
NETMOD Working Group L. Lhotka
Internet-Draft CZ.NIC
Intended status: Standards Track June 12, 2015
Expires: December 14, 2015

JSON Encoding of Data Modeled with YANG
draft-ietf-netmod-yang-json-04

Abstract

 This document defines encoding rules for representing configuration,
 state data, RPC input and output parameters, and notifications
 defined using YANG as JavaScript Object Notation (JSON) text.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 14, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lhotka Expires December 14, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Encoding of YANG Data June 2015

Table of Contents

1. Introduction . 2
2. Terminology and Notation 3

 3. Validation of JSON-encoded
 Instance Data . 4

4. Names and Namespaces . 4
5. Encoding of YANG Data Node Instances 6
5.1. The "leaf" Data Node 7
5.2. The "container" Data Node 7
5.3. The "leaf-list" Data Node 7
5.4. The "list" Data Node 8
5.5. The "anydata" Data Node 9
5.6. The "anyxml" Data Node 10

6. The Mapping of YANG Data Types to JSON Values 10
6.1. Numeric Types . 10
6.2. The "string" Type . 11
6.3. The "boolean" Type 11
6.4. The "enumeration" Type 11
6.5. The "bits" Type . 11
6.6. The "binary" Type . 11
6.7. The "leafref" Type 11
6.8. The "identityref" Type 11
6.9. The "empty" Type . 12
6.10. The "union" Type . 13
6.11. The "instance-identifier" Type 13

7. I-JSON Compliance . 14
8. Security Considerations 15
9. Acknowledgments . 15
10. References . 15
10.1. Normative References 15
10.2. Informative References 16

Appendix A. A Complete Example 16
Appendix B. Change Log . 18
B.1. Changes Between Revisions -03 and -04 18
B.2. Changes Between Revisions -02 and -03 19
B.3. Changes Between Revisions -01 and -02 19
B.4. Changes Between Revisions -00 and -01 19

 Author's Address . 19

1. Introduction

 The NETCONF protocol [RFC6241] uses XML [W3C.REC-xml-20081126] for
 encoding data in its Content Layer. Other management protocols might
 want to use other encodings while still benefiting from using YANG
 [I-D.ietf-netmod-rfc6020bis] as the data modeling language.

https://datatracker.ietf.org/doc/html/rfc6241

Lhotka Expires December 14, 2015 [Page 2]

Internet-Draft JSON Encoding of YANG Data June 2015

 For example, the RESTCONF protocol [I-D.ietf-netconf-restconf]
 supports two encodings: XML (media type "application/yang.data+xml")
 and JSON (media type "application/yang.data+json).

 The specification of YANG 1.1 data modelling language
 [I-D.ietf-netmod-rfc6020bis] defines only XML encoding for data
 instances, i.e., contents of configuration datastores, state data,
 RFC input and output parameters, and event notifications. The aim of
 this document is to define rules for encoding the same data as
 JavaScript Object Notation (JSON) text [RFC7159].

 In order to achieve maximum interoperability while allowing
 implementations to use a variety of available JSON parsers, the JSON
 encoding rules follow, as much as possible, the constraints of the
 I-JSON restricted profile [RFC7493]. Section 7 discusses I-JSON
 conformance in more detail.

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [I-D.ietf-netmod-rfc6020bis]:

 o anydata,

 o anyxml,

 o augment,

 o container,

 o data node,

 o identity,

 o instance identifier,

 o leaf,

 o leaf-list,

 o list,

 o module,

 o submodule.

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493
https://datatracker.ietf.org/doc/html/rfc2119

Lhotka Expires December 14, 2015 [Page 3]

Internet-Draft JSON Encoding of YANG Data June 2015

3. Validation of JSON-encoded Instance Data

 Instance data validation as defined in [I-D.ietf-netmod-rfc6020bis],
 sec. 8.3.3, is only applicable to XML-encoded data. For one,
 semantic constraints in "must" statements are expressed using
 XPath 1.0 [W3C.REC-xpath-19991116], which can be properly interpreted
 only in the XML context.

