
Network Working Group S. Falkner
Internet-Draft L. Week
Expires: August 19, 2006 Sun Microsystems, Inc.
 February 15, 2006

NFS Version 4 ACLs
draft-ietf-nfsv4-acls-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 19, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 NFS version 4 (specified in RFC 3530) Access Control Lists (ACLs)
 provide more fine grained control than previous file permission
 models, but before the full benefit of the model can be exploited,
 some changes and clarifications must be made. This document will
 describe the details that implementors should consider in order to
 allow implementations to function and interoperate better.

Falkner & Week Expires August 19, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3530

Internet-Draft NFS Version 4 ACLs February 2006

Table of Contents

1. Requirements notation . 3
2. Security Considerations 4
3. Introduction . 5
4. Syntax for the Representation of ACLs 6
5. Interaction Between Mode and ACL 7

 5.1. What should happen to the mode if a SETATTR of ACL is
 done? . 7
 5.2. How should a mode given in the arguments to CREATE or
 OPEN affect an inherited ACL? 11
 5.3. What should happen to an existing ACL if a mode is
 applied to the file/directory? 12
 5.4. What should happen if both mode and ACL are given to
 SETATTR? . 17

5.4.1. Client Side Recommendations 17
5.4.2. Server Side Recommendations 18

6. Deficiencies in a Mode Representation of an ACL 19
7. Access Control Semantics 20
8. Inheritance and turning it off 21
9. EVERYONE@: What does it mean? 22
10. Access Mask Bit Discussion 23
11. Append Only Behavior . 27
12. ACE4_DELETE/ACE4_DELETE_CHILD Behavior 28
13. ACE4_ADD_FILE and ACE4_ADD_SUBDIRECTORY 29
14. POSIX Considerations . 30
14.1. Background Information 30

 14.2. Additional and Alternate File Access Control Mechanisms . 30
14.3. NFSv4 ACLs vs. POSIX-draft ACLs 30
14.4. NFSv4 ACLs vs. POSIX 32
14.5. umask Considerations 33

15. Normative References . 33
 Authors' Addresses . 34
 Intellectual Property and Copyright Statements 35

Falkner & Week Expires August 19, 2006 [Page 2]

Internet-Draft NFS Version 4 ACLs February 2006

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Falkner & Week Expires August 19, 2006 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft NFS Version 4 ACLs February 2006

2. Security Considerations

 None.

Falkner & Week Expires August 19, 2006 [Page 4]

Internet-Draft NFS Version 4 ACLs February 2006

3. Introduction

 Readers of this document are expected to have basic knowledge of the
 Network File System (NFS) version 4 protocol [RFC3530]. Familiarity
 with the NFS version 4 protocol will provide the correct context for
 the issues discussed in this document.

 The NFS version 4 protocol defines a standard Access Control List
 (ACL) model, which to our knowledge, is the first approved standard
 for ACLs. Prior attempts have been made to standardize ACL models,
 but none have succeeded. Therefore, there has been a proliferation
 of ACL models in the computer industry. These multiple models make
 it close to impossible to interoperate between the wide array of
 vendors.

 NFS version 4 ACLs attempt to bridge the gap between the different
 vendors, allowing them to interoperate. Implementations have been
 suffering from differing interpretations of the standard. This
 document attempts to clarify some of the pieces of the NFS version 4
 ACL model with the hope that vendors will be able to agree on
 semantics which will lead to increased ability to interoperate.

https://datatracker.ietf.org/doc/html/rfc3530

Falkner & Week Expires August 19, 2006 [Page 5]

Internet-Draft NFS Version 4 ACLs February 2006

4. Syntax for the Representation of ACLs

 Throughout the document the following abbreviations will be used for
 the ACE type:

 ALLOW (short for ACE4_ACCESS_ALLOWED_ACE_TYPE)

 DENY (short for ACE4_ACCESS_DENIED_ACE_TYPE)

 AUDIT (short for ACE4_SYSTEM_AUDIT_ACE_TYPE)

 ALARM (short for ACE4_SYSTEM_ALARM_ACE_TYPE)

 Representation of ACLs in this document will be of the form:

 <Field #1>:<Field #2>:<Field #3>:<Field #4>

 Field #1 is the "ACE who" and example values are:
 OWNER@, GROUP@, lisagab@sun.com, samf@sun.com

 Field #2 are the "access mask bits" separated with
 "/" characters and example values are:
 ACE4_READ_DATA/ACE4_WRITE_DATA

 Field #3 are the "ACE flags" and example values are:
 ACE4_FILE_INHERIT_ACE, ACE4_IDENTIFIER_GROUP

 Field #4 is the "ACE type" and example values are:
 ALLOW, DENY

Falkner & Week Expires August 19, 2006 [Page 6]

Internet-Draft NFS Version 4 ACLs February 2006

5. Interaction Between Mode and ACL

 For client and server implementors alike, a misunderstanding of the
 interactions between the mode and ACL file attributes is likely to be
 a cause of problems.

 The relationship between NFS version 4 modes and ACLs is difficult,
 but not impossible to specify. Contributing to this is the fact that
 while there are portions of the mode that ACLs don't specify, it is
 impossible for a mode to represent all of the information in an ACL.

 The NFS version 4 mode attribute is based on the UNIX mode bits.
 Some information that is traditionally associated with the UNIX mode
 bits, "setuid"/"setgid"/"sticky" (MODE4_SUID/MODE4_SGID/MODE4_SVTX),
 are not defined to be part of the ACL. Other information that can
 also affect file permissions, such as the file's owner and owning
 group are also not defined to be part of the ACL. In other words,
 from looking at an ACL, a user will be unable to tell who the owner
 and owning group of a file is. This is because of the special
 identifiers, OWNER@ and GROUP@.

 This section will attempt to answer the following questions:

 1. What should happen to the mode if a SETATTR of ACL is done?

 2. How should a mode given to CREATE or OPEN affect an inherited
 ACL?

 3. What should happen to an existing ACL if a mode is applied to the
 file/directory?

 4. What should happen if both mode and ACL are given to SETATTR?

5.1. What should happen to the mode if a SETATTR of ACL is done?

 Keeping the mode and ACL attributes synchronized is important, but as
 mentioned previously, the mode cannot possibly represent all of the
 information in the ACL.

