
Network Working Group                                         M. Eriksen
Internet-Draft                                                 J. Fields
Expires: November 16, 2006                                          CITI
                                                            May 15, 2006

Mapping Between NFSv4 and Posix Draft ACLs
draft-ietf-nfsv4-acl-mapping-04

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on November 16, 2006.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   A number of filesystems and applications support ACLs based on a
   withdrawn POSIX draft [2].  Those ACLs differ significantly from NFS
   version 4 (NFSv4) ACLs [1].  We describe how to translate between the
   two types of ACLs.

Eriksen & Fields        Expires November 16, 2006               [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

1.  Introduction

   Access Control Lists (ACLs) are used to specify fine-grained access
   rights to file system objects.  An ACL is a list of Access Control
   Entries (ACEs), each specifying an entity (such as a user) and some
   level of access for that entity.

   In the following sections we describe two ACL models: NFSv4 ACLs, and
   ACLs based on a withdrawn POSIX draft.  We will refer to the latter
   as "POSIX ACLs".  Since NFSv4 ACLs are more fine-grained than POSIX
   ACLs, it is not possible in general to map an arbitrary NFSv4 ACL to
   a POSIX ACL with the same semantics.  However, it is possible to map
   any POSIX ACL to a NFSv4 ACL with nearly identical semantics, and it
   is possible to map any NFSv4 ACL to a POSIX ACL in a way that
   preserves certain guarantees.  We will explain how to do this, and
   give guidelines for clients and servers performing such translation.



Eriksen & Fields        Expires November 16, 2006               [Page 2]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

2.  NFSv4 ACLs

   An NFSv4 ACL is an ordered sequence of ACEs, each having an entity, a
   type, some flags, and an access mask.

   The entity may be the name of a user or group, or may be one of a
   small set of special entities.  Among the special entities are
   "OWNER@" (the current owner of the file), "GROUP@" (the group
   associated with the file), and "EVERYONE@".

   The type may be ALLOW or DENY.  (AUDIT or ALARM are also allowed, but
   they are not relevant to our discussion).

   The access mask has 14 separate bits, including bits to control read,
   write, execute, append, ACL modification, file owner modification,
   etc.; consult [1] for the full list.

   Of the flags, four are relevant here.  The ACE4_IDENTIFIER_GROUP flag
   is used to indicate that the entity name is the name of a group.  The
   other three concern inheritance: ACE4_DIRECTORY_INHERIT_ACE indicates
   that the ACE should be added to new subdirectories of the directory;
   ACE4_FILE_INHERIT_ACE does the same for new files; and
   ACE4_INHERIT_ONLY indicates that the ACE should be ignored when
   determining access to the directory itself.

   The NFSv4 ACL permission-checking algorithm is straightforward.
   Assume a a requester asks for access, as specified by a single bit in
   the access bitmask.  We allow the access if the first ACE in the ACL
   that matches the requester and that has that bit set is an ALLOW ACE,
   and we deny the access if the first such ACE is a DENY ACE.  If no
   matching ACE has the bit in question set, behaviour is undefined.  If
   an access mask consisting of more than one bit is requested, it
   succeeds if and only if each bit in the mask is allowed.

   We refer the reader to [1] for further details.



Eriksen & Fields        Expires November 16, 2006               [Page 3]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

3.  POSIX ACLs

   A number of operating systems implement ACLs based on the withdrawn
   POSIX 1003.1e/1003.2c Draft Standard 17 [2].  We will refer to such
   ACLs as "POSIX ACLs".

   POSIX ACLs use access masks with only the traditional "read",
   "write", and "execute" bits.  Each ACE in a POSIX ACL is one of five
   types: ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, ACL_GROUP, ACL_MASK,
   and ACL_OTHER.  Each ACL_USER ACE has a uid associated with it, and
   each ACL_GROUP ACE has a gid associated with it.  Every POSIX ACL
   must have exactly one ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER ACE,
   and at most one ACL_MASK ACE.  The ACL_MASK ACE is required if the
   ACL has any ACL_USER or ACL_GROUP ACEs.  There may not be two
   ACL_USER ACEs with the same uid, and there may not be two ACL_GROUP
   ACEs with the same gid.

