 statement value "false". These subtrees represent config=false
 data nodes that were combined into the configuration subtree, and
 therefore not available to non-NMDA aware clients. Set the
 "status" statement to "deprecated" for each new node.

 o The module description SHOULD clearly identify the module as a
 temporary non-NMDA module

4.23.3.2. Example: Create a New NMDA Module

 Create an NMDA-compliant module, using combined configuration and
 state subtrees, whenever possible.

Bierman Expires September 12, 2018 [Page 51]

Internet-Draft Guidelines for YANG Documents March 2018

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain config=false nodes as needed
 }
 }

4.23.3.3. Example: Convert an old Non-NMDA Module

 Do not remove non-compliant objects from existing modules. Instead,
 change the status to "deprecated". At some point, usually after 1
 year, the status MAY be changed to "obsolete".

 Old Module:

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 }

 container foo-state {
 config false;
 // operational state child nodes
 }
 }

 Converted NMDA Module:

Bierman Expires September 12, 2018 [Page 52]

Internet-Draft Guidelines for YANG Documents March 2018

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain config=false nodes as needed
 // will contain any data nodes from old foo-state
 }

 // keep original foo-state but change status to deprecated
 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.23.3.4. Example: Create a Temporary NMDA Module:

 Create a new module that contains the top-level operational state
 data nodes that would have been available before they were combined
 with configuration data nodes (to be NMDA compliant).

 module example-foo-state {
 namespace "urn:example.com:params:xml:ns:yang:example-foo-state";
 prefix "foo-s";

 // import new or converted module; not used in this example
 import example-foo { prefix foo; }

 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.24. Performance Considerations

 It is generally likely that certain YANG statements require more
 runtime resources than other statements. Although there are no
 performance requirements for YANG validation, the following
 information MAY be considered when designing YANG data models:

Bierman Expires September 12, 2018 [Page 53]

Internet-Draft Guidelines for YANG Documents March 2018

 o Lists are generally more expensive than containers

 o "when-stmt" evaluation is generally more expensive than
 "if-feature" or "choice" statements

 o "must" statement is generally more expensive than "min-entries",
 "max-entries", "mandatory", or "unique" statements

 o "identityref" leafs are generally more expensive than
 "enumeration" leafs

 o "leafref" and "instance-identifier" types with "require-instance"
 set to true are generally more expensive than if
 "require-instance" is set to false

4.25. Open Systems Considerations

 Only the modules imported by a particular module can be assumed to be
 present in an implementation. An open system MAY include any
 combination of YANG modules.

4.26. Guidelines for YANG 1.1 Specific Constructs

 The set of YANG 1.1 guidelines will grow as operational experience is
 gained with the new language features. This section contains an
 initial set of guidelines for new YANG 1.1 language features.

4.26.1. Importing Multiple Revisions

 Standard modules SHOULD NOT import multiple revisions of the same
 module into a module. This MAY be done if independent definitions
 (e.g. enumeration typedefs) from specific revisions are needed in the
 importing module.

4.26.2. Using Feature Logic

 The YANG 1.1 feature logic is much more expressive than YANG 1.0. A
 "description" statement SHOULD describe the "if-feature" logic in
 text, to help readers understand the module.

 YANG features SHOULD be used instead of the "when" statement, if
 possible. Features are advertised by the server and objects
 conditional by if-feature are conceptually grouped together. There
 is no such commonality supported for "when" statements.

 Features generally require less server implementation complexity and
 runtime resources than objects that use "when" statements. Features
 are generally static (i.e., set when module is loaded and not changed

Bierman Expires September 12, 2018 [Page 54]

Internet-Draft Guidelines for YANG Documents March 2018

 at runtime). However every client edit might cause a "when"
 statement result to change.

4.26.3. anyxml vs. anydata

 The "anyxml" statement MUST NOT be used to represent a conceptual
 subtree of YANG data nodes. The "anydata" statement MUST be used for
 this purpose.

4.26.4. action vs. rpc

 The use of "action" statements or "rpc" statements is a subjective
 design decision. RPC operations are not associated with any
 particular data node. Actions are associated with a specific data
 node definition. An "action" statement SHOULD be used if the
 protocol operation is specific to a subset of all data nodes instead
 of all possible data nodes.