 Still, the mode should be modified to represent the access as
 accurately as possible. The mode is not guaranteed to be accurate
 and could potentially be more restrictive than the access that would
 actually be given by the ACL (for more discussion on this topic, see

Section 6). Because of this, client implementations are not
 recommended to not do their own access checks based on the mode of a
 file. For further information on access checking, see Section 7.

 The general algorithm to assign a new mode attribute to an object

Falkner & Week Expires August 19, 2006 [Page 7]

Internet-Draft NFS Version 4 ACLs February 2006

 based on a new ACL being set is:

 1. Walk through the ACEs in order, looking for ACEs with a "who"
 value of OWNER@, GROUP@, or EVERYONE@.

 2. It is understood that ACEs with a "who" value of OWNER@ affect
 the *USR bits of the mode, GROUP@ affect *GRP bits, and EVERYONE@
 affect *USR, *GRP, and *OTH bits (For more discussion on the
 EVERYONE@ special identifier see Section 9).

 3. If such an ACE specifies ALLOW or DENY for ACE4_READ_DATA,
 ACE4_WRITE_DATA, or ACE4_EXECUTE, and the mode bits affected have
 not been determined yet, set them to one (if ALLOW) or zero (if
 DENY).

 4. Upon completion, any mode bits as yet undetermined have a value
 of zero.

 This pseudocode more precisely describes the algorithm:

 /* octal constants for the mode bits */

 RUSR = 0400
 WUSR = 0200
 XUSR = 0100
 RGRP = 0040
 WGRP = 0020
 XGRP = 0010
 ROTH = 0004
 WOTH = 0002
 XOTH = 0001

 /*
 * old_mode represents the previous value
 * of the mode of the object.
 */

 mode_t mode = 0, seen = 0;
 for each ACE a {
 if a.type is ALLOW or DENY and
 ACE4_INHERIT_ONLY_ACE is not set in a.flags {
 if a.who is OWNER@ {
 if ((a.mask & ACE4_READ_DATA) &&
 (! (seen & RUSR))) {
 seen |= RUSR;
 if a.type is ALLOW {
 mode |= RUSR;
 }

Falkner & Week Expires August 19, 2006 [Page 8]

Internet-Draft NFS Version 4 ACLs February 2006

 }
 if ((a.mask & ACE4_WRITE_DATA) &&
 (! (seen & WUSR))) {
 seen |= WUSR;
 if a.type is ALLOW {
 mode |= WUSR;
 }
 }
 if ((a.mask & ACE4_EXECUTE) &&
 (! (seen & XUSR))) {
 seen |= XUSR;
 if a.type is ALLOW {
 mode |= XUSR;
 }
 }
 } else if a.who is GROUP@ {
 if ((a.mask & ACE4_READ_DATA) &&
 (! (seen & RGRP))) {
 seen |= RGRP;
 if a.type is ALLOW {
 mode |= RGRP;
 }
 }
 if ((a.mask & ACE4_WRITE_DATA) &&
 (! (seen & WGRP))) {
 seen |= WGRP;
 if a.type is ALLOW {
 mode |= WGRP;
 }
 }
 if ((a.mask & ACE4_EXECUTE) &&
 (! (seen & XGRP))) {
 seen |= XGRP;
 if a.type is ALLOW {
 mode |= XGRP;
 }
 }
 } else if a.who is EVERYONE@ {
 if (a.mask & ACE4_READ_DATA) {
 if ! (seen & RUSR) {
 seen |= RUSR;
 if a.type is ALLOW {
 mode |= RUSR;
 }
 }
 if ! (seen & RGRP) {
 seen |= RGRP;
 if a.type is ALLOW {

Falkner & Week Expires August 19, 2006 [Page 9]

Internet-Draft NFS Version 4 ACLs February 2006

 mode |= RGRP;
 }
 }
 if ! (seen & ROTH) {
 seen |= ROTH;
 if a.type is ALLOW {
 mode |= ROTH;
 }
 }
 }
 if (a.mask & ACE4_WRITE_DATA) {
 if ! (seen & WUSR) {
 seen |= WUSR;
 if a.type is ALLOW {
 mode |= WUSR;
 }
 }
 if ! (seen & WGRP) {
 seen |= WGRP;
 if a.type is ALLOW {
 mode |= WGRP;
 }
 }
 if ! (seen & WOTH) {
 seen |= WOTH;
 if a.type is ALLOW {
 mode |= WOTH;
 }
 }
 }
 if (a.mask & ACE4_EXECUTE) {
 if ! (seen & XUSR) {
 seen |= XUSR;
 if a.type is ALLOW {
 mode |= XUSR;
 }
 }
 if ! (seen & XGRP) {
 seen |= XGRP;
 if a.type is ALLOW {
 mode |= XGRP;
 }
 }
 if ! (seen & XOTH) {
 seen |= XOTH;
 if a.type is ALLOW {
 mode |= XOTH;
 }

Falkner & Week Expires August 19, 2006 [Page 10]

Internet-Draft NFS Version 4 ACLs February 2006

 }
 }
 }
 }
 }
 return mode | (old_mode & (SUID | SGID | SVTX))

5.2. How should a mode given in the arguments to CREATE or OPEN affect
 an inherited ACL?

 The goal of implementing ACL inheritance is for newly created objects
 to inherit the ACLs they were intended to inherit, but without
 disregarding the mode that is given with the arguments to the CREATE
 or OPEN operations. The general algorithm is as follows:

 1. Form an ACL on the newly created object that is the concatenation
 of all inheritable ACEs from its parent directory. Note that
 there may be zero inheritable ACEs; thus, an object may start
 with an empty ACL.

 This is self explanatory. If, for example, a new non-directory
 file is being created, ACEs with the flag of
 ACE4_FILE_INHERIT_ACE will be considered inheritable.

