
NETMOD L. Lhotka

Internet-Draft CESNET

Intended status: Standards Track April 27, 2011

Expires: October 29, 2011

A YANG Data Model for Routing Configuration

draft-ietf-netmod-routing-cfg-00

Abstract

This document contains a specification of two YANG modules that

together provide a data model for essential configuration of a routing

subsystem. It is expected that this module will serve as a basis for

further development of data models for individual routing protocols and

other related functions. The present data model defines the building

blocks for such configurations - routing processes, routes and routing

tables, routing protocol instances and route filters.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 29, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Terminology and Notation

2.1. Glossary of New Terms

2.2. Prefixes in Data Node Names

3. Objectives

4. The Design of the Core Routing Data Model

4.1. Route

4.2. Routing Tables

4.3. Routing Protocol Instances

4.3.1. Defining New Routing Protocols

4.4. Route Filters

4.5. RPC Operations

5. Routing YANG Module

6. IPv4 Unicast Routing YANG Module

7. IANA Considerations

8. Security Considerations

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Example - Adding a New Routing Protocol

Appendix A.1. Example YANG Module for Routing Information

Protocol

Appendix A.2. Sample Reply to the NETCONF <get> Message

Author's Address

1. Introduction

This document contains an initial specification of two YANG modules,

"ietf-routing" and "ietf-ipv4-unicast-routing", that together define

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

the so-called core routing data model. This data model will serve as a

basis for the development of data models for more sophisticated routing

configurations. While these two modules can be directly used for simple

IPv4-only devices with static routing, their main purpose is to provide

basic building blocks for more complicated setups involving other

address families such as IPv6, multiple routing protocols, and advanced

functions, for example route filtering and policy routing. To this end,

it is expected that this module will be augmented by numerous modules

developed by other IETF working groups.

2. Terminology and Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

The following terms are defined in [RFC4741]:

client

message

operation

server

The following terms are defined in [RFC6020]:

augment

configuration data

container

data model

data node

data type

identity

mandatory node

module

operational state data

prefix

RPC operation

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

2.1. Glossary of New Terms

active route: a route which is actually used for packet

forwarding. If there are multiple candidate routes with the same

destination prefix, then it is up to the routing algorithm to

select the active route.

2.2. Prefixes in Data Node Names

In this document, names of data nodes are used mostly without a prefix,

as long as it is clear from the context in which YANG module each name

is defined. Otherwise, names are prefixed with the standard prefixes

associated with YANG modules, as shown in Table 1.

Prefix YANG module Reference

eth ex-ethernet [YANG-IF]

if ietf-interfaces [YANG-IF]

inet ietf-inet-types [RFC6021]

ip ex-ip [YANG-IF]

rip example-rip Appendix Appendix A

rt ietf-routing Section 5

v4ur ietf-ipv4-unicast-routing Section 6

yang ietf-yang-types [RFC6021]

Prefixes and corresponding YANG modules

3. Objectives

The initial design of the core routing data model was driven by the

following main objectives:

The data model should be suitable for the common address

families, in particular IPv4 and IPv6, and for unicast and

multicast routing as well as Multiprotocol Label Switching

(MPLS).

Simple routing setups, such as static routing, should be

configurable in a simple way, ideally without any need to develop

additional YANG modules.

On the other hand, the core routing framework must allow for

complicated setups involving multiple routing tables and multiple

routing protocols, as well as controlled redistributions of

routing information.

Device vendors will want to map the data models built on this

generic framework to their proprietary data models and

*

*

*

*

*

configuration interfaces. Therefore, the framework should be

flexible enough to facilitate such a mapping and accommodate data

models with different logic.

4. The Design of the Core Routing Data Model

The core routing data model consists of two YANG modules. The first

module, "ietf-routing", is rather minimal and provides only a top-level

container ("routing") and a list of routing processes. Each routing

process represents an instance of a (virtual) router with a separate

forwarding table (FIB, forwarding information base). For a given

address family, specified by an Address Family Identifier (AFI) [IANA-

AFI] and Subsequent Address Family Identifier (SAFI) [IANA-SAFI],

several independent routing processes may be configured.

The second YANG module, "ietf-ipv4-unicast-routing", provides a data

modeling framework for IPv4 unicast routing with several essential

components: routes, routing tables, routing protocol instances, route

filters and RPC operations. The following subsections provide further

details about these components.

By combining the components in various ways, and possibly filling them

with appropriate contents defined in other modules, a broad range of

routing setups can be covered.

 +------------+

 | FIB |

 +------------+

 ^

 |

 +---+

 | F |

 +---+

 ^

+--------+ |

| direct | +---+ +--------------+ +---+ +--------------+

| routes |--->| F |--->| |<---| F |<---| |

+--------+ +---+ | main | +---+ | additional |

 | routing | | routing |

+--------+ +---+ | table | +---+ | table |

| static |--->| F |--->| |--->| F |--->| |

| routes | +---+ +--------------+ +---+ +--------------+

+--------+ ^ | ^ |

 | v | v

 +---+ +---+ +---+ +---+

 | F | | F | | F | | F |

 +---+ +---+ +---+ +---+

 ^ | ^ |

 | v | v

 +----------+ +----------+

 | routing | | routing |

 | protocol | | protocol |

 +----------+ +----------+

Figure 1 shows an example of a more complicated setup:

Along with the main routing table, which must always be present,

an additional routing table is defined.