 This document and the corresponding "XML Mapping Rules" sections from
 [I-D.ietf-netmod-rfc6020bis] also define an implicit schema-driven
 mapping of JSON-encoded instances to XML-encoded instances (and vice
 versa). This mapping is mostly straightforward. In cases where
 doubts could arise, this document gives explicit instructions for
 mapping JSON-encoded instances to XML.

 In order to validate a JSON instance document, it needs first to be
 mapped, at least conceptually, to the corresponding XML instance
 document. By definition, the JSON document is then valid if and only
 if the XML document is valid according to the rules stated in
 [I-D.ietf-netmod-rfc6020bis].

4. Names and Namespaces

 Instances of YANG data nodes (leafs, containers, leaf-lists, lists,
 anydata and anyxml nodes) are always encoded as members of a JSON
 object, i.e., as name/value pairs. This section defines how the name
 part is formed, and the following sections deal with the value part.

 Except in the cases specified below, the member name is identical to
 the identifier of the corresponding YANG data node. Every such name
 belongs to a namespace which is associated with the YANG module where
 the corresponding data node is defined. If the data node is defined
 in a submodule, then the namespace is determined by the main module
 to which the submodule belongs.

 If the namespace of a member name has to be explicitly specified, the
 module name SHALL be used as a prefix to the member's local name.
 Both parts of the member name SHALL be separated with a colon
 character (":"). Using ABNF [RFC5234], the namespace-qualified name
 can be expressed as shown in Figure 1, where the production for
 "identifier" is defined in sec. 13 of [I-D.ietf-netmod-rfc6020bis].

 qualified-member-name = identifier ":" identifier

 Figure 1: ABNF production for a qualified member name.

 Names with namespace identifiers in the form shown in Figure 1 are
 used if and only if the parent data node belongs to a different

https://datatracker.ietf.org/doc/html/rfc5234

Lhotka Expires December 14, 2015 [Page 4]

Internet-Draft JSON Encoding of YANG Data June 2015

 namespace, which also includes all top-level YANG data nodes that
 have no parent node.

 For example, consider the following YANG module:

 module foomod {

 namespace "http://example.com/foomod";

 prefix "foo";

 container top {
 leaf foo {
 type uint8;
 }
 }
 }

 If the data model consists only of this module, then the following is
 a valid JSON-encoded configuration:

 {
 "foomod:top": {
 "foo": 54
 }
 }

 Note that the top-level container instance contains the namespace
 identifier (module name) but the "foo" leaf doesn't because it is
 defined in the same module as its parent container.

 Now, assume the container "top" is augmented from another module,
 "barmod":

Lhotka Expires December 14, 2015 [Page 5]

Internet-Draft JSON Encoding of YANG Data June 2015

 module barmod {

 namespace "http://example.com/barmod";

 prefix "bar";

 import foomod {
 prefix "foo";
 }

 augment "/foo:top" {
 leaf bar {
 type boolean;
 }
 }
 }

 A valid JSON-encoded configuration containing both leafs may then
 look like this:

 {
 "foomod:top": {
 "foo": 54,
 "barmod:bar": true
 }
 }

 The name of the "bar" leaf is prefixed with the namespace identifier
 because its parent is defined in a different module, hence it belongs
 to another namespace.

 Explicit namespace identifiers are sometimes needed when encoding
 values of the "identityref" and "instances-identifier" types. The
 same form as shown in Figure 1 is then used as well. See Sections
 6.8 and 6.11 for details.

5. Encoding of YANG Data Node Instances

 Every complete JSON instance document, such as a configuration
 datastore content, is an object. Its members are instances of all
 top-level data nodes defined by the YANG data model.

 Character encoding MUST be UTF-8.

 Any data node instance is encoded as a name/value pair where the name
 is formed from the data node identifier using the rules of Section 4.
 The value depends on the category of the data node as explained in
 the following subsections.

Lhotka Expires December 14, 2015 [Page 6]

Internet-Draft JSON Encoding of YANG Data June 2015

5.1. The "leaf" Data Node

 A leaf instance is encoded as a name/value pair where the value can
 be a string, number, literal "true" or "false", or the special array
 "[null]", depending on the type of the leaf (see Section 6 for the
 type encoding rules).

 Example: For the leaf node definition

 leaf foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": 123

5.2. The "container" Data Node

 A container instance is encoded as a name/object pair. The
 container's child data nodes are encoded as members of the object.

