
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-netmod-yang-semver-15

Updates: 8407, 8525, 7950 (if approved)

Published: 18 March 2024

Intended Status: Standards Track

Expires: 19 September 2024

Authors: J. Clarke, Ed.

Cisco Systems, Inc.

R. Wilton, Ed.

Cisco Systems, Inc.

R. Rahman

Equinix

B. Lengyel

Ericsson

J. Sterne

Nokia

B. Claise

Huawei

YANG Semantic Versioning

Abstract

This document specifies a YANG extension along with guidelines for

applying an extended set of semantic versioning rules to revisions

of YANG artifacts (e.g., modules and packages). Additionally, this

document defines a YANG extension for controlling module imports

based on these modified semantic versioning rules. This document

updates RFCs 7950, 8407, and 8525.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8407
https://www.rfc-editor.org/rfc/rfc8525
https://www.rfc-editor.org/rfc/rfc7950
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Examples of How Versioning Is Applied To YANG Module Revisions

3. Terminology and Conventions

4. YANG Semantic Versioning

4.1. Relationship Between SemVer and YANG Semver

4.2. YANG Semantic Version Extension

4.3. YANG Semver Pattern

4.4. Semantic Versioning Scheme for YANG Artifacts

4.4.1. Branching Limitations with YANG Semver

4.4.2. YANG Semver with submodules

4.4.3. Examples for YANG semantic versions

4.5. YANG Semantic Version Update Rules

4.6. Examples of the YANG Semver Label

4.6.1. Example Module Using YANG Semver

4.6.2. Example of Package Using YANG Semver

5. Import Module by YANG Semantic Version

5.1. The recommended-min-version Extension

5.2. Import by YANG Semantic Version Rules

6. Guidelines for Using Semver During Module Development

6.1. Pre-release Version Precedence

6.2. YANG Semver in IETF Modules

6.2.1. Guidelines for IETF Module Development

6.2.2. Guidelines for Published IETF Modules

7. Updates to ietf-yang-library

7.1. YANG library versioning augmentations

7.1.1. Advertising version

8. YANG Modules

9. Contributors

10. Acknowledgments

11. Security Considerations

12. IANA Considerations

12.1. YANG Module Registrations

12.2. Guidance for YANG Semver in IANA maintained YANG modules

and submodules

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Example IETF Module Development

Authors' Addresses

¶

1. Introduction

[I-D.ietf-netmod-yang-module-versioning] puts forth a number of

concepts relating to modified rules for updating YANG modules and

submodules, a means to signal when a new revision of a module or

submodule has non-backwards-compatible (NBC) changes compared to its

previous revision, and a scheme that uses the revision history as a

lineage for determining from where a specific revision of a YANG

module or submodule is derived.

This document defines a YANG extension that tags a YANG artifact

(i.e., YANG modules, YANG submodules, and YANG packages

[I-D.ietf-netmod-yang-packages]) with a version identifier that

adheres to extended semantic versioning rules [SemVer]. The goal

being to add a human readable version identifier that provides

compatibility information for the YANG artifact without needing to

compare or parse its body. The version identifier and rules defined

herein represent the RECOMMENDED approach to apply versioning to

IETF YANG artifacts. This document defines augmentations to ietf-

yang-library to reflect the version of YANG modules within the

module-set data.

Note that a specific revision of the SemVer 2.0.0 specification is

referenced here (from June 19, 2020) to provide an immutable

version. This is because the 2.0.0 version of the specification has

changed over time without any change to the semantic version itself.

In some cases the text has changed in non-backwards-compatible ways.

2. Examples of How Versioning Is Applied To YANG Module Revisions

The following diagram illustrates how the branched revision history

and the YANG Semver version extension statement could be used:

Example YANG module with branched revision history.

Figure 1

¶

¶

¶

¶

¶

 Module revision date Example version identifier

 2019-01-01 <- 1.0.0

 |

 2019-02-01 <- 2.0.0

 | \

 2019-03-01 \ <- 3.0.0

 | \

 | 2019-04-01 <- 2.1.0

 | |

 2019-05-01 | <- 3.1.0

 |

 2019-06-01 <- 2.2.0

The tree diagram above illustrates how an example module's revision

history might evolve, over time.

3. Terminology and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Additionally, this document uses the following terminology:

YANG artifact: YANG modules, YANG submodules, and YANG packages

[I-D.ietf-netmod-yang-packages] are examples of YANG artifacts

for the purposes of this document.

SemVer: A version string that corresponds to the rules defined in

[SemVer]. This specific camel-case notation is the one used by

the SemVer 2.0.0 website and used within this document to

distinguish between YANG Semver.

YANG Semver: A version identifier that is consistent with the

extended set of semantic versioning rules, based on [SemVer],

defined within this document.

4. YANG Semantic Versioning

This section defines YANG Semantic Versioning, explains how it is

used with YANG artifacts, and describes the rules associated with

changing an artifact's semantic version when its contents are

updated.

4.1. Relationship Between SemVer and YANG Semver

[SemVer] is completely compatible with YANG Semver in that a SemVer

semantic version number is legal according to the YANG Semver rules

(though the inverse is not necessarily true). YANG Semver is a

superset of the SemVer rules, and allows for limited branching

within YANG artifacts. If no branching occurs within a YANG artifact

(i.e., you do not use the compatibility modifiers described below),

the YANG Semver version label will appear as a SemVer version

number.

4.2. YANG Semantic Version Extension

The ietf-yang-semver module defines a "version" extension -- a

substatement to a module or submodule's "revision" statement -- that

takes a YANG semantic version as its argument and specified the

version for the given module or submodule. The syntax for the YANG

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

semantic version is defined in a typedef in the same module and

described below.

