
Network Working Group J. Schoenwaelder, Ed.
Internet-Draft Jacobs University
Intended status: Standards Track November 3, 2008
Expires: May 7, 2009

Common YANG Data Types
draft-ietf-netmod-yang-types-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 7, 2009.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Schoenwaelder Expires May 7, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft YANG-TYPES November 2008

Abstract

 This document introduces a collection of common data types to be used
 with the YANG data modeling language.

Table of Contents

1. Introduction . 3
2. Core YANG Derived Types 4
3. Internet Specific Derived Types 12
4. IEEE Specific Derived Types 21
5. IANA Considerations . 24
6. Security Considerations 25
7. Contributors . 26
8. References . 27
8.1. Normative References 27
8.2. Informative References 27

Appendix A. XSD Translations 30
A.1. XSD of Core YANG Derived Types 30
A.2. XSD of Internet Specific Derived Types 37
A.3. XSD of IEEE Specific Derived Types 44

Appendix B. RelaxNG Translations 47
B.1. RelaxNG of Core YANG Derived Types 47
B.2. RelaxNG of Internet Specific Derived Types 53
B.3. RelaxNG of IEEE Specific Derived Types 58

 Author's Address . 61
 Intellectual Property and Copyright Statements 62

Schoenwaelder Expires May 7, 2009 [Page 2]

Internet-Draft YANG-TYPES November 2008

1. Introduction

 YANG [YANG] is a data modeling language used to model configuration
 and state data manipulated by the NETCONF [RFC4741] protocol. The
 YANG language supports a small set of built-in data types and
 provides mechanisms to derive other types from the built-in types.

 This document introduces a collection of common data types derived
 from the built-in YANG data types. The definitions are organized in
 several YANG modules. The "yang-types" module contains generally
 useful data types. The "inet-types" module contains definitions that
 are relevant for the Internet protocol suite while the "ieee-types"
 module contains definitions that are relevant for IEEE 802 protocols.

 Their derived types are generally designed to be applicable for
 modeling all areas of management information.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14, [RFC2119].

https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Schoenwaelder Expires May 7, 2009 [Page 3]

Internet-Draft YANG-TYPES November 2008

2. Core YANG Derived Types

module yang-types {

 namespace "urn:ietf:params:xml:ns:yang:yang-types";
 prefix "yang";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Partain
 <mailto:david.partain@ericsson.com>

 WG Chair: David Harrington
 <mailto:ietfdbh@comcast.net>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2008-11-03 {
 description
 "Initial revision, published as RFC XXXX.";
 }
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 /*** collection of counter and gauge types ***/

 typedef counter32 {
 type uint32;
 description
 "The counter32 type represents a non-negative integer
 which monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

http://tools.ietf.org/wg/netmod/

Schoenwaelder Expires May 7, 2009 [Page 4]

Internet-Draft YANG-TYPES November 2008

 Counters have no defined `initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of an object instance using this type. If
 such other times can occur, for example, the creation of
 an object instance of type counter32 at times other than
 re-initialization, then a corresponding object should be
 defined, with an appropriate type, to indicate the last
 discontinuity.

 The counter32 type should not be used for configuration
 objects. A default statement should not be used for
 attributes with a type value of counter32.

 This type is in the value set and its semantics equivalent
 to the Counter32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef zero-based-counter32 {
 type yang:counter32;
 default "0";
 description
 "The zero-based-counter32 type represents a counter32
 which has the defined `initial' value zero.

 Objects of this type will be set to zero(0) on creation
 and will thereafter count appropriate events, wrapping
 back to zero(0) when the value 2^32 is reached.

 Provided that an application discovers the new object within
 the minimum time to wrap it can use the initial value as a
 delta since it last polled the table of which this object is
 part. It is important for a management station to be aware
 of this minimum time and the actual time between polls, and
 to discard data if the actual time is too long or there is
 no defined minimum time.

 This type is in the value set and its semantics equivalent
 to the ZeroBasedCounter32 textual convention of the SMIv2.";
 reference
 "RFC 2021: Remote Network Monitoring Management Information
 Base Version 2 using SMIv2";
 }

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2021

Schoenwaelder Expires May 7, 2009 [Page 5]

Internet-Draft YANG-TYPES November 2008

 typedef counter64 {
 type uint64;
 description
 "The counter64 type represents a non-negative integer
 which monotonically increases until it reaches a
 maximum value of 2^64-1 (18446744073709551615), when
 it wraps around and starts increasing again from zero.

 Counters have no defined `initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of an object instance using this type. If
 such other times can occur, for example, the creation of
 an object instance of type counter64 at times other than
 re-initialization, then a corresponding object should be
 defined, with an appropriate type, to indicate the last
 discontinuity.

 The counter64 type should not be used for configuration
 objects. A default statement should not be used for
 attributes with a type value of counter64.

 This type is in the value set and its semantics equivalent
 to the Counter64 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef zero-based-counter64 {
 type yang:counter64;
 default "0";
 description
 "The zero-based-counter64 type represents a counter64 which
 has the defined `initial' value zero.

 Objects of this type will be set to zero(0) on creation
 and will thereafter count appropriate events, wrapping
 back to zero(0) when the value 2^64 is reached.

 Provided that an application discovers the new object within
 the minimum time to wrap it can use the initial value as a
 delta since it last polled the table of which this object is
 part. It is important for a management station to be aware
 of this minimum time and the actual time between polls, and
 to discard data if the actual time is too long or there is
 no defined minimum time.

https://datatracker.ietf.org/doc/html/rfc2578

Schoenwaelder Expires May 7, 2009 [Page 6]

Internet-Draft YANG-TYPES November 2008

 This type is in the value set and its semantics equivalent
 to the ZeroBasedCounter64 textual convention of the SMIv2.";
 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 typedef gauge32 {
 type uint32;
 description
 "The gauge32 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 can not be greater than 2^32-1 (4294967295 decimal), and
 the minimum value can not be smaller than 0. The value of
 a gauge32 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge32 also decreases (increases).

 This type is in the value set and its semantics equivalent
 to the Counter32 type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";
 }

 typedef gauge64 {
 type uint64;
 description
 "The gauge64 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 can not be greater than 2^64-1 (18446744073709551615), and
 the minimum value can not be smaller than 0. The value of
 a gauge64 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge64 also decreases (increases).

 This type is in the value set and its semantics equivalent
 to the CounterBasedGauge64 SMIv2 textual convention defined
 in RFC 2856";

https://datatracker.ietf.org/doc/html/rfc2856
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2856

Schoenwaelder Expires May 7, 2009 [Page 7]

Internet-Draft YANG-TYPES November 2008

 reference
 "RFC 2856: Textual Conventions for Additional High Capacity
 Data Types";
 }

 /*** collection of identifier related types ***/

 typedef object-identifier {
 type string {
 pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
 + '(\.(0|([1-9]\d*)))*';
 }
 description
 "The object-identifier type represents administratively
 assigned names in a registration-hierarchical-name tree.

 Values of this type are denoted as a sequence of numerical
 non-negative sub-identifier values. Each sub-identifier
 value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
 are separated by single dots and without any intermediate
 white space.

 Although the number of sub-identifiers is not limited,
 module designers should realize that there may be
 implementations that stick with the SMIv2 limit of 128
 sub-identifiers.

 This type is a superset of the SMIv2 OBJECT IDENTIFIER type
 since it is not restricted to 128 sub-identifiers.";
 reference
 "ISO/IEC 9834-1: Information technology -- Open Systems
 Interconnection -- Procedures for the operation of OSI
 Registration Authorities: General procedures and top
 arcs of the ASN.1 Object Identifier tree";
 }

 typedef object-identifier-128 {
 type object-identifier {
 pattern '\d*(.\d){1,127}';
 }
 description
 "This type represents object-identifiers restricted to 128
 sub-identifiers.

 This type is in the value set and its semantics equivalent to
 the OBJECT IDENTIFIER type of the SMIv2.";
 reference
 "RFC 2578: Structure of Management Information Version 2 (SMIv2)";

https://datatracker.ietf.org/doc/html/rfc2856
https://datatracker.ietf.org/doc/html/rfc2578

Schoenwaelder Expires May 7, 2009 [Page 8]

Internet-Draft YANG-TYPES November 2008

 }

 /*** collection of date and time related types ***/

 typedef date-and-time {
 type string {
 pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
 + '(Z|(\+|-)\d{2}:\d{2})';
 }
 description
 'The date-and-time type is a profile of the ISO 8601
 standard for representation of dates and times using the
 Gregorian calendar. The format is most easily described
 using the following ABFN (see RFC 3339):

 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60
 time-secfrac = "." 1*DIGIT
 time-numoffset = ("+" / "-") time-hour ":" time-minute
 time-offset = "Z" / time-numoffset

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday
 full-time = partial-time time-offset

 date-time = full-date "T" full-time

 The date-and-time type is compatible with the dateTime XML
 schema type except that dateTime allows negative years
 which are not allowed by RFC 3339.