   Given a POSIX ACL and a requester asking for access, permission is
   determined as follows:

   1.  If the requester is the file owner, then allow or deny access
       depending on whether the ACL_USER_OBJ ACE allows or denies it.
       Otherwise,

   2.  if the requester's uid matches the uid of one of the ACL_USER
       ACEs, then allow or deny access depending on whether the
       ACL_USER_OBJ ACE allows or denies it.  Otherwise,

   3.  Consider the set of all ACL_GROUP ACEs whose gid the requester is
       a member of.  Add to that set the ACL_GROUP_OBJ ACE, if the
       requester is also a member of the file's group.  Allow access if
       any ACE in the resulting set allows access.  If the set of
       matching ACEs is nonempty, and none allow access, then deny
       access.  Otherwise, if the set of matching ACEs is empty,

   4.  if the requester's access mask is allowed by the ACL_OTHER ACE,
       then grant access.  Otherwise, deny access.

   The above description omits one detail: in steps (2) and (3), the
   requested bits must be granted both by the matching ACE and by the
   ACL_MASK ACE.  The ACL_MASK ACE thus limits the maximum permissions
   which may be granted by any ACL_USER or ACL_GROUP ACE, or by the
   ACL_GROUP_OBJ ACE.

   Each file may have a single POSIX ACL associated with it, used to
   determine access to that file.  Directories, however, may have two
   ACLs: one, the "access ACL", used to determine access to the
   directory, and one, the "default ACL", used only as the ACL to be



Eriksen & Fields        Expires November 16, 2006               [Page 4]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

   inherited by newly created objects in the directory.

Eriksen & Fields        Expires November 16, 2006               [Page 5]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

4.  Ordering of NFSv4 and POSIX ACLs

   POSIX ACLs are unordered--the order in which the POSIX access-
   checking algorithm considers the entries is determined entirely by
   the type of the entries, so the entries don't need to be kept in any
   particular order.

   By contrast, the meaning of an NFSv4 ACL can be dramatically changed
   by modifying the order that the entries are listed in.

   In the following, we will say that an NFSv4 ACL is in the "canonical
   order" if its entries are ordered in the order that the POSIX
   algorithm would consider them.  That is, with all OWNER@ entries
   first, followed by user entries, followed by GROUP@ entries, followed
   by group entries, with all EVERYONE@ entries at the end.



Eriksen & Fields        Expires November 16, 2006               [Page 6]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

5.  A Minor Eccentrity of POSIX ACLs

   We will see below that it is possible to find an NFSv4 ACL with
   precisely the same effect as any given POSIX ACL, with one extremely
   minor exception: if a requester that is a member of more than one
   group listed in the ACL requests multiple bits simultaneously, the
   POSIX algorithm requires all of the bits to be granted simultaneously
   by one of the group ACEs.  Thus a POSIX ACL such as

     ACL_USER_OBJ: ---
     ACL_GROUP_OBJ: ---
     g1: r--
     g2: -w-
     ACL_MASK: rw-
     ACL_OTHER: ---

   will prevent a user that is a member of groups g1 and g2 from opening
   a file for both read and write, even though read and write would be
   individually permitted.

   The NFSv4 ACL permission-checking algorithm has the property that it
   permits a group of bits whenever it would permit each bit
   individually, so it is impossible to mimic this behaviour with an
   NFSv4 ACL.



Eriksen & Fields        Expires November 16, 2006               [Page 7]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

6.  Mapping POSIX ACLs to NFSv4 ACLs

6.1.  Requirements

   In the next section we give an example of a mapping of POSIX ACLs
   into NFSv4 ACLs.  We permit a server or client to use a different
   mapping, provided the mapping meets the following requirements:

   It must map the POSIX ACL to an NFSv4 ACL with identical access
   semantics, ignoring the minor exception described in the previous
   section.