 The same action name MAY be used in different definitions within
 different data node. For example, a "reset" action defined with a
 data node definition for an interface might have different parameters
 than for a power supply or a VLAN. The same action name SHOULD be
 used to represent similar semantics.

 The NETCONF Access Control Model (NACM) [I-D.ietf-netconf-rfc6536bis]
 does not support parameter-based access control for RPC operations.
 The user is given permission (or not) to invoke the RPC operation
 with any parameters. For example, if each client is only allowed to
 reset their own interface, then NACM cannot be used.

 For example, NACM cannot enforce access access control based on the
 value of the "interface" parameter, only the "reset" operation
 itself:

 rpc reset {
 input {
 leaf interface {
 type if:interface-ref;
 mandatory true;
 description "The interface to reset.";
 }
 }
 }

 However, NACM can enforce access access control for individual
 interface instances, using a "reset" action, If the user does not
 have read access to the specific "interface" instance, then it cannot
 invoke the "reset" action for that interface instance:

Bierman Expires September 12, 2018 [Page 55]

Internet-Draft Guidelines for YANG Documents March 2018

 container interfaces {
 list interface {
 ...
 action reset { }
 }
 }

4.27. Updating YANG Modules (Published vs. Unpublished)

 YANG modules can change over time. Typically, new data model
 definitions are needed to support new features. YANG update rules
 defined in section 11 of [RFC7950] MUST be followed for published
 modules. They MAY be followed for unpublished modules.

 The YANG update rules only apply to published module revisions. Each
 organization will have their own way to identify published work which
 is considered to be stable, and unpublished work which is considered
 to be unstable. For example, in the IETF, the RFC document is used
 for published work, and the Internet-Draft is used for unpublished
 work.

https://datatracker.ietf.org/doc/html/rfc7950#section-11

Bierman Expires September 12, 2018 [Page 56]

Internet-Draft Guidelines for YANG Documents March 2018

5. IANA Considerations

 -- RFC Ed: These registries need to be updated to reference this
 RFC instead of RFC 6087 for the ietf-template module, and
 remove this note.

 This document registers one URI in the IETF XML registry [RFC3688].

 The following registration has been made in [RFC6087] and updated by
 this document.

 URI: urn:ietf:params:xml:ns:yang:ietf-template

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following assignment has been made in [RFC6087] and updated by
 this document in the YANG Module Names Registry, or the YANG module
 template in Appendix C.

 +-----------+---+
 | Field | Value |
 +-----------+---+
 | Name | ietf-template |
 | Namespace | urn:ietf:params:xml:ns:yang:ietf-template |
 | Prefix | temp |
 | Reference | RFC XXXX |
 +-----------+---+

 YANG Registry Assignment

https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc6087

Bierman Expires September 12, 2018 [Page 57]

Internet-Draft Guidelines for YANG Documents March 2018

6. Security Considerations

 This document defines documentation guidelines for NETCONF or
 RESTCONF content defined with the YANG data modeling language, and
 therefore does not introduce any new or increased security risks into
 the management system.

Bierman Expires September 12, 2018 [Page 58]

Internet-Draft Guidelines for YANG Documents March 2018

7. Acknowledgments

 The structure and contents of this document are adapted from
 [RFC4181], guidelines for MIB Documents, by C. M. Heard.

 The working group thanks Martin Bjorklund, Juergen Schoenwaelder,
 Ladislav Lhotka, Jernej Tuljak, and Lou Berger for their extensive
 reviews and contributions to this document.

Bierman Expires September 12, 2018 [Page 59]

https://datatracker.ietf.org/doc/html/rfc4181

Internet-Draft Guidelines for YANG Documents March 2018

8. References

8.1. Normative References

 [I-D.ietf-netmod-revised-datastores]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore
 Architecture", draft-ietf-netmod-revised-datastores-10
 (work in progress), January 2018.

