
Network Working Group M. Eisler
Internet-Draft Network Appliance, Inc.
 N. Williams
 Sun Microsystems, Inc.
 May 2003

The Channel Conjunction Mechanism (CCM) for GSS
draft-ietf-nfsv4-ccm-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

ABSTRACT

 This document describes a suite of new mechanisms under the GSS
 [RFC2743]. Some protocols, such as RPCSEC_GSS [RFC2203], use GSS to
 authenticate every message transfer, thereby incurring significant
 overhead due to the costs of cryptographic computation. While
 hardware-based cryptographic accelerators can mitigate such overhead,
 it is more likely that acceleration will be available for lower layer
 protocols, such as IPsec [RFC2401] than for upper layer protocols
 like RPCSEC_GSS. CCM can be used as a way to allow GSS mechanism-
 independent upper layer protocols to leverage the data stream
 protections of lower layer protocols, without the inconvenience of
 modifying the upper layer protocol to do so.

TABLE OF CONTENTS

1. Conventions Used in this Document 3

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc2401

Expires: November 2003 [Page 1]

INTERNET-DRAFT CCM May 2003

2. Introduction . 3
3. Overview . 4
3.1. Example Application of CCM 4
3.2. A Suite of CCM Mechanisms 4
3.3. QOPs . 5
4. Token Formats . 6
4.1. Mechanism Object Identifier 6
4.2. Tokens for the CCM-BIND mechanisms 6
4.3. Context Establishment Tokens for CCM-BIND Mechanisms 6
4.3.1. Initial Context Token for CCM-BIND 7
4.3.2. Subsequent Context Tokens for CCM-BIND 7

 4.3.2.1. Subsequent Initiator Context Initialization Token for
 CCM-BIND . 7

4.3.2.2. Response Token for CCM-BIND 7
4.4. MIC Token for CCM-BIND 7
4.5. Wrap Token for CCM-BIND 7
4.6. Other Tokens for CCM-BIND 8
4.7. Tokens for CCM-MIC . 8
4.8. Context Establishment Tokens for CCM-MIC 8
4.8.1. Initial Context Token for CCM-MIC 8
4.8.2. Subsequent Context Tokens for CCM-MIC 9

 4.8.2.1. Subsequent Initiator Context Initialization Token for
 CCM-MIC . 9

4.8.2.2. Response Token for CCM-MIC 10
4.9. MIC Token for CCM-MIC 12
4.10. Wrap Token for CCM-MIC 12
4.11. Context Deletion Token 12
4.12. Exported Context Token 12
4.13. Other Tokens for CCM-MIC 12
5. GSS Channel Bindings for Common Secure Channel Protocols . . 12
5.1. GSS Channel Bindings for IKEv1 13
5.2. GSS Channel Bindings for IKEv2 13
5.3. GSS Channel Bindings for SSHv2 13
5.4. GSS Channel Bindings for TLS 13
6. Use of Channel Bindings with CCM-BIND and SPKM 13
7. CCM-KEY and Anonymous IPsec 14
8. Other Protocol Issues for CCM 14
9. Implementation Issues . 15
9.1. Management of gss_targ_ctx 15
9.2. CCM-BIND Versus CCM-MIC 15
9.3. Initiating CCM-MIC Contexts 16
9.4. Accepting CCM-MIC Contexts 17
9.5. Non-Token Generating GSS-API Routines 17
9.6. CCM-MIC and GSS_Delete_sec_context() 17
9.7. GSS Status Codes . 18
9.7.1. Status Codes for CCM-BIND 18
9.7.2. Status Codes for CCM-MIC 18
9.7.2.1. CCM-MIC: GSS_Accept_sec_context() status codes 18

9.7.2.2. CCM-MIC: GSS_Init_sec_context() status codes 19

Expires: November 2003 [Page 2]

INTERNET-DRAFT CCM May 2003

9.8. Channel Bindings on the Target 20
10. Advice for NFSv4 Implementors 21
11. Man in the Middle Attacks without CCM-KEY 21
12. Security Considerations 22
13. IANA Considerations . 25
14. Acknowledgements . 26
15. Normative References . 27
16. Informative References 28
17. Authors' Addresses . 28
18. IPR Notices . 29
19. Copyright Notice . 29

1. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 The GSS framework provides a general means for authenticating clients
 and servers, as well as providing a general means for encrypting and
 integrity protecting data exchanged during a session. GSS specifies
 formats for a set of tokens for authentication, integrity, and
 privacy. The formats consist of a mechanism independent form, and a
 mechanism dependent form. An example of a set of mechanism dependent
 forms is the Kerberos V5 mechanism definition [RFC1964].

 It is possible for a protocol to use GSS for one time authentication,
 or for per message authentication. An example of the former is DAFS
 [DAFS]. An example of the latter is RPCSEC_GSS. Obviously, it is
 more secure to authenticate each message. On the other hand, it is
 also more expensive. However, suppose the data stream of the upper
 layer protocol (the layer using GSS) is protected at a lower layer
 protocol from tampering, such as via a cryptographic checksum. If
 so, it may not be necessary to additionally authenticate each message
 of the upper layer protocol. Instead, it may suffice to use GSS to
 authenticate at the beginning of the upper layer protocol's session.

 To take advantage of one time authentication, existing consumers of
 GSS that authenticate exclusively on each message have to change.
 One way to change is to modify the protocol that is using GSS. This
 has disadvantages including, introducing a protocol incompatibility,
 and effectively introducing another authentication paradigm. Another
 way to change, is the basis of the proposal in this document: the
 Channel Conjunction Mechanism (CCM). CCM allows a GSS initiator and
 target to conjunct (bind) a secure session (or channel) at one
 protocol layer with (e.g. IPsec) a security context of a non-CCM GSS

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1964

 mechanism. Since CCM is yet another mechanism under the GSS, the

Expires: November 2003 [Page 3]

INTERNET-DRAFT CCM May 2003

 effect is that there are no modifications to the protocol the GSS
 consumer is using.