4.3. YANG Semver Pattern

YANG artifacts that employ semantic versioning as defined in this

document MUST use a version identifier that corresponds to the

following pattern: 'X.Y.Z_COMPAT'. Where:

X, Y and Z are mandatory non-negative integers that are each less

than or equal to 2147483647 (i.e., the maximum signed 32-bit

integer value) and MUST NOT contain leading zeroes,

The '.' is a literal period (ASCII character 0x2e),

The '_' is an optional single literal underscore (ASCII character

0x5f) and MUST only be present if the following COMPAT element is

included,

COMPAT, if specified, MUST be either the literal string

"compatible" or the literal string "non_compatible".

Additionally, [SemVer] defines two specific types of metadata that

may be appended to a semantic version string. Pre-release metadata

MAY be appended to a YANG Semver string after a trailing '-'

character. Build metadata MAY be appended after a trailing '+'

character. If both pre-release and build metadata are present, then

build metadata MUST follow pre-release metadata. While build

metadata MUST be ignored when comparing YANG semantic versions, pre-

release metadata MUST be used during module and submodule

development as specified in Section 6. Both pre-release and build

metadata are allowed in order to support all the [SemVer] rules.

Thus, a version lineage that follows strict [SemVer] rules is

allowed for a YANG artifact.

The ietf-yang-semver module included in this document defines an

extension to apply a YANG Semver identifier to a YANG artifact as

well as a typedef that formally specifies the syntax of the YANG

Semver.

4.4. Semantic Versioning Scheme for YANG Artifacts

This document defines the YANG semantic versioning scheme that is

used for YANG artifacts. The versioning identifier has the following

properties:

The YANG semantic versioning scheme is extended from version

2.0.0 of the semantic versioning scheme defined at semver.org

[SemVer] to cover the additional requirements for the management

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

¶

¶

*

of YANG artifact lifecycles that cannot be addressed using the

semver.org 2.0.0 versioning scheme alone.

Unlike the [SemVer] versioning scheme, the YANG semantic

versioning scheme supports updates to older versions of YANG

artifacts, to allow for bug fixes and enhancements to artifact

versions that are not the latest. However, it does not provide

for the unlimited branching and updating of older revisions which

are documented by the general rules in

[I-D.ietf-netmod-yang-module-versioning].

YANG artifacts that use the [SemVer] versioning scheme are fully

compatible with implementations that understand the YANG semantic

versioning scheme defined in this document.

If updates are always restricted to the latest revision of the

artifact only, then the version identifiers used by the YANG

semantic versioning scheme are exactly the same as those defined

by the [SemVer] versioning scheme.

Every YANG module and submodule versioned using the YANG semantic

versioning scheme specifies the module's or submodule's semantic

version as the argument to the 'ys:version' statement.

Because the rules put forth in

[I-D.ietf-netmod-yang-module-versioning] are designed to work well

with existing versions of YANG and allow for artifact authors to

migrate to this scheme, it is not expected that all revisions of a

given YANG artifact will have a semantic version identifier. For

example, the first revision of a module or submodule may have been

produced before this scheme was available.

YANG packages that make use of this YANG Semver will reflect that in

the package metadata.

As stated above, the YANG semantic version is expressed as a string

of the form: 'X.Y.Z_COMPAT'.

'X' is the MAJOR version. Changes in the MAJOR version number

indicate changes that are non-backwards-compatible to versions

with a lower MAJOR version number.

'Y' is the MINOR version. Changes in the MINOR version number

indicate changes that are backwards-compatible to versions with

the same MAJOR version number, but a lower MINOR version number

and no "_compatible" or "_non_compatible" modifier.

'Z' is the PATCH version. Changes in the PATCH version number can

indicate an editorial change to the YANG artifact. In conjunction

with the '_COMPAT' modifier (see below) changes to 'Z' may

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

indicate a more substantive module change. An editorial change is

defined to be a change in the YANG artifact's content that does

not affect the semantic meaning or functionality provided by the

artifact in any way. Some examples include correcting a spelling

mistake in the description of a leaf within a YANG module or

submodule, non-significant whitespace changes (e.g., realigning

description statements or changing indentation), or changes to

YANG comments. Note: restructuring how a module uses, or does not

use, submodules is treated as an editorial level change on the

condition that there is no change in the module's semantic

behavior due to the restructuring.

'_COMPAT' is an additional modifier, unique to YANG Semver (i.e.,

not valid in [SemVer]), that indicates backwards-compatible, or

non-backwards-compatible changes relative to versions with the

same MAJOR and MINOR version numbers, but lower PATCH version

number, depending on what form modifier '_COMPAT' takes:

If the modifier string is absent, the change represents an

editorial change.

If, however, the modifier string is present, the meaning is

described below:

"_compatible" - the change represents a backwards-compatible

change

"_non_compatible" - the change represents a non-backwards-

compatible change

The '_COMPAT' modifier string is "sticky". Once a revision of a

module has a modifier in the version identifier, then all subsequent

modules in that branch (i.e., those with the same X.Y version

digits) will also have a modifier. The modifier can change from

"_compatible" to "_non_compatible" in a subsequent version, but the

modifier MUST NOT change from "_non_compatible" to "_compatible" and

MUST NOT be removed. The persistence of the "_non_compatible"

modifier ensures that comparisons of versions do not give the false

impression of compatibility between two potentially non-compatible

versions. If "_non_compatible" was removed, for example between

versions "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was

simply an editorial change), then comparing versions "3.3.3" to

"3.0.0" would look like they are backwards compatible when they are

not (since "3.3.2_non_compatible" was on the same MAJOR.MINOR branch

and introduced a non-backwards-compatible change).

The YANG artifact name and YANG semantic version uniquely identify a

revision of said artifact. There MUST NOT be multiple instances of a

YANG artifact definition with the same name and YANG semantic

¶

*

¶

-

¶

-

¶

-

¶

-

¶

¶

version but different content (and in the case of modules and

submodules, different revision dates).

There MUST NOT be multiple versions of a YANG artifact that have the

same MAJOR, MINOR and PATCH version numbers, but different patch

modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST

NOT be defined if artifact version "1.2.3" has already been defined.

4.4.1. Branching Limitations with YANG Semver

YANG artifacts that use the YANG Semver version scheme MUST ensure

that two artifacts with the same MAJOR version number and no

_compatible or _non_compatible modifiers are backwards compatible.