 2. For each ACE in the new ACL, adjust its flags if necessary, and
 possibly create two ACEs in place of one.

 This will be discussed in detail below.

 3. Apply the algorithm for applying a mode to a file/directory with
 an existing ACL on the new object as described in Section 5.3,
 using the mode that is to be used for file creation.

 This ensures that the mode is honored.

 Step 2 above is necessary to honor the intent of the inheritance-
 related flags. It also is intended to preserve information about the
 original inheritable ACEs in the case that they will be modified by
 other steps. Paragraph 2 is detailed in the following algorithm:

 1. If the ACE4_NO_PROPAGATE_INHERIT_ACE is set, or the type of the
 file is something other than "directory", then clear the
 following flags:

 ACE4_NO_PROPAGATE_INHERIT_ACE

 ACE4_FILE_INHERIT_ACE

Falkner & Week Expires August 19, 2006 [Page 11]

Internet-Draft NFS Version 4 ACLs February 2006

 ACE4_DIRECTORY_INHERIT_ACE

 ACE4_INHERIT_ONLY_ACE

 Continue on to the next ACE.

 2. If the type of file is "directory" and ACE4_FILE_INHERIT_ACE is
 set and ACE4_DIRECTORY_INHERIT_ACE is NOT set, then we ensure
 that ACE4_INHERIT_ONLY_ACE is set. Continue on to the next ACE.
 Otherwise:

 3. If the type of the ACE is neither ALLOW nor DENY, then continue
 on to the next ACE.

 4. Copy the original ACE into a second, adjacent ACE.

 5. On the first ACE, ensure that ACE4_INHERIT_ONLY_ACE is set.

 6. On the second ACE, clear the following flags:

 ACE4_NO_PROPAGATE_INHERIT_ACE

 ACE4_FILE_INHERIT_ACE

 ACE4_DIRECTORY_INHERIT_ACE

 ACE4_INHERIT_ONLY_ACE

 7. On the second ACE, if the type field is ALLOW, an implementation
 MAY clear the following mask bits:

 ACE4_WRITE_ACL

 ACE4_WRITE_OWNER

5.3. What should happen to an existing ACL if a mode is applied to the
 file/directory?

 An existing ACL can mean two things in this context. One, that a
 file/directory already exists and it has an ACL. Two, that a
 directory has inheritable ACEs that will make up the ACL for any new
 files or directories created therein.

 The high-level goal of the behavior when a mode is set on a file with
 an existing ACL is to take the new mode into account, without needing
 to disregard a pre-existing ACL.

 When a mode is applied to an object, e.g. via SETATTR or CREATE/OPEN,

Falkner & Week Expires August 19, 2006 [Page 12]

Internet-Draft NFS Version 4 ACLs February 2006

 the ACL must be modified to accommodate the mode.

 1. The ACL is traversed, one ACE at a time. For each ACE:

 1. If the type of the ACE is neither ALLOW nor DENY, the ACE is
 left unchanged. Continue to the next ACE.

 2. If the ACE4_INHERIT_ONLY_ACE flag is set on the ACE, it is
 left unchanged. Continue to the next ACE.

 3. If either or both of ACE4_FILE_INHERIT_ACE or
 ACE4_DIRECTORY_INHERIT_ACE are set:

 1. A copy of the ACE is made, and placed in the ACL
 immediately following the current ACE.

 2. In the first ACE, the flag ACE4_INHERIT_ONLY_ACE is set.

 3. In the second ACE, the following flags are cleared:

 ACE4_FILE_INHERIT_ACE

 ACE4_DIRECTORY_INHERIT_ACE

 ACE4_NO_PROPAGATE_INHERIT_ACE

 The algorithm continues on with the second ACE.

 4. If the "who" field is one of the following:

 OWNER@

 GROUP@

 EVERYONE@

 then the following mask bits are cleared:

 ACE4_READ_DATA

 ACE4_LIST_DIRECTORY

 ACE4_WRITE_DATA

 ACE4_ADD_FILE

 ACE4_APPEND_DATA

Falkner & Week Expires August 19, 2006 [Page 13]

Internet-Draft NFS Version 4 ACLs February 2006

 ACE4_ADD_SUBDIRECTORY

 ACE4_EXECUTE

 At this point, we proceed to the next ACE.

 5. Otherwise, if the "who" field did not match one of OWNER@,
 GROUP@, or EVERYONE@, the following steps SHOULD be
 performed.

 1. If the type of the ACE is ALLOW, we check the preceding
 ACE (if any). If it does not meet all of the following
 criteria:

 1. The type field is DENY.

 2. The who field is the same as the current ACE.

 3. The flag bit ACE4_IDENTIFIER_GROUP is the same as it
 is in the current ACE, and no other flag bits are
 set.

 4. The mask bits are a subset of the mask bits of the
 current ACE, and are also a subset of the following:

 ACE4_READ_DATA

 ACE4_LIST_DIRECTORY

 ACE4_WRITE_DATA

 ACE4_ADD_FILE

 ACE4_APPEND_DATA

 ACE4_ADD_SUBDIRECTORY

 ACE4_EXECUTE

 then an ACE of type DENY, with a who equal to the current
 ACE, flag bits equal to (<current-ACE-flags> &
 ACE4_IDENTIFIER_GROUP), and no mask bits, is prepended.

 2. The following modifications are made to the prepended
 ACE. The intent is to mask the following ACE to disallow
 ACE4_READ_DATA, ACE4_WRITE_DATA, ACE4_APPEND_DATA, or
 ACE4_EXECUTE, based upon the group permissions of the new
 mode. As a special case, if the ACE matches the current

Falkner & Week Expires August 19, 2006 [Page 14]

Internet-Draft NFS Version 4 ACLs February 2006

 owner of the file, the owner bits are used, rather than
 the group bits. This is reflected in the algorithm
 below.