 This type is not equivalent to the DateAndTime textual
 convention of the SMIv2 since RFC 3339 uses a different
 separator between full-date and full-time and provides
 higher resolution of time-secfrac.';

 // [TODO] This type may require normalization rules since Z and
 // +00:00 mean the same - but note that -00:00 does not according
 // to RFC 3339 section 4.3 but it does according to XSD.
 // In addition, it is possible to write the same data and time
 // value using different time zones. XSD says the canonical format
 // is UTC using the Z format.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#section-4.3

Schoenwaelder Expires May 7, 2009 [Page 9]

Internet-Draft YANG-TYPES November 2008

 reference
 "RFC 3339: Date and Time on the Internet: Timestamps

RFC 2579: Textual Conventions for SMIv2";
 }

 typedef timeticks {
 type uint32;
 description
 "The timeticks type represents a non-negative integer which
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When objects
 are defined which use this type, the description of the
 object identifies both of the reference epochs.

 This type is in the value set and its semantics equivalent to
 the TimeStamp textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 typedef timestamp {
 type yang:timeticks;
 description
 "The timestamp type represents the value of an associated
 timeticks object at which a specific occurrence happened.
 The specific occurrence must be defined in the description
 of any object defined using this type. When the specific
 occurrence occurred prior to the last time the associated
 timeticks attribute was zero, then the timestamp value is
 zero. Note that this requires all timestamp values to be
 reset to zero when the value of the associated timeticks
 attribute reaches 497+ days and wraps around to zero.

 The associated timeticks object must be specified
 in the description of any object using this type.

 This type is in the value set and its semantics equivalent to
 the TimeStamp textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of generic address types ***/

 typedef phys-address {
 type string {
 pattern '([0-9a0-fA-F]{2}(:[0-9a0-fA-F]{2})*)?';
 }

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579

Schoenwaelder Expires May 7, 2009 [Page 10]

Internet-Draft YANG-TYPES November 2008

 description
 "Represents media- or physical-level addresses represented
 as a sequence octets, each octet represented by two hexadecimal
 numbers. Octets are separated by colons.

 This type is in the value set and its semantics equivalent to
 the PhysAddress textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

}

https://datatracker.ietf.org/doc/html/rfc2579

Schoenwaelder Expires May 7, 2009 [Page 11]

Internet-Draft YANG-TYPES November 2008

3. Internet Specific Derived Types

 module inet-types {

 namespace "urn:ietf:params:xml:ns:yang:inet-types";
 prefix "inet";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Partain
 <mailto:david.partain@ericsson.com>

 WG Chair: David Harrington
 <mailto:ietfdbh@comcast.net>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types for Internet addresses and related things.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2008-11-03 {
 description
 "Initial revision, published as RFC XXXX.";
 }
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 /*** collection of protocol field related types ***/

 typedef ip-version {
 type enumeration {
 enum unknown {
 value "0";
 description
 "An unknown or unspecified version of the Internet protocol.";
 }
 enum ipv4 {

http://tools.ietf.org/wg/netmod/

Schoenwaelder Expires May 7, 2009 [Page 12]

Internet-Draft YANG-TYPES November 2008

 value "1";
 description
 "The IPv4 protocol as defined in RFC 791.";
 }
 enum ipv6 {
 value "2";
 description
 "The IPv6 protocol as defined in RFC 2460.";
 }
 }
 description
 "This value represents the version of the IP protocol.

 This type is in the value set and its semantics equivalent
 to the InetVersion textual convention of the SMIv2. However,
 the lexical appearance is different from the InetVersion
 textual convention.";
 reference
 "RFC 791: Internet Protocol

RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
RFC 4001: Textual Conventions for Internet Network Addresses";

 }

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 description
 "The dscp type represents a Differentiated Services Code-Point
 that may be used for marking packets in a traffic stream.

 This type is in the value set and its semantics equivalent
 to the Dscp textual convention of the SMIv2.";
 reference
 "RFC 3289: Management Information Base for the Differentiated
 Services Architecture

RFC 2474: Definition of the Differentiated Services Field
 (DS Field) in the IPv4 and IPv6 Headers

RFC 2780: IANA Allocation Guidelines For Values In
 the Internet Protocol and Related Headers";
 }

 typedef flow-label {
 type uint32 {
 range "0..1048575";
 }
 description
 "The flow-label type represents flow identifier or Flow Label

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/rfc3289
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2780

Schoenwaelder Expires May 7, 2009 [Page 13]

Internet-Draft YANG-TYPES November 2008

 in an IPv6 packet header that may be used to discriminate
 traffic flows.

 This type is in the value set and its semantics equivalent
 to the IPv6FlowLabel textual convention of the SMIv2.";
 reference
 "RFC 3595: Textual Conventions for IPv6 Flow Label

RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
 }

 typedef port-number {
 type uint16 {
 range "1..65535";
 }
 description
 "The port-number type represents a 16-bit port number of an
 Internet transport layer protocol such as UDP, TCP, DCCP or
 SCTP. Port numbers are assigned by IANA. A current list of
 all assignments is available from <http://www.iana.org/>.

 Note that the value zero is not a valid port number. A union
 type might be used in situations where the value zero is
 meaningful.

 This type is in the value set and its semantics equivalent
 to the InetPortNumber textual convention of the SMIv2.";
 reference
 "RFC 768: User Datagram Protocol
 RFC 793: Transmission Control Protocol

RFC 2960: Stream Control Transmission Protocol
RFC 4340: Datagram Congestion Control Protocol (DCCP)
RFC 4001: Textual Conventions for Internet Network Addresses";

 }

 /*** collection of autonomous system related types ***/

 typedef autonomous-system-number {
 type uint32;
 description
 "The as-number type represents autonomous system numbers
 which identify an Autonomous System (AS). An AS is a set
 of routers under a single technical administration, using
 an interior gateway protocol and common metrics to route
 packets within the AS, and using an exterior gateway
 protocol to route packets to other ASs'. IANA maintains
 the AS number space and has delegated large parts to the
 regional registries.

https://datatracker.ietf.org/doc/html/rfc3595
https://datatracker.ietf.org/doc/html/rfc2460
http://www.iana.org/
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4001

Schoenwaelder Expires May 7, 2009 [Page 14]

Internet-Draft YANG-TYPES November 2008

 Autonomous system numbers are currently limited to 16 bits
 (0..65535). There is however work in progress to enlarge
 the autonomous system number space to 32 bits. This
 textual convention therefore uses an uint32 base type
 without a range restriction in order to support a larger
 autonomous system number space.

 This type is in the value set and its semantics equivalent
 to the InetAutonomousSystemNumber textual convention of
 the SMIv2.";
 reference
 "RFC 1930: Guidelines for creation, selection, and registration
 of an Autonomous System (AS)

RFC 4271: A Border Gateway Protocol 4 (BGP-4)
RFC 4001: Textual Conventions for Internet Network Addresses";

 }

 /*** collection of IP address and hostname related types ***/

 typedef ip-address {
 type union {
 type inet:ipv4-address;
 type inet:ipv6-address;
 }
 description
 "The ip-address type represents an IP address and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-address {
 type string {
 pattern '((0'
 + '|(1[0-9]{0,2})'
 + '|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)))'
 + '|([3-9][0-9]?)'
 + ')'
 + '\.){3}'
 + '(0'
 + '|(1[0-9]{0,2})'
 + '|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)))'
 + '|([3-9][0-9]?)'
 + ')(%[\p{N}\p{L}]+)?';
 }
 description
 "The ipv4-address type represents an IPv4 address in
 dotted-quad notation. The IPv4 address may include a zone
 index, separated by a % sign.

https://datatracker.ietf.org/doc/html/rfc1930
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4001

Schoenwaelder Expires May 7, 2009 [Page 15]

Internet-Draft YANG-TYPES November 2008

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.";

 // [TODO] There is an normalization issue with regard to
 // systems that allow numeric and textual zone indexes.
 }

 typedef ipv6-address {
 type string {
 pattern
 /* full */
 '((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})'
 + '(%[\p{N}\p{L}]+)?)'
 /* mixed */
 + '|((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\.'
 + '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))'
 + '(%[\p{N}\p{L}]+)?)'
 /* shortened */
 + '|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)'
 + '(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*'
 + '(%[\p{N}\p{L}]+)?)'
 /* shortened mixed */
 + '|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)'
 + '(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*'
 + '(([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))'
 + '(%[\p{N}\p{L}]+)?)';
 }
 description
 "The ipv6-address type represents an IPv6 address in full,
 mixed, shortened and shortened mixed notation. The IPv6
 address may include a zone index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.";

 // [TODO] Normalization needed due to the shortened and
 // mixed forms and the zone index?

 reference
 "RFC 4007: IPv6 Scoped Address Architecture";
 }

https://datatracker.ietf.org/doc/html/rfc4007

Schoenwaelder Expires May 7, 2009 [Page 16]

Internet-Draft YANG-TYPES November 2008

 // [TODO] The pattern needs to be checked; once YANG supports
 // multiple pattern, we can perhaps be more precise.

 typedef ip-prefix {
 type union {
 type inet:ipv4-prefix;
 type inet:ipv6-prefix;
 }
 description
 "The ip-prefix type represents an IP prefix and is IP
 version neutral. The format of the textual representations
 implies the IP version.";
 }

 typedef ipv4-prefix {
 type string {
 pattern '(([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}'
 + '([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])'
 + '/\d+';
 }
 description
 "The ipv4-prefix type represents an IPv4 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

 A prefix length value of n corresponds to an IP address
 mask which has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv4 address represented in dotted quad notation
 should have all bits that do not belong to the prefix
 set to zero.";

 // [TODO] Normalization needed since bits of the prefix
 // can be set arbitrarily.
 }

 typedef ipv6-prefix {
 type string {
 pattern
 /* full */
 '((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})'
 + '/\d+)'
 /* mixed */
 + '|((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\.'
 + '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))'
 + '/\d+)'
 /* shortened */

Schoenwaelder Expires May 7, 2009 [Page 17]

Internet-Draft YANG-TYPES November 2008

 + '|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)'
 + '(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*'
 + '/\d+)'
 /* shortened mixed */
 + '|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)'
 + '(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*'
 + '(([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))'
 + '/\d+)';
 }
 description
 "The ipv6-prefix type represents an IPv6 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal 128.