   It must map the read mode bit to ACE4_READ_DATA, the write bit to
   ACE4_WRITE_DATA and ACE4_APPEND_DATA (and ACE4_DELETE_CHILD for
   directories), and the EXECUTE bit to ACE4_EXECUTE.  It should also
   allow ACE4_READ_ACL, ACE4_READ_ATTRIBUTES, and ACE4_SYNCHRONIZE
   unconditionally, and allow ACE4_WRITE_ACL and ACE4_WRITE_ATTRIBUTES
   to the owner.  The handling of other NFSv4 mode bits may depend on
   the implementation, but it is preferable to leave them unused.

   It should avoid using DENY ACEs.  If DENY ACEs are required, it
   should attempt to place them at the beginning.  (This is not always
   possible.)

   For simplicity's sake, the translator may choose to handle the mask
   by first applying it to the USER, GROUP, and GROUP_OBJ ACEs, and then
   mapping the resulting ACL.  However, that will result in an ACL from
   which it is impossible to determine the original value of the mask or
   of the masked USER, GROUP, and GROUP_OBJ bitmasks.  If the resulting
   ACL is later translated back to a POSIX ACL, the translator will
   assume that the value of the mask is the union of the bitmasks
   permitted to any USER, GROUP, or GROUP_OBJ.  If that would be
   incorrect, the original translation should not modify the bitmasks of
   the USER, GROUP, and GROUP_OBJ bitmasks, and should instead use
   additional DENY ACEs as necessary to give the effect of the mask.  It
   should also arrange for the first GROUP@ ACE to be a DENY ACE whose
   bitmask is determined by the mask, allowing that ACE to be used to
   determine the original mask value.

6.2.  Example POSIX->NFSv4 Mapping

   We now describe an algorithm which maps any POSIX ACL to an NFSv4 ACL
   with the same semantics, meeting the above requirements.

   First, translate the uid's and gid's on the ACL_USER and ACL_GROUP
   ACEs into NFSv4 names, using directory services, etc., as
   appropriate, and translate ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER
   to the special NFSv4 names "OWNER@", "GROUP@", and "EVERYONE@",



Eriksen & Fields        Expires November 16, 2006               [Page 8]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

   respectively.

   Next, map each POSIX ACE (excepting any mask ACE) in the given POSIX
   ACL to an NFSv4 ALLOW ACE with an entity determined as above, and
   with a bitmask determined from the permission bits on the POSIX ACE
   as follows:

   1.  If the read bit is set in the POSIX ACE, then set ACE4_READ_DATA.

   2.  If the write bit is set in the POSIX ACE, then set
       ACE4_WRITE_DATA and ACE4_APPEND_DATA.  If the object carrying the
       ACL is a directory, set ACE4_DELETE_CHILD as well.

   3.  If the execute bit is set in the POSIX ACE, then set
       ACE4_EXECUTE.

   4.  Set ACE4_READ_ACL, ACE4_READ_ATTRIBUTES, and ACE4_SYNCHRONIZE
       unconditionally.

   5.  If the ACE is for the special "OWNER@" entity, set ACE4_WRITE_ACL
       and ACE4_WRITE_ATTRIBUTES.

   6.  Clear all other bits in the NFSv4 bitmask.

   In addition, we set the GROUP flag in each ACE which corresponds to a
   named group (but not in the GROUP@ ACE, or any of the other special
   entity ACEs).

   At this point, we've replaced the POSIX ACL by an NFSv4 ACL with the
   same number of ACEs (ignoring any mask ACE), all of them ALLOW ACEs.

   Order this NFSv4 ACL in the canonical order: OWNER@, users, GROUP@,
   groups, then EVERYONE@.

   If the bitmasks in the resulting ACEs are non-increasing (so no ACE
   allows a bit not allowed by a previous ACE), then we can skip the
   next step.

