
Network Working Group J. Clarke, Ed.
Internet-Draft Cisco Systems, Inc.
Intended status: Informational July 3, 2019
Expires: January 4, 2020

YANG Module Versioning Requirements
draft-ietf-netmod-yang-versioning-reqs-01

Abstract

 This document describes the problems that can arise because of the
 YANG language module update rules, that require all updates to YANG
 module preserve strict backwards compatibility. It also defines the
 requirements on any solution designed to solve the stated problems.
 This document does not consider possible solutions, nor endorse any
 particular solution.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Clarke Expires January 4, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft YANG Versioning Requirements July 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 2
2.1. Striving for model perfection 3
2.2. Some YANG Modules Are Not Backwards-Compatible 3
2.3. Non-Backwards-Compatible Errors 4

 2.4. No way to easily decide whether a change is Backwards-
 Compatible . 4
 2.5. No good way to specify which module revision to import . 5

2.6. Early Warning about Removal 6
2.7. Clear Indication of Node Support 6

3. Terminology and Conventions 7
4. The Problem Statement . 7
5. Requirements of a YANG Versioning Solution 9
6. Contributors . 11
7. Acknowledgments . 11
8. Security Considerations 11
9. IANA Considerations . 12
10. References . 12
10.1. Normative References 12
10.2. Informative References 12

 Author's Address . 12

1. Introduction

 This requirements document initially considers some of the existing
 YANG module update rules, then describes the problems that arise due
 to those rules embracing strict backwards compatibility, and finally
 defines requirements on any solution that may be designed to solve
 these problems by providing an alternative YANG versioning strategy.

2. Background

 The YANG data modeling language [RFC7950] specifies strict rules for
 updating YANG modules (see section 11 "Updating a Module"). Citing a
 few of the relevant rules:

 1. "As experience is gained with a module, it may be desirable to
 revise that module. However, changes to published modules are
 not allowed if they have any potential to cause interoperability
 problems between a client using an original specification and a
 server using an updated specification."

https://datatracker.ietf.org/doc/html/rfc7950

Clarke Expires January 4, 2020 [Page 2]

Internet-Draft YANG Versioning Requirements July 2019

 2. "Note that definitions contained in a module are available to be
 imported by any other module and are referenced in "import"
 statements via the module name. Thus, a module name MUST NOT be
 changed. Furthermore, the "namespace" statement MUST NOT be
 changed, since all XML elements are qualified by the namespace."

 3. "Otherwise, if the semantics of any previous definition are
 changed (i.e., if a non-editorial change is made to any
 definition other than those specifically allowed above), then
 this MUST be achieved by a new definition with a new identifier."

 4. "deprecated indicates an obsolete definition, but it permits new/
 continued implementation in order to foster interoperability with
 older/existing implementations."

 The rules described above, along with other similar rules, causes
 various problems, as described in the following sections:

2.1. Striving for model perfection

 The points made above lead to the logical conclusion that the
 standardized YANG modules have to be perfect on day one (at least the
 structure and meaning), which in turn might explain why IETF YANG
 modules take so long to standardize. Shooting for perfection is
 obviously a noble goal, but if the perfect standard comes too late,
 it doesn't help the industry.

2.2. Some YANG Modules Are Not Backwards-Compatible

 As we learn from our mistakes, we're going to face more and more non-
 backwards-compatible YANG modules. An example is the YANG data model
 for L3VPN service delivery [RFC8049], which, based on implementation
 experience, has been updated in a non-backwards-compatible way by
 [RFC8299].

 While Standards Development Organization (SDO) YANG modules are
 obviously better for the industry, we must recognize that many YANG
 modules are actually generated YANG modules (for example, from
 internal databases), which is sometimes the case for vendor modules
 [RFC8199]. From time to time, the new YANG modules are not
 backwards-compatible.

 Old module parts that are no longer needed, no longer supported, or
 are not used by consumers need to be removed from modules. It is
 often hard to decide which parts are no longer needed/used; still the
 need and practice of removing old parts exist. While it is rare in
 standard modules it is more common in vendor YANG modules where the
 usage of modules is more controlled.

https://datatracker.ietf.org/doc/html/rfc8049
https://datatracker.ietf.org/doc/html/rfc8299
https://datatracker.ietf.org/doc/html/rfc8199

Clarke Expires January 4, 2020 [Page 3]

Internet-Draft YANG Versioning Requirements July 2019

 The problems described in Section 2.7 may also result in incompatible
 changes.

 In such cases, it would be better to indicate how backwards-
 compatible a given YANG module actually is.