Each routing protocol instance, including the "static" and

"direct" pseudo-protocol instances, is connected to exactly one

routing table with which it can exchange routes (in both

directions, except for the "static" and "direct" pseudo-

protocols).

Routing tables may also be connected to each other and exchange

routes in one or both directions.

The forwarding information base (FIB) is a special routing table

which must always be present. Typically, the FIB receives the

active routes from the main routing table and the operating

system kernel uses this information for packet forwarding.

*

*

*

*

Route exchanges along all connections may be controlled by means

of route filters, denoted by "F" in the figure.

4.1. Route

Routes are basic units of information in a routing system. The "ietf-

ipv4-unicast-routing" module defines only the following minimal set of

route attributes:

destination-prefix - IP prefix specifying the set of destination

addresses for which the route may be used. This attribute is

mandatory.

next-hop - IP address of the adjacent router or host to which

packets with destination addresses belonging to destination-

prefix should be sent.

outgoing-interface - network interface that should be used for

sending packets with destination addresses belonging to

destination-prefix.

The above list of route attributes is sufficient for a simple static

routing configuration. It is expected that future modules defining

routing protocols will add other route attributes such as metrics or

preferences.

Routes and their attributes are used in both configuration data, for

example as manually configured static routes, as well as in operational

state data, for example as entries in routing tables.

4.2. Routing Tables

Routing tables are lists of routes complemented with administrative

data, namely:

source-protocol - name of the routing protocol from which the

route was originally obtained.

last-modified - date and time of last modification, or

installation, of the route.

In the core routing data model, the list of routes in routing tables is

represented as operational state data. Routing protocol operations

result in route additions, removals and modifications. This also

includes manipulations via the "static" pseudo-protocol.

*

*

*

*

*

*

The "ietf-ipv4-unicast-routing" module requires that at least the

following two routing tables MUST be configured for each routing

process:

The "ipv4-unicast-fib" table is the forwarding information base

used by the operating system kernel for forwarding IPv4 unicast

datagrams.

The "ipv4-unicast-main" table is the main routing table. By

default, all IPv4 unicast routing protocols exchange routes with

this table, and active routes from the "ipv4-unicast-main"

routing table are installed in the "ipv4-unicast-fib" table and

used for packet forwarding.

Additional routing tables MAY be configured.

Every routing table MAY serve as a source of routes for other routing

tables. To achieve this, one or more recipient routing tables MAY be

specified in the configuration of the source routing table. In

addition, a route filter may be configured for each recipient routing

table, which selects and/or manipulates the routes that are passed on

between the source and recipient routing table.

4.3. Routing Protocol Instances

The "ietf-ipv4-unicast-routing" module provides an open-ended framework

for defining multiple routing protocol instances. Each of them is

identified by a name, which is unique within a routing process, and

MUST be assigned a type from a selection which includes all routing

protocol types supported by the server, such as RIP, OSPF or BGP.

Each routing protocol instance is connected to exactly one routing

table. By default, every routing protocol instance is connected to the

main routing table, but any routing protocol instance can be configured

to use a different routing table, provided such an extra table is

configured.

Routes learned from the network by a routing protocol instance are

passed to the connected routing table and vice versa - routes appearing

in a routing table are passed to all routing protocol connected to the

table and advertised by that protocol to the network.

Two independent route filters (see Section 4.4) may be defined for a

routing protocol instance to control the exchange of routes in both

directions between the routing protocol instance and the connected

routing table:

import filter controls which routes are passed from a routing

protocol instance to the routing table,

export filter controls which routes the routing protocol instance

may receive from the connected routing table.

*

*

*

*

Note that, for historical reasons, the terms import and export are used

from the viewpoint of a routing table.

The "ietf-ipv4-unicast-routing" module defines two special routing

protocols - "direct" and "static". Both are in fact pseudo-protocols,

which means that they are confined to the local device and do not

exchange any routing information with neighboring routers. Routes from

both "direct" and "static" protocol instances are passed to the

connected routing table (subject to route filters, if any), but an

exchange in the opposite direction is not allowed.

Every routing process MUST contain exactly one instance of the "direct"

pseudo-protocol. It is the source of routes to directly connected

networks (so-called direct routes). Such routes are supplied by the

operating system kernel based on the detected and configured network

interfaces, and they usually appear in the main routing table. However,

using the framework defined in this document, the target routing table

for direct routes can be changed by connecting the "direct" protocol

instance to a non-default routing table, and the direct routes can also

be filtered before they appear in the routing table.

The "static" routing pseudo-protocol allows for specifying routes

manually. It can be configured in zero or more instances, although

typically one instance suffices.

4.3.1. Defining New Routing Protocols

It is expected that future YANG modules will create data models for

additional routing protocol types. In order to do so, the new module

has to define the protocol-specific information and fit it to the core

routing framework in the following way:

A new identity MUST be defined for the routing protocol and its

base identity set to "rt:routing-protocol", or to an identity

derived from "rt:routing-protocol".

Additional route attributes MAY be defined. Their definitions

have to be inserted as operational state data by augmenting the

definition of "v4ur:route" inside "v4ur:routing-table".

Naturally, route attributes (including the extra attributes) may

be used in configuration data, too, as demonstrated by the

"static" pseudo-protocol.

The recommended way of defining configuration data specific to

the new protocol is to augment the "routing-protocol-instance"

list entry with a container that encapsulates the configuration

hierarchy of the new protocol. The "augment" statement SHOULD be

made conditional by using a "when" substatement requiring that

the new nodes be used only if the "type" leaf node is equal to

the new protocol's identity.