   Otherwise, we need to insert additional DENY ACE's to emulate the
   first-match semantics of the POSIX ACL permission-checking algorithm:

   1.  If an ACL_USER_OBJ, ACL_OTHER, or ACL_USER ACE fails to grant
       some permissions that are granted later in the ACL, then that ACE
       must be prepended by a single DENY ACE.  The DENY ACE should have
       the same entity and flags as the corresponding ALLOW ACE, but the
       bitmask on the DENY ACE should be the bitwise NOT of the bitmask
       on the ALLOW ACE, except that the ACE4_WRITE_OWNER, ACE4_DELETE,
       ACE4_READ_NAMED_ATTRIBUTES, ACE4_WRITE_NAMED_ATTRIBUTES bits



Eriksen & Fields        Expires November 16, 2006               [Page 9]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

       should be cleared, and the ACE4_DELETE_CHILD bit should be
       cleared on non-directories.  (Also, in the xdr-encoded ACL that
       is transmitted, all bits not defined in the protocol should be
       cleared.)

   2.  All of the ACL_GROUP_OBJ and ACL_GROUP ACEs are consulted by the
       POSIX algorithm before determining permissions.  To emulate this
       behaviour, instead of adding a single DENY before corresponding
       GROUP@ or named group ACEs, we insert a list of DENY ACEs after
       the list of GROUP@ and named group ACEs.  Each DENY ACE is
       determined from its corresponding ALLOW ACE exactly as in the
       previous step.  As before, these DENY aces should only be added
       when they are necessitated by an ACE that is less permissive than
       the final EVERYONE@ ace.

   Finally, we enforce the POSIX mask ACE by prepending each ALLOW ACE
   for a named user, GROUP@, or named group, with a single DENY ACE
   whose entity and flags are the same as those for the corresponding
   ALLOW ACE, but whose bitmask is the inverse of the bitmask determined
   from the mask ACE, with the inverse calculated as described above.
   In the case of named users, these DENY aces may be coalesced with any
   existing prepended DENY aces.  The DENY aces are omitted entirely if
   they would have no affect, or if the mask ACE has the same bitmask as
   the maximum of the affected ACEs.  (With the one exception that if
   the POSIX ACL posesses exactly 4 ACEs, then a mask-derived DENY ace
   should be inserted before the GROUP@ ace, even if it would not
   otherwise be.)

   Regardless of what scheme is used to represent the mask, the receiver
   will use the first GROUP@ DENY ace to determine the value of the mask
   (if it is different from the union of the bitmasks on the affected
   ACEs), and use the relevant ALLOWs to determine the pre-mask values
   of user and group ACEs.

   The implementation may also choose to just mask out the bitmasks on
   the relevant ALLOW ACEs.  This will produce a simpler ACL (in
   particular, an ACL that usually requires no DENY ACE's), at the
   expense of losing some ACL information after a chmod.

   On directories with default ACLs, we translate the default ACL as
   above, but set the ACE4_INHERIT_ONLY_ACE, ACE4_DIRECTORY_INHERIT_ACE,
   and ACE4_FILE_INHERIT_ACE flags on every ACE in the resulting ACL.
   On directories with both default and access ACLs, we translate the
   two ACLs and then concatenate them.  The order of the concatenation
   is unimportant.



Eriksen & Fields        Expires November 16, 2006              [Page 10]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

7.  Mapping NFSv4 ACLs to POSIX ACLs

7.1.  Requirements

   Any mapping of NFSv4 ACLs to POSIX ACLs must map any NFSv4 ACL that
   is semantically equivalent to a POSIX ACL (with the exception of the
   "minor inaccuracy" mentioned above) to the equivalent POSIX ACL.  It
   should also extract the mask correctly; as the mask doesn't affect
   the semantics of the NFSv4 ACL, and as there is more than one way the
   mask might be encoded, we require a convention for this.
   Specifically: we require that the mask be computed as the bitmask
   used on the first GROUP@ DENY ACE which precedes any GROUP@ allow
   ACE, unless no such DENY ACE exists, in which case the mask must be
   computed as the union of the bitmasks allowed to all named users,
   groups, and GROUP@ (where by the "bitmask allowed to" an entity we
   mean the maximum bitmask that the ACL would permit to any user
   matching the entity).

