
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-netmod-yang-module-versioning-11

Updates: 6020, 7950, 8407, 8525 (if approved)

Published: 1 March 2024

Intended Status: Standards Track

Expires: 2 September 2024

Authors: R. Wilton, Ed.

Cisco Systems, Inc.

R. Rahman, Ed.

Equinix

B. Lengyel, Ed.

Ericsson

J. Clarke

Cisco Systems, Inc.

J. Sterne

Nokia

Updated YANG Module Revision Handling

Abstract

This document refines the RFC 7950 module update rules. It specifies

a new YANG module update procedure that can document when non-

backwards-compatible changes have occurred during the evolution of a

YANG module. It extends the YANG import statement with a minimum

revision suggestion to help document inter-module dependencies. It

provides guidelines for managing the lifecycle of YANG modules and

individual schema nodes. This document updates RFC 7950, RFC 6020,

RFC 8407 and RFC 8525.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6020
https://www.rfc-editor.org/rfc/rfc7950
https://www.rfc-editor.org/rfc/rfc8407
https://www.rfc-editor.org/rfc/rfc8525
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Updates to YANG RFCs

2. Terminology and Conventions

3. Refinements to YANG revision handling

3.1. Updating a YANG module with a new revision

3.1.1. Backwards-compatible rules

3.1.2. Non-backwards-compatible changes

3.2. non-backwards-compatible extension statement

3.3. Removing revisions from the revision history

3.4. Examples for updating the YANG module revision history

4. Guidance for revision selection on imports

4.1. Recommending a minimum revision for module imports

4.1.1. Module import examples

5. New ietf-yang-status-conformance YANG module

5.1. Reporting how deprecated and obsolete nodes are handled

6. Guidelines for using the YANG module update rules

6.1. Guidelines for YANG module authors

6.1.1. Making non-backwards-compatible changes to a YANG module

6.2. Versioning Considerations for Clients

7. Module Versioning Extension YANG Modules

8. Security considerations

8.1. Security considerations for module revisions

8.2. Security considerations for the modules defined in this

document

9. IANA Considerations

9.1. YANG Module Registrations

9.2. Guidance for versioning in IANA maintained YANG modules

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Examples of changes that are NBC

Appendix B. Examples of applying the NBC change guidelines

B.1. Removing a data node

B.2. Changing the type of a leaf node

B.3. Reducing the range of a leaf node

B.4. Changing the key of a list

B.5. Renaming a node

Contributors

Acknowledgments

Authors' Addresses

¶

1. Introduction

The current YANG [RFC7950] module update rules require that updates

of YANG modules preserve strict backwards compatibility. This causes

problems as described in [I-D.ietf-netmod-yang-versioning-reqs].

This document recognizes the need to sometimes allow YANG modules to

evolve with non-backwards-compatible changes, which can cause

breakage to clients and when importing YANG modules. Accepting that

non-backwards-compatible changes do sometimes occur -- e.g., for

bugfixes -- it is important to have mechanisms to report when these

changes occur, and to manage their effect on clients and the broader

YANG ecosystem.

Several other documents build on this document with additional

capabilities. [I-D.ietf-netmod-yang-schema-comparison] specifies an

algorithm that can be used to compare two revisions of a YANG schema

and provide granular information to allow module users to determine

if they are impacted by changes between the revisions. The

[I-D.ietf-netmod-yang-semver] document defines a YANG extension that

tags a YANG artifact with a version identifier based on semantic

versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a

mechanism to group sets of related YANG modules together in order to

manage schema and conformance of YANG modules as a cohesive set

instead of individually. Finally,

[I-D.ietf-netmod-yang-ver-selection] provides a schema selection

mechanism that allows a client to choose which schemas to use when

interacting with a server from the available schema that are

supported and advertised by the server. These other documents are

mentioned here as informative references. Support of the other

documents is not required in an implementation in order to take

advantage of the mechanisms and functionality offered by this module

versioning document.

The document comprises four parts:

Refinements to the YANG 1.1 module revision update procedure,

supported by new extension statements to indicate when a revision

contains non-backwards-compatible changes.

Updated guidance for revision selection on imports and a YANG

extension statement allowing YANG module imports to document an

earliest module revision that may satisfy the import dependency.

Updates and augmentations to ietf-yang-library to report how

"deprecated" and "obsolete" nodes are handled by a server.

Guidelines for how the YANG module update rules defined in this

document should be used, along with examples.

Note to RFC Editor (To be removed by RFC Editor)

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/

issues.

1.1. Updates to YANG RFCs

This document updates [RFC7950] section 11 and [RFC6020] section 10.

Section 3 describes modifications to YANG revision handling and

update rules, and Section 4.1 describes a YANG extension statement

to describe potential YANG import revision dependencies.

This document updates [RFC8407] section 4.7. Section 6 provides

guidelines on managing the lifecycle of YANG modules that may

contain non-backwards-compatible changes and a branched revision

history.

This document updates [RFC8525] with augmentations to include two

boolean leafs to indicate whether status deprecated and status

obsolete schema nodes are implemented by the server.

2. Terminology and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document makes use of the following terminology introduced in

the YANG 1.1 Data Modeling Language [RFC7950]:

schema node

In addition, this document uses the following terminology:

YANG module revision: An instance of a YANG module, uniquely

identified with a revision date, with no implied ordering or

backwards compatibility between different revisions of the same

module.

Backwards-compatible (BC) change: A backwards-compatible change

between two YANG module revisions, as defined in Section 3.1.1

Non-backwards-compatible (NBC) change: A non-backwards-compatible

change between two YANG module revisions, as defined in

Section 3.1.2

3. Refinements to YANG revision handling

[RFC7950] and [RFC6020] assume, but do not explicitly state, that

the revision history for a YANG module or submodule is strictly

¶

¶

¶

¶

¶

¶

* ¶

¶

*

¶

*

¶

*

¶

https://github.com/netmod-wg/yang-ver-dt/issues
https://github.com/netmod-wg/yang-ver-dt/issues

linear, i.e., it is prohibited to have two independent revisions of

a YANG module or submodule that are both directly derived from the

same parent revision.