3. Overview

 CCM is a "wrapper" mechanism over the set of all other GSS
 mechanisms. When CCM creates a context, it invokes an underlying
 mechanism to create a child context. CCM determines the underlying
 mechanism by examining the mechanism object identifier (OID) that it
 is called with. The prefix will always be the OID of CCM, and the
 suffix will be the OID of the underlying mechanism. The context
 initiation and acceptance entry points of CCM wrap the resulting the
 context tokens with a CCM header.

3.1. Example Application of CCM

 Let us use RPCSEC_GSS and NFSv4 [RFC3530] as our example. Basic
 understanding of the RPCSEC_GSS protocol is assumed. If an NFSv4
 client uses the wrong security mechanism, the server returns the
 NFS4ERR_WRONGSEC error. The client can then use NFSv4's SECINFO
 operation to ask the server which GSS mechanism to use.

 Let us say the client and server are using Kerberos V5 [RFC1964] to
 secure the traffic. Suppose the TCP connection NFSv4 uses is secured
 and encrypted with IPsec. It is therefore not necessary for
 NFSv4/RPCSEC_GSS to use integrity or privacy. Fortunately,
 RPCSEC_GSS has an authentication mode, whereby only the header of
 each remote procedure call and response is integrity protected. So,
 this minimizes the overhead somewhat, but there is still the cost of
 the headers being checksummed. Since IPsec is protecting the
 connection, incurring even that minimal per remote procedure call
 overhead may not be necessary.

 Enter CCM. The server detects that the connection is protected with
 IPsec. Via SECINFO, the client is informed that it should use
 CCM/Kerberos V5. Via the RPCSEC_GSS protocol, the server
 authenticates the end-user on the client with Kerberos V5. The
 context tokens exchanged over RPCSEC_GSS are wrapped inside CCM
 tokens.

3.2. A Suite of CCM Mechanisms

 CCM consists of a suite of GSS mechanisms. CCM-NULL, CCM-ADDR, and
 CCM-KEY bind a GSS mechanism context to a secure channel via GSS
 channel bindings (see section 1.1.6 of RFC2743). As noted in

RFC2743, the purpose of channel bindings are to limit the scope
 within which an intercepted GSS context token can be used by an
 attacker. CCM-KEY requires the use of channel bindings that are

https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2743#section-1.1.6
https://datatracker.ietf.org/doc/html/rfc2743

Expires: November 2003 [Page 4]

INTERNET-DRAFT CCM May 2003

 derived from the secure channel's encryption keys. CCM-ADDR requires
 the use of channel bindings that are derived from network addresses
 associated with the secure channel. For environments where it is not
 feasible to use key-based channel bindings (e.g., the programming
 interfaces to get them are not available) or address-based channel
 bindings (e.g., the secure channel may be constructed over a path
 that requires the use of Network Address Translation), CCM-NULL is
 also defined. CCM-NULL requires the use of null channel bindings.

 As discussed later in this document CCM-MIC exists for the purpose of
 optimizing the use of CCM.

 Implementations that claim compliance with this document are REQUIRED
 to implement CCM-KEY and CCM-MIC. CCM-NULL and CCM-ADDR
 implementation are OPTIONAL. Specifications that make normative
 references to CCM are free to mandate any subset of the suite CCM
 mechanisms.

 Because the GSS channel bindings to IPsec [RFC2401, RFC2409, IKEv2]
 have not been previously defined, and to ensure the usefulness of
 CCM, they are defined in this document.

 Also, the SPKM (1, 2 and 3) [RFC2025, RFC2847] mechanism is not clear
 on how channel bindings work with SPKM; a simple clarification is
 provided.

 CCM-MIC is intended to reduce the instances of full GSS context
 establishment to a per- {initiator principal, target} tuple. CCM-MIC
 is used to establish a new context by proving that the initiator and
 target both have a previously established, unexpired GSS context; the
 proof is accomplished by exchanging MICs made with the previously
 established GSS context. The CCM-MIC context creation entry points
 utilize the CCM_REAL_QOP (discussed later Overview section) in the
 value to generate and verify the MICs. The type of channel bindings
 used when initiating CCM-MIC contexts MUST match that used when
 creating the previously established context.

3.3. QOPs

 The CCM mechanisms provide two QOPs: the default QOP (0) that amounts
 to no protection, and a QOP (CCM_REAL_QOP, defined as value 1) that
 maps to the default QOP of the underlying GSS mechanism. The MIC
 tokens for CCM are zero length values. When qop_req is 0, the wrap
 output tokens for CCM are equal to the input tokens.

 [XXX - We assume that applications can cope with zero length
 MICs. We propose that implementations try and find out. We may
 revisit this by requiring a small (8-32 bits) MIC token.
 However, given that the C bindings of GSS allocates the MIC on

https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2847

Expires: November 2003 [Page 5]

INTERNET-DRAFT CCM May 2003

 the heap, this could introduce an unnecessary and expensive
 allocation, we suggest applications be fixed to deal with zero
 length tokens.]

4. Token Formats

 This section discusses the protocol visible tokens that GSS consumers
 exchange when using CCM.

4.1. Mechanism Object Identifier

 There are two classes of Mechanism object identifiers (OIDs) for CCM.
 The first class consists of the channel binding specific OIDs, and
 will be referred to as the CCM-BIND mechanisms:

 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)ccm-family(TBD1)ccm-bind(1)ccm-null(1)}

 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)ccm-family(TBD1)ccm-bind(1)ccm-addr(2)}

 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)ccm-family(TBD1)ccm-bind(1)ccm-key(3)}

 The above three object identifiers are not complete mechanism OIDs.
 Complete CCM mechanism OIDs MUST consist of one of the above OIDs as
 prefix, followed by a real mechanism OID, such as that of Kerberos V5
 as defined in [RFC1964]. The second class consists of a single OID
 for the CCM-MIC mechanism.

 {iso(1)identified-organization(3)dod(6)internet(1)security(5)
 mechanisms(5)ccm-family(TBD1)ccm-mic(2)}

 The CCM-MIC OID is a complete mechanism OIDs, and is not a prefix.

 GSS defines the generic part of a token in ASN.1 encoding. GSS does
 not require ASN.1 for the mechanism specific part of a token.