   Implementations may vary in how they deal with NFSv4 ACLs that are
   not precisely semantically equivalent to any POSIX ACL.  In
   particular they may return errors for such ACLs instead of attempting
   to map them.  However, when possible without compromising security,
   they should attempt to be forgiving.

   The language of [1] allows a server some flexibility in handling ACLs
   that it cannot enforce completely accurately, as long as it adheres
   to "the guiding principle... that the server must not accept ACLs
   that appear to make [a file] more secure than it really is."

   Note that an NFSv4 ACL consisting entirely of ALLOW ACLs can always
   be transformed into a POSIX-equivalent ACL by first sorting it into
   the canonical order, and then inserting DENY ACEs as necessary to
   ensure POSIX first-match semantics.  Since inserting DENY ACEs can
   only restrict access, it is safe for a server to do this.

   We require any server to accept, at least, any NFSv4 ACL that
   consists entirely of ALLOW ACLs.

   Clients should also be at least as forgiving, to promote
   interoperability when heterogeneous clients share files.

7.2.  Example NFSv4->POSIX Mapping

   We now give an example of an algorithm that meets the above
   requirements.  We assume it is to be used by a server mapping client-
   provided NFSv4 ACLs to POSIX ACLs it can store in its filesystem, so
   the translation errs on the side of making the ACL less permissive.



Eriksen & Fields        Expires November 16, 2006              [Page 11]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

   Given an NFSv4 ACL, first calculate the mask by taking the bitmask
   from the first GROUP@ DENY ACE from the original NFSv4 ACL, if it
   exists.  After doing so, remove that DENY ACE, and clear the bits in
   its bitmask from any DENY ACE for a named user, group, or GROUP@
   which precedes an ALLOW ACE for the same entity.

   In the case where there is no such GROUP@ DENY ACE, continue through
   the rest of the algorithm and then calculate the mask as the union of
   the calculated permissions of all named users, group, and the
   GROUP_OBJ ACE.

   Given an NFSv4 ACL, sort it into canonical order (OWNER@ ACEs first,
   then user ACEs, then GROUP@ ACEs, then group ACEs, then EVERYONE@
   ACEs.)  Also, sort the GROUP@ and group ACEs that all ALLOW ACEs
   precede all DENY ACEs.  To do so, take advantage of the following
   observations:

   1.  If two consecutive ACEs are either both ALLOW ACEs, or both DENY
       ACEs, then we can swap their order without changing the effect of
       the ACL.

   2.  If it would be impossible for a single user to match both of the
       entities on two consecutive ACEs, then we can swap their order
       without changing the effect of the ACL.

   3.  If an ALLOW ACE is immediately followed by a DENY ACE, then
       swapping the order of the two ACEs will not make the ACL any more
       permissive.

   4.  If a DENY ACE is immediately followed by an ALLOW ACE, then
       swapping the order of the two ACEs will not make the ACL any more
       permissive, *if* we modify the bitmask on the ALLOW ACE by
       clearing any bits that are set in the DENY ACE.

   The second observation is the trickiest: it may usually be safe to
   assume that two distinct user names cannot match the same user.  An
   implementation with knowledge about group memberships or about the
   current value of the file owner might also use that information, but
   if it does so it will produce a translation that is no longer
   accurate after owners or group memberships change.

   Fortunately, observations 1, 3, and 4 are sufficient to sort any ACL
   into canonical order, so a paranoid implementation can simply ignore
   number 2 completely, while an implementation willing to sacrifice
   some accuracy may choose to do something more complex.

   Ensure that the resulting ACL posesses at least one each of OWNER@,
   GROUP@, and EVERYONE@ ACEs, by inserting an ALLOW ACE with a zero



Eriksen & Fields        Expires November 16, 2006              [Page 12]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

   bitmask if necessary in the correct position.

   Next, for each entity, calculate a bitmask for that entity as
   follows: Starting with the first ACE for that entity (ignoring all
   previous ACEs), perform the NFSv4 ACL-checking algorithm for a user
   that is assumed to match the entity on every DENY ACE that a user
   matching the given entity might match, but is assumed to match only
   those entities on ALLOW ACEs that *any* user matching the current
   entity must match.