Therefore, certain branching schemes cannot be used with YANG

Semver. For example, the following branching approach using the

following YANG Semver identifiers is not supported:

In this case, given only the YANG Semver identifiers 3.6.0 and

3.20.0, one would assume that 3.20.0 is backwards compatible with

3.6.0. But in the illegal example above, 3.20.0 is not backwards

compatible with 3.6.0 since 3.20.0 does not contain the leaf foo.

Note that this type of branching, where two versions on the same

branch have different backwards compatible changes is allowed in

[I-D.ietf-netmod-yang-module-versioning].

4.4.2. YANG Semver with submodules

YANG Semver MAY be used to version submodules. Submodule version are

separate of any version on the including module, but if a submodule

has changed, then the version of the including module MUST also be

updated.

The rules for determining the version change of a submodule are the

same as those defined in Section 4.3 and Section 4.4 as applied to

YANG modules, except they only apply to the part of the module

schema defined within the submodule's file.

One interesting case is moving definitions from one submodule to

another in a way that does not change the resulting schema of the

including module. In this case:

The including module has editorial changes

¶

¶

¶

 3.5.0 -- 3.6.0 (add leaf foo)

 |

 |

 3.20.0 (added leaf bar)

¶

¶

¶

¶

¶

¶

1. ¶

The submodule with the schema definition removed has non-

backwards-compatible changes

The submodule with the schema definitions added has backwards-

compatible changes

Note that the meaning of a submodule may change drastically despite

having no changes in content or revision due to changes in other

submodules belonging to the same module (e.g. groupings and typedefs

declared in one submodule and used in another).

4.4.3. Examples for YANG semantic versions

The following diagram and explanation illustrate how YANG semantic

versions work.

YANG Semantic versions for an example module:

The tree diagram above illustrates how the version history might

evolve for an example module. The tree diagram only shows the

branching relationships between the versions. It does not describe

the chronology of the versions (i.e. when in time each version was

published relative to the other versions).

The following description lists an example of what the chronological

order of the versions could look like, from oldest version to

newest:

0.1.0 - first pre-release module version

0.2.0 - second pre-release module version (with NBC changes)

1.0.0 - first release (may have NBC changes from 0.2.0)

2.

¶

3.

¶

¶

¶

¶

 0.1.0

 |

 0.2.0

 |

 1.0.0

 |

 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible

 |

 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible

 | \

 2.0.0 \

 | \--> 1.3.0 -> 1.3.1_non_compatible

 3.0.0 |

 | 1.4.0

 3.1.0

¶

¶

¶

¶

¶

¶

1.1.0 - added new functionality, leaf "foo" (BC)

1.2.0 - added new functionality, leaf "baz" (BC)

2.0.0 - change existing model for performance reasons, e.g. re-

key list (NBC)

1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid

implementing "baz" from 1.2.0. This revision was created after

1.2.0 otherwise it may have been released as 1.2.0. (BC)

3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf

"wibble"; (NBC)

1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"

(NBC)

1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"

(NBC)

1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0

due to model changes (NBC)

1.4.0 - introduce new leaf "ghoti" (BC)

3.1.0 - introduce new leaf "wobble" (BC)

1.2.2_non_compatible - backport "wibble". This is a BC change but

"non_compatible" modifier is sticky. (BC)

4.5. YANG Semantic Version Update Rules

When a new version of an artifact is produced, then the following

rules define how the YANG semantic version for the new artifact is

calculated, based on the changes between the two artifact versions,

and the YANG semantic version of the original artifact from which

the changes are derived.

The following four rules specify the RECOMMENDED, and REQUIRED

minimum, update to a YANG semantic version:

If an artifact is being updated in a non-backwards-compatible

way, then the artifact version "X.Y.Z[_compatible|

_non_compatible]" SHOULD be updated to "X+1.0.0" unless that

version has already been used for this artifact but with

different content, in which case the artifact version

"X.Y.Z+1_non_compatible" SHOULD be used instead.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

i

ii

iii

i

ii

iii

If an artifact is being updated in a backwards-compatible way,

then the next version number depends on the format of the

current version number:

"X.Y.Z" - the artifact version SHOULD be updated to

"X.Y+1.0", unless that version has already been used for

this artifact but with different content, when the

artifact version SHOULD be updated to

"X.Y.Z+1_compatible" instead.

"X.Y.Z_compatible" - the artifact version SHOULD be

updated to "X.Y.Z+1_compatible".

"X.Y.Z_non_compatible" - the artifact version SHOULD be

updated to "X.Y.Z+1_non_compatible".

If an artifact is being updated in an editorial way, then the

next version identifier depends on the format of the current

version identifier:

"X.Y.Z" - the artifact version SHOULD be updated to

"X.Y.Z+1"

"X.Y.Z_compatible" - the artifact version SHOULD be

updated to "X.Y.Z+1_compatible".

"X.Y.Z_non_compatible" - the artifact version SHOULD be

updated to "X.Y.Z+1_non_compatible".

YANG artifact semantic version identifiers beginning with 0,

i.e., "0.X.Y", are regarded as pre-release definitions and need

not follow the rules above. Either the MINOR or PATCH version

numbers may be updated, regardless of whether the changes are

non-backwards-compatible, backwards-compatible, or editorial.

See Section 6 for more details on using this notation during

module and submodule development.

Additional pre-release rules for modules that have had at least

one release are specified in Section 6.

Although artifacts SHOULD be updated according to the rules above,

which specify the recommended (and minimum required) update to the

version identifier, the following rules MAY be applied when choosing

a new version identifier:

An artifact author MAY update the version identifier with a

more significant update than described by the rules above. For

example, an artifact could be given a new MAJOR version number

(i.e., X+1.0.0), even though no non-backwards-compatible

changes have occurred, or an artifact could be given a new

2.

¶

¶

¶

¶

3.

¶

¶

¶

¶

4.

¶

5.