4.2. Tokens for the CCM-BIND mechanisms

4.3. Context Establishment Tokens for CCM-BIND Mechanisms

 The CCM-BIND context establishment tokens are simple wrappers around
 a real GSS mechanism's tokens. The CCM-BIND mechanisms use the same
 number context token exchanges as required by they underlying real
 mechanism.

https://datatracker.ietf.org/doc/html/rfc1964

Expires: November 2003 [Page 6]

INTERNET-DRAFT CCM May 2003

4.3.1. Initial Context Token for CCM-BIND

 GSS requires that the initial context token from the initiator to the
 target use the format as described in section 3.1 of RFC2743. The
 format consists of a mechanism independent prefix, and a mechanism
 dependent suffix. The mechanism independent token includes the
 MechType field. The MechType MUST be equal to the OID of CCM-NULL,
 CCM-ADDR, or CCM-KEY. The mechanism dependent portion of the Initial
 Context Token is always equal to the full InitialContextToken as
 returned by the underlying real mechanism. This will include yet
 another MechType, which will have the underlying mechanism's OID.

4.3.2. Subsequent Context Tokens for CCM-BIND

 A subsequent context token can be any subsequent context token from
 the initiator context initialization entry point, or any response
 context from the target's context acceptance entry point. The GSS
 specification [RFC2743] does not prescribe any format.

4.3.2.1. Subsequent Initiator Context Initialization Token for CCM-BIND

 A SubsequentContextToken for a CCM-BIND mechanism is equal to that
 returned by the initiator's context initialization routine of the
 underlying real mechanism.

4.3.2.2. Response Token for CCM-BIND

 The response token for a CCM-BIND mechanism is equal to that returned
 by the target's context acceptance routine of the underlying real
 mechanism.

4.4. MIC Token for CCM-BIND

 This token corresponds to the PerMsgToken type as defined in section
3.1 of RFC2743. When the qop_req is the default QOP (0), then the

 PerMsgToken is a quantity zero bits in length. A programming API
 that calls GSS_GetMIC() with the default QOP will thus produce an
 octet string of zero length.

 When the qop_req is CCM_REAL_QOP (1), then PerMsgToken is whatever
 the underlying real mechanism returns from GSS_GetMIC() when passed
 the default QOP value (0).

4.5. Wrap Token for CCM-BIND

 This token corresponds to the SealedMessage type as defined in
section 3.1 of RFC2743. When the qop_req is the default QOP (0),

 then the SealedMessage token is equal to the unmodified input to
 GSS_Wrap().

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.1

Expires: November 2003 [Page 7]

INTERNET-DRAFT CCM May 2003

 When the qop_req is CCM_REAL_QOP (1), then SealedMessage is whatever
 the underlying real mechanism returns from GSS_Wrap(), when passed
 the default QOP value (0).

4.6. Other Tokens for CCM-BIND

 All other tokens are what the real underlying mechanism returns as a
 token.

4.7. Tokens for CCM-MIC

4.8. Context Establishment Tokens for CCM-MIC

4.8.1. Initial Context Token for CCM-MIC

 The initial context token from the initiator to the target uses the
 format as described in section 3.1 of RFC2743. The format consists
 of a mechanism independent prefix, and a mechanism dependent suffix.
 The mechanism independent token includes the MechType field. The
 MechType MUST be equal to the OID of CCM-MIC. RFC2743 refers to the
 mechanism dependent token as the innerContextToken. This is the
 CCM-MIC specific token and is XDR [RFC1832] encoded as follows, using
 XDR description language:

 typedef struct {
 unsigned int ctx_sh_number;
 unsigned int rand;
 } CCM_nonce_t;

 typedef struct {
 CCM_nonce_t nonce;
 opaque gss_targ_ctx[20];
 opaque chan_bindings<>;
 } CCM_MIC_unwrapped_init_token_t;

 /*
 * The result of CCM_MIC_unwrapped_init_token_t after
 * Invoking GSS_GetMIC() on it. qop_req is CCM_REAL_QOP, and
 * conf_flag is FALSE.
 */
 typedef opaque CCM_MIC_wrapped_init_token_t<>;

 Once an initiator has established an initial CCM context with a
 target via a CCM-BIND mechanism, the additional contexts can be
 established via the CCM-MIC mechanism. The disadvantage of re-
 establishing additional contexts via the CCM-BIND route is that the

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc1832

Expires: November 2003 [Page 8]

INTERNET-DRAFT CCM May 2003

 underlying mechanism context set up must be repeated, which can be
 expensive. Whereas, the CCM-MIC mechanism route merely requires that
 the first CCM context's underlying mechanism context be available to
 produce an integrity checksum. The initial context token for CCM-MIC
 is computed as follows.

 * The gss_targ_ctx is computed as the SHA-1 checksum of the
 concatenation of SHA-1 [FIPS] checksums of the context tokens
 exchanged by the CCM-BIND mechanism in the order in which they
 were processed. For example, the context handle identifier for a
 CCM-KEY context exchange over a Kerberos V5 context exchange
 would be: SHA-1({ SHA-1(CCM-KEY's initiator's token), SHA-
 1(CCM-KEY's target's token)) }. Since the SHA-1 standard
 mandates a 160 bit output, (20 octets), gss_targ_ctx is a fixed
 length, 20 octet string.

 * The subfield nonce.rand is set a random or pseudo random value.
 It is provided so as to ensure more variability of the the mic
 that GSS will calculate when CCM_MIC_unwrapped_init_token_t is
 GSS_Wrap()ed into CCM_MIC_wrapped_init_token_t.

 * The subfield nonce.ctx_sh_number is the identifier of the CCM-
 MIC context relative to the CCM-BIND context (as identified by
 gss_targ_ctx) that the initiator is assigning. The value for
 ctx_sh_number is selected by the initiator such that it is
 larger than any previous ctx_sh_number for the given
 gss_targ_ctx. This way, the target need only keep track of the
 largest ctx_sh_number received. Once ctx_sh_number has reached
 the maximum value for an unsigned 32 bit integer, the given
 gss_targ_ctx can no longer be used.

 * Once the above fields are calculated, GSS_Wrap() is performed on
 the CCM_MIC_unwrapped_init_token_t value, to produce a
 CCM_MIC_wrapped_init_token_t value that becomes the initial
 context token to send to the target.