 Let there be three bits defined:

 #define READ 04
 #define WRITE 02
 #define EXEC 01

 Let "amode" be the new mode, right-shifted three
 bits, in order to have the group permission bits
 placed in the three low order bits of amode,
 i.e. amode = mode >> 3

 If ACE4_IDENTIFIER_GROUP is not set in the flags,
 and the "who" field of the ACE matches the owner
 of the file, we shift amode three more bits, in
 order to have the owner permission bits placed in
 the three low order bits of amode:

 amode = amode >> 3

 amode is now used as follows:

 If ACE4_READ_DATA is set on the current ACE:
 If READ is set on amode:
 ACE4_READ_DATA is cleared on the prepended ACE
 else:
 ACE4_READ_DATA is set on the prepended ACE

 If ACE4_WRITE_DATA is set on the current ACE:
 If WRITE is set on amode:
 ACE4_WRITE_DATA is cleared on the prepended ACE
 else:
 ACE4_WRITE_DATA is set on the prepended ACE

 If ACE4_APPEND_DATA is set on the current ACE:
 If WRITE is set on amode:
 ACE4_APPEND_DATA is cleared on the prepended ACE
 else:
 ACE4_APPEND_DATA is set on the prepended ACE

 If ACE4_EXECUTE is set on the current ACE:
 If EXEC is set on amode:
 ACE4_EXECUTE is cleared on the prepended ACE
 else:

Falkner & Week Expires August 19, 2006 [Page 15]

Internet-Draft NFS Version 4 ACLs February 2006

 ACE4_EXECUTE is set on the prepended ACE

 3. To conform with POSIX, and prevent cases where the owner
 of the file is given permissions via an explicit group
 (i.e. alternate permissions are not disabled following a
 chmod), we implement the following step.

 If ACE4_IDENTIFIER_GROUP is set in the flags field of
 the ALLOW ACE:
 Let "mode" be the mode that we are chmoding to:
 extramode = (mode >> 3) & 07
 ownermode = mode >> 6
 extramode &= ~ownermode
 If extramode is not zero:
 If extramode & READ:
 Clear ACE4_READ_DATA in both the
 prepended DENY ACE and the ALLOW ACE
 If extramode & WRITE:
 Clear ACE4_WRITE_DATA and ACE_APPEND_DATA in both
 the prepended DENY ACE and the ALLOW ACE
 If extramode & EXEC:
 Clear ACE4_EXECUTE in both the prepended DENY
 ACE and the ALLOW ACE

 2. If there are at least six ACEs, the final six ACEs are examined.
 If they are not equal to the following ACEs:

 A1) OWNER@:::DENY
 A2) OWNER@:ACE4_WRITE_ACL/ACE4_WRITE_OWNER/
 ACE4_WRITE_ATTRIBUTES/ACE4_WRITE_NAMED_ATTRIBUTES::ALLOW
 A3) GROUP@::ACE4_IDENTIFIER_GROUP:DENY
 A4) GROUP@::ACE4_IDENTIFIER_GROUP:ALLOW
 A5) EVERYONE@:ACE4_WRITE_ACL/ACE4_WRITE_OWNER/
 ACE4_WRITE_ATTRIBUTES/ACE4_WRITE_NAMED_ATTRIBUTES::DENY
 A6) EVERYONE@:ACE4_READ_ACL/ACE4_READ_ATTRIBUTES/
 ACE4_READ_NAMED_ATTRIBUTES/ACE4_SYNCHRONIZE::ALLOW

 Then six ACEs matching the above are appended.

 3. The final six ACEs are adjusted according to the incoming mode.

Falkner & Week Expires August 19, 2006 [Page 16]

Internet-Draft NFS Version 4 ACLs February 2006

 /* octal constants for the mode bits */

 RUSR = 0400
 WUSR = 0200
 XUSR = 0100
 RGRP = 0040
 WGRP = 0020
 XGRP = 0010
 ROTH = 0004
 WOTH = 0002
 XOTH = 0001

 If RUSR is set: set ACE4_READ_DATA in A2
 else: set ACE4_READ_DATA in A1
 If WUSR is set: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A2
 else: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A1
 If XUSR is set: set ACE4_EXECUTE in A2
 else: set ACE4_EXECUTE in A1
 If RGRP is set: set ACE4_READ_DATA in A4
 else: set ACE4_READ_DATA in A3
 If WGRP is set: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A4
 else: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A3
 If XGRP is set: set ACE4_EXECUTE in A4
 else: set ACE4_EXECUTE in A3
 If ROTH is set: set ACE4_READ_DATA in A6
 else: set ACE4_READ_DATA in A5
 If WOTH is set: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A6
 else: set ACE4_WRITE_DATA and ACE4_APPEND_DATA in A5
 If XOTH is set: set ACE4_EXECUTE in A6
 else: set ACE4_EXECUTE in A5

5.4. What should happen if both mode and ACL are given to SETATTR?

 The only reason that a mode and ACL should be set in the same SETATTR
 is if the user wants to set the SUID, SGID and SVTX bits along with
 setting the permissions by means of an ACL. There is still no way to
 enforce which order the attributes will be set in, and it is likely
 that different orders of operations will produce different results.

 In the long run, the best solution would be the ability to set SUID,
 SGID and SVTX bits independent of the mode, but since we don't have
 this ability in NFS version 4.0, this is what we recommend.

5.4.1. Client Side Recommendations

 If an application needs to enforce a certain behavior, it is
 recommended that the client implementations set mode and ACL in
 separate SETATTR requests. This will produce consistent and expected

Falkner & Week Expires August 19, 2006 [Page 17]

Internet-Draft NFS Version 4 ACLs February 2006

 results.

 If an application wants to set SUID, SGID and SVTX bits and an ACL,
 we recommend:

 In the first SETATTR, set the mode with SUID, SGID and SVTX bits
 as desired and all other bits with a value of 0.

 In a following SETATTR (preferably in the same COMPOUND) set the
 ACL.