 A prefix length value of n corresponds to an IP address
 mask which has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv6 address should have all bits that do not belong
 to the prefix set to zero.";

 // [TODO] Normalization needed due to the shortened and
 // mixed forms and since bits of the prefix can be set
 // arbitrarily.
 }

 // [TODO] The pattern needs to be checked; once YANG supports
 // multiple pattern, we can perhaps be more precise.]

 /*** collection of domain name and URI types ***/

 typedef domain-name {
 type string {
 pattern '([a-zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9]\.)*'
 + '[a-zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9]';
 }
 description
 "The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible.

 The description clause of objects using the domain-name
 type MUST describe how (and when) these names are
 resolved to IP addresses.

 Note that the resolution of a domain-name value may
 require to query multiple DNS records (e.g., A for IPv4
 and AAAA for IPv6). The order of the resolution process
 and which DNS record takes precedence depends on the

Schoenwaelder Expires May 7, 2009 [Page 18]

Internet-Draft YANG-TYPES November 2008

 configuration of the resolver.";

 // [TODO] Normalization needed since names are case
 // insensitive (normalize to lowercase characters).]

 reference
 "RFC 1034: Domain Names - Concepts and Facilities

RFC 1123: Requirements for Internet Hosts -- Application
 and Support";
 }

 // [TODO] RFC 2181 says there are no restrictions on DNS
 // labels. Need to check whether the pattern is too
 // restrictive.

 typedef host {
 type union {
 type inet:ip-address;
 type inet:domain-name;
 }
 description
 "The host type represents either an IP address or a DNS
 domain name.";
 }

 typedef uri {
 type string; // [TODO] add the regex from RFC 3986 here?
 description
 "The uri type represents a Uniform Resource Identifier
 (URI) as defined by STD 66.

 Objects using the uri type must be in US-ASCII encoding,
 and MUST be normalized as described by RFC 3986 Sections
 6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
 percent-encoding is removed, and all case-insensitive
 characters are set to lowercase except for hexadecimal
 digits, which are normalized to uppercase as described in

Section 6.2.2.1.

 The purpose of this normalization is to help provide
 unique URIs. Note that this normalization is not
 sufficient to provide uniqueness. Two URIs that are
 textually distinct after this normalization may still be
 equivalent.

 Objects using the uri type may restrict the schemes that
 they permit. For example, 'data:' and 'urn:' schemes
 might not be appropriate.

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Schoenwaelder Expires May 7, 2009 [Page 19]

Internet-Draft YANG-TYPES November 2008

 A zero-length URI is not a valid URI. This can be used to
 express 'URI absent' where required

 This type is in the value set and its semantics equivalent
 to the Uri textual convention of the SMIv2.";
 reference
 "RFC 3986: Uniform Resource Identifier (URI): Generic Syntax

RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
 Group: Uniform Resource Identifiers (URIs), URLs,
 and Uniform Resource Names (URNs): Clarifications
 and Recommendations

RFC 5017: MIB Textual Conventions for Uniform Resource
 Identifiers (URIs)";
 }

 }

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3305
https://datatracker.ietf.org/doc/html/rfc5017

Schoenwaelder Expires May 7, 2009 [Page 20]

Internet-Draft YANG-TYPES November 2008

4. IEEE Specific Derived Types

 module ieee-types {

 namespace "urn:ietf:params:xml:ns:yang:ieee-types";
 prefix "ieee";

 import yang-types { prefix yang; }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Partain
 <mailto:david.partain@ericsson.com>

 WG Chair: David Harrington
 <mailto:ietfdbh@comcast.net>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of generally useful derived
 YANG data types for IEEE 802 addresses and related things.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 revision 2008-11-03 {
 description
 "Initial revision, published as RFC XXXX";
 }
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 /*** collection of IEEE address type definitions ***/

 typedef mac-address {
 type string {
 pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
 }
 description
 "The mac-address type represents an 802 MAC address represented

http://tools.ietf.org/wg/netmod/

Schoenwaelder Expires May 7, 2009 [Page 21]

Internet-Draft YANG-TYPES November 2008

 in the `canonical' order defined by IEEE 802.1a, i.e., as if it
 were transmitted least significant bit first, even though 802.5
 (in contrast to other 802.x protocols) requires MAC addresses
 to be transmitted most significant bit first.

 This type is in the value set and its semantics equivalent to
 the MacAddress textual convention of the SMIv2.";
 reference
 "RFC 2579: Textual Conventions for SMIv2";
 }

 /*** collection of IEEE 802 related identifier types ***/

 typedef bridgeid {
 type string {
 pattern '[0-9a-fA-F]{4}(:[0-9a-fA-F]{2}){6}';
 }
 description
 "The bridgeid type represents identifiers that uniquely
 identify a bridge. Its first four hexadecimal digits
 contain a priority value followed by a colon. The
 remaining characters contain the MAC address used to
 refer to a bridge in a unique fashion (typically, the
 numerically smallest MAC address of all ports on the
 bridge).

 This type is in the value set and its semantics equivalent
 to the BridgeId textual convention of the SMIv2. However,
 since the BridgeId textual convention does not prescribe
 a lexical representation, the appearance might be different.";
 reference
 "RFC 4188: Definitions of Managed Objects for Bridges";
 }

 typedef vlanid {
 type uint16 {
 range "1..4094";
 }
 description
 "The vlanid type uniquely identifies a VLAN. This is the
 12-bit VLAN-ID used in the VLAN Tag header. The range is
 defined by the referenced specification.

 This type is in the value set and its semantics equivalent to
 the VlanId textual convention of the SMIv2.";
 reference
 "IEEE Std 802.1Q 2003 Edition: Virtual Bridged Local
 Area Networks

https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc4188

Schoenwaelder Expires May 7, 2009 [Page 22]

Internet-Draft YANG-TYPES November 2008

RFC 4363: Definitions of Managed Objects for Bridges with
 Traffic Classes, Multicast Filtering, and Virtual
 LAN Extensions";
 }

 }

Schoenwaelder Expires May 7, 2009 [Page 23]

https://datatracker.ietf.org/doc/html/rfc4363

Internet-Draft YANG-TYPES November 2008

5. IANA Considerations

 A registry for standard YANG modules shall be set up. The name of
 the registry is "IETF YANG Modules" and the registry shall record for
 each entry the unique name of a YANG module, the assigned XML
 namespace from the YANG URI Scheme, and a reference to the module's
 documentation (typically and RFC). Allocations require IETF Review
 as defined in [RFC5226]. The initial assignements are:

 YANG Module XML namespace Reference
 ----------- -------------------------------------- ---------
 yang-types urn:ietf:params:xml:ns:yang:yang-types RFC XXXX
 inet-types urn:ietf:params:xml:ns:yang:inet-types RFC XXXX
 ieee-types urn:ietf:params:xml:ns:yang:ieee-types RFC XXXX

 RFC Ed.: replace XXXX with actual RFC number and remove this note

 This document registers three URIs1 in the IETF XML registry
 [RFC3688]. Following the format in RFC 3688, the following
 registration is requested.

 URI: urn:ietf:params:xml:ns:yang:yang-types
 URI: urn:ietf:params:xml:ns:yang:inet-types
 URI: urn:ietf:params:xml:ns:yang:ieee-types

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688

Schoenwaelder Expires May 7, 2009 [Page 24]

Internet-Draft YANG-TYPES November 2008

6. Security Considerations

 This document defines common data types using the YANG data modeling
 language. The definitions themselves have no security impact on the
 Internet but the usage of these definitions in concrete YANG modules
 might have. The security considerations spelled out in the YANG
 specification [YANG] apply for this document as well.

Schoenwaelder Expires May 7, 2009 [Page 25]

Internet-Draft YANG-TYPES November 2008

7. Contributors

 The following people all contributed significantly to the initial
 version of this draft:

 - Andy Bierman (andybierman.com)
 - Martin Bjorklund (Tail-f Systems)
 - Balazs Lengyel (Ericsson)
 - David Partain (Ericsson)
 - Phil Shafer (Juniper Networks)

Schoenwaelder Expires May 7, 2009 [Page 26]

Internet-Draft YANG-TYPES November 2008

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [YANG] Bjorklund, M., Ed., "YANG - A data modeling language for
 NETCONF", draft-ietf-netmod-yang-01 (work in progress).

8.2. Informative References

 [802.1Q] ANSI/IEEE Standard 802.1Q, "IEEE Standards for Local and
 Metropolitan Area Networks: Virtual Bridged Local Area
 Networks", 2003.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,
 selection, and registration of an Autonomous System (AS)",

BCP 6, RFC 1930, March 1996.

 [RFC2021] Waldbusser, S., "Remote Network Monitoring Management
 Information Base Version 2 using SMIv2", RFC 2021,
 January 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-01
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/bcp6
https://datatracker.ietf.org/doc/html/rfc1930
https://datatracker.ietf.org/doc/html/rfc2021
https://datatracker.ietf.org/doc/html/rfc2460

Schoenwaelder Expires May 7, 2009 [Page 27]

Internet-Draft YANG-TYPES November 2008

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 December 1998.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
 Values In the Internet Protocol and Related Headers",

BCP 37, RFC 2780, March 2000.