 Example: For the container definition

 container bar {
 leaf foo {
 type uint8;
 }
 }

 the following is a valid JSON-encoded instance:

 "bar": {
 "foo": 123
 }

5.3. The "leaf-list" Data Node

 A leaf-list is encoded as a name/array pair, and the array elements
 are values of some scalar type, which can be a string, number,
 literal "true" or "false", or the special array "[null]", depending
 on the type of the leaf-list (see Section 6 for the type encoding
 rules).

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing leaf-list entries in the XML encoding.
 Specifically, the "ordered-by" properties (sec. 7.7.7 in
 [I-D.ietf-netmod-rfc6020bis]) MUST be observed.

Lhotka Expires December 14, 2015 [Page 7]

Internet-Draft JSON Encoding of YANG Data June 2015

 Example: For the leaf-list definition

 leaf-list foo {
 type uint8;
 }

 the following is a valid JSON-encoded instance:

 "foo": [123, 0]

5.4. The "list" Data Node

 A list instance is encoded as a name/array pair, and the array
 elements are JSON objects.

 The ordering of array elements follows the same rules as the ordering
 of XML elements representing list entries in the XML encoding.
 Specifically, the "ordered-by" properties (sec. 7.7.7 in
 [I-D.ietf-netmod-rfc6020bis]) MUST be observed.

 Unlike the XML encoding, where list keys are required to precede any
 other siblings within a list entry, and appear in the order specified
 by the data model, the order of members in a JSON-encoded list entry
 is arbitrary because JSON objects are fundamentally unordered
 collections of members.

 Example: For the list definition

 list bar {
 key foo;
 leaf foo {
 type uint8;
 }
 leaf baz {
 type string;
 }
 }

 the following is a valid JSON-encoded instance:

Lhotka Expires December 14, 2015 [Page 8]

Internet-Draft JSON Encoding of YANG Data June 2015

 "bar": [
 {
 "foo": 123,
 "baz": "zig"
 },
 {
 "baz": "zag",
 "foo": 0
 }
]

5.5. The "anydata" Data Node

 Anydata data node is a new feature in YANG 1.1. It serves as a
 container for data that appear as normal YANG-modeled data, except
 their data model is not a priori known.

 An anydata instance is thus encoded in the same way as a container,
 and its content is subject to the following rules:

 o It is a valid I-JSON message [RFC7493].

 o Any member name is either a YANG identifier as defined by the
 "identifier" production in sec. 13 of
 [I-D.ietf-netmod-rfc6020bis], or two such identifiers separated by
 the colon character (":"). See also Section 4.

 o Any JSON array contains either only unique scalar values (as a
 leaf-list, see Section 5.3), or only objects (as a list, see

Section 5.4).

 o The "null" value is only allowed in the single-element array
 "[null]" corresponding to the encoding of the "empty" type, see

Section 6.9.

 If a data model for anydata content is not available, it may be
 impossible to map a JSON-encoded anydata instance to XML, and vice
 versa. Note, however, that such a mapping is not needed for
 validation purposes (Section 3) because anydata contents are
 generally not subject to YANG-based validation (see sec. 7.10 in
 [I-D.ietf-netmod-rfc6020bis]).

 Example: for the anydata definition

 anydata data;

 the following is a valid JSON-encoded instance:

https://datatracker.ietf.org/doc/html/rfc7493

Lhotka Expires December 14, 2015 [Page 9]

Internet-Draft JSON Encoding of YANG Data June 2015

 "data": {
 "ietf-notification:notification": {
 "eventTime": "2014-07-29T13:43:01Z",
 "example-event:event": {
 "event-class: "fault",
 "reporting-entity": {
 "card": "Ethernet0"
 },
 "severity": "major"
 }
 }
 }

5.6. The "anyxml" Data Node

 An anyxml instance is encoded as a JSON name/value pair which MUST
 satisfy I-JSON constraints. Otherwise it is unrestricted, i.e., the
 value can be an object, array, number, string or one of the literals
 "true", "false" and "null".

 As in the case of anydata (Section 5.5), there is no universal
 procedure for mapping JSON-encoded anyxml instances to XML, and vice
 versa.

