
Network Working Group M. Eriksen
Internet-Draft J. Fields
Expires: February 23, 2007 CITI
 August 22, 2006

Mapping Between NFSv4 and Posix Draft ACLs
draft-ietf-nfsv4-acl-mapping-05

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on February 23, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 A number of filesystems and applications support ACLs based on a
 withdrawn POSIX draft [2]. Those ACLs differ significantly from NFS
 version 4 ACLs [1]. We describe how to translate between the two
 types of ACLs.

Eriksen & Fields Expires February 23, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft NFSv4 and POSIX ACLs August 2006

1. Introduction

 Access Control Lists (ACLs) are used to specify access rights to file
 system objects. An ACL is a list of Access Control Entries (ACEs),
 each specifying an entity (such as a user) and some level of access
 for that entity.

 In the following sections describe NFSv4 ACLs and ACLs based on a
 withdrawn POSIX draft. We will refer to the latter as "POSIX ACLs".
 Since NFSv4 ACLs are more fine-grained than POSIX ACLs, it is not
 possible in general to map an arbitrary NFSv4 ACL to a POSIX ACL with
 the same semantics. However, it is possible to map any POSIX ACL to
 a NFSv4 ACL with nearly identical semantics, and it is possible to
 map any NFSv4 ACL to a POSIX ACL in a way that preserves certain
 guarantees. We will explain how to do this, and give guidelines for
 clients and servers performing such translation.

Eriksen & Fields Expires February 23, 2007 [Page 2]

Internet-Draft NFSv4 and POSIX ACLs August 2006

2. NFSv4 ACLs

 An NFSv4 ACL is an ordered sequence of ACEs, each having an entity, a
 type, some flags, and an access mask.

 The entity may be the name of a user or group, or may be one of a
 small set of special entities. Among the special entities are
 "OWNER@" (the current owner of the file), "GROUP@" (the group
 associated with the file), and "EVERYONE@".

 An ACL may have a "type" of ALLOW or DENY. (AUDIT or ALARM are also
 allowed, but they are not relevant to our discussion).

 The access mask has 14 separate bits, including bits to control read,
 write, execute, append, ACL modification, file owner modification,
 etc.; consult [1] for the full list.

 Of the flags, four are relevant here. The ACE4_IDENTIFIER_GROUP flag
 is used to indicate that the entity name is the name of a group. The
 other three concern inheritance: ACE4_DIRECTORY_INHERIT_ACE indicates
 that the ACE should be added to new subdirectories of the directory;
 ACE4_FILE_INHERIT_ACE does the same for new files; and
 ACE4_INHERIT_ONLY indicates that the ACE should be ignored when
 determining access to the directory itself.

 The NFSv4 ACL permission-checking algorithm is straightforward.
 First, assume a requester asks for access specified by a single bit
 in the access bitmask. We allow the access if the first ACE in the
 ACL that matches the requester and that has that bit set is an ALLOW
 ACE, and we deny the access if the first such ACE is a DENY ACE. If
 no matching ACE has the bit in question set, access is normally
 denied.

 If a requester asks for access requiring multiple bits from the
 access bitmask simutaneously, then we allow the access if and only if
 each bit in the requested bitmask would be allowed individually.

 We refer the reader to [1] for further details.

Eriksen & Fields Expires February 23, 2007 [Page 3]

Internet-Draft NFSv4 and POSIX ACLs August 2006

3. POSIX ACLs

 A number of operating systems implement ACLs based on the withdrawn
 POSIX 1003.1e/1003.2c Draft Standard 17 [2]. We will refer to such
 ACLs as "POSIX ACLs", though they are not part of any published POSIX
 standard.

 POSIX ACLs use access masks with only the traditional "read",
 "write", and "execute" bits. Each ACE in a POSIX ACL is one of five
 types: ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, ACL_GROUP, ACL_MASK,
 and ACL_OTHER. Each ACL_USER ACE has a uid associated with it, and
 each ACL_GROUP ACE has a gid associated with it. Every POSIX ACL
 must have exactly one ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER ACE,
 and at most one ACL_MASK ACE. The ACL_MASK ACE is required if the
 ACL has any ACL_USER or ACL_GROUP ACEs. There may not be two
 ACL_USER ACEs with the same uid, and there may not be two ACL_GROUP
 ACEs with the same gid.