¶

¶

1.

MINOR version number (i.e., X.Y+1.0) even if the changes were

only editorial.

An artifact author MAY skip versions. That is, an artifact's

version history could be 1.0.0, 1.1.0, and 1.3.0 where 1.2.0 is

skipped.

Although YANG Semver always indicates when a non-backwards-

compatible, or backwards-compatible change may have occurred to a

YANG artifact, it does not guarantee that such a change has

occurred, or that consumers of that YANG artifact will be impacted

by the change. Hence, tooling, e.g.,

[I-D.ietf-netmod-yang-schema-comparison], also plays an important

role for comparing YANG artifacts and calculating the likely impact

from changes.

[I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-

backwards-compatible" extension statement to indicate where non-

backwards-compatible changes have occurred in the module revision

history. If a revision entry in a module's revision history includes

the "rev:non-backwards-compatible" statement then that MUST be

reflected in any YANG semantic version associated with that

revision. However, the reverse does not necessarily hold, i.e., if

the MAJOR version has been incremented it does not necessarily mean

that a "rev:non-backwards-compatible" statement would be present.

4.6. Examples of the YANG Semver Label

4.6.1. Example Module Using YANG Semver

Below is a sample YANG module that uses YANG Semver based on the

rules defined in this document.

¶

2.

¶

¶

¶

¶

 module example-versioned-module {

 yang-version 1.1;

 namespace "urn:example:versioned:module";

 prefix "exvermod";

 import ietf-yang-revisions { prefix "rev"; }

 import ietf-yang-semver { prefix "ys"; }

 description

 "to be completed";

 revision 2017-08-30 {

 description "Backport 'wibble' leaf";

 ys:version 1.2.2_non_compatible;

 }

 revision 2017-07-30 {

 description "Rename 'baz' to 'bar'";

 ys:version 1.2.1_non_compatible;

 rev:non-backwards-compatible;

 }

 revision 2017-04-20 {

 description "Add new functionality, leaf 'baz'";

 ys:version 1.2.0;

 }

 revision 2017-04-03 {

 description "Add new functionality, leaf 'foo'";

 ys:version 1.1.0;

 }

 revision 2017-02-07 {

 description "First release version.";

 ys:version 1.0.0;

 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.

 // The following pre-release revision statements would not

 // appear in any final published version of a module. They

 // are removed when the final version is published.

 // During the pre-release phase of development, only a

 // single one of these revision statements would appear

 // revision 2017-01-30 {

 // description "NBC changes to initial revision";

 // ys:version 0.2.0;

 // rev:non-backwards-compatible; // optional

 // // (theoretically no

 // // 'previous released version')

 // }

 // revision 2017-01-26 {

 // description "Initial module version";

 // ys:version 0.1.0;

 // }

 //YANG module definition starts here

 }

¶

4.6.2. Example of Package Using YANG Semver

Below is an example YANG package that uses the YANG Semver version

identifier based on the rules defined in this document. Note: '\'

line wrapping per [RFC8792].

Figure 2

5. Import Module by YANG Semantic Version

[I-D.ietf-netmod-yang-module-versioning] allows for imports to be

done based on the earliest supported date and later using the

rev:recommended-min-date extension. This section defines a similar

extension for controlling import by YANG semantic version, as well

as the rules for how imports are resolved.

5.1. The recommended-min-version Extension

The ietf-yang-semver module defines a "recommended-min-version"

extension -- a substatement to the "import" statement -- that takes

a YANG semantic version as its argument and specifies that the

minimum version of the associated module being imported SHOULD be

greater than or equal to the specified value. The specific

conditions for determining if a module's version is greater than or

equal is defined in Section 5.2 below. Multiple recommended-min-

version statements MAY be specified. If there are multiple

¶

{

 "ietf-yang-instance-data:instance-data-set": {

 "name": "example-yang-pkg",

 "content-schema": {

 "module": "ietf-yang-packages@2022-03-04"

 },

 "timestamp": "2022-12-06T17:00:38Z",

 "description": ["Example of a Package \

 using YANG Semver"],

 "content-data": {

 "ietf-yang-packages:packages": {

 "package": [

 {

 "name": "example-yang-pkg",

 "version": "1.3.1",

 ...

 }

]

 }

 }

 }

}

¶

recommended-min-version statements, they are treated as a logical

OR. Removing recommended-min-version statements is considered a

backwards compatible change. An example use is:

5.2. Import by YANG Semantic Version Rules

A module to be imported is considered as meeting the recommended

minimum version criteria if it meets one of the following

conditions::

Has the exact MAJOR, MINOR, PATCH and "_compatible" or

"_non_compatible" modifiers as in the recommend-min-version

value.

Has the same MAJOR and MINOR version numbers and a greater

PATCH number. In this case, "_compatible" and "_non_compatible

modifiers" are ignored.

Has the same MAJOR version number and greater MINOR number. In

this case the PATCH number and the "_compatible" and

"_non_compatible" modifiers are ignored.

Has a greater MAJOR version number. In this case MINOR and

PATCH numbers and "_compatible" and "_non_compatible" modifiers

are ignored.

If the recommended-min-version is specified as 3.1.0, the following

examples would be satisfy that recommend-min-version:

3.1.0 (by condition 1 above)

3.1.1 (by condition 2 above)

3.2.0 (by condition 3 above)

4.1.2 (by condition 4 above)

3.1.1_compatible (by condition 2 above, noting that modifiers are

ignored)

3.1.2_non_compatible (by condition 2 above, noting that modifiers

are ignored)

If an import by recommended-min-version cannot locate a module with

a version that is viable according to the conditions above, the YANG

¶

 import example-module {

 ys:recommended-min-version 3.0.0;

 }

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

¶

¶

¶

compiler SHOULD emit a warning, and then continue to resolve the

import based on established [RFC7950] rules.

6. Guidelines for Using Semver During Module Development

This section and the IETF-specific sub-section below provides YANG

Semver-specific guidelines to consider when developing new YANG

modules. As such this section updates [RFC8407].