 Example: For the anyxml definition

 anyxml bar;

 the following is a valid JSON-encoded instance:

 "bar": [true, null, true]

6. The Mapping of YANG Data Types to JSON Values

 The type of the JSON value in an instance of the leaf or leaf-list
 data node depends on the type of that data node as specified in the
 following subsections.

6.1. Numeric Types

 A value of the "int8", "int16", "int32", "uint8", "uint16" and
 "uint32" is represented as a JSON number.

 A value of the "int64", "uint64" or "decimal64" type is encoded as a
 JSON string whose contents is the lexical representation of that
 numeric value as specified in sections 9.2.1 and 9.3.1 of
 [I-D.ietf-netmod-rfc6020bis].

Lhotka Expires December 14, 2015 [Page 10]

Internet-Draft JSON Encoding of YANG Data June 2015

 For example, if the type of the leaf "foo" in Section 5.1 was
 "uint64" instead of "uint8", the instance would have to be encoded as

 "foo": "123"

 The special handling of 64-bit numbers follows from I-JSON
 recommendation to encode numbers exceeding the IEEE 754-2008 double
 precision range as strings, see sec. 2.2 in [RFC7493].

6.2. The "string" Type

 A "string" value encoded as a JSON string, subject to JSON string
 encoding rules.

6.3. The "boolean" Type

 A "boolean" value is mapped to the corresponding JSON literal name
 "true" or "false".

6.4. The "enumeration" Type

 An "enumeration" value is mapped in the same way as a string except
 that the permitted values are defined by "enum" statements in YANG.
 See sec. 9.6 in [I-D.ietf-netmod-rfc6020bis].

6.5. The "bits" Type

 A "bits" value is mapped to a JSON string identical to the lexical
 representation of this value in XML, i.e., space-separated names
 representing the individual bit values that are set. See sec. 9.7 in
 [I-D.ietf-netmod-rfc6020bis].

6.6. The "binary" Type

 A "binary" value is mapped to a JSON string identical to the lexical
 representation of this value in XML, i.e., base64-encoded binary
 data. See sec. 9.8 in [I-D.ietf-netmod-rfc6020bis].

6.7. The "leafref" Type

 A "leafref" value is mapped according to the same rules as the type
 of the leaf being referred to.

6.8. The "identityref" Type

 An "identityref" value is mapped to a string representing the name of
 an identity. Its namespace MUST be expressed as shown in Figure 1 if

https://datatracker.ietf.org/doc/html/rfc7493

Lhotka Expires December 14, 2015 [Page 11]

Internet-Draft JSON Encoding of YANG Data June 2015

 it is different from the namespace of the leaf node containing the
 identityref value, and MAY be expressed otherwise.

 For example, consider the following schematic module:

 module exmod {
 ...
 import ietf-interfaces {
 prefix if;
 }
 import iana-if-type {
 prefix ianaift;
 }
 ...
 leaf type {
 type identityref {
 base "if:interface-type";
 }
 }
 }

 A valid instance of the "type" leaf is then encoded as follows:

 "type": "iana-if-type:ethernetCsmacd"

 The namespace identifier "iana-if-type" must be present in this case
 because the "ethernetCsmacd" identity is not defined in the same
 module as the "type" leaf.

6.9. The "empty" Type

 An "empty" value is mapped to "[null]", i.e., an array with the
 "null" literal being its only element. For the purposes of this
 document, "[null]" is treated as an atomic scalar value.

 This encoding of the "empty" type was chosen instead of using simply
 "null" in order to facilitate the use of empty leafs in common
 programming languages. When used in a boolean context, the "[null]"
 value, unlike "null", evaluates to true.

 Example: For the leaf definition

 leaf foo {
 type empty;
 }

 a valid instance is

Lhotka Expires December 14, 2015 [Page 12]

Internet-Draft JSON Encoding of YANG Data June 2015

 "foo": [null]

6.10. The "union" Type

 A value of the "union" type is encoded as the value of any of the
 member types.

 Unlike XML, JSON conveys part of the type information already in the
 encoding. When validating a value of the "union" type, this
 information MUST also be taken into account.