 Given a POSIX ACL and a requester asking for access, permission is
 determined by consulting the ACEs in the order ACL_USER_OBJ,
 ACL_USER, ACL_GROUP_OBJ, ACL_GROUP, ACL_OTHER, and allowing or
 denying access based on the first ACE encountered that the requester
 matches, except that we never allow the ACL_USER, ACL_OWNER_OBJ, or
 ACL_GROUP objects to grant more than the ACL_MASK object does, and in
 the case of ACL_GROUP_OBJ and ACL_GROUP ACEs, we allow access if any
 one of those ACEs allows access.

 In more detail:

 1. If the requester is the file owner, then allow or deny access
 depending on whether the ACL_USER_OBJ ACE allows or denies it.
 Otherwise,

 2. if the requester matches the file's group, and the ACL mask ACE
 would deny the requested access, then skip to step 5. Otherwise,

 3. if the requester's uid matches the uid of one of the ACL_USER
 ACEs, then allow or deny access depending on whether the
 ACL_USER_OBJ ACE allows or denies it. Otherwise,

 4. Consider the set of all ACL_GROUP ACEs whose gid the requester is
 a member of. Add to that set the ACL_GROUP_OBJ ACE, if the
 requester is also a member of the file's group. Allow access if
 any ACE in the resulting set allows access. If the set of
 matching ACEs is nonempty, and none allow access, then deny
 access. Otherwise, if the set of matching ACEs is empty,

Eriksen & Fields Expires February 23, 2007 [Page 4]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 5. if the requester's access mask is allowed by the ACL_OTHER ACE,
 then grant access. Otherwise, deny access.

 Each file may have a single POSIX ACL associated with it, used to
 determine access to that file. Directories, however, may have two
 ACLs: one, the "access ACL", used to determine access to the
 directory, and one, the "default ACL", used only as the ACL to be
 inherited by newly created objects in the directory.

Eriksen & Fields Expires February 23, 2007 [Page 5]

Internet-Draft NFSv4 and POSIX ACLs August 2006

4. Ordering of NFSv4 and POSIX ACLs

 POSIX ACLs are unordered--the order in which the POSIX access-
 checking algorithm considers the entries is determined entirely by
 the type of the entries, so the entries don't need to be kept in any
 particular order.

 By contrast, the meaning of an NFSv4 ACL can be dramatically changed
 by modifying the order that the entries are listed in.

 In the following, we will say that an NFSv4 ACL is in the "canonical
 order" if its entries are ordered in the order that the POSIX
 algorithm would consider them. That is, with all OWNER@ entries
 first, followed by user entries, followed by GROUP@ entries, followed
 by group entries, with all EVERYONE@ entries at the end.

Eriksen & Fields Expires February 23, 2007 [Page 6]

Internet-Draft NFSv4 and POSIX ACLs August 2006

5. A Minor Eccentrity of POSIX ACLs

 We will see below that it is possible to find an NFSv4 ACL with
 precisely the same effect as any given POSIX ACL, with one extremely
 minor exception: if a requester that is a member of more than one
 group listed in the ACL requests multiple bits simultaneously, the
 POSIX algorithm requires all of the bits to be granted simultaneously
 by one of the group ACEs. Thus a POSIX ACL such as

 ACL_USER_OBJ: ---
 ACL_GROUP_OBJ: ---
 g1: r--
 g2: -w-
 ACL_MASK: rw-
 ACL_OTHER: ---

 will prevent a user that is a member of groups g1 and g2 from opening
 a file for both read and write, even though read and write would be
 individually permitted.

 The NFSv4 ACL permission-checking algorithm has the property that it
 permits a group of bits whenever it would permit each bit
 individually, so it is impossible to mimic this behaviour with an
 NFSv4 ACL.