This document clarifies [RFC7950] and [RFC6020] to explicitly allow

non-linear development of YANG module and submodule revisions, so

that they MAY have multiple revisions that directly derive from the

same parent revision. As per [RFC7950] and [RFC6020], YANG module

and submodule revisions continue to be uniquely identified by their

revision date, and hence all revisions of a given module or

submodule MUST have unique revision dates.

However, using revision dates alone to identify revisions of a YANG

module versioned with a branched revision history is likely to be

confusing because the relationship between module revisions is no

longer guaranteed to be chronologically ordered. Instead, for

modules that may use a branched revision history, it is RECOMMENDED

to use a version identifier, such as the one described in

[I-D.ietf-netmod-yang-semver], that better describes the semantic

relationship between the revisions.

For a given YANG module revision, revision B is defined as being

derived from revision A, if revision A is listed in the revision

history of revision B. Although this document allows for a branched

revision history, a given YANG module revision history does not

contain all revisions in all possible branches, it only lists those

from which is was derived, i.e., the module revision's history

describes a single path of derived revisions back to the root of the

module's revision history.

A corollary to the text above is that the ancestry (derived

relationship) between two module or submodule revisions cannot be

determined by comparing the module or submodule revision date or

version identifier alone - the revision history must be consulted.

A module's name and revision date identifies a specific immutable

definition of that module within its revision history. Hence, if a

module includes submodules then to ensure that the module's content

is uniquely defined, the module's "include" statements SHOULD use

"revision-date" substatements to specify the exact revision date of

each included submodule. When a module does not include its

submodules by revision-date, the revision of submodules used cannot

be derived from the including module. Mechanisms such as YANG

packages [I-D.ietf-netmod-yang-packages], and YANG library

[RFC8525], could be used to specify the exact submodule revisions

used when the submodule revision date is not constrained by the

"include" statement.

¶

¶

¶

¶

¶

¶

[RFC7950] section 11 and [RFC6020] section 10 require that all

updates to a YANG module are backwards-compatible (BC) to the

previous revision of the module. This document introduces a method

to indicate that an non-backwards-compatible (NBC) change has

occurred between module revisions: this is done by using a new "non-

backwards-compatible" YANG extension statement in the module

revision history.

Two revisions of a module or submodule MAY have identical content

except for the revision history. This could occur, for example, if a

module or submodule has a branched history and identical changes are

applied in multiple branches.

3.1. Updating a YANG module with a new revision

This section updates [RFC7950] section 11 and [RFC6020] section 10

to refine the rules for permissible changes when a new YANG module

revision is created.

New module revisions SHOULD NOT contain NBC changes because they

often create problems for clients, however they can be helpful in

some scenarios, and hence are discouraged, but allowed. For example:

Bugfixes, particularly where the likely client impact is low or

the module is changed to reflect current server behavior.

To mark nodes as obsolete (or remove them), after a suitable

deprecation period.

To refine new and unstable modules (or new and unstable nodes

within existing, stable modules).

Restructuring a module to add new functionality where the cost of

adding the functionality in a BC manner is disproportionate to

the expected benefits of greater client backwards compatibility.

A YANG extension, defined in Section 3.2, is used to signal the

potential for incompatibility to existing module users and readers.

As per [RFC7950] and [RFC6020], all published revisions of a module

are given a new unique revision date.

3.1.1. Backwards-compatible rules

A change between two module revisions is defined as being

"backwards-compatible" if the change conforms to the module update

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

rules specified in [RFC7950] section 11 and [RFC6020] section 10,

updated by the following rules:

A "status" "deprecated" statement MAY be added, or changed from

"current" to "deprecated", but adding or changing "status" to

"obsolete" is a non-backwards-compatible change.

YANG schema nodes with a "status" "obsolete" substatement MAY be

removed from published modules, and the removal is classified as

a backwards-compatible change. In some circumstances it may be

helpful to retain the obsolete definitions since their

identifiers may still be referenced by other modules and to

ensure that their identifiers are not reused with a different

meaning.

A statement that is defined using the YANG "extension" statement

MAY be added, removed, or changed, if it does not change the

semantics of the module. Extension statement definitions SHOULD

specify whether adding, removing, or changing statements defined

by that extension are backwards-compatible or non-backwards-

compatible.

Any change made to the "revision-date" or "recommended-min-date"

substatements of an "import" statement, including adding new

"revision-date" or "recommended-min-date" substatements, changing

the argument of any "revision-date" or "recommended-min-date"

substatetements, or removing any "revision-date" or "recommended-

min-date" substatements, is classified as backwards-compatible.

Any changes (including whitespace or formatting changes) that do

not change the semantic meaning of the module are backwards-

compatible.

3.1.2. Non-backwards-compatible changes

Any changes to YANG modules that are not defined by Section 3.1.1 as

being backwards-compatible are classified as "non-backwards-

compatible" changes.

3.2. non-backwards-compatible extension statement

The "rev:non-backwards-compatible" extension statement is used to

indicate YANG module revisions that contain NBC changes.

If a revision of a YANG module contains changes, relative to the

preceding revision in the revision history, that do not conform to

the module update rules defined in Section 3.1.1, then a "rev:non-

backwards-compatible" extension statement MUST be added as a

substatement to the "revision" statement.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Adding, modifying or removing a "rev:non-backwards-compatible"

extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

Authors may wish to remove revision statements from a module or

submodule. Removal of revision information may be desirable for a

number of reasons including reducing the size of a large revision

history, or removing a revision that should no longer be used or

imported. Removing revision statements is allowed, but can cause

issues and SHOULD NOT be done without careful analysis of the

potential impact to users of the module or submodule since it may

cause loss of visibility of when non-backwards-compatible changes

were introduced.

An author MAY remove a contiguous sequence of entries from the end

(i.e., oldest entries) of the revision history. This is acceptable

even if the first remaining (oldest) revision entry in the revision

history contains a rev:non-backwards-compatible substatement.