*

*

*

The above steps are implemented by the example YANG module for the RIP

routing protocol in Appendix Appendix A. First, the module defines a

new identity for the RIP protocol:

identity rip {

 base rt:routing-protocol;

 description "Identity for the RIP routing protocol.";

}

Second, new route attributes specific for the RIP protocol ("metric"

and "tag") are added:

augment "/rt:routing/rt:routing-process/v4ur:ipv4-unicast-routing/"

 + "v4ur:routing-tables/v4ur:routing-table/"

 + "v4ur:routes/v4ur:route" {

 when "../../../../v4ur:routing-protocol-instances/"

 + "v4ur:routing-protocol-instance[rt:name="

 + "current()/v4ur:source-protocol]/v4ur:type='rip:rip'";

 description

 "RIP-specific route components.";

 leaf metric { ... }

 leaf tag { ... }

}

The "when" statement is used to make sure that the new route attributes

are only valid when the source protocol is RIP.

Finally, RIP-specific configuration data are integrated into the

"v4ur:routing-protocol-instance" node by using the following "augment"

statement, which applies only to routing protocol instances whose type

is "rip:rip", and which is a part of a routing process whose address

family is "ipV4" and subsequent address family identifier is "nlri-

unicast":

augment "/rt:routing/rt:routing-process/v4ur:ipv4-unicast-routing/"

 + "v4ur:routing-protocol-instances/"

 + "v4ur:routing-protocol-instance" {

 when "v4ur:type = 'rip:rip' and ../../../rt:address-family = 'ipV4'"

 + " and ../../../safi = 'nlri-unicast'";

 container rip-configuration {

 ...

 }

}

4.4. Route Filters

The "ietf-ipv4-unicast-routing" module provides a skeleton for defining

route filters that can be used to restrict the set of routes being

exchanged between a routing protocol instance and a routing table, or

between a source and a recipient routing table. Route filters may also

manipulate routes, i.e., add, delete, or modify their properties.

By itself, the route filtering framework defined in the "ietf-ipv4-

unicast-routing" module allows to establish only the two extreme

routing policies in which either all routes are allowed or all routes

are denied. It is expected that a real route filtering framework (or

several alternative frameworks) will be developed separately.

Each route filter is identified by a name which is unique within a

routing process. Its type MUST be specified by the "type" identity

reference - this opens the space for multiple route filtering framework

implementations. The default value for route filter type is the

identity "deny-all-route-filter" defined in the "ietf-routing" module,

which represents the "deny all" route filtering policy.

4.5. RPC Operations

The "ietf-ipv4-unicast-routing-module" defines two RPC operations:

"delete-route" operations allows the client to immediately delete

specific route(s) from a routing table within a routing process.

The first input parameter of this operation is the name of the

routing process, the second parameter is the routing table to act

upon, and the third (optional) parameter is the "route" container

with zero or more of the following route attributes:

"destination-prefix", "next-hop" and "outgoing-interface". All

routes that match these attributes MUST be deleted from the

selected routing table. If the "route" container is missing or

empty, all routes from the selected routing table MUST be

deleted.

"get-route" is used for querying the forwarding information base

of a routing process. The first input parameter is the name of a

routing process whose FIB is to be queried, and the second

parameter is an IPv4 destination address. The server replies with

an active route which is used for forwarding datagrams to the

destination address within the selected routing process.

5. Routing YANG Module

*

*

<CODE BEGINS> file "ietf-routing@2011-04-27.yang"

module ietf-routing {

 namespace "urn:ietf:params:xml:ns:yang:ietf-routing";

 prefix rt;

 organization

 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens

 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder

 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Ladislav Lhotka

 <mailto:lhotka@cesnet.cz>";

 description

 "This module contains YANG definitions for top-level containers

 for the configuration of routing together with several type

 definitions and identities.";

 revision 2011-04-27 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: A YANG Data Model for Routing Configuration";

 }

 /* Identities */

 identity routing-protocol {

 description

 "Base identity from which routing protocol identities are

 derived.";

 }

 identity direct {

 base routing-protocol;

 description

 "Identity for the pseudo-protocol providing routes to directly

 connected networks. An implementation MUST preconfigure

 exactly one instance of this pseudo-protocol for each routing

 process."; }

 identity static {

 base routing-protocol;

 description

 "Identity for static routing pseudo-protocol.";

 }

 identity route-filter {

 description

 "Base identity from which all route filters are

 derived.";

 }

 identity deny-all-route-filter {

 base route-filter;

 description

 "This identity represents a route filter that blocks all

 routes.";

 }

 /* Type definitions */

 typedef address-family {

 type enumeration {

 enum "other" {

 value 0;

 description

 "none of the following";

 }

 enum "ipV4" {

 value 1;

 description

 "IP Version 4";

 }

 enum "ipV6" {

 value 2;

 description

 "IP Version 6";

 }

 enum "nsap" {

 value 3;

 description

 "NSAP";

 }

 enum "hdlc" {

 value 4;

 description

 "(8-bit multidrop)";

 }

 enum "bbn1822" {

 value 5;

 description

 "BBN Report 1822";

 }

 enum "all802" {

 value 6;

 description

 "(includes all 802 media plus Ethernet 'canonical

 format')";

 }

 enum "e163" {

 value 7;

 }

 enum "e164" {

 value 8;

 description

 "(SMDS, FrameRelay, ATM)";

 }

 enum "f69" {

 value 9;

 description

 "(Telex)";