Eriksen & Fields Expires February 23, 2007 [Page 7]

Internet-Draft NFSv4 and POSIX ACLs August 2006

6. Mapping POSIX ACLs to NFSv4 ACLs

6.1. Requirements

 In the next section we give an example of a mapping of POSIX ACLs
 into NFSv4 ACLs. A server or client may use a different mapping, but
 the mapping should meet the following requirements:

 It must map the POSIX ACL to an NFSv4 ACL with identical access
 semantics, ignoring the minor exception described in the previous
 section.

 It must map the read mode bit to ACE4_READ_DATA, the write bit to
 ACE4_WRITE_DATA and ACE4_APPEND_DATA (and ACE4_DELETE_CHILD for
 directories), and the EXECUTE bit to ACE4_EXECUTE. It should also
 allow ACE4_READ_ACL, ACE4_READ_ATTRIBUTES, and ACE4_SYNCHRONIZE
 unconditionally, and allow ACE4_WRITE_ACL and ACE4_WRITE_ATTRIBUTES
 to the owner. The handling of other NFSv4 mode bits may depend on
 the implementation, but it is preferable to leave them unused.

 It should avoid using DENY ACEs. If DENY ACEs are required, it
 should attempt to place them at the beginning. (This is not always
 possible.)

 The resulting NFSv4 ACL must take into account the mask ACE, by
 ensuring that it does not give the group file owner or any users or
 groups named in the ACL more permissions than permitted by the mask.
 It would also be possible to specify a mapping that encoded the mask
 in such a way that the original value of the mask could be recovered
 by someone that knew the ACL was produced by our algorithm. However,
 the added complexity and fragility of such a mapping is not worth the
 small benefit of preserving the mask information, so we do not
 attempt that here.

6.2. Example POSIX->NFSv4 Mapping

 We now describe an algorithm which maps any POSIX ACL to an NFSv4 ACL
 with the same semantics, meeting the above requirements.

 First, modify all ACL_USER, ACL_GROUP, and ACL_GROUP_OBJ ACEs by
 removing any permissions not granted by the mask ACE. The mask ACE
 may then be ignored for the rest of this process.

 Translate the uid's and gid's on the ACL_USER and ACL_GROUP ACEs into
 NFSv4 names, using directory services, etc., as appropriate, and
 translate ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER to the special
 NFSv4 names "OWNER@", "GROUP@", and "EVERYONE@", respectively.

Eriksen & Fields Expires February 23, 2007 [Page 8]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 Next, map each POSIX ACE (excepting any mask ACE) in the given POSIX
 ACL to an NFSv4 ALLOW ACE with an entity determined as above, and
 with a bitmask determined from the permission bits on the POSIX ACE
 as follows:

 1. If the read bit is set in the POSIX ACE, then set ACE4_READ_DATA.

 2. If the write bit is set in the POSIX ACE, then set
 ACE4_WRITE_DATA and ACE4_APPEND_DATA. If the object carrying the
 ACL is a directory, set ACE4_DELETE_CHILD as well.

 3. If the execute bit is set in the POSIX ACE, then set
 ACE4_EXECUTE.

 4. Set ACE4_READ_ACL, ACE4_READ_ATTRIBUTES, and ACE4_SYNCHRONIZE
 unconditionally.

 5. If the ACE is for the special "OWNER@" entity, set ACE4_WRITE_ACL
 and ACE4_WRITE_ATTRIBUTES.

 6. Clear all other bits in the NFSv4 bitmask.

 In addition, set the GROUP flag in each ACE which corresponds to a
 named group (but not in the GROUP@ ACE, or any of the other special
 entity ACEs).

 At this point, we've replaced the POSIX ACL by an NFSv4 ACL with the
 same number of ACEs (ignoring any mask ACE), all of them ALLOW ACEs.

 Order this NFSv4 ACL in the canonical order: OWNER@, users, GROUP@,
 groups, then EVERYONE@.

 If the bitmasks in the resulting ACEs are non-increasing (so no ACE
 allows a bit not allowed by a previous ACE), then we can skip the
 next step.