An author MAY remove a contiguous sequence of entries in the

revision history as long as the presence or absence of any existing

rev:non-backwards-compatible substatements on all remaining entries

still accurately reflect the compatibility relationship to their

preceding entries remaining in the revision history.

The author MUST NOT remove the first (i.e., newest) revision entry

in the revision history.

Example revision history:

¶

¶

¶

¶

¶

¶

In the revision history example above (with revision descriptions

omitted for clarity), removing the revision history entry for

2020-02-10 would also remove the rev:non-backwards-compatible

annotation and hence the resulting revision history would

incorrectly indicate that revision 2020-06-07 is backwards-

compatible with revisions 2019-01-02 through 2019-10-21 when it is

not, and so this change cannot be made. Conversely, removing one or

more revisions out of 2019-03-04, 2019-10-21 and 2020-08-09 from the

revision history would still retain a consistent revision history,

and is acceptable, subject to an awareness of the concerns raised in

the first paragraph of this section.

3.4. Examples for updating the YANG module revision history

The following diagram, explanation, and module history illustrates

how a branched revision history for a YANG module could be

represented chronologically. To aid clarity, it makes use of both

the "non-backwards-compatible" extension statement, and the

"version" extension statement defined in

[I-D.ietf-netmod-yang-semver]:

Example YANG module with branched revision history using version

identifiers defined in [I-D.ietf-netmod-yang-semver].

revision 2020-11-11 {

 rev:non-backwards-compatible;

}

revision 2020-08-09 {

 rev:non-backwards-compatible;

}

revision 2020-06-07 {

}

revision 2020-02-10 {

 rev:non-backwards-compatible;

}

revision 2019-10-21 {

}

revision 2019-03-04 {

}

revision 2019-01-02 {

}

¶

¶

¶

¶

The tree diagram above illustrates how an example module's revision

history might evolve, over time. For example, the tree might

represent the following changes, listed in chronological order from

the oldest revision to the newest revision:

Example module, revision 2019-05-01:

 Module revision date Example version identifier

 2019-01-01 <- 1.0.0

 |

 2019-02-01 <- 2.0.0

 | \

 2019-03-01 \ <- 3.0.0

 | \

 | 2019-04-01 <- 2.1.0

 | |

 2019-05-01 | <- 3.1.0

 |

 2019-06-01 <- 2.2.0

¶

¶

¶

Example module, revision 2019-06-01:

module example-module {

 namespace "urn:example:module";

 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }

 import ietf-yang-semver { prefix "ys"; }

 description

 "to be completed";

 revision 2019-05-01 {

 ys:version 3.1.0;

 description "Add new functionality.";

 }

 revision 2019-03-01 {

 ys:version 3.0.0;

 rev:non-backwards-compatible;

 description

 "Add new functionality. Remove some deprecated nodes.";

 }

 revision 2019-02-01 {

 ys:version 2.0.0;

 rev:non-backwards-compatible;

 description "Apply bugfix to pattern statement";

 }

 revision 2019-01-01 {

 ys:version 1.0.0;

 description "Initial revision";

 }

 //YANG module definition starts here

}

¶

¶

4. Guidance for revision selection on imports

[RFC7950] and [RFC6020] allow YANG module "import" statements to

optionally require the imported module to have a specific revision

date. In practice, importing a module with an exact revision date

can be too restrictive because it requires the importing module to

be updated whenever any change to the imported module occurs, and

hence section Section 6.1 suggests that authors do not restrict YANG

module imports to exact revision dates.

Instead, for conformance purposes (section 5.6 of [RFC7950]), the

recommended approach for defining the relationship between specific

YANG module revisions is to specify the relationships outside of the

YANG modules, e.g., via YANG library [RFC8525], YANG packages

[I-D.ietf-netmod-yang-packages], a filesystem directory containing a

module example-module {

 namespace "urn:example:module";

 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }

 import ietf-yang-semver { prefix "ys"; }

 description

 "to be completed";

 revision 2019-06-01 {

 ys:version 2.2.0;

 description "Backwards-compatible bugfix to enhancement.";

 }

 revision 2019-04-01 {

 ys:version 2.1.0;

 description "Apply enhancement to older release train.";

 }

 revision 2019-02-01 {

 ys:version 2.0.0;

 rev:non-backwards-compatible;

 description "Apply bugfix to pattern statement";

 }

 revision 2019-01-01 {

 ys:version 1.0.0;

 description "Initial revision";

 }

 //YANG module definition starts here

}

¶

¶

set of consistent YANG module revisions, or a revision control

system commit label.

4.1. Recommending a minimum revision for module imports

Although the previous section indicates that the actual relationship

constraints between different revisions of YANG modules should be

specified outside of the modules, in some scenarios YANG modules are

designed to be loosely coupled, and implementors may wish to select

sets of YANG module revisions that are expected to work together.

For these cases it can be helpful for a module author to provide

guidance on a recommended minimum revision that is expected to

satisfy an YANG import. E.g., the module author may know of a

dependency on a type or grouping that has been introduced in a

particular imported YANG module revision. Although there can be no

guarantee that all derived future revisions from the particular

imported module will necessarily also be compatible, older revisions

of the particular imported module are very unlikely to ever be

compatible.

This module introduces, for modules with a linear revision history

that are versioned using revision dates, a new YANG extension

statement to provide guidance to module implementors on a

recommended minimum module revision of an imported module that is

anticipated to be compatible. This statement has been designed to be

machine-readable so that tools can parse the minimum revision

extension statement and generate warnings if appropriate, but this

extension statement does not alter YANG module conformance of valid

YANG module versions in any way, and specifically it does not alter

the behavior of the YANG module import statement from that specified

in [RFC7950].

The ietf-revisions module defines the "recommended-min-date"

extension statement, a substatement to the YANG "import" statement,

to allow for a "minimum recommended date" to be documented:

The argument to the "recommended-min-date" extension statement is

a revision date.

A particular revision of an imported module adheres to an

import's "recommended-min-date" extension statement if the

imported module's revision date is equal to or later than the

revision date argument of the "recommended-min-date" extension

statement in the importing module.