 }

 enum "x121" {

 value 10;

 description

 "(X.25, Frame Relay)";

 }

 enum "ipx" {

 value 11;

 description

 "IPX (Internet Protocol Exchange)";

 }

 enum "appleTalk" {

 value 12;

 description

 "Apple Talk";

 }

 enum "decnetIV" {

 value 13;

 description

 "DEC Net Phase IV";

 }

 enum "banyanVines" {

 value 14;

 description

 "Banyan Vines";

 }

 enum "e164withNsap" {

 value 15;

 description

 "(E.164 with NSAP format subaddress)";

 }

 enum "dns" {

 value 16;

 description

 "(Domain Name System)";

 }

 enum "distinguishedName" {

 value 17;

 description

 "(Distinguished Name, per X.500)";

 }

 enum "asNumber" {

 value 18;

 description

 "(16-bit quantity, per the AS number space)";

 }

 enum "xtpOverIPv4" {

 value 19;

 description

 "XTP over IP version 4";

 }

 enum "xtpOverIpv6" {

 value 20;

 description

 "XTP over IP version 6";

 }

 enum "xtpNativeModeXTP" {

 value 21;

 description

 "XTP native mode XTP";

 }

 enum "fibreChannelWWPN" {

 value 22;

 description

 "Fibre Channel World-Wide Port Name";

 }

 enum "fibreChannelWWNN" {

 value 23;

 description

 "Fibre Channel World-Wide Node Name";

 }

 enum "gwid" {

 value 24;

 description

 "Gateway Identifier";

 }

 enum "afi" {

 value 25;

 description

 "AFI for L2VPN";

 }

 }

 description

 "This typedef is a YANG enumeration of IANA-registered

 address families.";

 reference

 "http://www.iana.org/assignments/ianaaddressfamilynumbers-mib";

 }

 typedef subsequent-address-family {

 type enumeration {

 enum "nlri-unicast" {

 value 1;

 description

 "Network Layer Reachability Information used for

 unicast forwarding";

 reference "RFC4760";

 }

 enum "nlri-multicast" {

 value 2;

 description

 "Network Layer Reachability Information used for

 multicast forwarding";

 reference "RFC4760";

 }

 enum "nlri-mpls" {

 value 4;

 description

 "Network Layer Reachability Information (NLRI) with

 MPLS Labels";

 reference "RFC3107";

 }

 enum "mcast-vpn" {

 value 5;

 description

 "MCAST-VPN";

 reference "draft-ietf-l3vpn-2547bis-mcast-bgp-08";

 }

 enum "nlri-dynamic-ms-pw" {

 value 6;

 status obsolete;

 description

 "Network Layer Reachability Information used for Dynamic

 Placement of Multi-Segment Pseudowires (TEMPORARY -

 Expires 2008-08-23)";

 reference "draft-ietf-pwe3-dynamic-ms-pw-13";

 }

 enum "tunnel-safi" {

 value 64;

 description

 "Tunnel SAFI";

 reference "draft-nalawade-kapoor-tunnel-safi-05";

 }

 enum "vpls" {

 value 65;

 description

 "Virtual Private LAN Service (VPLS)";

 reference "RFC4761, RFC6074";

 }

 enum "bgp-mdt" {

 value 66;

 description

 "BGP MDT SAFI";

 reference "RFC6037";

 }

 enum "bgp-4over6" {

 value 67;

 description

 "BGP 4over6 SAFI";

 reference "RFC5747";

 }

 enum "bgp-6over4" {

 value 68;

 description

 "BGP 6over4 SAFI";

 reference "mailto:cuiyong&tsinghua.edu.cn";

 }

 enum "l1vpn-auto-discovery" {

 value 69;

 description

 "Layer-1 VPN auto-discovery information";

 reference "draft-ietf-l1vpn-bgp-auto-discovery-05";

 }

 enum "mpls-vpn" {

 value 128;

 description

 "MPLS-labeled VPN address";

 reference "RFC4364";

 }

 enum "multicast-bgp-mpls-vpn" {

 value 129;

 description

 "Multicast for BGP/MPLS IP Virtual Private Networks

 (VPNs)";

 reference

 "draft-ietf-l3vpn-2547bis-mcast-10,

 draft-ietf-l3vpn-2547bis-mcast-10";

 }

 enum "route-target-constraints" {

 value 132;

 description

 "Route Target constraints";

 reference "RFC4684";

 }

 enum "ipv4-diss-flow" {

 value 133;

 description

 "IPv4 dissemination of flow specification rules";

 reference "RFC5575";

 }

 enum "vpnv4-diss-flow" {

 value 134;

 description

 "IPv4 dissemination of flow specification rules";

 reference "RFC5575";

 }

 enum "vpn-auto-discovery" {

 value 140;

 description

 "VPN auto-discovery";

 reference "draft-ietf-l3vpn-bgpvpn-auto-09";

 }

 }

 description

 "This typedef is a YANG enumeration of IANA-registered

 subsequent address families.";

 reference "http://www.iana.org/assignments/safi-namespace/"

 + "safi-namespace.xml";

 }

 typedef routing-process-ref {

 type leafref {

 path "/rt:routing/rt:routing-process/rt:name";

 }

 description

 "This type is used for leafs that reference a routing

 process.";

 }

 /* Data nodes */

 container routing {

 description

 "Routing parameters.";

 list routing-process {

 key "name";

 description

 "Each entry is a container for configuration and operational

 state data of a single (virtual) router for a given address

 family and subsequent address family identifier (SAFI). Each

 entry has a unique name.