 For example, consider the following YANG definition:

 leaf bar {
 type union {
 type uint16;
 type string;
 }
 }

 In RESTCONF [I-D.ietf-netconf-restconf], it is fully acceptable to
 set the value of "bar" in the following way when using the
 "application/yang.data+xml" media type:

 <bar>13.5</bar>

 because the value may be interpreted as a string, i.e., the second
 member type of the union. When using the "application/
 yang.data+json" media type, however, this is an error:

 "bar": 13.5

 In this case, the JSON encoding indicates the value is supposed to be
 a number rather than a string.

6.11. The "instance-identifier" Type

 An "instance-identifier" value is encoded as a string that is
 analogical to the lexical representation in XML encoding, see
 sec. 9.13.3 in [I-D.ietf-netmod-rfc6020bis]. However, the encoding
 of namespaces in instance-identifier values follows the rules stated
 in Section 4, namely:

 o The namespace identifier is the module name where each data node
 is defined.

 o The encoding of a node name with an explicit namespace is as shown
 in Figure 1.

Lhotka Expires December 14, 2015 [Page 13]

Internet-Draft JSON Encoding of YANG Data June 2015

 o The leftmost (top-level) node name is always prefixed with the
 namespace identifier.

 o Any subsequent node name has the namespace identifier if and only
 if its parent node has a different namespace. This also holds for
 node names appearing in predicates.

 For example,

 /ietf-interfaces:interfaces/interface[name='eth0']/ietf-ip:ipv4/ip

 is a valid instance-identifer value because the data nodes
 "interfaces", "interface" and "name" are defined in the module "ietf-
 interfaces", whereas "ipv4" and "ip" are defined in "ietf-ip".

 When translating an instance-identifier value from JSON to XML, the
 namespace identifier (YANG module name) in each component of the
 instance-identifier MUST be replaced by an XML namespace prefix that
 is associated with the namespace URI reference of the module in the
 scope of the element containing the instance-identifier value.

7. I-JSON Compliance

 I-JSON [RFC7493] is a restricted profile of JSON that guarantees
 maximum interoperability for protocols that use JSON in their
 messages, no matter what JSON encoders/decoders are used in protocol
 implementations. The encoding defined in this document therefore
 observes the I-JSON requirements and recommendations as closely as
 possible.

 In particular, the following properties are guaranteed:

 o Character encoding is UTF-8.

 o Member names within the same JSON object are always unique.

 o The order of JSON object members is never relied upon.

 o Numbers of any type supported by YANG can be exchanged reliably.
 See Section 6.1 for details.

 This document deviates from I-JSON only in the encoding of values
 with the "binary" type. It uses the base64 encoding scheme
 (Section 6.6), whereas I-JSON recommends base64url instead.
 Theoretically, values of the "binary" type might appear in URI
 references, such as Request-URI in RESTCONF, although in practice the
 cases where it is really needed should be extremely rare.

https://datatracker.ietf.org/doc/html/rfc7493

Lhotka Expires December 14, 2015 [Page 14]

Internet-Draft JSON Encoding of YANG Data June 2015

8. Security Considerations

 This document defines an alternative encoding for data modeled in the
 YANG data modeling language. As such, it doesn't contribute any new
 security issues beyond those discussed in sec. 16 of
 [I-D.ietf-netmod-rfc6020bis].

 JSON processing is rather different from XML, and JSON parsers may
 thus suffer from other types of vulnerabilities than their XML
 counterparts. To minimize these new security risks, software on the
 receiving side SHOULD reject all messages that do not comply to the
 rules of this document and reply with an appropriate error message to
 the sender.

9. Acknowledgments

 The author wishes to thank Andy Bierman, Martin Bjorklund, Dean
 Bogdanovic, Balazs Lengyel, Juergen Schoenwaelder and Phil Shafer for
 their helpful comments and suggestions.

10. References

10.1. Normative References

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", draft-ietf-

netmod-rfc6020bis-05 (work in progress), May 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC

6241, June 2011.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [RFC7493] Bray, T., "The I-JSON Message Format", RFC 7493, March
 2015.

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc6020bis-05
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc6020bis-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493

Lhotka Expires December 14, 2015 [Page 15]

Internet-Draft JSON Encoding of YANG Data June 2015

 [W3C.REC-xml-20081126]
 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

10.2. Informative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-05 (work in
 progress), June 2015.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, May 2014.