 As modules are sometimes updated in an incompatible way the current
 assumption that once a YANG module is defined all further revisions
 can be freely used as they are compatible is not valid.

2.3. Non-Backwards-Compatible Errors

 Sometimes small errors force us to make non-backwards-compatible
 updates. As an example imagine that we have a string with a complex
 pattern (e.g., an IP address). Let's assume the initial pattern
 incorrectly allows IP addresses to start with 355. In the next
 version this is corrected to disallow addresses starting with 355.
 Formally this is a non-backwards-compatible change as the value space
 of the string is decreased. In reality an IP address and the
 implementation behind it was never capable of handling an address
 starting with 355. So practically this is a backwards-compatible
 change, just like a correction of the description statement. Current
 YANG rules are ambiguous as to whether non-backwards-compatible bug
 fixes are allowed without also requiring a module name change.

2.4. No way to easily decide whether a change is Backwards-Compatible

 A management system, SDN controller, or any other user of a module
 should be capable of easily determining the compatibility between two
 module versions. Higher level logic for a network function,
 something that cannot be implemented in a purely model driven way, is
 always dependent on a specific version of the module. If the client
 finds that the module has been updated on the network node, it has to
 decide if it tries to handle it as it handled the previous version of
 the model or if it just stops, to avoid problems. To make this
 decision the client needs to know if the module was updated in a
 backwards-compatible way or not.

 This is not possible to decide today because of the following:

 o It is sometimes necessary to change the semantic behavior of a
 data node, action or rpc while the YANG definition does not change
 (with the possible exception of the description statement). In
 such a case it is impossible to determine whether the change is
 backwards-compatible just by looking at the YANG statements. It's
 only the human model designer who can decide.

Clarke Expires January 4, 2020 [Page 4]

Internet-Draft YANG Versioning Requirements July 2019

 o Problems with the deprecated and obsolete status statement,
Section 2.7

 o YANG module authors might decide to violate YANG 1.1 update rules
 for some of the reasons above.

 Finding status changes or violations of update rules need a line-by-
 line comparison of the old and new modules is a tedious task.

2.5. No good way to specify which module revision to import

 If a module (MOD-A) is imported by another one (MOD-B) the importer
 may specify which revision must be imported. Even if MOD-A is
 updated in a backwards-compatible way not all revisions will be
 suitable, e.g., a new MOD-B might need the newest MOD-A. However,
 both specifying or omitting the revision date for import leads to
 problems.

 If the import by revision-date is specified

 o If corrections are made to MOD-A these would not have any effect
 as the import's revision date would still point to the un-
 corrected earlier YANG module revision.

 o If MOD-A is updated in a backwards-compatible way because another
 importer (MOD-C) needs some functionality, the new MOD-A could be
 used by MOD-B, but specifying the exact import revision-date
 prevents this. This will force the implementers to import two
 different revisions of MOD-A, forcing them to maintain old MOD-A
 revisions unnecessarily.

 o If multiple modules import different revisions of MOD-A the human
 user will need to understand the subtle differences between the
 different revisions. Small differences would easily lead to
 operator mistakes as the operator will rarely check the
 documentation.

 o Tooling/SW is often not prepared to handle multiple revisions of
 the same YANG module.

 If the import revision-date is not specified

 o any revision of MOD-A may be used including unsuitable ones.
 Older revisions may be lacking functionality MOD-B needs. Newer
 MOD-A revisions may obsolete definitions used by MOD-B in which
 case these must not be used by MOD-B anymore.

Clarke Expires January 4, 2020 [Page 5]

Internet-Draft YANG Versioning Requirements July 2019

 o As it is not specified which revisions of MOD-A are suitable for
 MOD-B. The problem has to be solved on a case by case basis
 studying all the details of MOD-A and MOD-B which is considerable
 work.

2.6. Early Warning about Removal

 If a schema part is considered old/bad we need to be able to give
 advance warning that it will be removed. As this is an advance
 warning the part must still be present and usable in the current
 revision; however, it will be removed in one of the next revisions.
 The deprecated statement cannot be reliably used for this purpose
 both because deprecated nodes may not be implemented and also there
 is no mandate that text be provided explaining the deprecation.

 We need the advance warning to allow users of the module time to
 plan/execute migration away from the deprecated functionality.
 Deprecation should be accompanied by information whether the
 functionality will just disappear or that there is an alternative,
 possibly more advanced solution that should be used.

 Vendors use such warnings often, but the NMDA related redesign of
 IETF modules is also an example where it would be useful for IETF.
 As another example, see the usage of deprecated in the Java
 programming language.