5.4.2. Server Side Recommendations

 If both mode and ACL are given to SETATTR, server implementations
 should verify that the mode and ACL don't conflict, i.e. the mode
 computed from the given ACL must be the same as the given mode,
 excluding the SUID, SGID and SVTX bits. The algorithm for assigning
 a new mode based on the ACL can be used. This is described in

Section 5.1. If a server receives a request to set both mode and
 ACL, but the two conflict, the server should return NFS4ERR_INVAL.

Falkner & Week Expires August 19, 2006 [Page 18]

Internet-Draft NFS Version 4 ACLs February 2006

6. Deficiencies in a Mode Representation of an ACL

 As mentioned in Section 5.1, the representation of the mode is
 deterministic, but not guaranteed to be accurate. The mode bits
 potentially convey a more restrictive permission than what will
 actually be granted via the ACL.

 Given the following ACL of two ACEs:

 GROUP@:ACE4_READ_DATA/ACE4_WRITE_DATA/ACE4_EXECUTE:
 ACE4_IDENTIFIER_GROUP:ALLOW
 EVERYONE@:ACE4_READ_DATA/ACE4_WRITE_DATA/ACE4_EXECUTE::DENY

 we would compute a mode of 0070. However, it is possible, even
 likely, that the owner might be a member of the object's owning
 group, and thus, the owner would be granted read, write, and execute
 access to the object. This would conflict with the mode of 0070,
 where an owner would be denied this access.

 The only way to overcome this deficiency would be to determine
 whether the object's owner is a member of the object's owning group.
 This is difficult, but worse, on a POSIX or any UNIX-like system, it
 is a process' membership in a group that is important, not a user's.
 Thus, any fixed mode intended to represent the above ACL can be
 incorrect.

 Example: administrative databases (possibly /etc/passwd and /etc/
 group) indicate that the user "bob" is a member of the group "staff".
 An object has the ACL given above, is owned by "bob", and has an
 owning group of "staff". User "bob" has logged in to the system, and
 thus processes have been created owned by "bob" and having membership
 in group "staff".

 A mode representation of the above ACL could thus be 0770, due to
 user "bob" having membership in group "staff". Now, the
 administrative databases are changed, such that user "bob" is no
 longer in group "staff". User "bob" logs in to the system again, and
 thus more processes are created, this time owned by "bob" but NOT in
 group "staff".

 A mode of 0770 is inaccurate for processes not belonging to group
 "staff". But even if the mode of the file were proactively changed
 to 0070 at the time the group database was edited, mode 0070 would be
 inaccurate for the pre-existing processes owned by user "bob" and
 having membership in group "staff".

Falkner & Week Expires August 19, 2006 [Page 19]

Internet-Draft NFS Version 4 ACLs February 2006

7. Access Control Semantics

 The NFS version 4 specification [RFC3530] defines how an ACL is
 interpreted, and it states that the access is undefined if you get
 through the entire ACL and haven't encountered an ALLOW or DENY ACE
 for the requester.

 We now recommend that if you fall through the ACL, access is denied.
 This allows the behavior to be clearly defined, and consistent across
 implementations. In fact, there is precedence for this behavior in
 current implementations.

 It is convenient that [RFC3530] gave implementations flexibility by
 leaving the access undefined, but the flexibility is still present
 given that there have always been security policies independent of
 file permissions. Servers can have other security policies in place,
 and in those cases, access will be decided outside of what is defined
 in the ACL.

 Examples of security policies that can be in place outside of what is
 defined (or not defined) in the ACL are:

 1. The owner of the file will always be granted ACE4_WRITE_ACL and
 ACE4_READ_ACL permissions.

 2. The ACL may say that an entity is to be granted ACE4_WRITE_DATA
 permission, but the file system is mounted read only.

 For multiple reasons, including the one listed above, client
 implementations are recommended not to do their own access checking.
 All access checking should be done on the server.

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc3530

Falkner & Week Expires August 19, 2006 [Page 20]

Internet-Draft NFS Version 4 ACLs February 2006

8. Inheritance and turning it off

 The inheritance of access permissions may be problematic if a user
 cannot prevent their file from inheriting unwanted permissions. For
 example, a user, "samf", sets up a shared project directory to be
 used by everyone working on Project Foo. "lisagab" is a part of
 Project Foo, but is working on something that should not be seen by
 anyone else. How can "lisagab" make sure that any new files that she
 creates in this shared project directory do not inherit anything that
 could compromise the security of her work?

 More relevant to the implementors of NFS version 4 clients and
 servers is the question of how to communicate the fact that user,
 "lisagab", doesn't want any permissions to be inherited to her newly
 created file or directory.

 To do this, implementors should standardize on what the behavior of
 CREATE and OPEN must be if:

 1. just mode is given

 In this case, inheritance will take place, but the mode will be
 applied to the inherited ACL as described in Section 5.1, thereby
 modifying the ACL.

 2. just ACL is given

 In this case, inheritance will not take place, and the ACL as
 defined in the CREATE or OPEN will be set without modification.

 3. both mode and ACL are given

 In this case, implementors should verify that the mode and ACL
 don't conflict, i.e. the mode computed from the given ACL must be
 the same as the given mode. The algorithm for assigning a new
 mode based on the ACL can be used. This is described in

Section 5.1) If a server receives a request to set both mode and
 ACL, but the two conflict, the server should return
 NFS4ERR_INVAL. If the mode and ACL don't conflict, inheritance
 will not take place and both, the mode and ACL, will be set
 without modification.

 4. neither mode nor ACL are given

 In this case, inheritance will take place and no modifications to
 the ACL will happen. It is worth noting that if no inheritable
 ACEs exist on the parent directory, the file will be created with
 an empty ACL, thus granting no accesses.

Falkner & Week Expires August 19, 2006 [Page 21]

Internet-Draft NFS Version 4 ACLs February 2006

9. EVERYONE@: What does it mean?

 The NFS version 4 specification [RFC3530] refers to the "EVERYONE@"
 special identifier as meaning "The world". This is confusing because
 there are a couple of different ways to interpret the wording. These
 different interpretations are problematic and it would be
 advantageous for implementors to standardize on a single meaning.