4.8.2. Subsequent Context Tokens for CCM-MIC

 A subsequent context token can be any subsequent context token from
 the initiator context initialization entry point, or any response
 context from the target's context acceptance entry point. The GSS
 specification [RFC2743] does not prescribe any format.

4.8.2.1. Subsequent Initiator Context Initialization Token for CCM-MIC

 As CCM-MIC has only one round trip for context token exchange, there
 are no subsequent initiator context tokens.

https://datatracker.ietf.org/doc/html/rfc2743

Expires: November 2003 [Page 9]

INTERNET-DRAFT CCM May 2003

4.8.2.2. Response Token for CCM-MIC

 The CCM response token, in XDR encoding is:

 typedef enum {
 CCM_OK = 0,

 /*
 * gss_targ_ctx was malformed.
 */
 CCM_ERR_HANDLE_MALFORMED = 1,

 /*
 * GSS context corresponding to gss_targ_ctx expired.
 */

 CCM_ERR_HANDLE_EXPIRED = 2,

 /*
 * gss_targ_ctx was not found.
 */
 CCM_ERR_HANDLE_NOT_FOUND = 3,

 /*
 * The ctx_sh_number has already been received
 * by the target. Or the maximum ctx_sh_number has
 * been previously received.
 */
 CCM_ERR_TKN_REPLAY = 4,

 /*
 * Channel binding type mismatch between CCM-BIND context
 * and the CCM-MIC initial context.
 */
 CCM_ERR_CHAN_MISMATCH = 5,

 /*
 * The GSS_Unwrap() failed on initial context token
 */
 CCM_ERR_TKN_UNWRAP = 6,

 /*
 * The GSS_GetMIC() called failed on the target().
 */

 CCM_ERR_TKN_GET_MIC = 7,

 /*
 * The GSS_Wrap() failed on the initiator. Not reported

Expires: November 2003 [Page 10]

INTERNET-DRAFT CCM May 2003

 * by target.
 */

 CCM_ERR_TKN_WRAP = 8,

 /*
 * The GSS_VerifyMIC() failed on the initiator. Not
 * reported by target.
 */

 CCM_ERR_TKN_VER_MIC = 9

 } CCM_MIC_status_t;

 /*
 * GSS errors returned by the underlying mechanism
 */
 typedef struct {
 unsigned int gss_major;
 unsigned int gss_minor;
 } CCM_MIC_real_gss_err_t;

 /*
 * The response context token for CCM-MIC.
 */
 typedef union switch (CCM_MIC_status status) {
 case CCM_OK:
 opaque mic_init_tkn<>;
 case CCM_ERR_TKN_UNWRAP:
 case CCM_ERR_TKN_GET_MIC:
 CCM_real_gss_err_t gss_err;
 default:
 void;
 } CCM_MIC_resp_t;

 If a value of the status field is CCM_OK, then the CCM-MIC context
 has been established on the target. The field mic_init_tkn is equal
 to the output of GSS_GetMIC() (qop_req is CCM_REAL_QOP (1)) on the
 entire and original token that came from the initiator. In other
 words, the input_token value to GSS_Accept_sec_context(). This is
 necessary because the inner token from the initiator is wrapped with
 GSS_Wrap(), and thus contains a MIC. If we performed GSS_GetMIC() on
 the unwrapped inner token, then for some underlying mechanisms, we
 would end up with a mic_init_tkn in the response token equal to what
 was embedded in the request token.

 If the status field is CCM_ERR_TKN_UNWRAP or CCM_ERR_TKN_GET_MIC,
 then gss_err.gss_major and gss_err.minor are set to the major and

Expires: November 2003 [Page 11]

INTERNET-DRAFT CCM May 2003

 minor GSS statuses as returned by GSS_Unwrap() or GSS_GetMIC(). The
 values for the gss_major field are as defined in [RFC2744]. The
 values for the gss_minor field are both mechanism dependent and
 mechanism implemented dependent. They are nonetheless potentially
 useful as debugging aids.

4.9. MIC Token for CCM-MIC

 The MIC token for CCM-MIC is the same as the MIC token for CCM-BIND.

4.10. Wrap Token for CCM-MIC

 The wrap token for CCM-MIC is the same as the wrap token for CCM-
 BIND.

4.11. Context Deletion Token

 The context deletion token for CCM-MIC is a zero length token.

4.12. Exported Context Token

 The Exported context token for CCM-MIC is implementation defined.

4.13. Other Tokens for CCM-MIC

 All other tokens are the same as corresponding tokens for CCM-BIND.

5. GSS Channel Bindings for Common Secure Channel Protocols

 For CCM-KEY to be useful and secure, CCM-KEY MUST be used in
 conjunction with channel bindings to bind GSS authentication at the
 application layer to a lower layer in the network that provides
 cryptographic session protection.

 To date only network address type channel bindings have been defined
 for GSS [RFC2743]. But the GSS also allows for channel bindings of
 "transformations of encryption keys" [RFC2743]. The actual generic
 representation of channel bindings is defined in the C-Bindings of
 the GSS-API [RFC2744].

 Modern secure transports generally define some quantity or quantities
 which are either derived from the session keys (or from key exchange
 material) or which are securely exchanged in such a way that both
 peers of any one connection or association can arrive at the same
 derived quantities, while a man-in-the-middle cannot make these
 quantities match for both peers. Signatures of these quantities can
 be exchanged to prove that there is no man-in-the-middle (because a
 man-in-the-middle cannot cause them to be the same for both peers).
 These quantities correspond to what the GSS terms "transformations of

https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744

Expires: November 2003 [Page 12]

INTERNET-DRAFT CCM May 2003

 encryption keys" that are referred to in [RFC2743].

 Where a secure transport clearly defines a session identifier
 securely derived from session keys or key exchange material, that
 identifier MUST be used as the GSS channel bindings data when CCM-
 BIND is used to bind GSS to that transport.

 This section defines four forms of "transformations of encryption
 keys," one for IKEv1, one for IKEv2, one for SSHv2 and one for TLS.
 All four forms are to be used as the value of the "application_data"
 field of the gss_channel_bindings_struct type defined in [RFC2744].