2.7. Clear Indication of Node Support

 The current definition of deprecated and obsolete in [RFC7950] (as
 quoted below) is problematic and should be corrected.

 o "deprecated" indicates an obsolete definition, but it permits new/
 continued implementation in order to foster interoperability with
 older/existing implementations.

 o "obsolete" means that the definition is obsolete and SHOULD NOT be
 implemented and/or can be removed from implementations.

 YANG is considered an interface contract between the server and the
 client. The current definitions of deprecated and obsolete mean that
 a schema node that is either deprecated or obsolete may or may not be
 implemented. The client has no way to find out which is the case
 except for by trying to write or read data at the leaf in question.
 This probing would need to be done for each separate data-node, which
 is not a trivial thing to do. This "may or may not" is unacceptable
 in a contract. In effect, this works as if there would be an if-
 feature statement on each deprecated schema node where the server

https://datatracker.ietf.org/doc/html/rfc7950

Clarke Expires January 4, 2020 [Page 6]

Internet-Draft YANG Versioning Requirements July 2019

 does not advertise whether the feature is supported or not. Why is
 it not advertised?

3. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In addition, this document uses the following terminology:

 o YANG module revision: An instance of a YANG module, with no
 implied ordering or backwards compatibility between different
 revisions of the same module."

 o YANG module version: A YANG module revision, but also with an
 implied partial ordering relationship between other versions of
 the same module. Each module version must be uniquely
 identifiable.

 o Non-backwards-compatible (NBC): In the context of this document,
 the term 'non-backwards-compatible' refers to a change or set of
 changes between two YANG module revisions that do not adhere to
 the list of allowable changes specified in Section 11 "Updating a
 Module" of [RFC7950], with the following additional clarification:

 * Any addition of, or change to, a "status" statement that allows
 a server to remove support for a schema node is considered a
 non-backwards-compatible change

4. The Problem Statement

 Considering the issues described in the background, the problem
 definition can be summarized as follows.

 Development of data models for a large collection of communication
 protocols and system components is difficult and typically only
 manageable with an iterative development process. Agile development
 approaches advocate evolutionary development, early delivery, and
 continual improvement. They are designed to support rapid and
 flexible response to change. Agile development has been found to be
 very successful in a world where the objects being modeled undergo
 constant changes.

 The current module versioning scheme relies on the fundamental idea
 that a definition, once published, never changes its semantics. As a
 consequence, if a new definition is needed with different non-
 backwards-compatible semantics, then a new definition must be created

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950

Clarke Expires January 4, 2020 [Page 7]

Internet-Draft YANG Versioning Requirements July 2019

 to replace the old definition. The advantage of this versioning
 scheme is that a definition identified by a module name and a path
 has fixed semantics that never change. (The details are a bit more
 nuanced but we simplify things here a bit in order to get the
 problems worked out clearly.)

 There are two main disadvantages of the current YANG versioning
 scheme:

 o Any non-backwards-compatible change of a definition requires
 either a new module name or a new path. This has been found
 costly to support in implementations, in particular on the client
 side.

 o Since non-backwards-compatible changes require either a new module
 name or a new path, such changes will impact other modules that
 import definitions. In fact, with the current module versioning
 scheme other modules have to opt-in in order to use the new
 version. This essentially leads to a ripple effect where a non-
 backwards-compatible change of a core module causes updates on a
 potentially large number of dependent modules.

 Other problems experienced with the current YANG versioning scheme
 are the following:

 o YANG has a mechanism to mark definitions deprecated but it leaves
 it open whether implementations are expected to implement
 deprecated definitions and there is no way (other than trial and
 error) for a client to find out whether deprecated definitions are
 supported by a given implementation.

 o YANG does not have a robust mechanism to document which data
 definitions have changed and to provide guidance how
 implementations should deal with the change. While it is possible
 to have this described in general description statements, having
 these details embedded in general description statements does not
 make this information accessible to tools.

 o YANG data models often do not exist in isolation and they interact
 with other software systems or data models that often do allow
 (controlled) non-backwards-compatible changes. In some cases,
 YANG models are mechanically derived from other data models that
 do allow (controlled) non-backwards-compatible changes. In such
 situations, a robust mapping to YANG requires to have version
 numbers exposed as part of the module name or a path definition,
 which has been found to be expensive on the client side (see
 above).

Clarke Expires January 4, 2020 [Page 8]

Internet-Draft YANG Versioning Requirements July 2019

 Given the need to support agile development processes and the
 disadvantages and problems of the current YANG versioning scheme
 described above, it is necessary to develop requirements and
 solutions for a future YANG versioning scheme that better supports
 agile development processes, whilst retaining the ability for servers
 to handle clients using older versions of YANG modules.