 The different interpretations are as follows:

 1. "EVERYONE@" is equivalent to the UNIX "other" entity, which by
 definition does not include the owner or owning group of the
 file.

 2. "EVERYONE@" literally means everyone, including the file's owner
 and owning group.

 The goal of standardizing on what "EVERYONE@" means may be best
 expressed from a user's point of view. A user of NFS version 4 ACLs
 should expect that setting an ACL such as the following will have the
 same affect regardless of what vendor's implementation they are
 using.

 EVERYONE@:ACE4_READ_DATA::ALLOW

 Examples of how the different interpretations could cause different
 behaviors are as follows:

 If we take interpretation #1 where "EVERYONE@" is equivalent to the
 UNIX "other" entity and the owner or a user in the owning group
 attempt to access the file for reading, they would be denied. This
 is because we fell through the ACL and didn't find any entries
 specifying the permissions for OWNER@ and GROUP@ (see Section 7).

 If we take interpretation #2 where "EVERYONE@" is literally everyone,
 including the owner and owning group, and the owner or a user in the
 owning group attempt to access the file for reading, they would be
 allowed.

 The first interpretation is understandable, but does not follow the
 intent of the special identifier. Therefore, it is recommended that
 implementors use "EVERYONE@" to mean literally everyone.

https://datatracker.ietf.org/doc/html/rfc3530

Falkner & Week Expires August 19, 2006 [Page 22]

Internet-Draft NFS Version 4 ACLs February 2006

10. Access Mask Bit Discussion

 The purpose of this section is to clarify the meaning of the
 different access mask bits. This will state the operations and a
 description of what the access mask bit controls. A major portion of
 the descriptions were taken from [RFC3530]. The following is a list
 of access mask bits that can be set on an ACE:

 ACE4_READ_DATA
 Operation(s) affected:
 READ
 OPEN
 Discussion:
 Permission to read the data of the file.

 ACE4_LIST_DIRECTORY
 Operation(s) affected:
 READDIR
 Discussion:
 Permission to list the contents of a directory.

 ACE4_WRITE_DATA
 Operation(s) affected:
 WRITE
 OPEN
 Discussion:
 Permission to modify a file's data anywhere in
 the file's offset range. This includes the
 ability to write to any arbitrary offset and as
 a result to grow the file.

 ACE4_ADD_FILE
 Operation(s) affected:
 CREATE
 OPEN
 Discussion:
 Permission to add a new file in a directory.
 The CREATE operation is affected when
 nfs_ftype4 is NF4LNK, NF4BLK, NF4CHR, NF4SOCK,
 or NF4FIFO. (NF4DIR is not listed because it is
 covered by ACE4_ADD_SUBDIRECTORY.) OPEN is
 affected when used to create a regular file.

 ACE4_APPEND_DATA
 Operation(s) affected:
 WRITE
 OPEN
 Discussion:

https://datatracker.ietf.org/doc/html/rfc3530

Falkner & Week Expires August 19, 2006 [Page 23]

Internet-Draft NFS Version 4 ACLs February 2006

 The ability to modify a file's data, but only
 starting at EOF. See Section 11 for further
 discussion on the relationship between
 ACE4_APPEND_DATA and ACE4_WRITE_DATA.

 ACE4_ADD_SUBDIRECTORY
 Operation(s) affected:
 CREATE
 Discussion:
 Permission to create a subdirectory in a
 directory. The CREATE operation is affected
 when nfs_ftype4 is NF4DIR.

 ACE4_READ_NAMED_ATTRS
 Operation(s) affected:
 OPENATTR
 Discussion:
 Permission to lookup the named attributes directory.
 OPENATTR is affected when it is not used to
 create a named attribute directory. This is
 when 1.) createdir is TRUE, but a named
 attribute directory already exists, or 2.)
 createdir is FALSE.

 ACE4_WRITE_NAMED_ATTRS
 Operation(s) affected:
 OPENATTR
 Discussion:
 Permission to create a named attribute directory.
 OPENATTR is affected when it is used to create
 a named attribute directory. This is when
 createdir is TRUE and no named attribute
 directory exists. The ability to check whether
 or not a named attribute directory exists
 depends on the ability to look it up,
 therefore, users also need the
 ACE4_READ_NAMED_ATTRS permission in order to
 create a named attribute directory.

 ACE4_EXECUTE
 Operation(s) affected:
 LOOKUP
 Discussion:
 Permission to execute a file or traverse/search
 a directory.

 ACE4_DELETE_CHILD
 Operation(s) affected:

Falkner & Week Expires August 19, 2006 [Page 24]

Internet-Draft NFS Version 4 ACLs February 2006

 REMOVE
 Discussion:
 Permission to delete a file or directory within
 a directory.

 ACE4_READ_ATTRIBUTES
 Operation(s) affected:
 GETATTR of file system object attributes
 Discussion:
 The ability to read basic attributes (non-ACLs)
 of a file.

 ACE4_WRITE_ATTRIBUTES
 Operation(s) affected:
 SETATTR of time_access_set, time_backup,
 time_create, time_modify_set
 Discussion:
 Permission to change the times associated with
 a file or directory to an arbitrary value.

 ACE4_DELETE
 Operation(s) affected:
 REMOVE
 Discussion:
 Permission to delete the file or directory.

 ACE4_READ_ACL
 Operation(s) affected:
 GETATTR of acl
 Discussion:
 Permission to read the ACL.

 ACE4_WRITE_ACL
 Operation(s) affected:
 SETATTR of acl and mode
 Discussion:
 Permission to write the acl and mode attributes.

 ACE4_WRITE_OWNER
 Operation(s) affected:
 SETATTR of owner and owner_group
 Discussions:
 Permission to write the owner and owner_group
 attributes. On UNIX systems, this is the
 ability to execute chown or chgrp.

 ACE4_SYNCHRONIZE
 Operation(s) affected:

Falkner & Week Expires August 19, 2006 [Page 25]

Internet-Draft NFS Version 4 ACLs February 2006

 NONE
 Discussion:
 Permission to access file locally at the server with
 synchronized reads and writes.