 Otherwise, we need to insert additional DENY ACE's to emulate the
 first-match semantics of the POSIX ACL permission-checking algorithm:

 1. If an ACL_USER_OBJ, ACL_OTHER, or ACL_USER ACE fails to grant
 some permissions that are granted later in the ACL, then that ACE
 must be preceded by a single DENY ACE. The DENY ACE should have
 the same entity and flags as the corresponding ALLOW ACE, but the
 bitmask on the DENY ACE should be the bitwise NOT of the bitmask
 on the ALLOW ACE, except that the ACE4_WRITE_OWNER, ACE4_DELETE,
 ACE4_READ_NAMED_ATTRIBUTES, and ACE4_WRITE_NAMED_ATTRIBUTES bits
 should be cleared, and the ACE4_DELETE_CHILD bit should be
 cleared on non-directories. (Also, in the xdr-encoded ACL that

Eriksen & Fields Expires February 23, 2007 [Page 9]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 is transmitted, all bits not defined in the protocol should be
 cleared.)

 2. All of the ACL_GROUP_OBJ and ACL_GROUP ACEs are consulted by the
 POSIX algorithm before determining permissions. To emulate this
 behaviour, instead of adding a single DENY before corresponding
 GROUP@ or named group ACEs, we insert a list of DENY ACEs after
 the list of GROUP@ and named group ACEs. Each DENY ACE is
 determined from its corresponding ALLOW ACE exactly as in the
 previous step. As before, these DENY ACEs should only be added
 when they are necessitated by an ACE that is less permissive than
 the final EVERYONE@ ACE.

 On directories with default ACLs, we translate the default ACL as
 above, but set the ACE4_INHERIT_ONLY_ACE, ACE4_DIRECTORY_INHERIT_ACE,
 and ACE4_FILE_INHERIT_ACE flags on every ACE in the resulting ACL.
 On directories with both default and access ACLs, we translate the
 two ACLs and then concatenate them. The order of the concatenation
 is unimportant.

Eriksen & Fields Expires February 23, 2007 [Page 10]

Internet-Draft NFSv4 and POSIX ACLs August 2006

7. Mapping NFSv4 ACLs to POSIX ACLs

7.1. Requirements

 Any mapping of NFSv4 ACLs to POSIX ACLs must map any NFSv4 ACL that
 is semantically equivalent to a POSIX ACL (with the exception of the
 "minor inaccuracy" mentioned above) to an equivalent POSIX ACL.

 However, a more difficult problem is presented by NFSv4 ACLs that are
 not precisely equivalant to any POSIX ACL.

 The only way that the NFSv4 protocol gives servers to indicate that
 they support only a subset of the ACL model is the "aclsupport"
 attribute, which allows a server to advertise that it only supports
 certain ACE types. This allows a server to report that it only
 supports ALLOW ACEs, or that it does not support AUDIT or ALARM ACEs
 (which will be the case for most servers with only POSIX ACLs). But
 it does not give a way to claim support for more complex subsets of
 the ACL model.

 While it is possible for a server to reject any ACLs that do not fit
 its ACL model, this places a large burden on clients and users, since
 the server has no way to explain why it rejected a particular ACL.
 Therefore, it is preferable to be more forgiving, whenever that is
 possible without compromising security, and to limit any restrictions
 to those that are easily documented and verified by users.

 The language of [1] allows a server some flexibility in handling ACLs
 that it cannot enforce completely accurately, as long as it adheres
 to "the guiding principle... that the server must not accept ACLs
 that appear to make [a file] more secure than it really is."

 ACLs with arbitrary sequences of ALLOWs and DENYs may be particularly
 troublesome; but note that an NFSv4 ACL consisting entirely of ALLOW
 ACLs can always be transformed into a POSIX-equivalent ACL by first
 sorting it into the canonical order, then inserting DENY ACEs as
 necessary to ensure POSIX first-match semantics. Since inserting
 DENY ACEs can only restrict access, it is safe for a server to do
 this.

 Therefore servers should accept, at least, any NFSv4 ACL that
 consists entirely of ALLOW ACLs.

 Clients should also be at least as forgiving, to promote
 interoperability when heterogeneous clients share files.