   Finally, construct the POSIX ACL by translating NFSv4 entity names to
   uid's and gid's (and handling special entities in the obvious way),
   then assign a POSIX bitmask determined by the NFSv4 bitmask
   calculated in the previous step; the bitmask calculation should use
   the inverse of the mapping described previously in the POSIX-to-NFSv4
   mapping, erring on the side of denying bits if it cannot determine a
   sensible mapping.  However, if certain bits simply cannot be mapped
   in a reasonable way to mode bits, the server may simply ignore them
   rather than returning an error.  (For example, the server should deny
   write if either ACE4_WRITE_DATA or ACE4_APPEND_DATA are denied.  But
   it may choose to ignore ACE4_READ_ATTRIBUTES entirely.)

   The resulting mapping errs on the side of creating a more restrictive
   ACE.  However it can be modified to produce a mapping that errs on
   the side of permissiveness, for the purposes of translating a server-
   provided NFSv4 ACL to a POSIX ACL to present to a user or
   application, as follows:

   1.  When sorting ACEs, ALLOW ACEs can always be moved towards the
       start of the ACL, but a DENY ACE can be moved towards the start
       of the ACL only as long as we clear any of the DENY ACE's bitmask
       bits that are set in the intervening ALLOW ACEs.

   2.  When calculating the NFSv4 bitmask for each entity, err on the
       side of assuming that ALLOW ACEs apply and that DENY ACEs don't,
       with the one exception that when calculating the GROUP@ and named
       group bitmasks, ALLOW ACEs for groups other than the one under
       consideration should be ignored.

   3.  When mapping the NFSv4 bitmask to POSIX mode bits, err on the
       side of allowing access.



Eriksen & Fields        Expires November 16, 2006              [Page 13]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

8.  Security Considerations

   Any automatic mapping from one ACL model to another must provide
   guarantees as to how the mapping affects the meaning of ACLs, or risk
   misleading users about the permissions set on filesystem objects.
   For this reason, caution is recommended when implementing this
   mapping.  It is better to return errors than to break any such
   guarantees.

   That said, there may be cases where small losses in accuracy can
   avoid dramatic interoperability and usability problems; as long as
   the losses in accuracy are clearly documented, these tradeoffs may be
   found acceptable.

   For example, a server unable to support all of the NFSv4 mode bits
   does not have a way to communicate its exact limitations to clients,
   so clients (and users) may be unable to recover from such errors.
   For this reason we recommend ignoring bitmask bits that the server is
   completely unable to map to mode bits, and advertising this fact
   loudly in the server documentation.  If this is considered
   insufficient, we should add to the NFSv4 protocol additional
   attributes necessary to advertise the server's limitations.

   Note also that this ACL mapping requires mapping between NFSv4
   usernames and local id's.  When the mapping of id's depends on remote
   services, the method used for the mapping must be at least as secure
   as the method used to set or get ACLs.

9.  References

   [1]  Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
        C., Eisler, M., and D. Noveck, "Network File System (NFS)
        version 4 Protocol", RFC 3530, April 2003.

   [2]  Institute of Electrical and Electronics Engineers, Inc., "IEEE
        Draft P1003.1e", October 1997,
        <http://wt.xpilot.org/publications/posix.1e/download.html>.

https://datatracker.ietf.org/doc/html/rfc3530
http://wt.xpilot.org/publications/posix.1e/download.html


Eriksen & Fields        Expires November 16, 2006              [Page 14]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

Authors' Addresses

   Marius Aamodt Eriksen
   U. of Michigan Center for Information Technology Integration

   Email: marius@citi.umich.edu

   J. Bruce Fields
   U. of Michigan Center for Information Technology Integration

   Email: marius@citi.umich.edu

Eriksen & Fields        Expires November 16, 2006              [Page 15]



Internet-Draft            NFSv4 and POSIX ACLs                  May 2006

Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Disclaimer of Validity

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

   Copyright (C) The Internet Society (2006).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.

Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78


Eriksen & Fields        Expires November 16, 2006              [Page 16]