 [RFC2856] Bierman, A., McCloghrie, K., and R. Presuhn, "Textual
 Conventions for Additional High Capacity Data Types",

RFC 2856, June 2000.

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L., and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000.

 [RFC3289] Baker, F., Chan, K., and A. Smith, "Management Information
 Base for the Differentiated Services Architecture",

RFC 3289, May 2002.

 [RFC3305] Mealling, M. and R. Denenberg, "Report from the Joint W3C/
 IETF URI Planning Interest Group: Uniform Resource
 Identifiers (URIs), URLs, and Uniform Resource Names
 (URNs): Clarifications and Recommendations", RFC 3305,
 August 2002.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3595] Wijnen, B., "Textual Conventions for IPv6 Flow Label",
RFC 3595, September 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc2856
https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc3289
https://datatracker.ietf.org/doc/html/rfc3305
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3595
https://datatracker.ietf.org/doc/html/rfc3986

Schoenwaelder Expires May 7, 2009 [Page 28]

Internet-Draft YANG-TYPES November 2008

 Addresses", RFC 4001, February 2005.

 [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 March 2005.

 [RFC4188] Norseth, K. and E. Bell, "Definitions of Managed Objects
 for Bridges", RFC 4188, September 2005.

 [RFC4271] Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
 Protocol 4 (BGP-4)", RFC 4271, January 2006.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC5017] McWalter, D., "MIB Textual Conventions for Uniform
 Resource Identifiers (URIs)", RFC 5017, September 2007.

https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/rfc4007
https://datatracker.ietf.org/doc/html/rfc4188
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc5017

Schoenwaelder Expires May 7, 2009 [Page 29]

Internet-Draft YANG-TYPES November 2008

Appendix A. XSD Translations

 This appendix provides XML Schema (XSD) translations of the types
 defined in this document. This appendix is informative and not
 normative.

A.1. XSD of Core YANG Derived Types

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:yang:yang-types"
 xmlns="urn:ietf:params:xml:ns:yang:yang-types"
 xmlns:yang="urn:ietf:params:xml:ns:yang:yang-types"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2008-11-03"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation>
 This module contains a collection of generally useful derived
 YANG data types.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.
 </xs:documentation>
 </xs:annotation>

 <!-- YANG typedefs -->

 <xs:simpleType name="counter32">
 <xs:annotation>
 <xs:documentation>
 The counter32 type represents a non-negative integer
 which monotonically increases until it reaches a
 maximum value of 2^32-1 (4294967295 decimal), when it
 wraps around and starts increasing again from zero.

 Counters have no defined `initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of an object instance using this type. If
 such other times can occur, for example, the creation of
 an object instance of type counter32 at times other than
 re-initialization, then a corresponding object should be

Schoenwaelder Expires May 7, 2009 [Page 30]

Internet-Draft YANG-TYPES November 2008

 defined, with an appropriate type, to indicate the last
 discontinuity.

 The counter32 type should not be used for configuration
 objects. A default statement should not be used for
 attributes with a type value of counter32.

 This type is in the value set and its semantics equivalent
 to the Counter32 type of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedInt">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="zero-based-counter32">
 <xs:annotation>
 <xs:documentation>
 The zero-based-counter32 type represents a counter32
 which has the defined `initial' value zero.

 Objects of this type will be set to zero(0) on creation
 and will thereafter count appropriate events, wrapping
 back to zero(0) when the value 2^32 is reached.

 Provided that an application discovers the new object within
 the minimum time to wrap it can use the initial value as a
 delta since it last polled the table of which this object is
 part. It is important for a management station to be aware
 of this minimum time and the actual time between polls, and
 to discard data if the actual time is too long or there is
 no defined minimum time.

 This type is in the value set and its semantics equivalent
 to the ZeroBasedCounter32 textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="yang:counter32">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="counter64">
 <xs:annotation>
 <xs:documentation>
 The counter64 type represents a non-negative integer
 which monotonically increases until it reaches a

Schoenwaelder Expires May 7, 2009 [Page 31]

Internet-Draft YANG-TYPES November 2008

 maximum value of 2^64-1 (18446744073709551615), when
 it wraps around and starts increasing again from zero.

 Counters have no defined `initial' value, and thus, a
 single value of a counter has (in general) no information
 content. Discontinuities in the monotonically increasing
 value normally occur at re-initialization of the
 management system, and at other times as specified in the
 description of an object instance using this type. If
 such other times can occur, for example, the creation of
 an object instance of type counter64 at times other than
 re-initialization, then a corresponding object should be
 defined, with an appropriate type, to indicate the last
 discontinuity.

 The counter64 type should not be used for configuration
 objects. A default statement should not be used for
 attributes with a type value of counter64.

 This type is in the value set and its semantics equivalent
 to the Counter64 type of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedLong">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="zero-based-counter64">
 <xs:annotation>
 <xs:documentation>
 The zero-based-counter64 type represents a counter64 which
 has the defined `initial' value zero.

 Objects of this type will be set to zero(0) on creation
 and will thereafter count appropriate events, wrapping
 back to zero(0) when the value 2^64 is reached.

 Provided that an application discovers the new object within
 the minimum time to wrap it can use the initial value as a
 delta since it last polled the table of which this object is
 part. It is important for a management station to be aware
 of this minimum time and the actual time between polls, and
 to discard data if the actual time is too long or there is
 no defined minimum time.

 This type is in the value set and its semantics equivalent
 to the ZeroBasedCounter64 textual convention of the SMIv2.

Schoenwaelder Expires May 7, 2009 [Page 32]

Internet-Draft YANG-TYPES November 2008

 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="yang:counter64">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gauge32">
 <xs:annotation>
 <xs:documentation>
 The gauge32 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 can not be greater than 2^32-1 (4294967295 decimal), and
 the minimum value can not be smaller than 0. The value of
 a gauge32 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge32 also decreases (increases).

 This type is in the value set and its semantics equivalent
 to the Counter32 type of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedInt">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="gauge64">
 <xs:annotation>
 <xs:documentation>
 The gauge64 type represents a non-negative integer, which
 may increase or decrease, but shall never exceed a maximum
 value, nor fall below a minimum value. The maximum value
 can not be greater than 2^64-1 (18446744073709551615), and
 the minimum value can not be smaller than 0. The value of
 a gauge64 has its maximum value whenever the information
 being modeled is greater than or equal to its maximum
 value, and has its minimum value whenever the information
 being modeled is smaller than or equal to its minimum value.
 If the information being modeled subsequently decreases
 below (increases above) the maximum (minimum) value, the
 gauge64 also decreases (increases).

Schoenwaelder Expires May 7, 2009 [Page 33]

Internet-Draft YANG-TYPES November 2008

 This type is in the value set and its semantics equivalent
 to the CounterBasedGauge64 SMIv2 textual convention defined
 in RFC 2856
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedLong">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="object-identifier">
 <xs:annotation>
 <xs:documentation>
 The object-identifier type represents administratively
 assigned names in a registration-hierarchical-name tree.

 Values of this type are denoted as a sequence of numerical
 non-negative sub-identifier values. Each sub-identifier
 value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
 are separated by single dots and without any intermediate
 white space.

 Although the number of sub-identifiers is not limited,
 module designers should realize that there may be
 implementations that stick with the SMIv2 limit of 128
 sub-identifiers.

 This type is a superset of the SMIv2 OBJECT IDENTIFIER type
 since it is not restricted to 128 sub-identifiers.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*)))
)(\.(0|([1-9]\d*)))*"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="object-identifier-128">
 <xs:annotation>
 <xs:documentation>
 This type represents object-identifiers restricted to 128
 sub-identifiers.

 This type is in the value set and its semantics equivalent to
 the OBJECT IDENTIFIER type of the SMIv2.
 </xs:documentation>
 </xs:annotation>

https://datatracker.ietf.org/doc/html/rfc2856

Schoenwaelder Expires May 7, 2009 [Page 34]

Internet-Draft YANG-TYPES November 2008

 <xs:restriction base="object-identifier">
 <xs:pattern value="\d*(.\d){1,127}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="date-and-time">
 <xs:annotation>
 <xs:documentation>
 The date-and-time type is a profile of the ISO 8601
 standard for representation of dates and times using the
 Gregorian calendar. The format is most easily described
 using the following ABFN (see RFC 3339):

 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31
 time-hour = 2DIGIT ; 00-23
 time-minute = 2DIGIT ; 00-59
 time-second = 2DIGIT ; 00-58, 00-59, 00-60
 time-secfrac = "." 1*DIGIT
 time-numoffset = ("+" / "-") time-hour ":" time-minute
 time-offset = "Z" / time-numoffset

 partial-time = time-hour ":" time-minute ":" time-second
 [time-secfrac]
 full-date = date-fullyear "-" date-month "-" date-mday
 full-time = partial-time time-offset

 date-time = full-date "T" full-time

 The date-and-time type is compatible with the dateTime XML
 schema type except that dateTime allows negative years
 which are not allowed by RFC 3339.