Zero or one "recommended-min-date" extension statement is allowed

for each parent "import" statement.

Adding, modifying or removing a "recommended-min-date" extension

statement is a BC change.

¶

¶

¶

¶

¶

¶

¶

¶

4.1.1. Module import examples

Consider the example module "example-module" from Section 3.4 that

is hypothetically available in the following revisions: 2019-01-01,

2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and 2019-06-01. The

relationship between the revisions is as before:

4.1.1.1. Example 1

This example recommends module revisions for import whose revision

date is or comes after 2019-02-01. E.g., this dependency might be

used if there was a new container added in revision 2019-02-01 that

is augmented by the importing module. It includes the following

revisions: 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and

2019-06-01.

4.1.1.2. Example 2

This example recommends module revisions for import whose revision

date is or comes after 2019-04-01. It includes the following

revisions: 2019-04-01, 2019-05-01 and 2019-06-01, even though

revision 2019-05-01 may not contain what is desired from 2019-04-01.

This shows that "recommended-min-date" is not well suited for a

branched revision history, and is most helpful when a module is

restricted to a linear chronological development history.

¶

 Module revision date

 2019-01-01

 |

 2019-02-01

 | \

 2019-03-01 \

 | \

 | 2019-04-01

 | |

 2019-05-01 |

 |

 2019-06-01

¶

¶

import example-module {

 rev:recommended-min-date 2019-02-01;

}

¶

¶

import example-module {

 rev:recommended-min-date 2019-04-01;

}

¶

deprecated-nodes-implemented:

obsolete-nodes-absent:

5. New ietf-yang-status-conformance YANG module

This document defines the YANG module, ietf-yang-status-conformance,

that augments YANG library [RFC8525] with two leafs to indicate how

a server implements deprecated and obsolete schema nodes.

The "ietf-yang-status-conformance" YANG module has the following

structure (using the notation defined in [RFC8340]):

5.1. Reporting how deprecated and obsolete nodes are handled

The ietf-yang-status-conformance YANG module augments YANG library

with two boolean leafs to allow a server to report how it implements

status "deprecated" and status "obsolete" schema nodes. The leafs

are:

If set to "true", this leaf indicates

that all schema nodes with a status "deprecated" are implemented

equivalently as if they had status "current"; otherwise

deviations MUST be used by the server to explicitly remove

"deprecated" nodes from the schema. If this leaf is set to

"false" or absent, then the behavior is unspecified.

If set to "true", this leaf indicates that

the server does not implement any status "obsolete" schema nodes.

If this leaf is set to "false" or absent, then the behaviour is

unspecified.

Servers SHOULD set both the "deprecated-nodes-implemented" and

"obsolete-nodes-absent" leafs to "true", which allows clients to

determine the exact schema used by the server.

If a server does not set the "deprecated-nodes-implemented" leaf to

"true", then clients MUST NOT rely solely on the "rev:non-backwards-

compatible" statements to determine whether two module revisions are

backwards-compatible, and MUST also consider whether the status of

any nodes has changed to "deprecated" and whether those nodes are

implemented by the server.

6. Guidelines for using the YANG module update rules

The following text updates section 4.7 of [RFC8407] to revise the

guidelines for updating YANG modules.

¶

¶

module: ietf-yang-status-conformance

 augment /yanglib:yang-library/yanglib:schema:

 +--ro deprecated-nodes-implemented? boolean

 +--ro obsolete-nodes-absent? boolean

¶

¶

¶

¶

¶

¶

¶

6.1. Guidelines for YANG module authors

All IETF YANG modules MUST conform to this specification. In

particular, sections: Section 3, Section 4, and the guidelines

documented in this section.

NBC changes to YANG modules may cause problems to clients, who are

consumers of YANG models, and hence YANG module authors SHOULD

minimize NBC changes and keep changes BC whenever possible.

When NBC changes are introduced, consideration should be given to

the impact on clients and YANG module authors SHOULD try to mitigate

that impact.

A "rev:non-backwards-compatible" statement MUST be added if there

are NBC changes relative to the previous revision.

Removing old revision statements from a module's revision history

can cause a loss of visibility of when non-backwards-compatible

changes were made, and hence it is RECOMMENDED to retain them. An

alternative solution, if the revision section is too long, would be

to remove, or curtail, the older description statements associated

with the previous revisions.

In cases where a revision dependency is helpful for a module import,

the "rev:recommended-min-date" extension SHOULD be used in

preference to the "revision-date" statement, which causes overly

strict import dependencies and SHOULD NOT be used.

A module that includes submodules SHOULD use the "revision-date"

statement to include specific submodule revisions. The revision of

the including module MUST be updated when any included submodule has

changed.

In some cases a module or submodule revision that is not strictly

NBC by the definition in Section 3.1.2 of this specification may

include the "non-backwards-compatible" statement. Here is an example

when adding the statement may be desirable:

A "config false" leaf had its value space expanded (for example,

a range was increased, or additional enum values were added) and

the author or server implementor feels there is a significant

compatibility impact for clients and users of the module or

submodule

6.1.1. Making non-backwards-compatible changes to a YANG module

There are various valid situations where a YANG module has to be

modified in an NBC way. Here are some guidelines on how non-

backwards-compatible changes can be made incrementally, with the

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

assumption that deprecated nodes are implemented by the server, and

obsolete nodes are not:

The changes should be made gradually, e.g., a data node's

status SHOULD NOT be changed directly from "current" to

"obsolete" (see Section 4.7 of [RFC8407]), instead the status

SHOULD first be marked "deprecated". At some point in the

future, when support is removed for the data node, there are

two options. The first, and preferred, option is to keep the

data node definition in the model and change the status to

“obsolete”. The second option is to simply remove the data node

from the model, but this has the risk of breaking modules which

import the modified module, and the removed identifier may be

accidentally reused in a future revision.

For deprecated data nodes the "description" statement SHOULD

also indicate until when support for the node is guaranteed (if

known). If there is a replacement data node, rpc, action or

notification for the deprecated node, this SHOULD be stated in

the "description". The reason for deprecating the node can also

be included in the "description" if it is deemed to be of

potential interest to the user.