Development of a brand new YANG module or submodule outside of the

IETF that uses the YANG Semver versioning scheme SHOULD begin with a

0 for the MAJOR version component. This allows the module or

submodule to disregard strict SemVer rules with respect to non-

backwards-compatible changes during its initial development.

However, module or submodule developers MAY choose to use the SemVer

pre-release syntax instead with a 1 for the MAJOR version number.

For example, an initial module or submodule version might be either

0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0 MAJOR

version number scheme, they MAY switch to the pre-release scheme

with a MAJOR version number of 1 when the module or submodule is

nearing initial release (e.g., a module's or submodule's version may

transition from 0.3.0 to 1.0.0-beta.1 to indicate it is more mature

and ready for testing).

When using pre-release notation, the format MUST include at least

one alphabetic component and MUST end with a '.' or '-' and then one

or more digits. These alphanumeric components will be used when

deciding pre-release precedence. The following are examples of valid

pre-release versions:

1.0.0-alpha.1

1.0.0-alpha.3

2.1.0-beta.42

3.0.0-202007.rc.1

When developing a new revision of an existing module or submodule

using the YANG Semver versioning scheme, the intended target

semantic version MUST be used along with pre-release notation. For

example, if a released module or submodule which has a current

version of 1.0.0 is being modified with the intent to make non-

backwards-compatible changes, the first development MAJOR version

component must be 2 with some pre-release notation such as -alpha.1,

making the version 2.0.0-alpha.1. That said, every publicly

available release of a module or submodule MUST have a unique YANG

Semver identifier (where a publicly available release is one that

could be implemented by a vendor or consumed by an end user).

Therefore, it may be prudent to include the year or year and month

¶

¶

¶

¶

¶

¶

¶

¶

development began (e.g., 2.0.0-201907-alpha.1). As a module or

submodule undergoes development, it is possible that the original

intent changes. For example, a 1.0.0 version of a module or

submodule that was destined to become 2.0.0 after a development

cycle may have had a scope change such that the final version has no

non-backwards-compatible changes and becomes 1.1.0 instead. This

change is acceptable to make during the development phase so long as

pre-release notation is present in both versions (e.g., 2.0.0-alpha.

3 becomes 1.1.0-alpha.4). However, on the next development cycle

(after 1.1.0 is released), if again the new target release is 2.0.0,

new pre-release components must be used such that every version for

a given module or submodule MUST be unique throughout its entire

lifecycle (e.g., the first pre-release version might be

2.0.0-202005-alpha.1 if keeping the same year and month notation

mentioned above).

6.1. Pre-release Version Precedence

As a module or submodule is developed, the scope of the work may

change. That is, while a released module or submodule with version

1.0.0 is initially intended to become 2.0.0 in its next released

version, the scope of work may change such that the final version is

1.1.0. During the development cycle, the pre-release versions could

move from 2.0.0-some-pre-release-tag to 1.1.0-some-pre-release-tag.

This downwards changing of version identifiers makes it difficult to

evaluate semantic version rules between pre-release versions.

However, taken independently, each pre-release version can be

compared to the previously ratified version (e.g., 1.1.0-some-pre-

release-tag and 2.0.0-some-pre-release-tag can each be compared to

1.0.0). Module and submodule developers SHOULD maintain only one

revision statement in a pre-released module or submodule that

reflects the latest revision. IETF authors MAY choose to include an

appendix in the associated draft to track overall changes to the

module or submodule.

6.2. YANG Semver in IETF Modules

All published IETF modules and submodules MUST use YANG semantic

versions in their revisions.

Development of a new module or submodule within the IETF SHOULD

begin with the 0 MAJOR number scheme as described above. When

revising an existing IETF module or submodule, the version MUST use

the target (i.e., intended) MAJOR and MINOR version components with

a 0 PATCH version number. If the intended RFC release will be non-

backwards-compatible with the current RFC release, the MINOR version

number MUST be 0.

¶

¶

¶

¶

6.2.1. Guidelines for IETF Module Development

All IETF modules and submodules in development MUST use the whole

document name as a pre-release version identifier, including the

current document revision. For example, if a module or submodule

which is currently released at version 1.0.0 is being revised to

include non-backwards-compatible changes in draft-user-netmod-foo,

its development versions MUST include 2.0.0-draft-user-netmod-foo

followed by the document's revision (e.g., 2.0.0-draft-user-netmod-

foo-02). This will ensure each pre-release version is unique across

the lifecycle of the module or submodule. Even when using the 0

MAJOR version for initial module or submodule development (where

MINOR and PATCH can change), appending the draft name as a pre-

release component helps to ensure uniqueness when there are perhaps

multiple, parallel efforts creating the same module or submodule.

Some draft revisions may not include an update to the YANG modules

or submodules contained in the draft. In that case, those modules or

submodules that are not updated do not not require a change to their

versions. Updates to the YANG Semver version MUST only be done when

the revision of the module changes.

See Appendix A for a detailed example of IETF pre-release versions.

6.2.2. Guidelines for Published IETF Modules

For IETF YANG modules and submodules that have already been

published, versions MUST be retroactively applied to all existing

revisions when the next new revision is created, starting at version

"1.0.0" for the initial published revision, and then incrementing

according to the YANG Semver version rules specified in Section 4.5.

For example, if a module or submodule started out in the pre-NMDA

([RFC8342]) world, and then had NMDA support added without removing

any legacy "state" branches -- and you are looking to add additional

new features -- a sensible choice for the target YANG Semver would

be 1.2.0 (since 1.0.0 would have been the initial, pre-NMDA release,

and 1.1.0 would have been the NMDA revision).

7. Updates to ietf-yang-library

This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]

to clarify how ambiguous module imports are resolved. It also

defines the YANG module, ietf-yang-library-semver, that augments

YANG library [RFC8525] with a version leaf for modules and

submodules.