 The definitions of data for a particular address family and

 subsequent address family shall be provided via augmentation

 by other modules.";

 leaf name {

 type string;

 description

 "The unique name of the routing process.";

 }

 leaf address-family {

 type address-family;

 default "ipV4";

 description

 "Address family of the routing process.";

 }

 leaf safi {

 type subsequent-address-family;

 default "nlri-unicast";

 description

 "Subsequent address family identifier of the routing

 process.";

 }

 leaf description {

 type string;

 description

 "Textual description of the routing process.";

 }

 leaf enabled {

 type boolean;

 default "true";

 description

 "Enable or disable the routing process. The default value

 is 'true', which means that the process is enabled.";

 }

 }

 }

}

<CODE ENDS>

6. IPv4 Unicast Routing YANG Module

<CODE BEGINS> file "ietf-ipv4-unicast-routing@2011-04-27.yang"

module ietf-ipv4-unicast-routing {

 namespace "urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing";

 prefix v4ur;

 import ietf-routing {

 prefix rt;

 }

 import ietf-yang-types {

 prefix yang;

 }

 import ietf-inet-types {

 prefix inet;

 }

 import ietf-interfaces {

 prefix if;

 }

 organization

 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens

 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder

 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Ladislav Lhotka

 <mailto:lhotka@cesnet.cz>";

 description

 "This module augments the 'ietf-routing' module with YANG

 definitions for basic configuration of IPv4 unicast routing.

 It is immediately usable for a device that needs just a single

 routing table populated with static routes.

 On the other hand, the framework is designed to handle

 arbitrarily complex configurations with any number of routing

 tables and various routing protocols (in multiple instances).";

 revision 2011-04-27 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: A YANG Data Model for Routing Configuration";

 }

 /* Groupings */

 grouping routing-process-name {

 leaf routing-process-name {

 type rt:routing-process-ref;

 must "/rt:routing/rt:routing-process[rt:name = current()]"

 + "/rt:address-family = 'ipV4' and "

 + "/rt:routing/rt:routing-process[rt:name = current()]"

 + "/rt:safi = 'nlri-unicast'" {

 description

 "The referred routing process must be IPv4 unicast.";

 }

 description "The name of a routing process.";

 }

 description

 "This grouping defines the first common parameter of both

 RPC operations below.";

 }

 /* RPC operations */

 rpc get-route {

 description

 "Query the forwarding information base of an IPv4 unicast

 routing process whose name is given as the first

 parameter. The second parameter is an IPv4 destination

 address. The server returns the route which is currently used

 for forwarding datagrams to that destination address, or an

 error message, if no such route exists.";

 input {

 uses routing-process-name;

 leaf destination-address {

 type inet:ipv4-address;

 description

 "Second parameter - IPv4 destination address.";

 }

 }

 output {

 container route {

 description

 "Contents of the reply.";

 leaf destination-prefix {

 type inet:ipv4-prefix;

 mandatory true;

 description

 "Destination prefix of the returned route.";

 }

 leaf next-hop {

 type inet:ipv4-address;

 description

 "Next hop address of the returned route.";

 }

 leaf outgoing-interface {

 type if:interface-ref;

 description

 "Outgoing interface of the returned route.";

 }

 }

 }

 }

 rpc delete-route {

 description

 "Delete all routes that match the given attributes from a

 routing table within a routing process.

 Parameters:

 1. routing process name,

 2. routing table name,

 3. Container 'route' with route attributes.

 <ok> is returned by the server upon successful completion.";

 input {

 uses routing-process-name;

 leaf routing-table {

 type leafref {

 path "/rt:routing/rt:routing-process[rt:name=current()/../"

 + "routing-process-name]/ipv4-unicast-routing/"

 + "routing-tables/routing-table/name";

 }

 mandatory true;

 description

 "First parameter.";

 }

 container route {

 description

 "Second parameter. All routes matching the route

 attributes must be deleted from the routing table.

 If this container is empty or missing, all routes

 from the selected routing table are deleted.";

 leaf destination-prefix {

 type inet:ipv4-prefix;

 description

 "Match destination prefix.";

 }

 leaf next-hop {

 type inet:ipv4-address;

 description

 "Match next hop.";

 }

 leaf outgoing-interface {

 type if:interface-ref;

 description

 "Match outgoing interface.";

 }

 }

 }

 }

 /* Data nodes */

 augment "/rt:routing/rt:routing-process" {

 when "afi='ipV4' and safi='nlri-unicast'" {

 description

 "IPv4 unicast.";

 }

 description

 "Definitions of data nodes that augment a routing process

 for IPv4 unicast.";

 container ipv4-unicast-routing {

 description

 "Container for IPv4 unicast routing configuration and

 operational state data.";

 container routing-protocol-instances {

 description

 "Container for the list of configured routing protocol

 instances.";

 list routing-protocol-instance {

 key "name";

 description

 "An instance of a routing protocol.";

 container static-routes {

 when "../type='rt:static'" {

 description

 "These data nodes are only valid for the static

 pseudo-protocol.";

 }

 description

 "Configuration of a 'static' pseudo-protocol

 instance consists of a list of routes.";

 list static-route {

 key "id";

 ordered-by user;

 description

 "An user-ordered list of static routes.";

 leaf id {

 type string;

 description

 "An identification string for the route.";

 }

 leaf description {

 type string;

 description

 "Textual description of the route.";