 [ID-Guidelines]
 Housley, R., Ed., "Guidelines to Authors of Internet-
 Drafts", December 2010,
 <https://www.ietf.org/standards/ids/guidelines/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5378] Bradner, S. and J. Contreras, "Rights Contributors Provide
 to the IETF Trust", BCP 78, RFC 5378, November 2008.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <http://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [W3C.REC-xpath-19991116]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-revised-datastores-10
https://www.ietf.org/standards/ids/guidelines/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/rfc5378
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc7950
http://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Bierman Expires September 12, 2018 [Page 60]

Internet-Draft Guidelines for YANG Documents March 2018

 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

8.2. Informative References

 [I-D.flanagan-7322bis]
 Flanagan, H. and R. Editor, "RFC Style Guide",

draft-flanagan-7322bis-02 (work in progress),
 September 2017.

 [I-D.ietf-netconf-rfc6536bis]
 Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Module", draft-ietf-netconf-rfc6536bis-09
 (work in progress), December 2017.

 [I-D.ietf-netmod-rfc7223bis]
 Bjorklund, M., "A YANG Data Model for Interface
 Management", draft-ietf-netmod-rfc7223bis-03 (work in
 progress), January 2018.

 [I-D.ietf-netmod-rfc8022bis]
 Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
 Routing Management (NMDA Version)",

draft-ietf-netmod-rfc8022bis-11 (work in progress),
 January 2018.

 [I-D.ietf-netmod-yang-tree-diagrams]
 Bjorklund, M. and L. Berger, "YANG Tree Diagrams",

draft-ietf-netmod-yang-tree-diagrams-06 (work in
 progress), February 2018.

 [RFC-STYLE]
 Braden, R., Ginoza, S., and A. Hagens, "RFC Document
 Style", September 2009,
 <http://www.rfc-editor.org/styleguide/>.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, DOI 10.17487/RFC2026, October 1996,
 <http://www.rfc-editor.org/info/rfc2026>.

 [RFC4151] Kindberg, T. and S. Hawke, "The 'tag' URI Scheme",
RFC 4151, DOI 10.17487/RFC4151, October 2005,

 <http://www.rfc-editor.org/info/rfc4151>.

 [RFC4181] Heard, C., "Guidelines for Authors and Reviewers of MIB
 Documents", BCP 111, RFC 4181, September 2005.

 [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG

http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/draft-flanagan-7322bis-02
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-rfc6536bis-09
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc7223bis-03
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8022bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-tree-diagrams-06
http://www.rfc-editor.org/styleguide/
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
http://www.rfc-editor.org/info/rfc2026
https://datatracker.ietf.org/doc/html/rfc4151
http://www.rfc-editor.org/info/rfc4151
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181

Bierman Expires September 12, 2018 [Page 61]

Internet-Draft Guidelines for YANG Documents March 2018

 Data Model Documents", RFC 6087, January 2011.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, June 2011.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <http://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 March 2012.

 [RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
 July 2013.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, May 2014.

 [RFC7322] Flanagan, H. and S. Ginoza, "RFC Style Guide", RFC 7322,
 DOI 10.17487/RFC7322, September 2014,
 <http://www.rfc-editor.org/info/rfc7322>.

 [RFC7841] Halpern, J., Ed., Daigle, L., Ed., and O. Kolkman, Ed.,
 "RFC Streams, Headers, and Boilerplates", RFC 7841,
 DOI 10.17487/RFC7841, May 2016,
 <http://www.rfc-editor.org/info/rfc7841>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

https://datatracker.ietf.org/doc/html/rfc6087
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6242
http://www.rfc-editor.org/info/rfc6242
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc7223
https://datatracker.ietf.org/doc/html/rfc7322
http://www.rfc-editor.org/info/rfc7322
https://datatracker.ietf.org/doc/html/rfc7841
http://www.rfc-editor.org/info/rfc7841
https://datatracker.ietf.org/doc/html/rfc8040
http://www.rfc-editor.org/info/rfc8040
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126

Bierman Expires September 12, 2018 [Page 62]

Internet-Draft Guidelines for YANG Documents March 2018

Appendix A. Change Log

 -- RFC Ed.: remove this section before publication.

