
Network Working Group Marius Aamodt Eriksen
Internet Draft J. Bruce Fields
Document: draft-ietf-nfsv4-acl-mapping-03.txt February 2005

Mapping Between NFSv4 and Posix Draft ACLs

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 or will be disclosed, and any of which I become aware will be dis-
 closed, in accordance with RFC 3668.

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference mate-
 rial or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 "Copyright (C) The Internet Society (2002-2004). All Rights
 Reserved."

Abstract

 NFS version 4 [rfc3530] (NFSv4) specifies a flavor of Access Control
 Lists (ACLs) resembling Windows NT ACLs. A number of operating sys-
 tems use a different flavor of ACL based on a withdrawn POSIX draft.
 NFSv4 clients and servers on such operating systems may wish to map

Expires: August 2005 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-acl-mapping-03.txt
https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3530

Mapping NFSv4 ACLs February 2005

 between NFSv4 ACLs and their native ACLs. To this end, we describe a
 mapping from POSIX draft ACLs to a subset of NFSv4 ACLs.

Expires: August 2005 [Page 2]

Mapping NFSv4 ACLs February 2005

Table of Contents

1. Introduction . 4
2. NFSv4 ACLs . 4
3. POSIX ACLs . 5
4. Mapping POSIX ACLs to NFSv4 ACLs 6
5. Using the Mapping in NFSv4 Implementations 9
6. Security Considerations 11
7. Bibliography . 12
8. Author's Address . 13
9. Copyright . 13

Expires: August 2005 [Page 3]

Mapping NFSv4 ACLs February 2005

1. Introduction

 Access Control Lists (ACLs) are used to specify fine-grained access
 rights to file system objects. An ACL is a list of Access Control
 Entries (ACEs), each specifying an entity (such as a user) and some
 level of access for that entity.

 In the following sections we describe two ACL models: NFSv4 ACLs, and
 ACLs based on a withdrawn POSIX draft. We will refer to the latter
 as "POSIX ACLs". Since NFSv4 ACLs are more fine-grained than POSIX
 ACLs, it is not possible in general to map an arbitrary NFSv4 ACL to
 a POSIX ACL with the same semantics. However, it is possible to map
 any POSIX ACL to a NFSv4 ACL with nearly identical semantics. We
 will describe such a mapping, and discuss its use in NFSv4 clients
 and servers.

2. NFSv4 ACLs

 An NFSv4 ACL is an ordered sequence of ACEs, each having an entity, a
 type, some flags, and an access mask.

 The entity may be the name of a user or group, or may be one of a
 small set of special entities. Among the special entities are
 "OWNER@" (the current owner of the file), "GROUP@" (the group associ-
 ated with the file), and "EVERYONE@".

 The type may be ALLOW or DENY. (AUDIT or ALARM are also allowed, but
 they are not relevant to our discussion).

 The access mask has 14 separate bits, including bits to control read,
 write, execute, append, ACL modification, file owner modification,
 etc.; consult [rfc3530] for the full list.

 Of the flags, four are relevant here. The ACE4_IDENTIFIER_GROUP flag
 is used to indicate that the entity name is the name of a group. The
 other three concern inheritance: ACE4_DIRECTORY_INHERIT_ACE indicates
 that the ACE should be added to new subdirectories of the directory;
 ACE4_FILE_INHERIT_ACE does the same for new files; and
 ACE4_INHERIT_ONLY indicates that the ACE should be ignored when
 determining access to the directory itself.

 The NFSv4 ACL permission-checking algorithm is straightforward.
 Assume a a requester asks for access, as specified by a single bit in

https://datatracker.ietf.org/doc/html/rfc3530

Expires: August 2005 [Page 4]

Mapping NFSv4 ACLs February 2005

 the access bitmask. We allow the access if the first ACE in the ACL
 that matches the requester and that has that bit set is an ALLOW ACE,
 and we deny the access if the first such ACE is a DENY ACE. If no
 matching ACE has the bit in question set, behaviour is undefined. If
 an access mask consisting of more than one bit is requested, it suc-
 ceeds if and only if each bit in the mask is allowed.

 We refer the reader to [rfc3530] for further details.

3. POSIX ACLs

 A number of operating systems implement ACLs based on the withdrawn
 POSIX 1003.1e/1003.2c Draft Standard 17 [posixacl]. We will refer to
 such ACLs as "POSIX ACLs".