 }

 leaf destination-prefix {

 type inet:ipv4-prefix;

 mandatory true;

 description

 "The destination prefix for which the route may

 be used.";

 }

 leaf next-hop {

 type inet:ipv4-address;

 description

 "IPv4 address of the host or router to which

 packets whose address matches 'destination-prefix'

 are to be forwarded.";

 }

 leaf outgoing-interface {

 type if:interface-ref;

 description

 "Name of the outgoing interface. This attribute

 is mainly used in direct routes.";

 }

 }

 }

 leaf name {

 type string;

 description

 "The name of the routing protocol instance.";

 }

 leaf description {

 type string;

 description

 "Textual description of the routing protocol

 instance.";

 }

 leaf type {

 type identityref {

 base rt:routing-protocol;

 }

 mandatory true;

 description

 "Type of the routing protocol - an identity derived

 from the 'rt:routing-protocol' base identity.";

 }

 leaf routing-table {

 type leafref {

 path "../../../routing-tables/routing-table/name";

 }

 default "ipv4-unicast-main";

 description

 "The routing table to which the routing protocol

 instance is connected. By default it is the

 'ipv4-unicast-main' table.";

 }

 leaf import-filter {

 type leafref {

 path "../../../route-filters/route-filter/name";

 }

 description

 "Reference to a route filter that is used for

 filtering routes passed from this routing protocol

 instance to the routing table specified by the

 'routing-table' sibling node. If this leaf is not

 present, the behavior is protocol-specific, but

 typically it means that all routes are accepted.";

 }

 leaf export-filter {

 type leafref {

 path "../../../route-filters/route-filter/name";

 }

 description

 "Reference to a route filter that is used for filtering

 routes passed from the routing table specified by the

 'routing-table' sibling to this routing protocol

 instance. If this leaf is not present, the behavior is

 protocol-specific - typically it means that all routes

 are accepted, except for the 'direct' and 'static'

 pseudo-protocols which accept no routes from any

 routing table.";

 }

 }

 }

 container route-filters {

 description

 "Container for configured route filters.";

 list route-filter {

 key "name";

 description

 "Route filters are used for filtering and/or manipulating

 routes that are passed between a routing protocol and a

 routing table or vice versa, or between two routing

 tables. It is expected that other modules augment this

 list with contents specific for a particular route

 filter type.";

 leaf name {

 type string;

 description

 "The name of the route filter.";

 }

 leaf description {

 type string;

 description

 "Textual description of the route filter.";

 }

 leaf type {

 type identityref {

 base rt:route-filter;

 }

 default "rt:deny-all-route-filter";

 description

 "Type of the route-filter - an identity derived

 from the 'rt:route-filter' base identity. The default

 value represents an all-blocking filter.";

 }

 }

 }

 container routing-tables {

 must "routing-table/name='ipv4-unicast-fib'" {

 description

 "IPv4 unicast forwarding information base.";

 }

 must "routing-table/name='ipv4-unicast-main'" {

 description

 "The main IPv4 unicast routing table.";

 }

 description

 "Container for configured routing tables.";

 list routing-table {

 key "name";

 description

 "Each entry represents a configured routing table. At

 least two entries with names 'ipv4-unicast-fib' and

 'ipv4-unicast-main' must exist.";

 container routes {

 config false;

 description

 "Current contents of the routing table. Note that

 it is operational state data.";

 list route {

 description

 "A routing table entry.";

 leaf destination-prefix {

 type inet:ipv4-prefix;

 description

 "Destination prefix.";

 }

 leaf next-hop {

 type inet:ipv4-address;

 description

 "IPv4 address of the next hop.";

 }

 leaf outgoing-interface {

 type if:interface-ref;

 description

 "Name of the outgoing interface.";

 }

 leaf source-protocol {

 type leafref {

 path "../../../../../routing-protocol-instances/"

 + "routing-protocol-instance/name";

 }

 description

 "Protocol instance from which the route comes.";

 }

 leaf last-modified {

 type yang:date-and-time;

 description

 "Time stamp of the last modification of the

 route. If the route was never modified, it is the

 time when the route was inserted to the routing

 table.";

 }

 }

 }

 leaf name {

 type string;

 description

 "The name of the routing table.";

 }

 leaf description {

 type string;

 description

 "Textual description of the routing table.";

 }

 list recipient-routing-tables {

 key "recipient-name";

 description

 "A list of routing tables that receive routes from

 the parent routing table.";

 leaf recipient-name {

 type leafref {

 path "../../../routing-table/name";

 }

 description

 "The name of the recipient routing table.";

 }

 leaf filter {

 type leafref {

 path "../../../../route-filters/route-filter/name";

 }

 description

 "A route filter which is applied to the routes

 passed on to the recipient routing table.";

 }

 }

 }

 }

 }

 }

}

<CODE ENDS>

7. IANA Considerations

This document registers the following two namespace URIs in the IETF

XML registry [RFC3688]:

--

URI: urn:ietf:params:xml:ns:yang:ietf-routing

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

--

--

URI: urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

--

This document registers two YANG modules in the YANG Module Names

registry [RFC6020]:

name: ietf-routing

namespace: urn:ietf:params:xml:ns:yang:ietf-routing

prefix: rt

reference: RFC XXXX

name: ietf-ipv4-unicast-routing

namespace: urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing

prefix: v4ur

reference: RFC XXXX

8. Security Considerations

TBD.

9. Acknowledgments

The author wishes to thank Juergen Schoenwaelder and Martin Bjorklund

for their helpful comments and suggestions.