 This type is not equivalent to the DateAndTime textual
 convention of the SMIv2 since RFC 3339 uses a different
 separator between full-date and full-time and provides
 higher resolution of time-secfrac.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?
 (Z|(\+|-)\d{2}:\d{2})"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="timeticks">

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Schoenwaelder Expires May 7, 2009 [Page 35]

Internet-Draft YANG-TYPES November 2008

 <xs:annotation>
 <xs:documentation>
 The timeticks type represents a non-negative integer which
 represents the time, modulo 2^32 (4294967296 decimal), in
 hundredths of a second between two epochs. When objects
 are defined which use this type, the description of the
 object identifies both of the reference epochs.

 This type is in the value set and its semantics equivalent to
 the TimeStamp textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedInt">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="timestamp">
 <xs:annotation>
 <xs:documentation>
 The timestamp type represents the value of an associated
 timeticks object at which a specific occurrence happened.
 The specific occurrence must be defined in the description
 of any object defined using this type. When the specific
 occurrence occurred prior to the last time the associated
 timeticks attribute was zero, then the timestamp value is
 zero. Note that this requires all timestamp values to be
 reset to zero when the value of the associated timeticks
 attribute reaches 497+ days and wraps around to zero.

 The associated timeticks object must be specified
 in the description of any object using this type.

 This type is in the value set and its semantics equivalent to
 the TimeStamp textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="yang:timeticks">
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="phys-address">
 <xs:annotation>
 <xs:documentation>
 Represents media- or physical-level addresses represented
 as a sequence octets, each octet represented by two hexadecimal
 numbers. Octets are separated by colons.

Schoenwaelder Expires May 7, 2009 [Page 36]

Internet-Draft YANG-TYPES November 2008

 This type is in the value set and its semantics equivalent to
 the PhysAddress textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="([0-9a0-fA-F]{2}(:[0-9a0-fA-F]{2})*)?"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

A.2. XSD of Internet Specific Derived Types

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:yang:inet-types"
 xmlns="urn:ietf:params:xml:ns:yang:inet-types"
 xmlns:inet="urn:ietf:params:xml:ns:yang:inet-types"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2008-11-03"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation>
 This module contains a collection of generally useful derived
 YANG data types for Internet addresses and related things.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.
 </xs:documentation>
 </xs:annotation>

 <!-- YANG typedefs -->

 <xs:simpleType name="ip-version">
 <xs:annotation>
 <xs:documentation>
 This value represents the version of the IP protocol.

 This type is in the value set and its semantics equivalent
 to the InetVersion textual convention of the SMIv2. However,
 the lexical appearance is different from the InetVersion
 textual convention.
 </xs:documentation>

Schoenwaelder Expires May 7, 2009 [Page 37]

Internet-Draft YANG-TYPES November 2008

 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:enumeration value="unknown"/>
 <xs:enumeration value="ipv4"/>
 <xs:enumeration value="ipv6"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="dscp">
 <xs:annotation>
 <xs:documentation>
 The dscp type represents a Differentiated Services Code-Point
 that may be used for marking packets in a traffic stream.

 This type is in the value set and its semantics equivalent
 to the Dscp textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedByte">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="63"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="flow-label">
 <xs:annotation>
 <xs:documentation>
 The flow-label type represents flow identifier or Flow Label
 in an IPv6 packet header that may be used to discriminate
 traffic flows.

 This type is in the value set and its semantics equivalent
 to the IPv6FlowLabel textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedInt">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="1048575"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="port-number">
 <xs:annotation>
 <xs:documentation>
 The port-number type represents a 16-bit port number of an

Schoenwaelder Expires May 7, 2009 [Page 38]

Internet-Draft YANG-TYPES November 2008

 Internet transport layer protocol such as UDP, TCP, DCCP or
 SCTP. Port numbers are assigned by IANA. A current list of
 all assignments is available from <http://www.iana.org/>.

 Note that the value zero is not a valid port number. A union
 type might be used in situations where the value zero is
 meaningful.

 This type is in the value set and its semantics equivalent
 to the InetPortNumber textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="65535"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="autonomous-system-number">
 <xs:annotation>
 <xs:documentation>
 The as-number type represents autonomous system numbers
 which identify an Autonomous System (AS). An AS is a set
 of routers under a single technical administration, using
 an interior gateway protocol and common metrics to route
 packets within the AS, and using an exterior gateway
 protocol to route packets to other ASs'. IANA maintains
 the AS number space and has delegated large parts to the
 regional registries.

 Autonomous system numbers are currently limited to 16 bits
 (0..65535). There is however work in progress to enlarge
 the autonomous system number space to 32 bits. This
 textual convention therefore uses an uint32 base type
 without a range restriction in order to support a larger
 autonomous system number space.

 This type is in the value set and its semantics equivalent
 to the InetAutonomousSystemNumber textual convention of
 the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedInt">
 </xs:restriction>
 </xs:simpleType>

Schoenwaelder Expires May 7, 2009 [Page 39]

Internet-Draft YANG-TYPES November 2008

 <xs:simpleType name="ip-address">
 <xs:annotation>
 <xs:documentation>
 The ip-address type represents an IP address and is IP
 version neutral. The format of the textual representations
 implies the IP version.
 </xs:documentation>
 </xs:annotation>

 <xs:union>
 <xs:simpleType>
 <xs:restriction base="inet:ipv4-address">
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="inet:ipv6-address">
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

 <xs:simpleType name="ipv4-address">
 <xs:annotation>
 <xs:documentation>
 The ipv4-address type represents an IPv4 address in
 dotted-quad notation. The IPv4 address may include a zone
 index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="((0|(1[0-9]{0,2})|(2(([0-4][0-9]?)|(5[0-5]?
)|([6-9]?)))|([3-9][0-9]?))\.){3}(0|(1[0-9]{
 0,2})|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)))|
 ([3-9][0-9]?))(%[\p{N}\p{L}]+)?"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ipv6-address">
 <xs:annotation>
 <xs:documentation>
 The ipv6-address type represents an IPv6 address in full,

Schoenwaelder Expires May 7, 2009 [Page 40]

Internet-Draft YANG-TYPES November 2008

 mixed, shortened and shortened mixed notation. The IPv6
 address may include a zone index, separated by a % sign.

 The zone index is used to disambiguate identical address
 values. For link-local addresses, the zone index will
 typically be the interface index number or the name of an
 interface. If the zone index is not present, the default
 zone of the device will be used.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})
 (%[\p{N}\p{L}]+)?)|((([0-9a-fA-F]{1,4}:){6})
 (([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{
 1,3}))(%[\p{N}\p{L}]+)?)|((([0-9a-fA-F]{1,4}
 :)*([0-9a-fA-F]{1,4}))*(::)(([0-9a-fA-F]{1,4
 }:)*([0-9a-fA-F]{1,4}))*(%[\p{N}\p{L}]+)?)|(
 (([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::
)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*((
 [0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,
 3}))(%[\p{N}\p{L}]+)?)"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ip-prefix">
 <xs:annotation>
 <xs:documentation>
 The ip-prefix type represents an IP prefix and is IP
 version neutral. The format of the textual representations
 implies the IP version.
 </xs:documentation>
 </xs:annotation>

 <xs:union>
 <xs:simpleType>
 <xs:restriction base="inet:ipv4-prefix">
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="inet:ipv6-prefix">
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

 <xs:simpleType name="ipv4-prefix">
 <xs:annotation>

Schoenwaelder Expires May 7, 2009 [Page 41]

Internet-Draft YANG-TYPES November 2008

 <xs:documentation>
 The ipv4-prefix type represents an IPv4 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal to 32.

 A prefix length value of n corresponds to an IP address
 mask which has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv4 address represented in dotted quad notation
 should have all bits that do not belong to the prefix
 set to zero.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="(([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.)
 {3}([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])/\
 d+"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="ipv6-prefix">
 <xs:annotation>
 <xs:documentation>
 The ipv6-prefix type represents an IPv6 address prefix.
 The prefix length is given by the number following the
 slash character and must be less than or equal 128.

 A prefix length value of n corresponds to an IP address
 mask which has n contiguous 1-bits from the most
 significant bit (MSB) and all other bits set to 0.

 The IPv6 address should have all bits that do not belong
 to the prefix set to zero.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})
 /\d+)|((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\
 .[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))/\d+)|(
 (([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::
)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*/\
 d+)|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4})
)*(::)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}
))*(([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-
 9]{1,3}))/\d+)"/>

Schoenwaelder Expires May 7, 2009 [Page 42]

Internet-Draft YANG-TYPES November 2008

 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="domain-name">
 <xs:annotation>
 <xs:documentation>
 The domain-name type represents a DNS domain name. The
 name SHOULD be fully qualified whenever possible.

 The description clause of objects using the domain-name
 type MUST describe how (and when) these names are
 resolved to IP addresses.

 Note that the resolution of a domain-name value may
 require to query multiple DNS records (e.g., A for IPv4
 and AAAA for IPv6). The order of the resolution process
 and which DNS record takes precedence depends on the
 configuration of the resolver.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="([a-zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9]\.)*[a
 -zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9]"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="host">
 <xs:annotation>
 <xs:documentation>
 The host type represents either an IP address or a DNS
 domain name.
 </xs:documentation>
 </xs:annotation>

 <xs:union>
 <xs:simpleType>
 <xs:restriction base="inet:ip-address">
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="inet:domain-name">
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

 <xs:simpleType name="uri">

Schoenwaelder Expires May 7, 2009 [Page 43]

Internet-Draft YANG-TYPES November 2008

 <xs:annotation>
 <xs:documentation>
 The uri type represents a Uniform Resource Identifier
 (URI) as defined by STD 66.