7.1. YANG library versioning augmentations

The "ietf-yang-library-semver" YANG module has the following

structure (using the notation defined in [RFC8340]):

¶

¶

¶

¶

¶

¶

Figure 3

7.1.1. Advertising version

The ietf-yang-library-semver YANG module augments the "module" and

"submodule" lists in ietf-yang-library with "version" leafs to

optionally declare the version identifier associated with each

module and submodule.

8. YANG Modules

This YANG module contains the typedef for the YANG semantic version

and the identity to signal its use.

module: ietf-yang-library-semver

 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:

 +--ro version? ys:version

 augment /yanglib:yang-library/yanglib:module-set/yanglib:module

 /yanglib:submodule:

 +--ro version? ys:version

 augment /yanglib:yang-library/yanglib:module-set

 /yanglib:import-only-module:

 +--ro version? ys:version

 augment /yanglib:yang-library/yanglib:module-set

 /yanglib:import-only-module/yanglib:submodule:

 +--ro version? ys:version

¶

¶

<CODE BEGINS> file "ietf-yang-semver@2024-03-01.yang"

module ietf-yang-semver {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";

 prefix ys;

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke

 <mailto:jclarke@cisco.com>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>

 Author: Reshad Rahman

 <mailto:reshad@yahoo.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne

 <mailto:jason.sterne@nokia.com>

 Author: Benoit Claise

 <mailto:benoit.claise@huawei.com>";

 description

 "This module provides type and grouping definitions for YANG

 packages.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX with actual RFC number and remove this

 // note.

 // RFC Ed. update the ys:version to "1.0.0".

 revision 2024-03-01 {

 ys:version "1.0.0-draft-ietf-netmod-yang-semver-13";

 description

 "Initial revision";

 reference

 "RFC XXXX: YANG Semantic Versioning.";

 }

 /*

 * Extensions

 */

 extension version {

 argument yang-semantic-version;

 description

 "The version extension can be used to provide an additional

 identifier associated with a module or submodule

 revision.

 The format of the version extension argument MUST conform

 to the 'version' typedef defined in this module.

 The statement MUST only be a substatement of the revision

 statement. Zero or one version statements per parent

 statement are allowed. No substatements for this extension

 have been standardized.

 Versions MUST be unique amongst all revisions of a

 module or submodule.

 Adding a version is a backwards-compatible

 change. Changing or removing an existing version in

 the revision history is a non-backwards-compatible

 change, because it could impact any references to that

 version.";

 reference

 "XXXX: YANG Semantic Versioning;

 Section 3.2, YANG Semantic Version Extension";

 }

 extension recommended-min-version {

 argument yang-semantic-version;

 description

 "Recommends the versions of the module that may be imported to

 one that is greater than or equal to the specified version.

 The format of the recommended-min-version extension argument

 MUST conform to the 'version' typedef defined in this module.

 The statement MUST only be a substatement of the import

 statement. Zero, one or more 'recommended-min-version'

 statements per parent statement are allowed. No

 substatements for this extension have been

 standardized.

 If specified multiple times, then any module revision that

 satisfies at least one of the 'recommended-min-version'

 statements is an acceptable recommended version for

 import.

 A particular version of an imported module adheres to an

 import's 'recommended-min-version' extension statement if one

 of the following conditions are met:

 * Has the same MAJOR and MINOR version numbers and same or

 greater PATCH number.

 * Has the same MAJOR version number and greater MINOR number.

 In this case the PATCH number is ignored.

 * Has a greater MAJOR version number. In this case

 MINOR and PATCH numbers are ignored.

 Adding, removing or updating a 'recommended-min-version'

 statement to an import is a backwards-compatible change.";

 reference

 "XXXX: YANG Semantic Versioning; Section 4,

 Import Module by Semantic Version";

 }

 /*

 * Typedefs

 */

 typedef version {

 type string {

 pattern '[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?'

 + '(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?';

 }

 description

 "Represents a YANG semantic version. The rules governing the

 use of this version identifier are defined in the

 reference for this typedef.";

 reference

 "RFC XXXX: YANG Semantic Versioning.";

 }

}

<CODE ENDS>
¶

This YANG module contains the augmentations to the ietf-yang-

library.¶

<CODE BEGINS> file "ietf-yang-library-semver@2024-03-02.yang"

module ietf-yang-library-semver {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-yang-library-semver";

 prefix yl-semver;

 import ietf-yang-semver {

 prefix ys;

 reference

 "XXXX: YANG Semantic Versioning";

 }

 import ietf-yang-library {

 prefix yanglib;

 reference

 "RFC 8525: YANG Library";

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke

 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman

 <mailto:reshad@yahoo.com>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne

 <mailto:jason.sterne@nokia.com>";

 description

 "This module contains augmentations to YANG Library to add module

 and submodule level version identifiers.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (including in the imports above) with

 // actual RFC number and remove this note.

 // RFC Ed.: please replace ys:version with 1.0.0 and

 // remove this note.

 revision 2024-03-02 {

 ys:version "1.0.0-draft-ietf-netmod-yang-semver-14";

 description

 "Initial revision";

 reference

 "XXXX: YANG Semantic Versioning";

 }

 // library 1.0 modules-state is not augmented with version

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {

 description

 "Add a version to module information";

 leaf version {

 type ys:version;

 description

 "The version associated with this module revision.

 The value MUST match the version value in the

 specific revision of the module loaded in this module-set.";

 reference

 "XXXX: YANG Semantic Versioning;

 Section 7.1.1, Advertising version";

 }

 }

 augment

 "/yanglib:yang-library/yanglib:module-set/yanglib:module/"

 + "yanglib:submodule" {

 description

 "Add a version to submodule information";

 leaf version {

 type ys:version;

 description

 "The version associated with this submodule revision.

 The value MUST match the version value in the

 specific revision of the submodule included by the module

 loaded in this module-set.";

 reference

 "XXXX: YANG Semantic Versioning;

 Section 7.1.1, Advertising version";

 }

 }

 augment "/yanglib:yang-library/yanglib:module-set/"

 + "yanglib:import-only-module" {

 description

 "Add a version to module information";

 leaf version {

 type ys:version;

 description

 "The version associated with this module revision.