Falkner & Week Expires August 19, 2006 [Page 26]

Internet-Draft NFS Version 4 ACLs February 2006

11. Append Only Behavior

 The NFS version 4 ACL model allows for the notion of append-only
 files, by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to
 the same user or group.

 If a file has an ACL such as the one described above and a WRITE
 request is made for somewhere other than EOF, the server SHOULD
 return NFS4ERR_ACCESS.

Falkner & Week Expires August 19, 2006 [Page 27]

Internet-Draft NFS Version 4 ACLs February 2006

12. ACE4_DELETE/ACE4_DELETE_CHILD Behavior

 There are two separate access mask bits that govern the ability to
 delete a file: ACE4_DELETE and ACE4_DELETE_CHILD. ACE4_DELETE is
 intended to be specified by the ACL for the object to be deleted, and
 ACE4_DELETE_CHILD is intended to be specified by the ACL of the
 parent directory.

 In addition to ACE4_DELETE and ACE4_DELETE_CHILD, many systems also
 consider the "sticky bit" (MODE4_SVTX) and the appropriate "write"
 mode bit when determining whether to allow a file to be deleted. The
 mode bit for write corresponds to ACE4_WRITE_DATA, which is the same
 physical bit as ACE4_ADD_FILE. Therefore, ACE4_ADD_FILE can come
 into play when determining permission to delete.

 In the algorithm below, the strategy is that ACE4_DELETE and
 ACE4_DELETE_CHILD take precedence over the sticky bit, and the sticky
 bit takes precedence over the "write" mode bits (reflected in
 ACE4_ADD_FILE).

 Server implementations SHOULD grant or deny permission to delete
 based on the following algorithm.

 if ACE4_EXECUTE is denied by the parent directory ACL:
 deny delete
 else if ACE4_EXECUTE is unspecified by the parent directory ACL:
 deny delete
 else if ACE4_DELETE is allowed by the target object ACL:
 allow delete
 else if ACE4_DELETE_CHILD is allowed by the parent directory ACL:
 allow delete
 else if ACE4_DELETE_CHILD is denied by the parent directory ACL:
 deny delete
 else if ACE4_ADD_FILE is allowed by the parent directory ACL:
 if MODE4_SVTX is set for the parent directory:
 if the principal owns the parent directory OR
 the principal owns the target object OR
 ACE4_WRITE_DATA is allowed by the target object ACL:
 allow delete
 else:
 deny delete
 else:
 allow delete
 else:
 deny delete

Falkner & Week Expires August 19, 2006 [Page 28]

Internet-Draft NFS Version 4 ACLs February 2006

13. ACE4_ADD_FILE and ACE4_ADD_SUBDIRECTORY

 As specified in Section 10, the permission granted by ACE4_WRITE_DATA
 is a superset of the permission granted by ACE4_APPEND_DATA. With
 directories, ACE4_WRITE_DATA is analogous to ACE4_ADD_FILE, and
 ACE4_APPEND_DATA is analogous to ACE4_ADD_SUBDIRECTORY.

 A question this raises is whether ACE4_ADD_FILE is a superset of
 ACE4_ADD_SUBDIRECTORY. In other words, does the granting of
 ACE4_ADD_FILE imply the permission to create a subdirectory?

 It is proposed that ACE4_ADD_FILE does not imply
 ACE4_ADD_SUBDIRECTORY.

Falkner & Week Expires August 19, 2006 [Page 29]

Internet-Draft NFS Version 4 ACLs February 2006

14. POSIX Considerations

 Disclaimer: This section is relevant to platforms with requirements
 to be POSIX compliant. These platforms are typically UNIX based, and
 the following discussion will be heavily biased toward those
 platforms.

14.1. Background Information

 The standard POSIX (See [POSIX]) file access control mechanism uses
 the file permission bits contained in the file mode. The file
 permission bits are used to determine whether a process has read,
 write or execute/search permission to a file based on which class the
 process is in; file owner, file group or file other class.

 A process is in the file owner class if the effective user ID of the
 process matches the user ID of the file. A process is in the file
 group class if the process is not in the file owner class and if the
 effective group ID or one of the supplementary group IDs of the
 process matches the group ID associated with the file. A process is
 in the file other class if the effective user ID of the process is
 not in the file owner class or the file group class.

 The POSIX spec says that a process is in one and only one class,
 therefore, the access permissions that exist for that class are the
 only ones that will be considered when doing access checks.

14.2. Additional and Alternate File Access Control Mechanisms

 In addition to the standard file access control mechanism, the POSIX
 spec allows for additional and alternate file access control
 mechanisms. According to Section 4.4 of the POSIX spec, a file can
 have one or both mechanisms in place.

 The additional file access control mechanism is defined to be layered
 upon the file permission bits, but they can only further restrict the
 standard file access control mechanism. The alternate file access
 control mechanism is defined to be independent of the file permission
 bits and which if enabled on a file may either restrict or extend the
 permissions of a given user. Another major distinction between the
 additional and alternate file access control mechanisms is that any
 alternate mechanism must be disabled after the file permission bits
 are changed with a chmod. Additional mechanisms do not need to be
 disabled when a chmod is done.

14.3. NFSv4 ACLs vs. POSIX-draft ACLs

 The goal of both ACL models is similar in that we want to be able to

Falkner & Week Expires August 19, 2006 [Page 30]

Internet-Draft NFS Version 4 ACLs February 2006

 give the owner of the file more fine grained access control than is
 available with the file permission bits. Much like POSIX draft ACLs,
 NFSv4 ACLs are made up of multiple Access Control Entries (ACEs), but
 the similarities don't go much further.

 One major difference between POSIX draft and NFSv4 is that NFSv4 ACLs
 have two types of ACEs that play a role in access checking. Those
 two types are ALLOW and DENY. One important thing to note about this
 distinction is that in POSIX draft ACLs, a single entry defines what
 is allowed and also what is denied for the user or group that the
 entry applies to. NFSv4 ACLs separate what is allowed and what is
 denied by having the distinct ALLOW and DENY types of ACEs. The
 importance of this is that a user shouldn't infer from any single
 NFSv4 ACE that defines some set of permissions whether or not the
 permissions that weren't defined in that ACE are allowed or denied.
 This leads us to have to look at the ACL as a whole in order to
 determine a user's access.