 Objects using the uri type must be in US-ASCII encoding,
 and MUST be normalized as described by RFC 3986 Sections
 6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
 percent-encoding is removed, and all case-insensitive
 characters are set to lowercase except for hexadecimal
 digits, which are normalized to uppercase as described in

Section 6.2.2.1.

 The purpose of this normalization is to help provide
 unique URIs. Note that this normalization is not
 sufficient to provide uniqueness. Two URIs that are
 textually distinct after this normalization may still be
 equivalent.

 Objects using the uri type may restrict the schemes that
 they permit. For example, 'data:' and 'urn:' schemes
 might not be appropriate.

 A zero-length URI is not a valid URI. This can be used to
 express 'URI absent' where required

 This type is in the value set and its semantics equivalent
 to the Uri textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

A.3. XSD of IEEE Specific Derived Types

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:yang:ieee-types"
 xmlns="urn:ietf:params:xml:ns:yang:ieee-types"
 xmlns:ieee="urn:ietf:params:xml:ns:yang:ieee-types"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2008-11-03"

https://datatracker.ietf.org/doc/html/rfc3986

Schoenwaelder Expires May 7, 2009 [Page 44]

Internet-Draft YANG-TYPES November 2008

 xml:lang="en"
 xmlns:yang="urn:ietf:params:xml:ns:yang:yang-types">

 <xs:import namespace="urn:ietf:params:xml:ns:yang:yang-types"
 schemaLocation="yang-types.xsd"/>

 <xs:annotation>
 <xs:documentation>
 This module contains a collection of generally useful derived
 YANG data types for IEEE 802 addresses and related things.

 Copyright (C) The IETF Trust (2008). This version of this
 YANG module is part of RFC XXXX; see the RFC itself for full
 legal notices.
 </xs:documentation>
 </xs:annotation>

 <!-- YANG typedefs -->

 <xs:simpleType name="mac-address">
 <xs:annotation>
 <xs:documentation>
 The mac-address type represents an 802 MAC address represented
 in the `canonical' order defined by IEEE 802.1a, i.e., as if it
 were transmitted least significant bit first, even though 802.5
 (in contrast to other 802.x protocols) requires MAC addresses
 to be transmitted most significant bit first.

 This type is in the value set and its semantics equivalent to
 the MacAddress textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="bridgeid">
 <xs:annotation>
 <xs:documentation>
 The bridgeid type represents identifiers that uniquely
 identify a bridge. Its first four hexadecimal digits
 contain a priority value followed by a colon. The
 remaining characters contain the MAC address used to
 refer to a bridge in a unique fashion (typically, the
 numerically smallest MAC address of all ports on the
 bridge).

Schoenwaelder Expires May 7, 2009 [Page 45]

Internet-Draft YANG-TYPES November 2008

 This type is in the value set and its semantics equivalent
 to the BridgeId textual convention of the SMIv2. However,
 since the BridgeId textual convention does not prescribe
 a lexical representation, the appearance might be different.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9a-fA-F]{4}(:[0-9a-fA-F]{2}){6}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="vlanid">
 <xs:annotation>
 <xs:documentation>
 The vlanid type uniquely identifies a VLAN. This is the
 12-bit VLAN-ID used in the VLAN Tag header. The range is
 defined by the referenced specification.

 This type is in the value set and its semantics equivalent to
 the VlanId textual convention of the SMIv2.
 </xs:documentation>
 </xs:annotation>

 <xs:restriction base="xs:unsignedShort">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="4094"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

Schoenwaelder Expires May 7, 2009 [Page 46]

Internet-Draft YANG-TYPES November 2008

Appendix B. RelaxNG Translations

 This appendix provides RelaxNG translations of the types defined in
 this document. This appendix is informative and not normative.

B.1. RelaxNG of Core YANG Derived Types

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace dc = "http://purl.org/dc/terms"
namespace dsrl = "http://purl.oclc.org/dsdl/dsrl"
namespace nm = "urn:ietf:params:xml:ns:netmod:dsdl-attrib:1"
namespace sch = "http://purl.oclc.org/dsdl/schematron"
namespace yang = "urn:ietf:params:xml:ns:yang:yang-types"

dc:creator [
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group"
]
dc:description [
 "This module contains a collection of generally useful derived\x{a}" ~
 "YANG data types.\x{a}" ~
 "\x{a}" ~
 "Copyright (C) The IETF Trust (2008). This version of this\x{a}" ~
 "YANG module is part of RFC XXXX; see the RFC itself for full\x{a}" ~
 "legal notices."
]
dc:issued ["2008-11-03"]
dc:source ["YANG module 'yang-types' (automatic translation)"]
dc:contributor [
 "WG Web: <http://tools.ietf.org/wg/netmod/>\x{a}" ~
 "WG List: <mailto:netmod@ietf.org>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Partain\x{a}" ~
 " <mailto:david.partain@ericsson.com>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Harrington\x{a}" ~
 " <mailto:ietfdbh@comcast.net>\x{a}" ~
 "\x{a}" ~
 "Editor: Juergen Schoenwaelder\x{a}" ~
 " <mailto:j.schoenwaelder@jacobs-university.de>"
]

The counter32 type represents a non-negative integer
which monotonically increases until it reaches a
maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
##
Counters have no defined `initial' value, and thus, a
single value of a counter has (in general) no information

http://tools.ietf.org/wg/netmod/

Schoenwaelder Expires May 7, 2009 [Page 47]

Internet-Draft YANG-TYPES November 2008

content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of an object instance using this type. If
such other times can occur, for example, the creation of
an object instance of type counter32 at times other than
re-initialization, then a corresponding object should be
defined, with an appropriate type, to indicate the last
discontinuity.
##
The counter32 type should not be used for configuration
objects. A default statement should not be used for
attributes with a type value of counter32.
##
This type is in the value set and its semantics equivalent
to the Counter32 type of the SMIv2.

See: RFC 2578: Structure of Management Information Version 2 (SMIv2)
counter32 = xsd:unsignedInt

The zero-based-counter32 type represents a counter32
which has the defined `initial' value zero.
##
Objects of this type will be set to zero(0) on creation
and will thereafter count appropriate events, wrapping
back to zero(0) when the value 2^32 is reached.
##
Provided that an application discovers the new object within
the minimum time to wrap it can use the initial value as a
delta since it last polled the table of which this object is
part. It is important for a management station to be aware
of this minimum time and the actual time between polls, and
to discard data if the actual time is too long or there is
no defined minimum time.
##
This type is in the value set and its semantics equivalent
to the ZeroBasedCounter32 textual convention of the SMIv2.

See: RFC 2021: Remote Network Monitoring Management Information
Base Version 2 using SMIv2
zero-based-counter32 = counter32 >> dsrl:default-content ["0"]

The counter64 type represents a non-negative integer
which monotonically increases until it reaches a
maximum value of 2^64-1 (18446744073709551615), when
it wraps around and starts increasing again from zero.
##
Counters have no defined `initial' value, and thus, a

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2021

Schoenwaelder Expires May 7, 2009 [Page 48]

Internet-Draft YANG-TYPES November 2008

single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of an object instance using this type. If
such other times can occur, for example, the creation of
an object instance of type counter64 at times other than
re-initialization, then a corresponding object should be
defined, with an appropriate type, to indicate the last
discontinuity.
##
The counter64 type should not be used for configuration
objects. A default statement should not be used for
attributes with a type value of counter64.
##
This type is in the value set and its semantics equivalent
to the Counter64 type of the SMIv2.

See: RFC 2578: Structure of Management Information Version 2 (SMIv2)
counter64 = xsd:unsignedLong

The zero-based-counter64 type represents a counter64 which
has the defined `initial' value zero.
##
Objects of this type will be set to zero(0) on creation
and will thereafter count appropriate events, wrapping
back to zero(0) when the value 2^64 is reached.
##
Provided that an application discovers the new object within
the minimum time to wrap it can use the initial value as a
delta since it last polled the table of which this object is
part. It is important for a management station to be aware
of this minimum time and the actual time between polls, and
to discard data if the actual time is too long or there is
no defined minimum time.
##
This type is in the value set and its semantics equivalent
to the ZeroBasedCounter64 textual convention of the SMIv2.

See: RFC 2856: Textual Conventions for Additional High Capacity
Data Types
zero-based-counter64 = counter64 >> dsrl:default-content ["0"]

The gauge32 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
can not be greater than 2^32-1 (4294967295 decimal), and
the minimum value can not be smaller than 0. The value of

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2856

Schoenwaelder Expires May 7, 2009 [Page 49]

Internet-Draft YANG-TYPES November 2008

a gauge32 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge32 also decreases (increases).
##
This type is in the value set and its semantics equivalent
to the Counter32 type of the SMIv2.