5.1. GSS Channel Bindings for IKEv1

 IKEv1 does not define a single value which can be used -- by both the
 IPsec initiator and responder of an IPsec SA -- to identify a given
 SA. IKEv1 does, however, define public values derived from the IKEv1
 key exchange: 'HASH_I' and 'HASH_R'.

 For IKEv1, the GSS channel bindings data to use with CCM-KEY consists
 of the concatenation of HASH_I and HASH_R octet string values, in
 that order, from the underlying IPsec session being bound to [IKEv1].

5.2. GSS Channel Bindings for IKEv2

 IKEv2 peers assign and exchange 8-octet "Security Parameters Index"
 (SPI) values, such that a pair of SPIs suffices to uniquely identify
 a given IPsec security association.

 For IKEv2 the GSS channel bindings data to use with CCM-KEY is simply
 the concatenation of the SPIi and SPIr values, in that order, which
 identify the IPsec SA being bound to.

5.3. GSS Channel Bindings for SSHv2

 SSHv2 defines a session ID derived from the initial key exchange of
 an SSHv2 connection; this value is not secret and is the same for
 both the client and the server for any given connection.

 For SSHv2 the GSS channel bindings data for use with CCM-KEY consists
 of the SSHv2 session ID.

5.4. GSS Channel Bindings for TLS

 XXX - This section is To Be Defined.

6. Use of Channel Bindings with CCM-BIND and SPKM

 Whereas the Kerberos V5 mechanism specification [RFC1964] is quite

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc1964

Expires: November 2003 [Page 13]

INTERNET-DRAFT CCM May 2003

 detailed with respect to the use of GSS channel bindings, the same is
 not true for SPKM, which merely provides a field named "channelId"
 for passing channel bindings data, as octet strings, from initiators
 to acceptors. No interpretation is given in RFC2025 for the value of
 the channelId field. Therefore SPKM requires some clarification to
 be usable with channel bindings and CCM-KEY: The channelId field of
 SPKM Context-Data ASN.1 structure MUST be set to the checksum of the
 channel bindings data that is defined for the Kerberos V5 mechanism
 [RFC1964], using SHA-1 instead of MD5 as the hash algorithm.

 [Note: This checksum can be computed independently of the GSS
 language bindings used by the application, even though RFC1964
 references the C-Bindings of the GSS-API [RFC2744] in the
 construction of this checksum (read the RFC1964 text carefully).]

7. CCM-KEY and Anonymous IPsec

 For sites that do not use IPsec, but use Kerberos V5, SPKM, or
 LIPKEY, deploying IPsec, a PKI infrastructure and certificates for
 use with IKE may prove quite difficult to deploy just for secure
 application (e.g., NFS) performance improvements. Such sites could
 avoid the need to deploy a PKI and certificates to all clients and
 server by using "anonymous IPsec" for the application (e.g., NFS
 with/ RPCSEC_GSS) and CCM-KEY.

 Though there is no such thing as "anonymous IPsec," the effect can be
 achieved by using self-signed certificates.

 By using anonymous IPsec with the application and CCM-KEY, the full
 benefit of offloading session cryptography from upper layer protocol
 layer to the IP layer can be had without having to deploy an
 authentication infrastructure for IPsec.

8. Other Protocol Issues for CCM

 CCM-BIND is a trivial mechanism, and normally will return the same
 major status code as the underlying real mechanism, including
 GSS_S_COMPLETE as returned by GSS_Init_sec_context(). However, the
 first time GSS_Init_sec_context is called on a CCM-BIND mechanism, if
 the underlying real mechanism returns GSS_S_COMPLETE, CCM-BIND's
 GSS_Init_sec_context() entry point MUST return GSS_S_CONTINUE_NEEDED
 to the caller. This way, the initiator will receive another context
 token from the target, even if the underlying real mechanism context
 set up is done. The CCM-BIND initiator will need to record state
 that indicates that the underlying mechanism has reached a completely
 established state (and so is uninterested in any token the target
 returns). This way, the initiator can process every token produced
 by the target's GSS_Accept_sec_context() routine and so calculate

https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc1964

 gss_targ_ctx value that matches that of the target.

Expires: November 2003 [Page 14]

INTERNET-DRAFT CCM May 2003

9. Implementation Issues

 The "over the wire" aspects of CCM have been completely specified.
 However, GSS is usually implemented as an Application Programming
 Interface (the GSS-API), and security mechanisms are often
 implemented as modules that are plugged into the GSS-API. It is
 useful to discuss implementation issues and workable resolutions.
 The reader is cautioned that the authors have not implemented CCM, so
 what follows is at best a series of educated guesses.

9.1. Management of gss_targ_ctx

 The gss_targ_ctx value is computed by the initiator and target based
 on SHA-1 computations of the CCM-BIND context tokens. There is a
 space/time trade off between the initiator and target storing the
 sequence of context tokens until needed by CCM-BIND, versus computing
 the SHA-1 checksums and then disposing of the context tokens when
 CCM-BIND no longer needs them. If it is likely there will be CCM-MIC
 contexts created for the CCM-BIND context, and if the sequence of
 context tokens requires more space than a 20 octet SHA-1 value, then
 the tradeoff is obvious.

 Since the bit space of all possible sequences of CCM-BIND context
 tokens is larger than the 160 bit space of possible SHA-1 checksums,
 in theory two or more different CCM-BIND contexts will produce
 produce the same SHA-1 context, and thus for CCM-MIC context
 initiation, there will be ambiguity as to which CCM-BIND context the
 initiator is binding to. The target can resolve this ambiguity by
 attempting to unwrap the inner context token from the CCM-MIC
 initiator for each matching CCM-BIND context. In theory no more than
 one GSS_Unwrap() attempt for each matching CCM-BIND context will
 succeed. If multiple succeed, then clearly the underlying mechanism
 is doing poor job at generating "unique" session keys. CCM
 implementations that detect this SHOULD log it so that the problem in
 the underlying mechanism can be discovered and fixed.