A.1. v18 to v19

 o address IESG ballot comments

A.2. v17 to v18

 o address Area Director review comments Part 2

 o clarify preferred list key order

A.3. v16 to v17

 o address Area Director review comments Part 1

A.4. v15 to v16

 o address Area Director review comments posted 2018-01-25

A.5. v15 to v16

 o address document shephard comments posted 2018-01-15

 o add yang-version to template module

A.6. v14 to v15

 o changed Intended status from Informational to BCP

 o update tree diagram guidelines section

 o Change IANA template to list IESG instead of NETMOD WG as the
 Registrant

 o Update some references

A.7. v13 to v14

 o Replaced sec. 4.23 Operational Data with Operational Data from
 NMDA text by Lou Berger and Kent Watsen

 o Added NMDA Terms section

 o Changed term operational data to operational state

Bierman Expires September 12, 2018 [Page 63]

Internet-Draft Guidelines for YANG Documents March 2018

 o Clarified that reference-stmt SHOULD be present in import-stmt

A.8. v12 to v13

 o Clarify that the revision-date SHOULD be used in a CODE BEGINS
 YANG file extraction macro.

 o Clarify the IANA requirements section wrt/ XML namespace and YANG
 module name registries.

 o Clarify YANG Usage section wrt/ XML and/or JSON encoding format.

 o Update Operation Data section to consider revised datastores.

 o Add reference to YANG Tree Diagrams and update 2 sections that use
 this reference.

 o Add reference to Revised Datastores and guidelines drafts

A.9. v11 to v12

 o fix incorrect location of new Module Usage Examples section

A.10. v10 to v11

 o updated YANG tree diagram syntax to align with pyang 1.7.1

 o added general guideline to include module usage examples

A.11. v09 to v10

 o clarified <CODE BEGINS> is only for normative modules

 o clarified example module namespace URI conventions

 o clarified pyang usage for normative and example modules

 o updated YANG tree diagrams section with text from RFC 8022

A.12. v08 to v09

 o fixed references

 o added mention of RESTCONF to abstract and intro

 o created separate section for code components

https://datatracker.ietf.org/doc/html/rfc8022

Bierman Expires September 12, 2018 [Page 64]

Internet-Draft Guidelines for YANG Documents March 2018

 o fixed document status

A.13. v07 to v08

 o changed CODE BEGINS guideline for example modules

 o updated tree diagram guidelines

 o clarified published and unpublished terms

 o added section on Empty and Boolean data types

 o clarified how to update the revision statement

 o updated operational state guidelines

 o added 'YANG fragment' to terminology section

A.14. v06 to v07

 o update contact statement guideline

 o update example modules guidelines

 o add guidelines on top-level data nodes

 o add guideline on use of NP containers

 o added guidelines on union types

 o add guideline on deviations

 o added section on open systems considerations

 o added guideline about definitions reserved for future use

A.15. v05 to v06

 o Changed example 'my-module' to 'example-module'

 o Added section Updating YANG Modules (Published vs. Unpublished)

 o Added Example Modules section

 o Added "<EXAMPLE BEGINS>" convention for full example modules

 o Added section on using action vs. rpc

Bierman Expires September 12, 2018 [Page 65]

Internet-Draft Guidelines for YANG Documents March 2018

 o Changed term "operational state" to "operational data"

 o Added section on YANG Data Node Constraints

 o Added guidelines on using must vs. when statements

 o Made ietf-foo module validate for I-D submission

A.16. v04 to v05

 o Clarified that YANG 1.1 SHOULD be used but YANG 1.0 MAY be used if
 no YANG 1.1 features needed

 o Changed SHOULD follow YANG naming conventions to MUST follow (for
 standards track documents only)

 o Clarified module naming conventions for normative modules, example
 modules, and modules from other SDOs.

 o Added prefix value selection guidelines

 o Added new section on guidelines for reusable groupings

 o Made header guidelines less IETF-specific

 o Added new section on guidelines for extension statements

 o Added guidelines for nested "choice" statement within a "case"
 statement

A.17. v03 ot v04

 o Added sections for deviation statements and performance
 considerations

 o Added YANG 1.1 section

 o Updated YANG reference from 1.0 to 1.1

A.18. v02 to v03

 o Updated draft based on github data tracker issues added by Benoit
 Clause (Issues 12 - 18)

Bierman Expires September 12, 2018 [Page 66]

Internet-Draft Guidelines for YANG Documents March 2018

A.19. v01 to v02

 o Updated draft based on mailing list comments.