 For instance, in the following example, the first "bob@sun.com" entry
 defines the capability for user "bob@sun.com" regarding
 ACE4_READ_DATA, but you cannot infer from that entry whether
 "bob@sun.com" is granted ACE4_WRITE_DATA or not. One must continue
 through the ACL to see what the other capabilities are.

 bob@sun.com:ACE4_READ_DATA::ALLOW

 bob@sun.com:ACE4_WRITE_DATA::ALLOW

 GROUP@:ACE4_EXECUTE:ACE4_IDENTIFIER_GROUP:DENY

 bob@sun.com:ACE4_EXECUTE::ALLOW

 This example also illustrates a couple of other differences between
 the two models. The first difference to be noted is that the
 ordering of the ACEs is different from what is typical with POSIX-
 draft ACLs. POSIX-draft ACLs have a defined ordering of the ACEs
 which is as follows: owner, supplemental users, owning group,
 supplemental groups, and other. This ordering is maintained by the
 kernel and cannot be changed by the user. With NFSv4 ACLs, there is
 no rigid order of the ACEs and the order is user defined. The second
 difference that this example illustrates is that there is no MASK_OBJ
 or mask entry in this ACL. This is because NFSv4 ACLs have no notion
 of a mask.

 NFSv4 ACLs go beyond the ability to define access with regard to the
 standard read, write and execute/search permissions and allows the
 user to set ACLs to define file control permissions (i.e. - the
 ability to allow or deny a user the ability to write the ACL or

Falkner & Week Expires August 19, 2006 [Page 31]

Internet-Draft NFS Version 4 ACLs February 2006

 change the owner). The model also allows inheriting both standard
 and file control permissions to newly created files.

14.4. NFSv4 ACLs vs. POSIX

 In various other vendors' implementations of NFSv4 ACLs, they have
 taken a chmod to mean the setting of a six member ACL, therefore
 throwing away the ACL and replacing it with six ACEs which reflect
 the mode. The user feedback on this behavior has been unfavorable.
 Some have gone as far as to say that it is unacceptable. We presume
 the dissatisfaction comes from a user spending time crafting an ACL
 only to get it stomped by a later chmod. Considering how many
 applications use chmod, we should not follow this behavior. In
 addition, security problems can arise if any explicit DENY ACEs are
 automatically removed as the result of a chmod (as shown in the
 example below).

 We believe it is a requirement to preserve an object's ACL upon
 chmod.

 A DENY type of ACE is considered to be an additional file access
 control mechanism, since it can only further restrict permissions.
 By categorizing DENY ACEs as additional, we have the ability to be
 able to keep the DENY ACEs without modification, except for on the
 abstract entities "OWNER@", "GROUP@" and "EVERYONE@" (see section

Section 5.3 for further explanation).

 The importance of classifying DENY ACEs as a additional file access
 control mechanism is best shown in the following example:

 Suppose we have a file with the following ACL:

 www@sun.com:ACE4_READ_DATA::DENY

 OWNER@:<arbitrary mask>::DENY

 OWNER@:<arbitrary mask>::ALLOW

 GROUP@:<arbitrary mask>:ACE4_IDENTIFIER_GROUP:DENY

 GROUP@:<arbitrary mask>:ACE4_IDENTIFIER_GROUP:ALLOW

 EVERYONE@:<arbitrary mask>::DENY

 EVERYONE@:<arbitrary mask>::ALLOW

 We require the ability to keep the "www@sun.com:ACE4_READ_DATA::DENY"
 ACE in the event of a chmod so that "www@sun.com"'s permissions do

Falkner & Week Expires August 19, 2006 [Page 32]

Internet-Draft NFS Version 4 ACLs February 2006

 not get elevated by the deletion of the ACE upon execution of chmod.

 The ALLOW type of ACE is considered to be an alternate file access
 control mechanism because it can further extend the permissions of a
 user. As previously mentioned, POSIX states that alternate
 mechanisms must be disabled at the time of chmod. This is different
 from requiring the deletion of any alternate mechanisms, and allows
 us to preserve the ACL. See Paragraph 1.5 in Section 5.3.

14.5. umask Considerations

 The umask is used by UNIX operating system users to affect or mask
 down the file permission bits of newly created files. umask is not
 part of the NFS version 4 protocol. Instead, it is an entirely
 client-side concept.

 umask can be briefly described as an attribute of a process which is
 a set of bits that are not to be set in the mode bits of a newly
 created file. If a process creates a new file via the open() system
 call, with an octal mode of 0777, and the process has a umask of
 0022, the resulting file would have an octal mode attribute of 0755.

 On client implementations that implement the concept of a umask,
 NFSv4 client implementations SHOULD apply the umask on newly created
 files, whether or not a newly created file will be affected by
 inheritable ACEs in the parent directory.

15. Normative References

 [POSIX] "The Open Group Base Specifications Issue 6, IEEE Std
 1003.1, 2004 Edition", IEEE STD. 1003.1, January 2004.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, STD 1, April 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530

Falkner & Week Expires August 19, 2006 [Page 33]

Internet-Draft NFS Version 4 ACLs February 2006

Authors' Addresses

 Sam Falkner
 Sun Microsystems, Inc.
 500 Eldorado Blvd.
 MS: UBRM05-171
 Broomfield, CO 80021
 USA

 Email: sam.falkner@sun.com

 Lisa Week
 Sun Microsystems, Inc.
 500 Eldorado Blvd.
 MS: UBRM05-171
 Broomfield, CO 80021
 USA

 Email: lisa.week@sun.com

Falkner & Week Expires August 19, 2006 [Page 34]

Internet-Draft NFS Version 4 ACLs February 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Falkner & Week Expires August 19, 2006 [Page 35]