10. References

10.1. Normative References

[IANA-

AFI]
IANA, "Address Family Numbers.", January 2011.

[IANA-

SAFI]

IANA, "Subsequent Address Family Identifiers (SAFI)

Parameters.", March 2011.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3688]
Mealling, M., "The IETF XML Registry", BCP 81, RFC

3688, January 2004.

[RFC4741]
Enns, R., "NETCONF Configuration Protocol", RFC 4741,

December 2006.

[RFC6020]

Bjorklund, M, "YANG - A Data Modeling Language for

Network Configuration Protocol (NETCONF)", RFC 6020,

September 2010.

[RFC6021]
Schoenwaelder, J., "Common YANG Data Types", RFC 6021,

September 2010.

[YANG-IF]

Bjorklund, M, "A YANG Data Model for Interface

Configuration", Internet-Draft draft-bjorklund-netmod-

interfaces-cfg-00, December 2010.

http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3688
http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6020
http://tools.ietf.org/html/rfc6021
http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00
http://tools.ietf.org/html/draft-bjorklund-netmod-interfaces-cfg-00

10.2. Informative References

[RFC6087]
Bierman, A., "Guidelines for Authors and Reviewers of

YANG Data Model Documents", RFC 6087, January 2011.

Appendix A. Example - Adding a New Routing Protocol

This appendix demonstrates how the core routing data model can be

extended to support a new routing protocol. Appendix Appendix A.1

contains a YANG module which is used for this purpose. It is intended

only as an illustration and not as a real definition of a data model

for the RIP routing protocol. Also, for the sake of brevity, we do not

follow all the guidelines specified in [RFC6087].

Appendix Appendix A.2 then contains a complete instance XML document -

a reply to the NETCONF <get> message from a server that uses the RIP

protocol as well as static routing.

Appendix A.1. Example YANG Module for Routing Information Protocol

http://tools.ietf.org/html/rfc6087
http://tools.ietf.org/html/rfc6087

module example-rip {

 namespace "http://example.com/rip";

 prefix rip;

 import ietf-interfaces {

 prefix if;

 }

 import ietf-routing {

 prefix rt;

 }

 identity rip {

 base rt:routing-protocol;

 description

 "Identity for the RIP routing protocol.";

 }

 typedef rip-metric {

 type uint8 {

 range "0..16";

 }

 }

 augment "/rt:routing/rt:routing-protocol-instances/" +

 "rt:routing-protocol-instance" {

 when "rt:type='rip:rip'";

 container rip-configuration {

 container rip-interfaces {

 list rip-interface {

 key "name";

 leaf name {

 type if:interface-ref;

 }

 leaf enabled {

 type boolean;

 default "true";

 }

 leaf metric {

 type rip-metric;

 default "1";

 }

 /* Additional per-interface RIP configuration */

 }

 }

 leaf update-interval {

 type uint8 {

 range "10..60";

 }

 units "seconds";

 default "30";

 description

 "Time interval between periodic updates.";

 }

 /* Additional RIP configuration */

 }

 }

 augment "/rt:routing/rt:routing-tables/rt:routing-table/rt:route" {

 when "../../../rt:routing-protocol-instances/" +

 "rt:routing-protocol-instance[rt:name=" +

 "current()/rt:source-protocol]/rt:type='rip:rip'";

 description

 "RIP-specific route components.";

 leaf metric {

 type rip-metric;

 }

 leaf tag {

 type uint16;

 default "0";

 description

 "This leaf may be used to carry additional info, e.g. AS

 number.";

 }

 }

}

Appendix A.2. Sample Reply to the NETCONF <get> Message

This section contains a sample reply to the NETCONF <get> message,

which could be sent by a server supporting (and advertizing in <hello>)

the following YANG modules:

ietf-interfaces [YANG-IF],

ex-ethernet [YANG-IF],

ex-ip [YANG-IF],

ietf-routing (Section 5),

ietf-ipv4-unicast-routing (Section 6),

example-rip (Appendix Appendix A.1).

We assume a simple network setup as shown in Figure 10: routers "ISP"

and "A" use RIP for exchanging routing information whereas static

routing is used in the private network. In order to avoid the

redistribution of the routes to the private subnetworks 192.168.1.0/24

and 192.168.2.0/24 in RIP, an export filter is used in the RIP protocol

*

*

*

*

*

*

configuration preventing the routes from the main routing table from

appearing in RIP updates.

 +-----------------+

 | |

 | Router ISP |

 | |

 +--------+--------+

 |192.0.2.2

 |

 |

 eth0|192.0.2.1

 +--------+--------+

 | |

 | Router A |

 | |

 +--------+--------+

 eth1|192.168.1.1

 |

 |

 |192.168.1.254

 +--------+--------+

 | |

 | Router B |

 | |

 +--------+--------+

 |192.168.2.1

 |

Router "A" then could send the following XML document as its reply to

the NETCONF <get> message:

<?xml version="1.0"?>

<nc:rpc-reply

 message-id="101"

 xmlns="urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing"