 [W3C.REC-xpath-19991116]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium Recommendation
 REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Appendix A. A Complete Example

 The JSON document shown below represents the same data as the reply
 to the NETCONF <get> request appearing in Appendix D of [RFC7223].
 The data model is a combination of two YANG modules: "ietf-
 interfaces" and "ex-vlan" (the latter is an example module from

Appendix C of [RFC7223]). The "if-mib" feature defined in the "ietf-
 interfaces" module is considered to be active.

 {
 "ietf-interfaces:interfaces": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": false
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "enabled": true,
 "ex-vlan:vlan-tagging": true
 },
 {
 "name": "eth1.10",

http://www.w3.org/TR/2008/REC-xml-20081126
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-05
https://datatracker.ietf.org/doc/html/rfc7223
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/rfc7223#appendix-D
https://datatracker.ietf.org/doc/html/rfc7223#appendix-C

Lhotka Expires December 14, 2015 [Page 16]

Internet-Draft JSON Encoding of YANG Data June 2015

 "type": "iana-if-type:l2vlan",
 "enabled": true,
 "ex-vlan:base-interface": "eth1",
 "ex-vlan:vlan-id": 10
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "enabled": true
 }
]
 },
 "ietf-interfaces:interfaces-state": {
 "interface": [
 {
 "name": "eth0",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 2,
 "phys-address": "00:01:02:03:04:05",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 7,
 "phys-address": "00:01:02:03:04:06",
 "higher-layer-if": [
 "eth1.10"
],
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth1.10",
 "type": "iana-if-type:l2vlan",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 9,
 "lower-layer-if": [
 "eth1"
],

Lhotka Expires December 14, 2015 [Page 17]

Internet-Draft JSON Encoding of YANG Data June 2015

 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "eth2",
 "type": "iana-if-type:ethernetCsmacd",
 "admin-status": "down",
 "oper-status": "down",
 "if-index": 8,
 "phys-address": "00:01:02:03:04:07",
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 },
 {
 "name": "lo1",
 "type": "iana-if-type:softwareLoopback",
 "admin-status": "up",
 "oper-status": "up",
 "if-index": 1,
 "statistics": {
 "discontinuity-time": "2013-04-01T03:00:00+00:00"
 }
 }
]
 }
 }

Appendix B. Change Log

 RFC Editor: Remove this section upon publication as an RFC.

B.1. Changes Between Revisions -03 and -04

 o I-D.ietf-netmod-rfc6020bis is used as a normative reference
 instead of RFC 6020.

 o Removed noncharacters as an I-JSON issue because it doesn't exist
 in YANG 1.1.

 o Section about anydata encoding was added.

 o Require I-JSON for anyxml encoding.

 o Use ABNF for defining qualified name.

https://datatracker.ietf.org/doc/html/rfc6020

Lhotka Expires December 14, 2015 [Page 18]

Internet-Draft JSON Encoding of YANG Data June 2015

B.2. Changes Between Revisions -02 and -03

 o Namespace encoding is defined without using RFC 2119 keywords.

 o Specification for anyxml nodes was extended and clarified.

 o Text about ordering of list entries was corrected.

B.3. Changes Between Revisions -01 and -02

 o Encoding of namespaces in instance-identifiers was changed.

 o Text specifying the order of array elements in leaf-list and list
 instances was added.

B.4. Changes Between Revisions -00 and -01

 o Metadata encoding was moved to a separate I-D, draft-lhotka-
netmod-yang-metadata.

 o JSON encoding is now defined directly rather than via XML-JSON
 mapping.

 o The rules for namespace encoding has changed. This affect both
 node instance names and instance-identifiers.

 o I-JSON-related changes. The most significant is the string
 encoding of 64-bit numbers.

 o When validating union type, the partial type info present in JSON
 encoding is taken into account.

 o Added section about I-JSON compliance.

 o Updated the example in appendix.

 o Wrote Security Considerations.

 o Removed IANA Considerations as there are none.

Author's Address

 Ladislav Lhotka
 CZ.NIC

 Email: lhotka@nic.cz

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-lhotka-netmod-yang-metadata
https://datatracker.ietf.org/doc/html/draft-lhotka-netmod-yang-metadata

Lhotka Expires December 14, 2015 [Page 19]