See: RFC 2578: Structure of Management Information Version 2 (SMIv2)
gauge32 = xsd:unsignedInt

The gauge64 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
can not be greater than 2^64-1 (18446744073709551615), and
the minimum value can not be smaller than 0. The value of
a gauge64 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge64 also decreases (increases).
##
This type is in the value set and its semantics equivalent
to the CounterBasedGauge64 SMIv2 textual convention defined
in RFC 2856

See: RFC 2856: Textual Conventions for Additional High Capacity
Data Types
gauge64 = xsd:unsignedLong

The object-identifier type represents administratively
assigned names in a registration-hierarchical-name tree.
##
Values of this type are denoted as a sequence of numerical
non-negative sub-identifier values. Each sub-identifier
value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
are separated by single dots and without any intermediate
white space.
##
Although the number of sub-identifiers is not limited,
module designers should realize that there may be
implementations that stick with the SMIv2 limit of 128
sub-identifiers.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2856
https://datatracker.ietf.org/doc/html/rfc2856

Schoenwaelder Expires May 7, 2009 [Page 50]

Internet-Draft YANG-TYPES November 2008

##
This type is a superset of the SMIv2 OBJECT IDENTIFIER type
since it is not restricted to 128 sub-identifiers.

See: ISO/IEC 9834-1: Information technology -- Open Systems
Interconnection -- Procedures for the operation of OSI
Registration Authorities: General procedures and top
arcs of the ASN.1 Object Identifier tree
object-identifier =
 xsd:string {
 pattern =
 "(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))(\.(0|([1-9]\d*)))*"
 }

This type represents object-identifiers restricted to 128
sub-identifiers.
##
This type is in the value set and its semantics equivalent to
the OBJECT IDENTIFIER type of the SMIv2.

See: RFC 2578: Structure of Management Information Version 2 (SMIv2)
object-identifier-128 = object-identifier

The date-and-time type is a profile of the ISO 8601
standard for representation of dates and times using the
Gregorian calendar. The format is most easily described
using the following ABFN (see RFC 3339):
##
date-fullyear = 4DIGIT
date-month = 2DIGIT ; 01-12
date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31
time-hour = 2DIGIT ; 00-23
time-minute = 2DIGIT ; 00-59
time-second = 2DIGIT ; 00-58, 00-59, 00-60
time-secfrac = "." 1*DIGIT
time-numoffset = ("+" / "-") time-hour ":" time-minute
time-offset = "Z" / time-numoffset
##
partial-time = time-hour ":" time-minute ":" time-second
[time-secfrac]
full-date = date-fullyear "-" date-month "-" date-mday
full-time = partial-time time-offset
##
date-time = full-date "T" full-time
##
The date-and-time type is compatible with the dateTime XML
schema type except that dateTime allows negative years
which are not allowed by RFC 3339.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Schoenwaelder Expires May 7, 2009 [Page 51]

Internet-Draft YANG-TYPES November 2008

##
This type is not equivalent to the DateAndTime textual
convention of the SMIv2 since RFC 3339 uses a different
separator between full-date and full-time and provides
higher resolution of time-secfrac.

See: RFC 3339: Date and Time on the Internet: Timestamps
RFC 2579: Textual Conventions for SMIv2
date-and-time =
 xsd:string {
 pattern =
 "\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|(\+|-)\d{2}:\d{2})"
 }

The timeticks type represents a non-negative integer which
represents the time, modulo 2^32 (4294967296 decimal), in
hundredths of a second between two epochs. When objects
are defined which use this type, the description of the
object identifies both of the reference epochs.
##
This type is in the value set and its semantics equivalent to
the TimeStamp textual convention of the SMIv2.

See: RFC 2579: Textual Conventions for SMIv2
timeticks = xsd:unsignedInt

The timestamp type represents the value of an associated
timeticks object at which a specific occurrence happened.
The specific occurrence must be defined in the description
of any object defined using this type. When the specific
occurrence occurred prior to the last time the associated
timeticks attribute was zero, then the timestamp value is
zero. Note that this requires all timestamp values to be
reset to zero when the value of the associated timeticks
attribute reaches 497+ days and wraps around to zero.
##
The associated timeticks object must be specified
in the description of any object using this type.
##
This type is in the value set and its semantics equivalent to
the TimeStamp textual convention of the SMIv2.

See: RFC 2579: Textual Conventions for SMIv2
timestamp = timeticks

Represents media- or physical-level addresses represented
as a sequence octets, each octet represented by two hexadecimal
numbers. Octets are separated by colons.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579

Schoenwaelder Expires May 7, 2009 [Page 52]

Internet-Draft YANG-TYPES November 2008

##
This type is in the value set and its semantics equivalent to
the PhysAddress textual convention of the SMIv2.

See: RFC 2579: Textual Conventions for SMIv2
phys-address =
 xsd:string { pattern = "([0-9a0-fA-F]{2}(:[0-9a0-fA-F]{2})*)?" }

B.2. RelaxNG of Internet Specific Derived Types

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace dc = "http://purl.org/dc/terms"
namespace dsrl = "http://purl.oclc.org/dsdl/dsrl"
namespace inet = "urn:ietf:params:xml:ns:yang:inet-types"
namespace nm = "urn:ietf:params:xml:ns:netmod:dsdl-attrib:1"
namespace sch = "http://purl.oclc.org/dsdl/schematron"

dc:creator [
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group"
]
dc:description [
 "This module contains a collection of generally useful derived\x{a}" ~
 "YANG data types for Internet addresses and related things.\x{a}" ~
 "\x{a}" ~
 "Copyright (C) The IETF Trust (2008). This version of this\x{a}" ~
 "YANG module is part of RFC XXXX; see the RFC itself for full\x{a}" ~
 "legal notices."
]
dc:issued ["2008-11-03"]
dc:source ["YANG module 'inet-types' (automatic translation)"]
dc:contributor [
 "WG Web: <http://tools.ietf.org/wg/netmod/>\x{a}" ~
 "WG List: <mailto:netmod@ietf.org>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Partain\x{a}" ~
 " <mailto:david.partain@ericsson.com>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Harrington\x{a}" ~
 " <mailto:ietfdbh@comcast.net>\x{a}" ~
 "\x{a}" ~
 "Editor: Juergen Schoenwaelder\x{a}" ~
 " <mailto:j.schoenwaelder@jacobs-university.de>"
]

This value represents the version of the IP protocol.
##
This type is in the value set and its semantics equivalent
to the InetVersion textual convention of the SMIv2. However,

https://datatracker.ietf.org/doc/html/rfc2579
http://tools.ietf.org/wg/netmod/

Schoenwaelder Expires May 7, 2009 [Page 53]

Internet-Draft YANG-TYPES November 2008

the lexical appearance is different from the InetVersion
textual convention.

See: RFC 791: Internet Protocol
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
RFC 4001: Textual Conventions for Internet Network Addresses
ip-version = "unknown" | "ipv4" | "ipv6"

The dscp type represents a Differentiated Services Code-Point
that may be used for marking packets in a traffic stream.
##
This type is in the value set and its semantics equivalent
to the Dscp textual convention of the SMIv2.

See: RFC 3289: Management Information Base for the Differentiated
Services Architecture
RFC 2474: Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers
RFC 2780: IANA Allocation Guidelines For Values In
the Internet Protocol and Related Headers
dscp = xsd:unsignedByte { minInclusive = "0" maxInclusive = "63" }

The flow-label type represents flow identifier or Flow Label
in an IPv6 packet header that may be used to discriminate
traffic flows.
##
This type is in the value set and its semantics equivalent
to the IPv6FlowLabel textual convention of the SMIv2.

See: RFC 3595: Textual Conventions for IPv6 Flow Label
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
flow-label =
 xsd:unsignedInt { minInclusive = "0" maxInclusive = "1048575" }

The port-number type represents a 16-bit port number of an
Internet transport layer protocol such as UDP, TCP, DCCP or
SCTP. Port numbers are assigned by IANA. A current list of
all assignments is available from <http://www.iana.org/>.
##
Note that the value zero is not a valid port number. A union
type might be used in situations where the value zero is
meaningful.
##
This type is in the value set and its semantics equivalent
to the InetPortNumber textual convention of the SMIv2.

See: RFC 768: User Datagram Protocol
RFC 793: Transmission Control Protocol

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/rfc3289
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc3595
https://datatracker.ietf.org/doc/html/rfc2460
http://www.iana.org/

Schoenwaelder Expires May 7, 2009 [Page 54]

Internet-Draft YANG-TYPES November 2008

RFC 2960: Stream Control Transmission Protocol
RFC 4340: Datagram Congestion Control Protocol (DCCP)
RFC 4001: Textual Conventions for Internet Network Addresses
port-number =
 xsd:unsignedShort { minInclusive = "1" maxInclusive = "65535" }

The as-number type represents autonomous system numbers
which identify an Autonomous System (AS). An AS is a set
of routers under a single technical administration, using
an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway
protocol to route packets to other ASs'. IANA maintains
the AS number space and has delegated large parts to the
regional registries.
##
Autonomous system numbers are currently limited to 16 bits
(0..65535). There is however work in progress to enlarge
the autonomous system number space to 32 bits. This
textual convention therefore uses an uint32 base type
without a range restriction in order to support a larger
autonomous system number space.
##
This type is in the value set and its semantics equivalent
to the InetAutonomousSystemNumber textual convention of
the SMIv2.

See: RFC 1930: Guidelines for creation, selection, and registration
of an Autonomous System (AS)
RFC 4271: A Border Gateway Protocol 4 (BGP-4)
RFC 4001: Textual Conventions for Internet Network Addresses
autonomous-system-number = xsd:unsignedInt

The ip-address type represents an IP address and is IP
version neutral. The format of the textual representations
implies the IP version.
ip-address = ipv4-address | ipv6-address

The ipv4-address type represents an IPv4 address in
dotted-quad notation. The IPv4 address may include a zone
index, separated by a % sign.
##
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.
ipv4-address =
 xsd:string {

https://datatracker.ietf.org/doc/html/rfc2960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/rfc1930
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4001

Schoenwaelder Expires May 7, 2009 [Page 55]

Internet-Draft YANG-TYPES November 2008

 pattern =
 "((0|(1[0-9]{0,2})|(2(([0-4][0-9]?)|(5[0-5]?)|([6-9]?)"
 ~ "))|([3-9][0-9]?))\.){3}(0|(1[0-9]{0,2})|(2(([0-4][0-9]?)|(5["
 ~ "0-5]?)|([6-9]?)))|([3-9][0-9]?))(%[\p{N}\p{L}]+)?"
 }

The ipv6-address type represents an IPv6 address in full,
mixed, shortened and shortened mixed notation. The IPv6
address may include a zone index, separated by a % sign.
##
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.