Eriksen & Fields Expires February 23, 2007 [Page 11]

Internet-Draft NFSv4 and POSIX ACLs August 2006

7.2. Example NFSv4->POSIX Mapping

 We now give an example of an algorithm that meets the above
 requirements. We assume it is to be used by a server mapping client-
 provided NFSv4 ACLs to POSIX ACLs it can store in its filesystem, so
 the translation errs on the side of making the ACL more restrictive.

 In fact, if we ignore some loss of information in the mask ACE, this
 mapping takes an NFSv4 ACL to the unique most permissive POSIX ACL
 that is no more permissive than the given NFSv4 ACL.

 Before starting, if the ACL in question is for a directory, we split
 it into two ACLs, one purely effective and one purely inherited, as
 follows:

 1. ACEs with no inheritance flags are put in the purely effective
 ACL.

 2. Aces with FILE_INHERIT and DIRECTORY_INHERIT both set are put in
 both the effective and the inherited ACL

 3. Aces with FILE_INHERIT, DIRECTORY_INHERIT, and INHERIT_ONLY all
 set are put only in the inherited ACL.

 Other combinations of ineritance flags may be rejected or silently
 modified to one of the above.

 The main algorithm that follows is then performed on each ACL, with
 one used to set the effictive ACL, and one the default ACL.

 First, we calculate the OTHER mode as follows:

 1. Initialize the bitmasks other_allow and other_deny both to zero.

 2. For each ACE in the ACL, starting from the top:

 1. If the ACE is not an EVERYONE@ ACE, ignore it and move to the
 next ACE.

 2. If the ACE is an EVERYONE@ ALLOW ACE, then add to other_allow
 any bits set in this ACE but not set in other_deny.

 3. If the ACE is an EVERYONE@ DENY ACE, then add to other_deny
 any bits set in this ACE but not set in other_allow.

 3. Discard other_deny. Set the USER_OBJ mask from other_allow using
 the inverse of the mapping described previously in the POSIX-to-
 NFSv4 mapping, erring on the side of denying bits if it cannot

Eriksen & Fields Expires February 23, 2007 [Page 12]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 determine a sensible mapping. However, if certain bits simply
 cannot be mapped in a reasonable way to mode bits, the server may
 simply ignore them rather than returning an error. (For example,
 the server should deny write if either ACE4_WRITE_DATA or
 ACE4_APPEND_DATA are denied. But it may choose to ignore
 ACE4_READ_ATTRIBUTES entirely; though in that case it may at
 least want to treat specially the case where such bits are
 explicitly denied by some DENY ACE.)

 Note that the bits determined above are exactly the maximum bits that
 will always be permitted to a user that doesn't match the file owner
 or group, or any of the named owners or groups. Thus this choice of
 the OTHER mode is exactly the maximum choice we can safely make.

 Next we calculate the GROUP_OBJ and GROUP masks.

 1. Initialize to zero an allow and deny bitmask for each GROUP_OBJ
 and for each GROUP mask.

 2. For each ACE in the ACL, starting from the top:

 1. If the ACE is an OWNER@ or named user ACE, ignore it and move
 to the next ACE.

 2. If the ACE is an EVERYONE@ ALLOW ACE, then, for each GROUP or
 GROUP_OBJ allow mask, set the bits allowed in the EVERYONE
 ACE but not already in this GROUP or GROUP_OBJ's deny mask.

 3. If the ACE is an EVERYONE@ DENY ACE, then, for each GROUP or
 GROUP_OBJ deny mask, set the bits denied in the EVERYONE ACE
 but not already allowed in this GROUP or GROUP_OBJ's deny
 mask.

 4. If the ACE is a GROUP or GROUP@ ALLOW ACE, then set the allow
 bits in the corresponding GROUP or GROUP_OBJ allow mask that
 are allowed by this ACE but not already denied by the
 corresponding GROUP or GROUP_OBJ deny mask.

 5. If the ACE is a GROUP or GROUP@ DENY ACE, then set the deny
 bits in the corresponding GROUP or GROUP_OBJ deny mask that
 are denied by this ACE but not already allowed by the
 corresponding GROUP or GROUP_OBJ allow mask. Call the
 resulting deny mask "m". In each GROUP or GROUP_OBJ deny
 mask, set every bit that is in m and not already in that
 GROUP or GROUP_OBJ allow mask.