9.2. CCM-BIND Versus CCM-MIC

 The first time a CCM context is needed between an principal on the
 initiator and a principal on the target, the initiator has no choice
 but to create an underlying mechanism context via a CCM-BIND context
 token exchange. Once that is done, subsequent CCM contexts between
 the initiator and target can be created via CCM-MIC. CCM-MIC context
 establishment is better because no more than one round trip is
 necessary to establish a CCM context, and because the overhead of the
 establishing a real, underlying mechanism context is avoided.

Expires: November 2003 [Page 15]

INTERNET-DRAFT CCM May 2003

9.3. Initiating CCM-MIC Contexts

 The key issue is how to associate an CCM-BIND established security
 context with a new CCM-MIC context, There no existing interfaces
 defined in the GSS-API for associating one GSS context with another.
 This then is the key issue for implementations of CCM-MIC.

 We will assume that GSS-API implementation is in the C programming
 language and therefore the GSS-API C bindings [RFC2744] are being
 used. The CCM mechanism implementation will have a table that maps
 gss_targ_ctx values to gss_ctx_id_t values (see section 5.19 of
 [RFC2744]). The latter are GSS-API context handles as returned by
 gss_init_sec_context(). The former are the context handles as
 returned in a response token from the CCM target. In addition, each
 CCM context has a reference to its underlying mechanism context.

 Let us suppose the application decides it will use CCM-MIC. CCM-MIC
 has a well known mechanism OID which the application can check for.
 The point where the initiator calls GSS_Init_sec_context(), is a
 logical place to associate an existing CCM-BIND context with a new
 CCM-MIC context. Here is where special CCM handling is necessary in
 order to associate a security context with a CCM context. We discuss
 several approaches.

 1. The first approach is for the CCM-MIC's GSS_Init_sec_context()
 entry point to pass as the claimant_cred_handle the
 output_context_handle as returned by GSS_Init_sec_context() for
 a previously created CCM-BIND context. Such an approach may
 work well with applications that normally pass
 GSS_C_NO_CREDENTIAL as the claimant_cred_handle.

 2. The second approach derives from the observation that normally,
 the first time GSS_Init_sec_context() is called, the input_token
 field is NULL and the initial context_handle (type gss_ctx_id_t)
 is also NULL. The input_token is supposed to be the token
 received from the target's context acceptance routine, which has
 the XDR type CCM_MIC_resp_t. Overloading the input_token is one
 way. By passing in a non-null input_token, and a NULL pointer
 to the context_handle (using the C bindings calling conventions
 for gss_init_sec_context()), this will tell the CCM-MIC
 initiator that input_token containing information to to
 associate a new CCM-MIC context with an existing CCM-BIND
 context. In the C programming language, we could thus have have
 input_token containing:

 typedef struct {
 gss_ctx_id_t context_ptr;
 } CCM_MIC_initiator_bootstrap_t;

https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2744#section-5.19
https://datatracker.ietf.org/doc/html/rfc2744#section-5.19

Expires: November 2003 [Page 16]

INTERNET-DRAFT CCM May 2003

 The CCM entry point for creating contexts on the initiator side
 would, if being called for the first time (*context_handle is
 NULL), interpret the presence of the input token with an invalid
 status as the CCM_MIC_initiator_bootstrap_t. It would use
 context_ptr to lookup the corresponding gss_targ_ctx in the
 aforementioned gss_ctx_id_t to gss_targ_ctx mapping table. It
 would then proceed to generate an output token encoded as XDR
 type CCM_MIC_init_t, described in the section entitled "Initial
 Context Token for CCM-MIC".

 Regardless of the approach taken, the first time GSS_Init_sec_context
 is called, assuming success, it will return GSS_S_CONTINUE_NEEDED,
 because it will need to process the token returned by the target.
 The second time it is called, assuming success, it will return
 GSS_S_COMPLETE.

9.4. Accepting CCM-MIC Contexts

 The CCM-MIC target receives an opaque gss_targ_ctx value as part of
 the mechanism dependent part of the initial context token.
 Originally, this opaque handle came from the target as a result of
 previously creating a context via a CCM-BIND context exchange. If
 the opaque handle is still valid, then the target can easily
 determine the original CCM-BIND context, and from that, the CCM-BIND
 mechanism's context. With the underlying context, GSS_VerifyMIC()
 can be invoked (with a qop_req of CCM_REAL_QOP (1)) to verify the
 mic_nonce of the input token, and GSS_GetMIC() can be used to
 generate the mic_init_tkn field of the output token. By comparing
 the ctx_sh_number in the initiator's token with highest value
 recorded by the target, the target takes care to ensure that
 initiator has not replayed a short token.

9.5. Non-Token Generating GSS-API Routines

 Since the CCM module will record the underlying mechanism's context
 pointer in its internal data structures, this provides a simple
 answer to what to do when GSS-API is invoked on a CCM context that
 does not generate any tokens for the GSS peer. When CCM is called
 for such an operation, it simply re-invokes the GSS-API call, but on
 the recorded underlying context.

9.6. CCM-MIC and GSS_Delete_sec_context()

 The CCM-MIC entry point for GSS_Delete_sec_context() should not call
 the underlying mechanism's GSS_Delete_sec_context() routine. If it
 did, this would effectively delete all CCM-MIC context's associating
 with the same underlying mechanism.

Expires: November 2003 [Page 17]

INTERNET-DRAFT CCM May 2003

9.7. GSS Status Codes

9.7.1. Status Codes for CCM-BIND

 CCM-BIND mechanisms define no minor status codes. If the underlying
 mechanism is not available, then a CCM-BIND mechanism will return
 GSS_S_BAD_MECH and minor status of zero. Otherwise, it will return
 whatever major and minor status codes the underlying mechanism
 returns.

9.7.2. Status Codes for CCM-MIC

 Generally, major and minor status codes for will be whatever major
 and minor status codes the underlying CCM-BIND mechanism returns.
 However, for GSS_Init_sec_context() and GSS_Accept_sec_context(),
 this is not the case because the those operations are invoking
 routines (GSS_Wrap() and GSS_Unwrap()) that have major statuses that
 are not subsets of the legal status returns from
 GSS_Init_sec_context() and GSS_Accept_sec_context(). Moreover, in
 some cases for GSS_Init_sec_context(), the minor and major status are
 driven from the target, and the target's codes will not always be
 among the legal set for GSS_Init_sec_context().