 POSIX ACLs use access masks with only the traditional "read",
 "write", and "execute" bits. Each ACE in a POSIX ACL is one of five
 types: ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, ACL_GROUP, ACL_MASK,
 and ACL_OTHER. Each ACL_USER ACE has a uid associated with it, and
 each ACL_GROUP ACE has a gid associated with it. Every POSIX ACL
 must have exactly one ACL_USER_OBJ, ACL_GROUP, and ACL_OTHER ACE, and
 at most one ACL_MASK ACE. The ACL_MASK ACE is required if the ACL
 has any ACL_USER or ACL_GROUP ACEs. There may not be two ACL_USER
 ACEs with the same uid, and there may not be two ACL_GROUP ACEs with
 the same gid.

 Given a POSIX ACL and a requester asking for access, permission is
 determined as follows:

 1) If the requester is the file owner, then allow or deny access
 depending on whether the ACL_USER_OBJ ACE allows or denies it.
 Otherwise,

 2) if the requester's uid matches the uid of one of the ACL_USER
 ACEs, then allow or deny access depending on whether the
 ACL_USER_OBJ ACE allows or denies it. Otherwise,

 3) Consider the set of all ACL_GROUP ACEs whose gid the requester is
 a member of. Add to that set the ACL_GROUP_OBJ ACE, if the
 requester is also a member of the file's group. Allow access if
 any ACE in the resulting set allows access. If the set of match-
 ing ACEs is nonempty, and none allow access, then deny access.
 Otherwise, if the set of matching ACEs is empty,

https://datatracker.ietf.org/doc/html/rfc3530

Expires: August 2005 [Page 5]

Mapping NFSv4 ACLs February 2005

 4) if the requester's access mask is allowed by the ACL_OTHER ACE,
 then grant access. Otherwise, deny access.

 The above description omits one detail: in steps (2) and (3), the
 requested bits must be granted both by the matching ACE and by the
 ACL_MASK ACE. The ACL_MASK ACE thus limits the maximum permissions
 which may be granted by any ACL_USER or ACL_GROUP ACE, or by the
 ACL_GROUP_OBJ ACE.

 Each file may have a single POSIX ACL associated with it, used to
 determine access to that file. Directories, however, may have two
 ACLs: one, the "access ACL", used to determine access to the direc-
 tory, and one, the "default ACL", used only as the ACL to be inher-
 ited by newly created objects in the directory.

4. Mapping POSIX ACLs to NFSv4 ACLs

 We now describe an algorithm which maps any POSIX ACL to an NFSv4 ACL
 with the same semantics.

 First, translate the uid's and gid's on the ACL_USER and ACL_GROUP
 ACEs into NFSv4 names. This is an implementation-dependent process.
 It might be done, for example, by consulting a directory service or a
 password file. Also, the special ACL_USER_OBJ, ACL_GROUP_OBJ, and
 ACL_OTHER ACEs must be translated to NFSv4 ACEs with the special
 entities "OWNER@", "GROUP@", and "EVERYONE@", respectively.

 Next, map each POSIX ACE (excepting any mask ACE) in the given POSIX
 ACL to an NFSv4 ALLOW ACE with an entity determined as above, and
 with a bitmask determined from the permission bits on the POSIX ACE
 as follows:

 1) If the read bit is set in the POSIX ACE, then set ACE4_READ_DATA.

 2) If the write bit is set in the POSIX ACE, then set ACE4_WRITE_DATA
 and ACE4_APPEND_DATA. If the object carrying the ACL is a direc-
 tory, set ACE4_DELETE_CHILD as well.

 3) If the execute bit is set in the POSIX ACE, then set ACE4_EXECUTE.

 4) Set ACE4_READ_ACL, ACE4_READ_ATTRIBUTES, and ACE4_SYNCHRONIZE
 unconditionally.

 5) If the ACE is for the special "OWNER@" entity, set ACE4_WRITE_ACL
 and ACE4_WRITE_ATTRIBUTES.

Expires: August 2005 [Page 6]

Mapping NFSv4 ACLs February 2005

 6) Clear all other bits in the NFSv4 bitmask.

 In addition, we set the GROUP flag in each ACE which corresponds to a
 named group (but not in the GROUP@ ACE, or any of the other special
 entity ACEs). At this point, we've replaced the POSIX ACL by an
 NFSv4 ACL with the same number of ACEs (ignoring any mask ACE). To
 emulate the POSIX ACL permission-checking algorithm, we need to mod-
 ify the ACL further, as follows:

 1) Order the ACL so that the OWNER@ ACE is the first ACE of the ACL,
 followed by any user ACEs, followed by the GROUP@ ACE, followed by
 any group ACEs, and ending finally with the EVERYONE@ ACE.