Eriksen & Fields Expires February 23, 2007 [Page 13]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 3. Having calculated allow and deny masks for GROUP_OBJ and each
 GROUP, we now set the corresponding modes from the allow masks as
 we did in the last step of the USER_OBJ mask calculation above.

 Note that the bits thus determined for a group are exactly the
 maximum bits that will always be permitted to a user that matches the
 group in question, and that is denied any bits that could be denied
 by matching other groups, without out being allowed bits by matching
 any such groups. This is the most permissive mode we can choose that
 will never permit more permissions than the original NFSv4 ACL, for
 any possible choice of group memberships.

 An implementation with special knowledge about the current gowning
 group or about group memberships may choose to use that knowledge to
 calculate a more permissive mode. However, doing so may render
 resulting POSIX ACL inaccurate after the owning group changes, or
 after any group memberships change.

 Next, we calculate USER modes by first calculating allow and deny
 masks for each USER as above, this time assuming we are a user that
 does not match the file owner, that matches no user except for the
 one user under consideration, and that matches groups only when they
 would deny some permissions that they have not allowed yet. (To
 ensure this last step it will also be necessary to maintain group
 allow and deny ACEs, as we did in the previous calculation.) We omit
 the detailed steps, which are similar. Again, the implementation may
 choose to use special knowledge about group memberships at the risk
 of increased complexity and of loss of some accuracy.

 Next, we calculate the USER_OBJ mode by calculating allow and deny
 masks for a user that matches the file owner and any user or group
 that denies bits that it does not first allow.

 Finally, if the resulting ACL has any named user or group ACEs, add a
 mask ACE with bitmask equal to the union of the calculated
 permissions of all named users, group, and the GROUP_OBJ ACE.

 The resulting mapping errs on the side of creating a more restrictive
 ACE. However it can be modified to produce a mapping that errs on
 the side of permissiveness, for the purposes of translating a server-
 provided NFSv4 ACL to a POSIX ACL to present to a user or
 application, as follows:

 1. When performing the final mapping from the allow bitmask to a
 mode, we instead using a mapping that errs on the side of
 permissiveness; for example, we allow write permissions even if
 only one of WRITE_DATA, APPEND_DATA, or (in the case of
 directories) DELETE_CHILD is allowed.

Eriksen & Fields Expires February 23, 2007 [Page 14]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 2. Wherever in the above we pessimistically assume that a user will
 match any entity that has permissions denied to it before they
 are first allowed, we instead assume that the user will match any
 entity that has permissions allowed to it before they are first
 denied.

 Once again, the resulting mapping may be seen to produce the unique
 (up to choice of mask) POSIX ACL which is the most restrictive among
 all POSIX ACLs no more restrictive than the given NFSv4 ACL.

 Note that the above algorithms may be optimized in a number of ways:
 for example, although they are described in terms of multiple passes,
 it will be simpler and more efficient to calculate the entire POSIX
 ACL in a single pass.

Eriksen & Fields Expires February 23, 2007 [Page 15]

Internet-Draft NFSv4 and POSIX ACLs August 2006

8. Backwards Compatibility

 Previous versions of this document recommended a different
 POSIX->NFSv4 mapping, which enforces POSIX semantics by inserting
 DENYs into the ACL even when those DENY's would have no effect, and
 which represents the POSIX mask ACE using additional DENYs. The
 resulting ACLs are overly complex and create problems for Windows
 clients, because the default Windows ACL editor prefers to order
 DENYs before ALLOWs.

 The NFSv4 to POSIX mapping we describe in this document can accept
 the NFSv4 ACLs produced by the old mapping.

 However, previous versions of this document also recommended
 accepting only NFSv4 ACLs that were precisely those produced by the
 old POSIX->NFSv4 mapping; therefore, existing implementations of that
 recommendation will reject the NFSv4 ACLs produced by the newer
 mapping.