 The value MUST match the version value in the

 specific revision of the module included in this

 module-set.";

 reference

 "XXXX: YANG Semantic Versioning;

 Section 7.1.1, Advertising version";

 }

 }

 augment "/yanglib:yang-library/yanglib:module-set/"

 + "yanglib:import-only-module/yanglib:submodule" {

 description

 "Add a version to submodule information";

 leaf version {

 type ys:version;

 description

 "The version associated with this submodule revision.

 The value MUST match the version value in the specific

 revision of the submodule included by the import-only-module

 loaded in this module-set.";

 reference

 "XXXX: Updated YANG Module Revision Handling;

 Section 7.1.1, Advertising version";

 }

 }

}

<CODE ENDS>

¶

9. Contributors

The following people made substantial contributions to this

document:

Figure 4

10. Acknowledgments

This document grew out of the YANG module versioning design team

that started after IETF 101. The team consists of the following

members whom have worked on the YANG versioning project: Balazs

Lengyel, Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason

Sterne, Joe Clarke, Juergen Schoenwaelder, Mahesh Jethanandani,

Michael (Wangzitao), Per Andersson, Qin Wu, Reshad Rahman, Tom Hill,

and Rob Wilton.

The initial revision of this document was refactored and built upon

[I-D.clacla-netmod-yang-model-update]. We would like the thank Kevin

D'Souza for his initial work in this problem space.

Discussions on the use of SemVer for YANG versioning has been held

with authors of the OpenConfig YANG models based on their own

[openconfigsemver]. We would like thank both Anees Shaikh and Rob

Shakir for their input into this problem space.

We would also like to thank Joseph Donahue from the SemVer.org

project for his input on SemVer use and overall document

readability.

11. Security Considerations

The YANG module specified in this document defines a schema for data

that is designed to be accessed via network management protocols

such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The NETCONF access control model [RFC8341] provides the means to

restrict access for particular NETCONF or RESTCONF users to a

¶

 Bo Wu

 lana.wubo@huawei.com

 Jan Lindblad

 jlindbla@cisco.com

¶

¶

¶

¶

¶

preconfigured subset of all available NETCONF or RESTCONF protocol

operations and content.

That said, the YANG module in this document does not define any

writeable nodes. The extensions defined are only used to document

YANG artifacts.

12. IANA Considerations

12.1. YANG Module Registrations

This document requests IANA to register URIs in the "IETF XML

Registry" [RFC3688]. Following the format in RFC 3688, the following

registrations are requested.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-semver

Registrant Contact: The IESG.

XML: N/A, the requested URI is an XML namespace.

The following YANG modules are requested to be registered in the

"IANA Module Names" [RFC6020]. Following the format in RFC 6020, the

following registrations are requested:

The ietf-yang-semver module:

Name: ietf-yang-semver

XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

Prefix: ys

Reference: [RFCXXXX]

The ietf-yang-library-semver module:

Name: ietf-yang-library-semver

XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-

semver

Prefix: yl-semver

Reference: [RFCXXXX]

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3688]

12.2. Guidance for YANG Semver in IANA maintained YANG modules and

submodules

Note for IANA (to be removed by the RFC editor): Please check that

the registries and IANA YANG modules and submodules are referenced

in the appropriate way.

IANA is responsible for maintaining and versioning some YANG modules

and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-

routing-types.yang [RoutingTypesYang].

In addition to following the rules specified in the IANA

Considerations section of [I-D.ietf-netmod-yang-module-versioning],

IANA maintained YANG modules and submodules MUST also include a YANG

Semver version identifier for all new revisions, as defined in

Section 4.

The YANG Semver version associated with the new revision MUST follow

the rules defined in Section 4.5.

Note: For IANA maintained YANG modules and submodules that have

already been published, versions MUST be retroactively applied to

all existing revisions when the next new revision is created,

starting at version "1.0.0" for the initial published revision, and

then incrementing according to the YANG Semver rules specified in

Section 4.5.

Most changes to IANA maintained YANG modules and submodules are

expected to be backwards-compatible changes and classified as MINOR

version changes. The PATCH version may be incremented instead when

only editorial changes are made, and the MAJOR version would be

incremented if non-backwards-compatible changes are made.

Given that IANA maintained YANG modules are versioned with a linear

history, it is anticipated that it should not be necessary to use

the "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"

version element.

13. References

13.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688

[RFC6020]

[RFC8174]

[RFC8407]

[RFC7950]

[RFC8525]

[I-D.ietf-netmod-yang-module-versioning]

[I-D.clacla-netmod-yang-model-update]

[I-D.ietf-netmod-yang-packages]

[I-D.ietf-netmod-yang-schema-comparison]

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.

Sterne, "Updated YANG Module Revision Handling", Work in

Progress, Internet-Draft, draft-ietf-netmod-yang-module-

versioning-11, 1 March 2024, <https://

datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-

module-versioning-11>.

13.2. Informative References

Claise, B., Clarke, J.,

Lengyel, B., and K. D'Souza, "New YANG Module Update

Procedure", Work in Progress, Internet-Draft, draft-

clacla-netmod-yang-model-update-06, 2 July 2018,

<https://datatracker.ietf.org/doc/html/draft-clacla-

netmod-yang-model-update-06>.

Wilton, R., Rahman, R., Clarke, J.,

Sterne, J., and B. Wu, "YANG Packages", Work in Progress,

Internet-Draft, draft-ietf-netmod-yang-packages-03, 4

March 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-netmod-yang-packages-03>.

Andersson, P. and R.

Wilton, "YANG Schema Comparison", Work in Progress,

Internet-Draft, draft-ietf-netmod-yang-schema-

https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-module-versioning-11
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-module-versioning-11
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-module-versioning-11
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-packages-03
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-packages-03

[RFC8340]

[RFC8342]

[RFC6241]

[RFC6242]

[RFC8040]

[RFC8341]

[RFC8446]

[RFC8792]

[openconfigsemver]

[SemVer]

[IfTypeYang]

comparison-02, 14 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-

schema-comparison-02>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,

<https://www.rfc-editor.org/info/rfc8792>.