For obsolete data nodes, it is RECOMMENDED to keep the above

information, from when the node had status "deprecated", which

is still relevant.

When obsoleting or deprecating data nodes, the "deprecated" or

"obsolete" status SHOULD be applied at the highest possible

level in the data tree. For clarity, the "status" statement

SHOULD also be applied to all descendent data nodes, but the

additional status related information does not need to be

repeated if it does not introduce any additional information.

NBC changes which can break imports SHOULD be avoided because

of the impact on the importing module. The importing modules

could get broken, e.g., if an augmented node in the importing

module has been removed from the imported module.

Alternatively, the schema of the importing modules could

undergo an NBC change due to the NBC change in the imported

module, e.g., if a node in a grouping has been removed. As

described in Appendix B.1, instead of removing a node, that

node SHOULD first be deprecated and then obsoleted.

See Appendix B for examples on how NBC changes can be made.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

6.2. Versioning Considerations for Clients

Guidelines for clients of modules using the new module revision

update procedure:

Clients SHOULD be liberal when processing data received from a

server. For example, the server may have increased the range of

an operational node causing the client to receive a value which

is outside the range of the YANG model revision it was coded

against.

Clients SHOULD monitor changes to published YANG modules through

their revision history, and use appropriate tooling to understand

the specific changes between module revision. In particular,

clients SHOULD NOT migrate to NBC revisions of a module without

understanding any potential impact of the specific NBC changes.

Clients SHOULD plan to make changes to match published status

changes. When a node's status changes from "current" to

"deprecated", clients SHOULD plan to stop using that node in a

timely fashion. When a node's status changes to "obsolete",

clients MUST stop using that node.

7. Module Versioning Extension YANG Modules

YANG module with extension statements for annotating NBC changes and

importing by revision.

¶

*

¶

*

¶

*

¶

¶

<CODE BEGINS> file "ietf-yang-revisions@2024-02-19.yang"

module ietf-yang-revisions {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";

 prefix rev;

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke

 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman

 <mailto:reshad@yahoo.com>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne

 <mailto:jason.sterne@nokia.com>";

 description

 "This YANG 1.1 module contains definitions and extensions to

 support updated YANG revision handling.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Revised BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (inc above) with actual RFC number and

 // remove this note.

 revision 2024-02-19 {

 description

 "Initial version.";

 reference

 "XXXX: Updated YANG Module Revision Handling";

 }

 typedef revision-date {

 type string {

 pattern '[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])';

 }

 description

 "A date associated with a YANG revision.

 Matches dates formatted as YYYY-MM-DD.";

 reference

 "RFC 7950: The YANG 1.1 Data Modeling Language";

 }

 extension non-backwards-compatible {

 description

 "This statement is used to indicate YANG module revisions that

 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the 'revision'

 statement. Zero or one 'non-backwards-compatible' statements

 per parent statement is allowed. No substatements for this

 extension have been standardized.

 If a revision of a YANG module contains changes, relative to

 the preceding revision in the revision history, that do not

 conform to the backwards-compatible module update rules

 defined in RFC-XXX, then the 'non-backwards-compatible'

 statement MUST be added as a substatement to the revision

 statement.

 Conversely, if a revision does not contain a

 'non-backwards-compatible' statement then all changes,

 relative to the preceding revision in the revision history,

 MUST be backwards-compatible.

 A new module revision that only contains changes that are

 backwards-compatible SHOULD NOT include the

 'non-backwards-compatible' statement. An example of when an

 author might add the 'non-backwards-compatible' statement is

 if they believe a change could negatively impact clients even

 though the backwards compatibility rules defined in RFC-XXXX

 classify it as a backwards-compatible change.

 Add, removing, or changing a 'non-backwards-compatible'

 statement is a backwards-compatible version change.";

 reference

 "XXXX: Updated YANG Module Revision Handling;

 Section 3.2,

 non-backwards-compatible revision extension statement";

 }

 extension recommended-min-date {

 argument revision-date;

 description

 "Recommends the revision of the module that may be imported to

 one whose revision date matches or is after the specified

 revision-date.

 The argument value MUST conform to the 'revision-date' defined

 type.

 The statement MUST only be a substatement of the import

 statement. Zero, one or more 'recommended-min-date'

 statements per parent statement are allowed. No substatements

 for this extension have been standardized.

 Zero or one 'recommended-min-date' extension statement is

 allowed for each parent 'import' statement.

 A particular revision of an imported module adheres to an

 import's 'recommended-min-date' extension statement if the

 imported module's revision date is equal to or later than

 the revision date argument of the 'recommended-min-date'

 extension statement in the importing module.

 Adding, removing or updating a 'recommended-min-date'

 statement to an import is a backwards-compatible change.";

 reference

 "XXXX: Updated YANG Module Revision Handling; Section 4,

 Recommending a minimum revision for module imports";

 }

}

<CODE ENDS>

¶

YANG module for status conformance¶

<CODE BEGINS> file "ietf-yang-status-conformance@2024-02-14.yang"

module ietf-yang-status-conformance {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance";

 prefix ys-conf;

 import ietf-yang-library {

 prefix "yanglib";

 reference

 "RFC 8525: YANG Library";

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke

 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman

 <mailto:reshad@yahoo.com>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne

 <mailto:jason.sterne@nokia.com>";

 description

 "This module contains augmentations to YANG Library to provide an

 indication of how deprecated and obsolete nodes are handled by

 the server.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Revised BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (including in the imports above) with

 // actual RFC number and remove this note.

 revision 2024-02-14 {

 description

 "Initial revision";

 reference

 "XXXX: Updated YANG Module Revision Handling";

 }

 augment "/yanglib:yang-library/yanglib:schema" {

 description

 "Augmentations to the ietf-yang-library module to indicate how

 deprecated and obsoleted nodes are handled by the server.";

 leaf deprecated-nodes-implemented {

 type boolean;

 description

 "If set to true, this leaf indicates that all schema nodes

 with a status 'deprecated' are implemented equivalently as

 if they had status 'current'; otherwise deviations MUST be

 used to explicitly remove deprecated nodes from the schema.