A.20. v00 to v01

 All issues from the issue tracker have been addressed.

https://github.com/netmod-wg/rfc6087bis/issues

 o Issue 1: Tree Diagrams: Added 'tree-diagrams' section so RFCs with
 YANG modules can use an Informative reference to this RFC for tree
 diagrams. Updated guidelines to reference this RFC when tree
 diagrams are used

 o Issue 2: XPath function restrictions: Added paragraphs in XPath
 usage section for 'id', 'namespace-uri', 'name', and 'lang'
 functions

 o Issue 3: XPath function document order issues: Added paragraph in
 XPath usage section about node-set ordering for 'local-name',
 'namespace-uri', 'name', 'string' and 'number' functions. Also
 any function that implicitly converts a node-set to a string.

 o Issue 4: XPath preceding-sibling and following-sibling: Checked
 and text in XPath usage section already has proposed text from
 Lada.

 o Issue 5: XPath 'when-stmt' reference to descendant nodes: Added
 exception and example in XPath Usage section for augmented nodes.

 o Issue 6: XPath numeric conversions: Changed 'numeric expressions'
 to 'numeric and boolean expressions'

 o Issue 7: XPath module containment: Added sub-section on XPath
 wildcards

 o Issue 8: status-stmt usage: Added text to Lifecycle Management
 section about transitioning from active to deprecated and then to
 obsolete.

 o Issue 9: resource identification in notifications: Add text to
 Notifications section about identifying resources and using the
 leafref data type.

 o Issue 10: single quoted strings: Added text to Data Types section
 about using a single-quoted string for patterns.

https://github.com/netmod-wg/rfc6087bis/issues

Bierman Expires September 12, 2018 [Page 67]

Internet-Draft Guidelines for YANG Documents March 2018

Appendix B. Module Review Checklist

 This section is adapted from RFC 4181.

 The purpose of a YANG module review is to review the YANG module both
 for technical correctness and for adherence to IETF documentation
 requirements. The following checklist may be helpful when reviewing
 an Internet-Draft:

 o I-D Boilerplate -- verify that the draft contains the required
 Internet-Draft boilerplate (see

https://www.ietf.org/id-info/guidelines.html), including the
 appropriate statement to permit publication as an RFC, and that
 I-D boilerplate does not contain references or section numbers.

 o Abstract -- verify that the abstract does not contain references,
 that it does not have a section number, and that its content
 follows the guidelines in

https://www.ietf.org/id-info/guidelines.html.

 o Copyright Notice -- verify that the draft has the appropriate text
 regarding the rights that document contributers provide to the
 IETF Trust [RFC5378]. Verify that it contains the full IETF Trust
 copyright notice at the beginning of the document. The IETF Trust
 Legal Provisions (TLP) can be found at:

https://trustee.ietf.org/license-info/

 o Security Considerations section -- verify that the draft uses the
 latest approved template from the OPS area website (https://

trac.tools.ietf.org/area/ops/trac/wiki/yang-security-guidelines)
 and that the guidelines therein have been followed.

 o IANA Considerations section -- this section must always be
 present. For each module within the document, ensure that the
 IANA Considerations section contains entries for the following
 IANA registries:

 XML Namespace Registry: Register the YANG module namespace.