 2) The POSIX algorithm stops as soon as the requester matches an
 ACL_USER_OBJ, ACL_OTHER, or ACL_USER ACE. To emulate this
 behaviour, add a single DENY ACE after each ALLOW ACE for OWNER@,
 EVERYONE@, or any named user. The DENY ACE should have the same
 entity and flags as the corresponding ALLOW ACE. The bitmask on
 the DENY ACE should be the bitwise NOT of the bitmask on the ALLOW
 ACE, except that the ACE4_WRITE_OWNER and ACE4_DELETE bits should
 be cleared, and the ACE4_DELETE_CHILD bit should be cleared on
 non-directories. (Also, in the xdr-encoded ACL that is transmit-
 ted, all bits not defined in the protocol should be cleared.)

 3) Unlike the other ACEs in step 2, all of the ACL_GROUP_OBJ and
 ACL_GROUP ACEs are consulted by the POSIX algorithm before deter-
 mining permissions. However, if the requester matches any one of
 them, then it must deny any permissions they do not allow. To
 emulate this behaviour, instead of adding a single DENY after each
 corresponding GROUP@ or named group ACE, we insert a list of DENY
 ACEs at the end of the list of GROUP@ and named group ACEs. Each
 DENY ACE is determined from its corresponding ALLOW ACE exactly as
 in step 2, and should occur in the inserted list in the same posi-
 tion as the corresponding ALLOW ACE occurs in the list of ALLOW
 ACEs.

 4) Finally, we enforce the POSIX mask ACE by prepending each ALLOW
 ACE for a named user, GROUP@, or named group, with a single DENY
 ACE whose entity and flags are the same as those for the corre-
 sponding ALLOW ACE, but whose bitmask is the inverse of the bit-
 mask determined from the mask ACE, with the inverse calculated as
 described in step 2.

 As an example, take a POSIX ACL with two named users (u1 and u2) and
 two named groups (g1 and g2), in addition to the required
 ACL_USER_OBJ, ACL_GROUP_OBJ, ACL_OTHER, and ACL_MASK ACEs.

 Such an ACL will map to an NFSv4 ACL of the form

Expires: August 2005 [Page 7]

Mapping NFSv4 ACLs February 2005

 ALLOW OWNER@
 DENY OWNER@
 DENY u1 (mask)
 ALLOW u1
 DENY u1
 DENY u2 (mask)
 ALLOW u2
 DENY u2
 DENY GROUP@ (mask)
 ALLOW GROUP@
 DENY g1 (mask)
 ALLOW g1
 DENY g2 (mask)
 ALLOW g2
 DENY GROUP@
 DENY g1
 DENY g2
 ALLOW EVERYONE@
 DENY EVERYONE@

 where the ACEs marked with (mask) are those whose bitmask are deter-
 mined from the ACL_MASK ACE as described in step 4 above.

 In general, a POSIX ACL with m named users and n named groups will
 map to an NFSv4 ACL with (3*(m + n) + 7) ACLs, unless m and n are
 both zero, in which case the result will have either 6 or 7 ACLs,
 depending on whether the original ACL had an ACL_MASK ACE.

 On directories with default ACLs, we translate the default ACL as
 above, but set the ACE4_INHERIT_ONLY_ACE, ACE4_DIRECTORY_INHERIT_ACE,
 and ACE4_FILE_INHERIT_ACE flags on every ACE in the resulting ACL.
 On directories with both default and access ACLs, we translate the
 two ACLs and then concatenate them. The order of the concatenation
 is unimportant.

 There is one extremely minor inaccuracy in this mapping: if a
 requester that is a member of more than one group listed in the ACL
 requests multiple bits simultaneously, the POSIX algorithm requires
 all of the bits to be granted simultaneously by one of the group
 ACEs. Thus a POSIX ACL such as

 ACL_USER_OBJ: ---
 ACL_GROUP_OBJ: ---
 g1: r--
 g2: -w-
 ACL_MASK: rw-
 ACL_OTHER: ---

Expires: August 2005 [Page 8]

Mapping NFSv4 ACLs February 2005

 will prevent a user that is a member of groups g1 and g2 from opening
 a file for both read and write, even though read and write would be
 individually permitted.

 The NFSv4 ACL permission-checking algorithm has the property that it
 permits a group of bits whenever it would permit each bit individu-
 ally, so it is impossible to mimic this behaviour with an NFSv4 ACL.

5. Using the Mapping in NFSv4 Implementations

 Examination of the algorithm described in the previous section shows
 that no information is lost; the original POSIX ACL can be recon-
 structed from the mapped NFSv4 ACL. Thus we also have a way to map
 NFSv4 ACLs to POSIX ACLs in the case where the NFSv4 ACL is precisely
 in the format of an ACL produced by the algorithm above.