5. Requirements of a YANG Versioning Solution

 The following is a list of requirements that a solution to the
 problems mentioned above MUST or SHOULD have. The list is grouped by
 similar requirements but is not presented in a set priority order.

 1. Requirements related to making non-backwards-compatible updates
 to modules:

 1.1 A mechanism is REQUIRED to update a module in a non-
 backwards-compatible way without forcing all modules with
 import dependencies on the updated module from being updated
 at the same time (e.g. to change its import to use a new
 module name).

 1.2 Non-backwards-compatible updates of a module MUST not impact
 clients that only access data nodes of the module that have
 either not been updated or have been updated in backwards-
 compatible ways.

 1.3 A refined form of YANG's 'import' statement MUST be provided
 that is more restrictive than "import any revision" and less
 restrictive than "import a specific revision". Once non-
 backwards-compatible changes to modules are allowed, the
 refined import statement is used to express the correct
 dependency between modules.

 1.4 The solution MUST be able to express when non-backwards-
 compatible changes have occurred between two revisions of a
 given YANG module.

 2. Requirements related to identifying changes between different
 module revisions:

 2.1 Readers of modules, and tools that use modules, MUST be able
 to determine whether changes between two revisions of a
 module constitute a backwards-compatible or non-backwards-
 compatible version change. In addition, it MAY be helpful
 to identify whether changes represent bug fixes, new
 functionality, or both.

Clarke Expires January 4, 2020 [Page 9]

Internet-Draft YANG Versioning Requirements July 2019

 2.2 A mechanism SHOULD be defined to determine whether data
 nodes between two arbitrary YANG module revisions have (i)
 not changed, (ii) changed in a backwards-compatible way,
 (iii) changed in a non-backwards-compatible way.

 3. Requirements related to supporting existing clients in a
 backwards-compatible way:

 3.1 The solution MUST provide a mechanism to allow servers to
 support existing clients in a backwards-compatible way.

 3.2 The solution MUST provide a mechanism to support clients
 that expect an older version of a given module when the
 current version has had non-backwards-compatible changes.

 3.3 Clients are expected to be able to handle unexpected
 instance data resulting from backwards-compatible changes.

 4. Requirements related to managing and documenting the life cycle
 of data nodes:

 4.1 A mechanism is REQUIRED to allow a client to determine
 whether deprecated nodes are implemented by the server.

 4.2 If a data node is deprecated or obsolete then it MUST be
 possible to document in the YANG module what alternatives
 exist, the reason for the status change, or any other status
 related information.

 4.3 A mechanism is REQUIRED to indicate that certain definitions
 in a YANG module will become status obsolete in future
 revisions but definitions marked as such MUST still be
 implemented by compliant servers.

 5. Requirements related to documentation and education:

 5.1 The solution MUST provide guidance to model authors and
 clients on how to use the new YANG versioning scheme.

 5.2 The solution is REQUIRED to describe how to transition from
 the existing YANG 1.0/1.1 versioning scheme to the new
 scheme.

 5.3 The solution MUST describe how the versioning scheme affects
 the interpretation of instance data and references to
 instance data, for which the schema definition has been
 updated in a non-backwards-compatible way.

Clarke Expires January 4, 2020 [Page 10]

Internet-Draft YANG Versioning Requirements July 2019

6. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The following people are members of that
 design team and have contributed to defining the problem and
 specifying the requirements:

 o Balazs Lengyel

 o Benoit Claise

 o Ebben Aries

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

 o Rob Wilton

7. Acknowledgments

 The design team would like to thank Christian Hopps and Vladimir
 Vassilev for their feedback and perspectives in shaping and fine
 tuning the versioning requirements.

 One of the inspirations for solving the YANG module versioning comes
 from OpenConfig. The authors would like to thank Anees Shaikh and
 Rob Shakir for their helpful input.

8. Security Considerations

 The document does not define any new protocol or data model. There
 is no security impact.

Clarke Expires January 4, 2020 [Page 11]

Internet-Draft YANG Versioning Requirements July 2019

9. IANA Considerations

 None

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

10.2. Informative References

 [RFC8049] Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC 8049,
 DOI 10.17487/RFC8049, February 2017,
 <https://www.rfc-editor.org/info/rfc8049>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

 [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

Author's Address

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America

 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc8049
https://www.rfc-editor.org/info/rfc8049
https://datatracker.ietf.org/doc/html/rfc8199
https://www.rfc-editor.org/info/rfc8199
https://datatracker.ietf.org/doc/html/rfc8299
https://www.rfc-editor.org/info/rfc8299

Clarke Expires January 4, 2020 [Page 12]