 If this leaf is absent or set to false, then the behavior is

 unspecified.";

 reference

 "XXXX: Updated YANG Module Revision Handling;

 Section 5.1, Reporting how deprecated and obsolete nodes

 are handled";

 }

 leaf obsolete-nodes-absent {

 type boolean;

 description

 "If set to true, this leaf indicates that the server does not

 implement any status 'obsolete' schema nodes. If this leaf

 is absent or set to false, then the behaviour is

 unspecified.";

 reference

 "XXXX: Updated YANG Module Revision Handling;

 Section 5.1, Reporting how deprecated and obsolete nodes

 are handled";

 }

 }

}

<CODE ENDS>

¶

8. Security considerations

8.1. Security considerations for module revisions

As discussed in the introduction of this document, YANG modules

occasionally undergo changes that are not backwards compatible. This

occurs in both standards and vendor YANG modules despite the

prohibitions in RFC 7950. RFC 7950 also allows nodes to change to

status 'obsolete' which can change behavior and compatibility for a

client.

The fact that YANG modules change in a non-backwards-compatible

manner may have security implications. Such changes should be

carefully considered, including the scenarios described below. The

rev:non-backwards-compatible extension statement introduced in this

document provides an alert that the module or submodule may contain

changes that impact users and need to be examined more closely for

both compatibility and potential security implications. Flagging the

change reduces the risk of introducing silent exploitable

vulnerabilities.

When a module undergoes a non-backwards-compatible change, a server

may implement different semantics for a given leaf than a client

using an older version of the module is expecting. If the particular

leaf controls any security functions of the device, or is related to

parts of the configuration or state that are sensitive from a

security point of view, then the difference in behavior between the

old and new revisions needs to be considered carefully. In

particular, changes to the default of the leaf should be examined.

Implementors and users should also consider impact to data node

access control rules (e.g. The Network Configuration Access Control

Model (NACM) [RFC8341]) in the face of non-backwards-compatible

changes. Access rules may need to be adjusted when a new module

revision is introduced that contains a non-backwards-compatible

change.

If the changes to a module or submodule have security implications,

it is recommended to highlight those implications in the description

of the revision statement.

8.2. Security considerations for the modules defined in this document

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

¶

¶

¶

¶

¶

¶

The NETCONF access control model [RFC8341] provides the means to

restrict access for particular NETCONF or RESTCONF users to a

preconfigured subset of all available NETCONF or RESTCONF protocol

operations and content.

This document does not define any new protocol or data nodes that

are writable.

This document updates YANG Library [RFC8525] with augmentations to

include two boolean leafs that indicate whether status deprecated

and status obsolete schema nodes are implemented by the server.

These read-only augmentations do not add any new security

considerations beyond those already present in [RFC8525].

9. IANA Considerations

9.1. YANG Module Registrations

This document requests IANA to registers a URI in the "IETF XML

Registry" [RFC3688]. Following the format in RFC 3688, the following

registrations are requested.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

The following YANG module is requested to be registred in the "IANA

Module Names" [RFC6020]. Following the format in RFC 6020, the

following registrations are requested:

The ietf-yang-revisions module:

Name: ietf-yang-revisions

XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

Prefix: rev

Reference: [RFCXXXX]

The ietf-yang-status-conformance module:

Name: ietf-yang-status-conformance

XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-status-

conformance

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Prefix: ys-conf

Reference: [RFCXXXX]

9.2. Guidance for versioning in IANA maintained YANG modules

Note for IANA (to be removed by the RFC editor): Please check that

the registries and IANA YANG modules are referenced in the

appropriate way.

IANA is responsible for maintaining and versioning YANG modules that

are derived from other IANA registries. For example, "iana-if-

type.yang" [IfTypeYang] is derived from the "Interface Types

(ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"

[RoutingTypesYang] is derived from the "Address Family Numbers"

[AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)

Parameters" [SAFIReg] IANA registries.

Normally, updates to the registries cause any derived YANG modules

to be updated in a backwards-compatible way, but there are some

cases where the registry updates can cause non-backward-compatible

updates to the derived YANG module. An example of such an update is

the 2020-12-31 revision of iana-routing-types.yang

[RoutingTypesDecRevision], where the enum name for two SAFI values

was changed.

In all cases, IANA MUST follow the versioning guidance specified in

Section 3.1, and MUST include a "rev:non-backwards-compatible"

substatement to the latest revision statement whenever an IANA

maintained module is updated in a non-backwards-compatible way, as

described in Section 3.2.

Note: For published IANA maintained YANG modules that contain non-

backwards-compatible changes between revisions, a new revision

should be published with the "rev:non-backwards-compatible"

substatement retrospectively added to any revisions containing non-

backwards-compatible changes.

Non-normative examples of updates to enumeration types in IANA

maintained modules that would be classified as non-backwards-

compatible changes are: Changing the status of an enumeration

typedef to obsolete, changing the status of an enum entry to

obsolete, removing an enum entry, changing the identifier of an enum

entry, or changing the described meaning of an enum entry.

Non-normative examples of updates to enumeration types in IANA

maintained modules that would be classified as backwards-compatible

changes are: Adding a new enum entry to the end of the enumeration,

changing the status or an enum entry to deprecated, or improving the

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3688]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC7950]

[RFC8040]

description of an enumeration that does not change its defined

meaning.

Non-normative examples of updates to identity types in IANA

maintained modules that would be classified as non-backwards-

compatible changes are: Changing the status of an identity to

obsolete, removing an identity, renaming an identity, or changing

the described meaning of an identity.

Non-normative examples of updates to identity types in IANA

maintained modules that would be classified as backwards-compatible

changes are: Adding a new identity, changing the status or an

identity to deprecated, or improving the description of an identity

that does not change its defined meaning.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040

[RFC8174]

[RFC8341]

[RFC8407]

[RFC8446]

[RFC8525]

[AddrFamilyReg]

[I-D.clacla-netmod-yang-model-update]

[I-D.ietf-netmod-yang-packages]

[I-D.ietf-netmod-yang-schema-comparison]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

10.2. Informative References

"Address Family Numbers IANA Registry", <https://

www.iana.org/assignments/address-family-numbers/address-

family-numbers.xhtml>.