 We strongly recommend fixing implementations to accept a wider range
 of NFSv4 ACLs. However, we briefly document the old mapping here in
 case that is impossible:

 Names, bitmasks, and flags are determined as in the the current
 mapping.

 Whenever the following instructions requiring taking "the complement"
 of an NFSv4 bitmask, do so as follows: first, take the bitwise NOT of
 the bitmask. Then clear the ACE4_WRITE_OWNER, ACE4_DELETE,
 ACE4_READ_NAMED_ATTRIBUTES, and ACE4_WRITE_NAMED_ATTRIBUTES bits.
 Also, clear the ACE4_DELETE_CHILD bit on non-directories, and clear
 any bits not defined in the protocol.

 Create one ALLOW ACE for each entity (OWNER@, GROUP@, and EVERYONE@,
 and each user and group named in the given POSIX ACL). After each
 OWNER@, EVERYONE@, and named user ACE, append a DENY ACE with the
 same entity and flags as the corresponding ALLOW ACE, but with
 bitmask set to the complement (as defined above) of the ALLOW ACE.

 Do the same for each GROUP@ and named group ACE, but instead of
 inserting each new DENY ACE after the corresponding ALLOW ACE, insert
 all of the DENY ACEs at the end of the list of GROUP@ and named group
 ACEs, in the same order that the GROUP@ and named group ALLOW ACEs
 occur in.

 Finally, prepend each GROUP@, named user, and named group ACE by a
 single DENY whose entity and flags are the same as the corresponding
 ALLOW, but whose bitmask is the complement (as defined above) of the

Eriksen & Fields Expires February 23, 2007 [Page 16]

Internet-Draft NFSv4 and POSIX ACLs August 2006

 bitmask determined from the mask ACE in the given POSIX ACL. Skip
 this step if the given POSIX ACL has no mask ACE.

Eriksen & Fields Expires February 23, 2007 [Page 17]

Internet-Draft NFSv4 and POSIX ACLs August 2006

9. Security Considerations

 Any automatic mapping from one ACL model to another must provide
 guarantees as to how the mapping affects the meaning of ACLs, or risk
 misleading users about the permissions set on filesystem objects.
 For this reason, caution is recommended when implementing this
 mapping. It is better to return errors than to break any such
 guarantees.

 That said, there may be cases where small losses in accuracy can
 avoid dramatic interoperability and usability problems; as long as
 the losses in accuracy are clearly documented, these tradeoffs may be
 found acceptable.

 For example, a server unable to support all of the NFSv4 mode bits
 does not have a way to communicate its exact limitations to clients,
 so clients (and users) may be unable to recover from such errors.
 For this reason we recommend ignoring bitmask bits that the server is
 completely unable to map to mode bits, at least when no ACE
 explicitly contradicts the server's default behavior. If this is
 considered insufficient, we should add to the NFSv4 protocol
 additional attributes necessary to advertise the server's
 limitations.

 Note also that any ACL mapping also requires mapping between NFSv4
 usernames and local id's. When the mapping of id's depends on remote
 services, the method used for the mapping must be at least as secure
 as the method used to set or get ACLs.

10. References

 [1] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
 C., Eisler, M., and D. Noveck, "Network File System (NFS)
 version 4 Protocol", RFC 3530, April 2003.

 [2] Institute of Electrical and Electronics Engineers, Inc., "IEEE
 Draft P1003.1e", October 1997,
 <http://wt.xpilot.org/publications/posix.1e/download.html>.

https://datatracker.ietf.org/doc/html/rfc3530
http://wt.xpilot.org/publications/posix.1e/download.html

Eriksen & Fields Expires February 23, 2007 [Page 18]

Internet-Draft NFSv4 and POSIX ACLs August 2006

Authors' Addresses

 Marius Aamodt Eriksen
 U. of Michigan Center for Information Technology Integration

 Email: marius@citi.umich.edu

 J. Bruce Fields
 U. of Michigan Center for Information Technology Integration

 Email: bfields@citi.umich.edu

Eriksen & Fields Expires February 23, 2007 [Page 19]

Internet-Draft NFSv4 and POSIX ACLs August 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Eriksen & Fields Expires February 23, 2007 [Page 20]