9.7.2.1. CCM-MIC: GSS_Accept_sec_context() status codes

 The minor status code for GSS_Accept_sec_context is always from the
 set defined in the CCM_MIC_status_t type. If GSS_Unwrap() reports a
 major status failure, then the minor status will be
 CCM_ERR_TKN_UNWRAP, and the reported major status will what
 GSS_Unwrap() reports, with exceptions as according to the following
 table:
 major status code from GSS_Unwrap major status code reported
 by GSS_Accept_sec_context
 to caller.

 GSS_S_BAD_SIG GSS_S_BAD_SIG
 GSS_S_CONTEXT_EXPIRED GSS_S_DEFECTIVE_TOKEN
 GSS_S_GAP_TOKEN GSS_S_DEFECTIVE_TOKEN
 GSS_S_UNSEQ_TOKEN GSS_S_DUPLICATE_TOKEN

 If GSS_GetMIC() reports a major status failure, then the minor status
 will be CCM_ERR_TKN_GET_MIC, and the reported major status will be
 what GSS_GetMIC() reports, with exceptions as according to the
 following table:
 major status code from GSS_GetMIC major status code reported
 by GSS_Accept_sec_context()
 to caller.

Expires: November 2003 [Page 18]

INTERNET-DRAFT CCM May 2003

 --
 GSS_S_BAD_QOP GSS_S_FAILURE
 GSS_S_CONTEXT_EXPIRED GSS_S_DEFECTIVE_TOKEN

 The target will always report the actual GSS major and minor codes to
 the initiator. The initiator will map the GSS major code as
 described in the next subsection.

9.7.2.2. CCM-MIC: GSS_Init_sec_context() status codes

 The minor status code for GSS_Init_sec_context is always from the set
 defined in the CCM_MIC_status_t type.

 If the minor status code came from the target, then that will always
 be what GSS_Init_sec_context() reports. The most of the minor codes
 from the target are to be mapped to the major status code as follows:
 minor status code major status code
 from target reported to caller of
 GSS_Init_sec_context()
 --
 CCM_OK GSS_S_COMPLETE
 CCM_ERR_HANDLE_MALFORMED GSS_S_DEFECTIVE_TOKEN
 CCM_ERR_HANDLE_EXPIRED GSS_S_CREDENTIALS_EXPIRED
 CCM_ERR_HANDLE_NOT_FOUND GSS_S_CREDENTIALS_EXPIRED
 CCM_ERR_TKN_REPLAY GSS_S_DUPLICATE_TOKEN
 CCM_ERR_CHAN_MISMATCH GSS_S_BAD_BINDINGS
 CCM_ERR_TKN_WRAP GSS_S_FAILURE
 CCM_ERR_TKN_VER_MIC GSS_S_FAILURE

 Note that in the above table CCM_ERR_TKN_WRAP and CCM_ERR_TKN_VER_MIC
 MUST not be returned by the target. But if they are, then the
 initiator reports GSS_S_FAILURE.

 If the minor status code from the target is CCM_ERR_TKN_UNWRAP or
 CCM_ERR_TKN_GET_MIC, then the target will also report the major
 status code it got from GSS_Unwrap() or GSS_GetMIC(). The major
 status from the target will be be reported by GSS_Init_sec_context()
 to its caller with exceptions as according to the following table:
 major status code from target major status code reported
 by GSS_Init_sec_context()
 to caller

 GSS_S_BAD_QOP GSS_S_FAILURE
 GSS_S_BAD_SIG GSS_S_BAD_SIG
 GSS_S_CONTEXT_EXPIRED GSS_S_DEFECTIVE_TOKEN
 GSS_S_GAP_TOKEN GSS_S_DEFECTIVE_TOKEN
 GSS_S_UNSEQ_TOKEN GSS_S_DUPLICATE_TOKEN

Expires: November 2003 [Page 19]

INTERNET-DRAFT CCM May 2003

 If GSS_Wrap() fails on the initiator, then the minor status will be
 CCM_ERR_TKN_WRAP, and the major status will what GSS_Wrap() reports,
 with exceptions as according to the following table:
 major status code from GSS_Wrap major status code reported
 by GSS_Init_sec_context()
 to caller

 GSS_S_CONTEXT_EXPIRED GSS_S_DEFECTIVE_TOKEN
 or
 GSS_S_DEFECTIVE_CREDENTIAL

 GSS_S_BAD_QOP GSS_S_FAILURE

 If GSS_VerifyMIC() fails on the initiator, then the minor status will
 be CCM_ERR_TKN_VER_MIC, and the major status will what
 GSS_VerifyMIC() reports, with exceptions as according to the
 following table:
 major status code from GSS_VerifyMIC major status code reported
 by GSS_Init_sec_context()
 to caller

 GSS_S_CONTEXT_EXPIRED GSS_S_DEFECTIVE_TOKEN
 GSS_S_GAP_TOKEN GSS_S_DEFECTIVE_TOKEN
 GSS_S_UNSEQ_TOKEN GSS_S_DUPLICATE_TOKEN

9.8. Channel Bindings on the Target

 When an application invokes GSS_Accept_sec_context() on a CCM token,
 it won't know if channel bindings are required or not. Of course, it
 could inspect the OID of the input_token and determine the channel
 bindings directly if it is a CCM-BIND token, but normally
 applications will not parse the mechanism OID in an input token. And
 in any case, such inspection for a CCM-MIC token provides no
 information about channel bindings to the target application.

 The application on the target will have to try
 GSS_Accept_sec_context() without channel bindings. If the target CCM
 mechanism requires channel bindings (as indicated by the
 GSS_S_BAD_BINDINGS), then the application will have to re-invoke
 GSS_Accept_sec_context() with the right channel bindings. If the
 channel bindings are the wrong type, then the CCM mechanism will
 indicate GSS_S_BAD_BINDINGS again. The application will have to
 iterate through all the valid types of bindings. The application can
 avoid this iteration if the bindings includes both, address and key
 bindings if at all possible. The CCM mechanisms should use only
 those parts of the application-provided bindings that they care for.