Claise, B., Clarke, J.,

Lengyel, B., and K. D'Souza, "New YANG Module Update

Procedure", Work in Progress, Internet-Draft, draft-

clacla-netmod-yang-model-update-06, 2 July 2018,

<https://datatracker.ietf.org/doc/html/draft-clacla-

netmod-yang-model-update-06>.

Wilton, R., Rahman, R., Clarke, J.,

Sterne, J., and B. Wu, "YANG Packages", Work in Progress,

Internet-Draft, draft-ietf-netmod-yang-packages-03, 4

March 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-netmod-yang-packages-03>.

Andersson, P. and R.

Wilton, "YANG Schema Comparison", Work in Progress,

Internet-Draft, draft-ietf-netmod-yang-schema-

comparison-02, 14 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-

schema-comparison-02>.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://www.iana.org/assignments/address-family-numbers/address-family-numbers.xhtml
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-packages-03
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-packages-03
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02

[I-D.ietf-netmod-yang-semver]

[I-D.ietf-netmod-yang-ver-selection]

[I-D.ietf-netmod-yang-versioning-reqs]

[IfTypesReg]

[IfTypeYang]

[RFC8340]

[RoutingTypesDecRevision]

[RoutingTypesYang]

[SAFIReg]

Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,

J., and B. Claise, "YANG Semantic Versioning", Work in

Progress, Internet-Draft, draft-ietf-netmod-yang-

semver-12, 2 October 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-netmod-yang-semver-12>.

Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B.

Wu, "YANG Schema Selection", Work in Progress, Internet-

Draft, draft-ietf-netmod-yang-ver-selection-00, 17 March

2020, <https://datatracker.ietf.org/doc/html/draft-ietf-

netmod-yang-ver-selection-00>.

Clarke, J., "YANG Module Versioning Requirements", Work

in Progress, Internet-Draft, draft-ietf-netmod-yang-

versioning-reqs-09, 14 January 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-

versioning-reqs-09>.

"Interface Types (ifType) IANA Registry", <https://

www.iana.org/assignments/smi-numbers/smi-

numbers.xhtml#smi-numbers-5>.

"iana-if-type YANG Module", <https://www.iana.org/

assignments/iana-if-type/iana-if-type.xhtml>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

"2020-12-31 revision of iana-routing-

types.yang", <https://www.iana.org/assignments/yang-

parameters/iana-routing-types@2020-12-31.yang>.

"iana-routing-types YANG Module", <https://

www.iana.org/assignments/iana-routing-types/iana-routing-

types.xhtml>.

"Subsequent Address Family Identifiers (SAFI) Parameters

IANA Registry", <https://www.iana.org/assignments/safi-

namespace/safi-namespace.xhtml>.

Appendix A. Examples of changes that are NBC

Examples of NBC changes include:

Deleting a data node, or changing it to status obsolete.

¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-semver-12
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-semver-12
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-ver-selection-00
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-ver-selection-00
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-versioning-reqs-09
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-versioning-reqs-09
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-versioning-reqs-09
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-5
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-5
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-5
https://www.iana.org/assignments/iana-if-type/iana-if-type.xhtml
https://www.iana.org/assignments/iana-if-type/iana-if-type.xhtml
https://www.rfc-editor.org/info/rfc8340
https://www.iana.org/assignments/yang-parameters/iana-routing-types@2020-12-31.yang
https://www.iana.org/assignments/yang-parameters/iana-routing-types@2020-12-31.yang
https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml
https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml
https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml
https://www.iana.org/assignments/safi-namespace/safi-namespace.xhtml
https://www.iana.org/assignments/safi-namespace/safi-namespace.xhtml

Changing the name, type, or units of a data node.

Modifying the description in a way that changes the semantic

meaning of the data node.

Any changes that remove any previously allowed values from the

allowed value set of the data node, either through changes in the

type definition, or the addition or changes to "must" statements,

or changes in the description.

Adding or modifying "when" statements that reduce when the data

node is available in the schema.

Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

The following sections give steps that could be taken for making NBC

changes to a YANG module or submodule using the incremental approach

described in section Section 6.1.1.

The examples are all for "config true" nodes.

B.1. Removing a data node

Removing a leaf or container from the data tree, e.g., because

support for the corresponding feature is being removed:

The schema node's status is changed to "deprecated" and the

node is supported for some period of time (e.g. one year). This

is a BC change.

When the schema node is not supported anymore, its status is

changed to "obsolete" and the "description" updated. This is an

NBC change.

B.2. Changing the type of a leaf node

Changing the type of a leaf node. e.g., a "vpn-id" node of type

integer being changed to a string:

The status of schema node "vpn-id" is changed to "deprecated"

and the node is supported for some period of time (e.g. one

year). This is a BC change. The description is updated to

indicate that “vpn-name” is replacing this node.

A new schema node, e.g., "vpn-name", of type string is added to

the same location as the existing node "vpn-id". This new node

has status "current" and its description explains that it is

replacing node "vpn-id".

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

1.

¶

2.

¶

¶

1.

¶

2.

¶

During the period of time when both schema nodes are supported,

the interactions between the two nodes is outside the scope of

this document and will vary on a case by case basis. One

possible option is to have the server prevent the new node from

being set if the old node is already set (and vice-versa). The

new node could have a "when" statement added to it to achieve

this. The old node, however, must not have a "when" statement

added, or an existing "when" modified to be more restrictive,

since this would be an NBC change. In any case, the server

could reject the old node from being set if the new node is

already set.

When the schema node "vpn-id" is not supported anymore, its

status is changed to "obsolete" and the "description" is

updated. This is an NBC change.