See: RFC 4007: IPv6 Scoped Address Architecture
ipv6-address =
 xsd:string {
 pattern =
 "((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})(%[\p{N}\p"
 ~ "{L}]+)?)|((([0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\.[0-9]{1,3}\."
 ~ "[0-9]{1,3}\.[0-9]{1,3}))(%[\p{N}\p{L}]+)?)|((([0-9a-fA-F]{1,"
 ~ "4}:)*([0-9a-fA-F]{1,4}))*(::)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-"
 ~ "F]{1,4}))*(%[\p{N}\p{L}]+)?)|((([0-9a-fA-F]{1,4}:)*([0-9a-fA"
 ~ "-F]{1,4}))*(::)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(([0"
 ~ "-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}))(%[\p{N}\p{L}]"
 ~ "+)?)"
 }

The ip-prefix type represents an IP prefix and is IP
version neutral. The format of the textual representations
implies the IP version.
ip-prefix = ipv4-prefix | ipv6-prefix

The ipv4-prefix type represents an IPv4 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 32.
##
A prefix length value of n corresponds to an IP address
mask which has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
##
The IPv4 address represented in dotted quad notation
should have all bits that do not belong to the prefix
set to zero.
ipv4-prefix =
 xsd:string {

https://datatracker.ietf.org/doc/html/rfc4007

Schoenwaelder Expires May 7, 2009 [Page 56]

Internet-Draft YANG-TYPES November 2008

 pattern =
 "(([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}([0-1]?"
 ~ "[0-9]?[0-9]|2[0-4][0-9]|25[0-5])/\d+"
 }

The ipv6-prefix type represents an IPv6 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal 128.
##
A prefix length value of n corresponds to an IP address
mask which has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
##
The IPv6 address should have all bits that do not belong
to the prefix set to zero.
ipv6-prefix =
 xsd:string {
 pattern =
 "((([0-9a-fA-F]{1,4}:){7})([0-9a-fA-F]{1,4})/\d+)|(((["
 ~ "0-9a-fA-F]{1,4}:){6})(([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.["
 ~ "0-9]{1,3}))/\d+)|((([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*("
 ~ "::)(([0-9a-fA-F]{1,4}:)*([0-9a-fA-F]{1,4}))*/\d+)|((([0-9a-f"
 ~ "A-F]{1,4}:)*([0-9a-fA-F]{1,4}))*(::)(([0-9a-fA-F]{1,4}:)*([0"
 ~ "-9a-fA-F]{1,4}))*(([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]"
 ~ "{1,3}))/\d+)"
 }

The domain-name type represents a DNS domain name. The
name SHOULD be fully qualified whenever possible.
##
The description clause of objects using the domain-name
type MUST describe how (and when) these names are
resolved to IP addresses.
##
Note that the resolution of a domain-name value may
require to query multiple DNS records (e.g., A for IPv4
and AAAA for IPv6). The order of the resolution process
and which DNS record takes precedence depends on the
configuration of the resolver.

See: RFC 1034: Domain Names - Concepts and Facilities
RFC 1123: Requirements for Internet Hosts -- Application
and Support
domain-name =
 xsd:string {
 pattern =
 "([a-zA-Z0-9][a-zA-Z0-9\-]*[a-zA-Z0-9]\.)*[a-zA-Z0-9]["
 ~ "a-zA-Z0-9\-]*[a-zA-Z0-9]"

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123

Schoenwaelder Expires May 7, 2009 [Page 57]

Internet-Draft YANG-TYPES November 2008

 }

The host type represents either an IP address or a DNS
domain name.
host = ip-address | domain-name

The uri type represents a Uniform Resource Identifier
(URI) as defined by STD 66.
##
Objects using the uri type must be in US-ASCII encoding,
and MUST be normalized as described by RFC 3986 Sections
6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
percent-encoding is removed, and all case-insensitive
characters are set to lowercase except for hexadecimal
digits, which are normalized to uppercase as described in
Section 6.2.2.1.
##
The purpose of this normalization is to help provide
unique URIs. Note that this normalization is not
sufficient to provide uniqueness. Two URIs that are
textually distinct after this normalization may still be
equivalent.
##
Objects using the uri type may restrict the schemes that
they permit. For example, 'data:' and 'urn:' schemes
might not be appropriate.
##
A zero-length URI is not a valid URI. This can be used to
express 'URI absent' where required
##
This type is in the value set and its semantics equivalent
to the Uri textual convention of the SMIv2.

See: RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs,
and Uniform Resource Names (URNs): Clarifications
and Recommendations
RFC 5017: MIB Textual Conventions for Uniform Resource
Identifiers (URIs)
uri = xsd:string

B.3. RelaxNG of IEEE Specific Derived Types

namespace a = "http://relaxng.org/ns/compatibility/annotations/1.0"
namespace dc = "http://purl.org/dc/terms"
namespace dsrl = "http://purl.oclc.org/dsdl/dsrl"
namespace ieee = "urn:ietf:params:xml:ns:yang:ieee-types"

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3305
https://datatracker.ietf.org/doc/html/rfc5017

Schoenwaelder Expires May 7, 2009 [Page 58]

Internet-Draft YANG-TYPES November 2008

namespace nm = "urn:ietf:params:xml:ns:netmod:dsdl-attrib:1"
namespace sch = "http://purl.oclc.org/dsdl/schematron"

dc:creator [
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group"
]
dc:description [
 "This module contains a collection of generally useful derived\x{a}" ~
 "YANG data types for IEEE 802 addresses and related things.\x{a}" ~
 "\x{a}" ~
 "Copyright (C) The IETF Trust (2008). This version of this\x{a}" ~
 "YANG module is part of RFC XXXX; see the RFC itself for full\x{a}" ~
 "legal notices."
]
dc:issued ["2008-11-03"]
dc:source ["YANG module 'ieee-types' (automatic translation)"]
dc:contributor [
 "WG Web: <http://tools.ietf.org/wg/netmod/>\x{a}" ~
 "WG List: <mailto:netmod@ietf.org>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Partain\x{a}" ~
 " <mailto:david.partain@ericsson.com>\x{a}" ~
 "\x{a}" ~
 "WG Chair: David Harrington\x{a}" ~
 " <mailto:ietfdbh@comcast.net>\x{a}" ~
 "\x{a}" ~
 "Editor: Juergen Schoenwaelder\x{a}" ~
 " <mailto:j.schoenwaelder@jacobs-university.de>"
]

The mac-address type represents an 802 MAC address represented
in the `canonical' order defined by IEEE 802.1a, i.e., as if it
were transmitted least significant bit first, even though 802.5
(in contrast to other 802.x protocols) requires MAC addresses
to be transmitted most significant bit first.
##
This type is in the value set and its semantics equivalent to
the MacAddress textual convention of the SMIv2.

See: RFC 2579: Textual Conventions for SMIv2
mac-address =
 xsd:string { pattern = "[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}" }

The bridgeid type represents identifiers that uniquely
identify a bridge. Its first four hexadecimal digits
contain a priority value followed by a colon. The
remaining characters contain the MAC address used to
refer to a bridge in a unique fashion (typically, the

http://tools.ietf.org/wg/netmod/
https://datatracker.ietf.org/doc/html/rfc2579

Schoenwaelder Expires May 7, 2009 [Page 59]

Internet-Draft YANG-TYPES November 2008

numerically smallest MAC address of all ports on the
bridge).
##
This type is in the value set and its semantics equivalent
to the BridgeId textual convention of the SMIv2. However,
since the BridgeId textual convention does not prescribe
a lexical representation, the appearance might be different.

See: RFC 4188: Definitions of Managed Objects for Bridges
bridgeid = xsd:string { pattern = "[0-9a-fA-F]{4}(:[0-9a-fA-F]{2}){6}" }

The vlanid type uniquely identifies a VLAN. This is the
12-bit VLAN-ID used in the VLAN Tag header. The range is
defined by the referenced specification.
##
This type is in the value set and its semantics equivalent to
the VlanId textual convention of the SMIv2.

See: IEEE Std 802.1Q 2003 Edition: Virtual Bridged Local
Area Networks
RFC 4363: Definitions of Managed Objects for Bridges with
Traffic Classes, Multicast Filtering, and Virtual
LAN Extensions
vlanid = xsd:unsignedShort { minInclusive = "1" maxInclusive = "4094" }

https://datatracker.ietf.org/doc/html/rfc4188
https://datatracker.ietf.org/doc/html/rfc4363

Schoenwaelder Expires May 7, 2009 [Page 60]

Internet-Draft YANG-TYPES November 2008

Author's Address

 Juergen Schoenwaelder (editor)
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Schoenwaelder Expires May 7, 2009 [Page 61]

Internet-Draft YANG-TYPES November 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Schoenwaelder Expires May 7, 2009 [Page 62]