 YANG Module Registry: Register the YANG module name, prefix,
 namespace, and RFC number, according to the rules specified
 in [RFC6020].

https://datatracker.ietf.org/doc/html/rfc4181
https://www.ietf.org/id-info/guidelines.html
https://www.ietf.org/id-info/guidelines.html
https://datatracker.ietf.org/doc/html/rfc5378
https://trustee.ietf.org/license-info/
https://trac.tools.ietf.org/area/ops/trac/wiki/yang-security-guidelines
https://trac.tools.ietf.org/area/ops/trac/wiki/yang-security-guidelines
https://datatracker.ietf.org/doc/html/rfc6020

Bierman Expires September 12, 2018 [Page 68]

Internet-Draft Guidelines for YANG Documents March 2018

 o References -- verify that the references are properly divided
 between normative and informative references, that RFC 2119 and

RFC 8174 are included as normative references if the terminology
 defined therein is used in the document, that all references
 required by the boilerplate are present, that all YANG modules
 containing imported items are cited as normative references, and
 that all citations point to the most current RFCs unless there is
 a valid reason to do otherwise (for example, it is OK to include
 an informative reference to a previous version of a specification
 to help explain a feature included for backward compatibility).
 Be sure citations for all imported modules are present somewhere
 in the document text (outside the YANG module). If a YANG module
 contains reference or description statements that refer to an
 Internet Draft (I-D), then the I-D is included as an Informative
 Reference.

 o License -- verify that the draft contains the Simplified BSD
 License in each YANG module or submodule. Some guidelines related
 to this requirement are described in Section 3.1. Make sure that
 the correct year is used in all copyright dates. Use the approved
 text from the latest Trust Legal Provisions (TLP) document, which
 can be found at:

https://trustee.ietf.org/license-info/

 o Other Issues -- check for any issues mentioned in
https://www.ietf.org/id-info/checklist.html that are not covered

 elsewhere.

 o Technical Content -- review the actual technical content for
 compliance with the guidelines in this document. The use of a
 YANG module compiler is recommended when checking for syntax
 errors. A list of freely available tools and other information
 can be found at:

https://trac.tools.ietf.org/wg/netconf/trac/wiki

 Checking for correct syntax, however, is only part of the job.
 It is just as important to actually read the YANG module document
 from the point of view of a potential implementor. It is
 particularly important to check that description statements are
 sufficiently clear and unambiguous to allow interoperable
 implementations to be created.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://trustee.ietf.org/license-info/
https://www.ietf.org/id-info/checklist.html
https://trac.tools.ietf.org/wg/netconf/trac/wiki

Bierman Expires September 12, 2018 [Page 69]

Internet-Draft Guidelines for YANG Documents March 2018

Appendix C. YANG Module Template

 <CODE BEGINS> file "ietf-template@2016-03-20.yang"

 module ietf-template {

 yang-version 1.1;

 // replace this string with a unique namespace URN value
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-template";

 // replace this string, and try to pick a unique prefix
 prefix "temp";

 // import statements here: e.g.,
 // import ietf-yang-types { prefix yang; }
 // import ietf-inet-types { prefix inet; }

 // identify the IETF working group if applicable
 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 // update this contact statement with your info
 contact
 "WG Web: <http://tools.ietf.org/wg/your-wg-name/>
 WG List: <mailto:your-wg-name@ietf.org>

 Editor: your-name
 <mailto:your-email@example.com>";

 // replace the first sentence in this description statement.
 // replace the copyright notice with the most recent
 // version, if it has been updated since the publication
 // of this document
 description
 "This module defines a template for other YANG modules.

 Copyright (c) <insert year> IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

http://tools.ietf.org/wg/your-wg-name/
http://trustee.ietf.org/license-info

Bierman Expires September 12, 2018 [Page 70]

Internet-Draft Guidelines for YANG Documents March 2018

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove
 // this note

 reference "RFC XXXX";

 // RFC Ed.: remove this note
 // Note: extracted from RFC XXXX

 // replace '2016-03-20' with the module publication date
 // The format is (year-month-day)
 revision "2016-03-20" {
 description "what changed in this revision";
 reference "document containing this module";
 }

 // extension statements

 // feature statements

 // identity statements

 // typedef statements

 // grouping statements

 // data definition statements

 // augment statements

 // rpc statements

 // notification statements

 // DO NOT put deviation statements in a published module

 }

 <CODE ENDS>

Bierman Expires September 12, 2018 [Page 71]

Internet-Draft Guidelines for YANG Documents March 2018

Author's Address

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

Bierman Expires September 12, 2018 [Page 72]