B.3. Reducing the range of a leaf node

Reducing the range of values of a leaf-node, e.g., consider a "vpn-

id" schema node of type uint32 being changed from range 1..5000 to

range 1..2000:

If all values which are being removed were never supported,

e.g., if a vpn-id of 2001 or higher was never accepted, this is

a BC change for the functionality (no functionality change).

Even if it is an NBC change for the YANG model, there should be

no impact for clients using that YANG model.

If one or more values being removed was previously supported,

e.g., if a vpn-id of 3333 was accepted previously, this is an

NBC change for the YANG model. Clients using the old YANG model

will be impacted, so a change of this nature should be done

carefully, e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

Changing the key of a list has a big impact to the client. For

example, consider a "sessions" list which has a key "interface" and

there is a need to change the key to "dest-address". Such a change

can be done in steps:

The status of list "sessions" is changed to "deprecated" and

the list is supported for some period of time (e.g. one year).

This is a BC change. The description is updated to indicate the

new list that is replacing this list.

A new list is created in the same location with the same

descendant schema nodes but with "dest-address" as key. Finding

an appropriate name for the new list can be difficult. In this

case the new list is called "sessions-address", has status

3.

¶

4.

¶

¶

1.

¶

2.

¶

¶

1.

¶

2.

"current" and its description should explain that it is

replacing list "session".

During the period of time when both lists are supported, the

interactions between the two lists is outside the scope of this

document and will vary on a case by case basis. One possible

option is to have the server prevent entries in the new list

from being created if the old list already has entries (and

vice-versa).

When list "sessions" is not available anymore, its status is

changed to "obsolete" and the "description" is updated. This is

an NBC change.

B.5. Renaming a node

A leaf or container schema node may be renamed, either due to a

spelling error in the previous name or because of a better name. For

example a node "ip-adress" could be renamed to "ip-address":

The status of the existing node "ip-adress" is changed to

"deprecated" and is supported for some period of time (e.g. one

year). This is a BC change. The description is updated to

indicate the node that is replacing this node.

The new schema node "ip-address" is added to the same location

as the existing node "ip-adress". This new node has status

"current" and its description should explain that it is

replacing node "ip-adress".

During the period of time when both nodes are available, the

interactions between the two nodes is outside the scope of this

document and will vary on a case by case basis. One possible

option is to have the server prevent the new node from being

set if the old node is already set (and vice-versa). The new

node could have a "when" statement added to it to achieve this.

The old node, however, must not have a "when" statement added,

or an existing "when" modified to be more restrictive, since

this would be an NBC change. In any case, the server could

reject the old node from being set if the new node is already

set.

When node "ip-adress" is not available anymore, its status is

changed to "obsolete" and the "description" is updated. This is

an NBC change.

Contributors

The following people made substantial contributions to this

document:

¶

3.

¶

4.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

Acknowledgments

This document grew out of the YANG module versioning design team

that started after IETF 101. The authors, contributors and the

following individuals are (or have been) members of the design team

and have worked on the YANG versioning project:

The initial revision of this document was refactored and built upon

[I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin

D'Souza and Benoit Claise for their initial work in this problem

space.

Discussions on the use of Semver for YANG versioning has been held

with authors of the OpenConfig YANG models. We would like to thank

both Anees Shaikh and Rob Shakir for their input into this problem

space.

 Bo Wu

 lana.wubo@huawei.com

 Jan Lindblad

 jlindbla@cisco.com

¶

¶

 Benoit Claise

 benoit.claise@huawei.com

 Ebben Aries

 exa@juniper.net

 Juergen Schoenwaelder

 j.shoenwaelder@jacobs-university.de

 Mahesh Jethanandani

 mjethanandani@gmail.com

 Michael (Wangzitao)

 wangzitao@huawei.com

 Per Andersson

 perander@cisco.com

 Qin Wu

 bill.wu@huawei.com

¶

¶

¶

We would also like to thank Lou Berger, Andy Bierman, Martin

Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen

for their contributions and review comments.

Authors' Addresses

Robert Wilton (editor)

Cisco Systems, Inc.

Email: rwilton@cisco.com

Reshad Rahman (editor)

Equinix

Email: reshad@yahoo.com

Balazs Lengyel (editor)

Ericsson

Email: balazs.lengyel@ericsson.com

Joe Clarke

Cisco Systems, Inc.

Email: jclarke@cisco.com

Jason Sterne

Nokia

Email: jason.sterne@nokia.com

¶

mailto:rwilton@cisco.com
mailto:reshad@yahoo.com
mailto:balazs.lengyel@ericsson.com
mailto:jclarke@cisco.com
mailto:jason.sterne@nokia.com

	Updated YANG Module Revision Handling
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Updates to YANG RFCs

	2. Terminology and Conventions
	3. Refinements to YANG revision handling
	3.1. Updating a YANG module with a new revision
	3.1.1. Backwards-compatible rules
	3.1.2. Non-backwards-compatible changes

	3.2. non-backwards-compatible extension statement
	3.3. Removing revisions from the revision history
	3.4. Examples for updating the YANG module revision history

	4. Guidance for revision selection on imports
	4.1. Recommending a minimum revision for module imports
	4.1.1. Module import examples
	4.1.1.1. Example 1
	4.1.1.2. Example 2

	5. New ietf-yang-status-conformance YANG module
	5.1. Reporting how deprecated and obsolete nodes are handled

	6. Guidelines for using the YANG module update rules
	6.1. Guidelines for YANG module authors
	6.1.1. Making non-backwards-compatible changes to a YANG module

	6.2. Versioning Considerations for Clients

	7. Module Versioning Extension YANG Modules
	8. Security considerations
	8.1. Security considerations for module revisions
	8.2. Security considerations for the modules defined in this document

	9. IANA Considerations
	9.1. YANG Module Registrations
	9.2. Guidance for versioning in IANA maintained YANG modules

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Examples of changes that are NBC
	Appendix B. Examples of applying the NBC change guidelines
	B.1. Removing a data node
	B.2. Changing the type of a leaf node
	B.3. Reducing the range of a leaf node
	B.4. Changing the key of a list
	B.5. Renaming a node

	Contributors
	Acknowledgments
	Authors' Addresses