"Semantic Versioning for Openconfig Models",

<http://www.openconfig.net/docs/semver/>.

"Semantic Versioning 2.0.0 (text from June 19, 2020)",

<https://github.com/semver/semver/blob/

8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

"iana-if-type YANG Module", <https://www.iana.org/

assignments/iana-if-type/iana-if-type.xhtml>.

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-schema-comparison-02
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8792
http://www.openconfig.net/docs/semver/
https://github.com/semver/semver/blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md
https://github.com/semver/semver/blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md
https://www.iana.org/assignments/iana-if-type/iana-if-type.xhtml
https://www.iana.org/assignments/iana-if-type/iana-if-type.xhtml

[RoutingTypesYang]
"iana-routing-types YANG Module", <https://

www.iana.org/assignments/iana-routing-types/iana-routing-

types.xhtml>.

Appendix A. Example IETF Module Development

Assume a new YANG module is being developed in the netmod working

group in the IETF. Initially, this module is being developed in an

individual internet draft, draft-jdoe-netmod-example-module. The

following represents the initial version tree (i.e., value of

ys:version) of the module as it's being initially developed.

Version lineage for initial module development:

At this point, development stabilizes, and the workgroup adopts the

draft. Thus now the draft becomes draft-ietf-netmod-example-module.

The initial pre-release lineage continues as follows.

Continued version progression after adoption:

At this point, the draft is standardized and becomes RFC12345 and

the YANG module version becomes 1.0.0.

A time later, the module needs to be revised to add additional

capabilities. Development will be done in a backwards-compatible

way. Two new individual drafts are proposed to go about adding the

capabilities in different ways: draft-jdoe-netmod-exmod-enhancements

and draft-asmith-netmod-exmod-changes. These are initially developed

in parallel with the following versions.

Parallel development for next module revision (track 1):

¶

¶

 0.0.1-draft-jdoe-netmod-example-module-00

 |

 0.1.0-draft-jdoe-netmod-example-module-01

 |

 0.2.0-draft-jdoe-netmod-example-module-02

 |

 0.2.1-draft-jdoe-netmod-example-module-03

¶

¶

¶

 1.0.0-draft-ietf-netmod-example-module-00

 |

 1.0.0-draft-ietf-netmod-example-module-01

 |

 1.0.0-draft-ietf-netmod-example-module-02

¶

¶

¶

¶

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00

 |

 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

¶

https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml
https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml
https://www.iana.org/assignments/iana-routing-types/iana-routing-types.xhtml

In parallel with (track 2):

At this point, the WG decides to merge some aspects of both and

adopt the work in asmith's draft as draft-ietf-netmod-exmod-changes.

A single version progression continues.

The draft is standardized, and the new module version becomes 1.1.0.

Authors' Addresses

Joe Clarke (editor)

Cisco Systems, Inc.

7200-12 Kit Creek Rd

Research Triangle Park, North Carolina

United States of America

Phone: +1-919-392-2867

Email: jclarke@cisco.com

Robert Wilton (editor)

Cisco Systems, Inc.

Email: rwilton@cisco.com

Reshad Rahman

Equinix

Email: reshad@yahoo.com

Balazs Lengyel

Ericsson

1117 Budapest

Magyar Tudosok Korutja

Hungary

Phone: +36-70-330-7909

Email: balazs.lengyel@ericsson.com

¶

 1.1.0-draft-asmith-netmod-exmod-changes-00

 |

 1.1.0-draft-asmith-netmod-exmod-changes-01

¶

¶

 1.1.0-draft-ietf-netmod-exmod-changes-00

 |

 1.1.0-draft-ietf-netmod-exmod-changes-01

 |

 1.1.0-draft-ietf-netmod-exmod-changes-02

 |

 1.1.0-draft-ietf-netmod-exmod-changes-03

¶

¶

tel:+1-919-392-2867
mailto:jclarke@cisco.com
mailto:rwilton@cisco.com
mailto:reshad@yahoo.com
tel:+36-70-330-7909
mailto:balazs.lengyel@ericsson.com

Jason Sterne

Nokia

Email: jason.sterne@nokia.com

Benoit Claise

Huawei

Email: benoit.claise@huawei.com

mailto:jason.sterne@nokia.com
mailto:benoit.claise@huawei.com

	YANG Semantic Versioning
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Examples of How Versioning Is Applied To YANG Module Revisions
	3. Terminology and Conventions
	4. YANG Semantic Versioning
	4.1. Relationship Between SemVer and YANG Semver
	4.2. YANG Semantic Version Extension
	4.3. YANG Semver Pattern
	4.4. Semantic Versioning Scheme for YANG Artifacts
	4.4.1. Branching Limitations with YANG Semver
	4.4.2. YANG Semver with submodules
	4.4.3. Examples for YANG semantic versions

	4.5. YANG Semantic Version Update Rules
	4.6. Examples of the YANG Semver Label
	4.6.1. Example Module Using YANG Semver
	4.6.2. Example of Package Using YANG Semver

	5. Import Module by YANG Semantic Version
	5.1. The recommended-min-version Extension
	5.2. Import by YANG Semantic Version Rules

	6. Guidelines for Using Semver During Module Development
	6.1. Pre-release Version Precedence
	6.2. YANG Semver in IETF Modules
	6.2.1. Guidelines for IETF Module Development
	6.2.2. Guidelines for Published IETF Modules

	7. Updates to ietf-yang-library
	7.1. YANG library versioning augmentations
	7.1.1. Advertising version

	8. YANG Modules
	9. Contributors
	10. Acknowledgments
	11. Security Considerations
	12. IANA Considerations
	12.1. YANG Module Registrations
	12.2. Guidance for YANG Semver in IANA maintained YANG modules and submodules

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Example IETF Module Development
	Authors' Addresses