 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces"

 xmlns:eth="http://example.com/ethernet"

 xmlns:ip="http://example.com/ip"

 xmlns:rt="urn:ietf:params:xml:ns:yang:ietf-routing"

 xmlns:rip="http://example.com/rip">

 <nc:data>

 <if:interfaces>

 <if:interface>

 <if:name>eth0</if:name>

 <if:type>ethernetCsmacd</if:type>

 <if:location>05:00.0</if:location>

 <ip:ip>

 <ip:address>

 <ip:ip>192.0.2.1</ip:ip>

 <ip:prefix-length>24</ip:prefix-length>

 </ip:address>

 </ip:ip>

 </if:interface>

 <if:interface>

 <if:name>eth1</if:name>

 <if:type>ethernetCsmacd</if:type>

 <if:location>05:00.1</if:location>

 <ip:ip>

 <ip:address>

 <ip:ip>192.168.1.1</ip:ip>

 <ip:prefix-length>24</ip:prefix-length>

 </ip:address>

 </ip:ip>

 </if:interface>

 </if:interfaces>

 <rt:routing>

 <rt:routing-process>

 <rt:name>inet-0</rt:name>

 <rt:address-family>ipV4</rt:address-family>

 <rt:safi>nlri-unicast</rt:safi>

 <ipv4-unicast-routing>

 <routing-protocol-instances>

 <routing-protocol-instance>

 <name>direct</name>

 <type>rt:direct</type>

 </routing-protocol-instance>

 <routing-protocol-instance>

 <name>st0</name>

 <description>

 Static routing is used for the internal network.

 </description>

 <type>rt:static</type>

 <static-routes>

 <static-route>

 <id>id-6378</id>

 <destination-prefix>192.168.2.0/24</destination-prefix>

 <next-hop>192.168.1.254</next-hop>

 </static-route>

 </static-routes>

 </routing-protocol-instance>

 <routing-protocol-instance>

 <name>rip0</name>

 <description>

 RIP is used on the uplink.

 Static routes to the internal networks are not

 advertized in RIP.

 </description>

 <type>rip:rip</type>

 <export-filter>deny-all</export-filter>

 <rip:rip-configuration>

 <rip:rip-interfaces>

 <rip:rip-interface>

 <rip:name>eth0</rip:name>

 </rip:rip-interface>

 </rip:rip-interfaces>

 </rip:rip-configuration>

 </routing-protocol-instance>

 </routing-protocol-instances>

 <route-filters>

 <route-filter>

 <name>deny-all</name>

 </route-filter>

 </route-filters>

 <routing-tables>

 <routing-table>

 <name>ipv4-unicast-fib</name>

 <routes>

 <route>

 <destination-prefix>192.0.2.1/24</destination-prefix>

 <source-protocol>direct</source-protocol>

 <outgoing-interface>eth0</outgoing-interface>

 <last-modified>2010-04-01T17:11:27+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>192.168.1.0/24</destination-prefix>

 <source-protocol>direct</source-protocol>

 <outgoing-interface>eth1</outgoing-interface>

 <last-modified>2010-04-01T17:11:27+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>192.168.2.0/24</destination-prefix>

 <source-protocol>st0</source-protocol>

 <next-hop>192.168.1.254</next-hop>

 <last-modified>2010-04-01T17:11:32+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>0.0.0.0/0</destination-prefix>

 <source-protocol>rip0</source-protocol>

 <next-hop>192.168.1.254</next-hop>

 <rip:metric>2</rip:metric>

 <rip:tag>64500</rip:tag>

 <last-modified>2010-04-01T18:02:45+01:00</last-modified>

 </route>

 </routes>

 </routing-table>

 <routing-table>

 <name>ipv4-unicast-main</name>

 <recipient-routing-tables>

 <recipient-name>ipv4-unicast-fib</recipient-name>

 </recipient-routing-tables>

 <routes>

 <route>

 <destination-prefix>192.0.2.1/24</destination-prefix>

 <source-protocol>direct</source-protocol>

 <outgoing-interface>eth0</outgoing-interface>

 <last-modified>2010-04-01T17:11:27+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>192.168.1.0/24</destination-prefix>

 <source-protocol>direct</source-protocol>

 <outgoing-interface>eth1</outgoing-interface>

 <last-modified>2010-04-01T17:11:27+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>192.168.2.0/24</destination-prefix>

 <source-protocol>st0</source-protocol>

 <next-hop>192.168.1.254</next-hop>

 <last-modified>2010-04-01T17:11:32+01:00</last-modified>

 </route>

 <route>

 <destination-prefix>0.0.0.0/0</destination-prefix>

 <source-protocol>rip0</source-protocol>

 <next-hop>192.168.1.254</next-hop>

 <rip:metric>2</rip:metric>

 <rip:tag>64500</rip:tag>

 <last-modified>2010-04-01T18:02:45+01:00</last-modified>

 </route>

 </routes>

 </routing-table>

 </routing-tables>

 </ipv4-unicast-routing>

 </rt:routing-process>

 </rt:routing>

 </nc:data>

</nc:rpc-reply>

Author's Address

Ladislav Lhotka Lhotka CESNET EMail: lhotka@cesnet.cz

mailto:lhotka@cesnet.cz

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Notation
	2.1. Glossary of New Terms
	2.2. Prefixes in Data Node Names
	3. Objectives
	4. The Design of the Core Routing Data Model
	4.1. Route
	4.2. Routing Tables
	4.3. Routing Protocol Instances
	4.3.1. Defining New Routing Protocols
	4.4. Route Filters
	4.5. RPC Operations
	5. Routing YANG Module
	6. IPv4 Unicast Routing YANG Module
	7. IANA Considerations
	8. Security Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Example - Adding a New Routing Protocol
	Appendix A.1. Example YANG Module for Routing Information Protocol
	Appendix A.2. Sample Reply to the NETCONF <get> Message
	Author's Address