 The algorithm can therefore be used to implement a subset of the
 NFSv4 ACL model. This may be useful to NFSv4 clients and servers
 with preexisting system interfaces that support POSIX ACLs and that
 cannot be modified to support NFSv4 ACLs.

 A server, for example, that wishes to export via NFSv4 a filesystem
 that supports only POSIX ACLs, may use this mapping to answer client
 requests for existing ACLs by translating POSIX ACLs on its filesys-
 tem to NFSv4 ACLs to send to the client. However, when a client
 attempts to set an ACL, the server faces a problem. If the given ACL
 is not in precisely the format of an ACL produced by this mapping,
 then the server may be required to return an error to avoid inaccu-
 rately representing the client's intention. The correct error to
 return in this case is NFS4ERR_ATTRNOTSUPP.

 In the case where a client sets an ACL that leaves certain bits nei-
 ther allowed nor denied, the server may choose to allow or deny those
 bits as necessary to make mapping possible. In some situations it
 may also be possible for a server to map the ACL if it adds a DENY
 ACE or denies a few additional bits. The language of [rfc3530]
 allows a server some flexibility in handling ACLs that it cannot
 enforce completely accurately, as long as it adheres to "the guiding
 principle... that the server must not accept ACLs that appear to make
 [a file] more secure than it really is."

 Given the choice, as long as the "guiding principle" is not violated,
 servers should opt to be forgiving. The complexity of the
 POSIX<->NFSv4 mapping makes difficult the task of generating ACLs

https://datatracker.ietf.org/doc/html/rfc3530

Expires: August 2005 [Page 9]

Mapping NFSv4 ACLs February 2005

 that will satisfy a server using the mapping. By making the mapping
 more forgiving, the server can simplify that task, improving interop-
 erability.

 Servers that implement the full NFSv4 protocol should also handle
 carefully ACLs that leave bits neither allowed nor denied. It is
 better to fall back on some reasonable default rather than to always
 allow or always deny. A client that, for example, sets
 ACE4_WRITE_DATA but leaves unspecified ACE4_APPEND_DATA probably does
 so because its system interfaces are incapable of independently rep-
 resenting ACE4_APPEND_DATA, not because it intends to deny
 ACE4_APPEND_DATA. By leaving the bit unspecified, the client leaves
 the server the opportunity to provide the reasonable default of set-
 ting it to match ACE4_WRITE_DATA.

 Similar issues exist when a client uses NFSv4 ACLs to implement user
 interfaces that only deal in POSIX ACLs. When the client translates
 ACLs received from the server to POSIX ACLs, some flexibility may
 help interopability, but the client must take care not to represent
 any ACLs as stricter than they really are. Clients that provide
 access to the full set of NFSv4 ACLs may also wish to provide users
 with utilities to generate and interpret POSIX-mapped NFSv4 ACLs, to
 aid users working with servers using the POSIX mapping.

Expires: August 2005 [Page 10]

Mapping NFSv4 ACLs February 2005

6. Security Considerations

 Any automatic mapping from one ACL model to another must provide
 guarantees as to how the mapping affects the meaning of ACLs, or risk
 misleading users about the permissions set on filesystem objects.
 For this reason, caution is recommended when implementing this map-
 ping. It is better to return errors than to break any such guaran-
 tees.

 Note also that this ACL mapping requires mapping between NFSv4 user-
 names and local id's. When the mapping of id's depends on remote
 services, the method used for the mapping must be at least as secure
 as the method used to set or get ACLs.

Expires: August 2005 [Page 11]

Mapping NFSv4 ACLs February 2005

7. Bibliography

 [rfc3530]
 Shepler, S. et. al., "NFS version 4 Protocol", April 2003.

http://www.ietf.org/rfc/rfc3530.txt

 [posixacl]
 IEEE, "IEEE Draft P1003.1e", October 1997 (last draft).

http://wt.xpilot.org/publications/posix.1e/download.html

Expires: August 2005 [Page 12]

http://www.ietf.org/rfc/rfc3530.txt
http://wt.xpilot.org/publications/posix.1e/download.html

Mapping NFSv4 ACLs February 2005

8. Author's Address

 Address comments related to this memorandum to:

 marius@umich.edu bfields@umich.edu

 Marius Aamodt Eriksen
 J. Bruce Fields
 University of Michigan / CITI
 535 West William
 Ann Arbor, Michigan

 E-mail: marius@umich.edu
 E-mail: bfields@umich.edu

9. Copyright

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFOR-
 MATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
 OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp78

Expires: August 2005 [Page 13]