Expires: November 2003 [Page 20]

INTERNET-DRAFT CCM May 2003

10. Advice for NFSv4 Implementors

 The NFSv4.0 specification does not mandate CCM, so clients and
 servers should not insist on its use. When a server wants a client
 to try to use CCM, it can return a NFS4ERR_WRONGSEC error to the
 client. The client will then follow up with a SECINFO request. The
 response to the SECINFO request should list first the CCM-BIND
 mechanisms it supports, second the CCM-MIC mechanism (if supported),
 and finally, the conventional security flavors the server will accept
 for access to file object. If the client supports CCM, it will use
 it. Otherwise, it will have to stick with a conventional flavor.

 Since the CCM-MIC OID is general, rather than a separate CCM-MIC OID
 for every real mechanism, the NFS server will have be careful to make
 sure that a CCM-MIC context is authorized access an object. For
 example suppose /export is exported such that SPKM-3 is the
 authorized underlying mechanism, and CCM-NULL + SPKM-3 and CCM-MIC
 are similarly authorized to access /export. Suppose CCM-NULL is
 created over a Kerberos V5 context, and then CCM-MIC is used to
 derived a context from the CCM-NULL context. If the NFS server
 simply records that the OID of CCM-MIC is authorized to access
 /export, then Kerberos V5 authenticated users will be mistakenly
 allowed access. Instead, the server needs to examine what context
 the CCM-MIC context is associated with, and check that context's OID
 against the authorized list of OIDs for /export.

11. Man in the Middle Attacks without CCM-KEY

 In this example, NFS with/ RPCSEC_GSS will be the application, and
 IPsec the secure channel.

 Man in the middle (MITM) avoidance means making sure that the client
 and server are the same at both layers, NFS and IPsec, but since the
 principal names at the one layer will be radically different from the
 names at the other, how can one be certain that there is no MITM at
 the IPsec layer before leaving it to IPsec to provide session
 protection to the NFS layer? The answer is to use channel bindings,
 which, conceptually, are an exchange, at the NFS/GSS layer, of
 signatures of the principal names or session ID/keys involved at the
 IPsec layer.

 Consider an attacker who can cause a client's IPsec stack to
 establish an SA with the attacker, instead of the server intended by
 the NFS layer (this is accomplished by spoofing the DNS server).
 Suppose further that the attacker can fool the client's IPsec layer
 without also fooling its NFS/RPCSEC_GSS layer (for example, if
 Kerberos V5 is being used as the real mechanism, and avoids the use
 of DNS to canonicalize the server principal name -- admittedly, this

 avoidance is unlikely -- a DNS spoof attack will be detected by the

Expires: November 2003 [Page 21]

INTERNET-DRAFT CCM May 2003

 NFS client, because the Kerberos Key Distribution Center (KDC)
 generates tickets associated with pairs of principals, not host
 names). Suppose that the attacker's host is in part of the site's
 IPsec infrastructure (perhaps the attacker broke into that host).
 Then the attacker might be able to act as a MITM between the client
 and the server who gets all the plain text and even gets to modify
 it, if CCM-NULL is wrapping Kerberos V5 at the RPCSEC_GSS level.
 Both, the client and the server would see that IPsec is in use
 between them, but they would each see a different ID for its IPsec
 peer. Channel bindings are used to prove that the client and server
 each see the same two peer names at the lower (in this case, IPsec)
 layer, and therefore with CCM-KEY there is no MITM.

 DNSSEC would of course defeat the attack, but DNSSEC was not, at the
 time this document was written, in widespread use.

12. Security Considerations

 There are many considerations for the use CCM, since it is reducing
 security at one protocol layer in trade for equivalent security at
 another layer. In this discussion, we will assume that cryptography
 is being used in the application and lower protocol layers.

 * CCM should not be used whenever the combined key
 strength/algorithm strength of the lower protocol layer securing
 the connection is weaker than what the underlying GSS context
 can provide.

 * CCM should not be used if the lower level protocol does not
 offer comparable or superior security services to that the
 application would achieve with GSS. For example, if the lower
 level protocol offers integrity, but the application wants
 privacy, then CCM is inappropriate.

 * The use of CCM contexts over secured connections can be
 characterized nearly secure instead of as secure as using the
 underlying GSS context for protecting each application message
 procedure call. The reason is that applications can multiplex
 the traffic of multiple principals over a single connection and
 so the ciphertext in the traffic is encrypted with multiple
 session keys. Whereas, a secure connection method such as IPsec
 is protected with per host session keys. Therefore, an attacker
 has more cipher text per session key to perform cryptanalysis
 via connections protected with IPsec, versus connections
 protected with GSS.

 * Related to the previous bullet, the management of private keys
 for a secure channel is often outside the control of the user of

 CCM. If the secure channel's private keys are compromised, then

Expires: November 2003 [Page 22]

INTERNET-DRAFT CCM May 2003

 all users of the secure channel are compromised.

 * CCM contexts created during one session or transport connection
 SHOULD not be used for subsequent sessions or transport
 connections. In other words, full initiator to target
 authentication SHOULD occur each time a session or transport
 connection is established. Otherwise, there is nothing
 preventing an attacker from using a CCM context from one
 authenticated session or connection to trivially establish
 another, unauthenticated session or connection. For efficiency,
 a CCM-BIND context from a previous session MAY be used to
 establish a CCM-MIC context.

 If the application protocol using CCM has no concept of a
 session and does not use a connection oriented transport, then
 there is no sequence of state transitions that tie the CCM
 context creation steps with the subsequent message traffic of
 the application protocol. Thus it can be hard to assert that
 the subsequent message traffic is truly originated by the CCM
 initiator's principal. For this reason, CCM SHOULD NOT be used
 with applications that do not have sessions or do not use
 connection oriented transports.

 * The underlying secure channel SHOULD be end to end, from
 initiator to the target. It is permissible for the user to
 configure the underlying secure channel to not be end to end,
 but this should only be done if user has confidence in the
 intermediate end points. For example, suppose the application
 is being used behind a firewall that performs network address
 translation. It is possible to have an IPsec secure channel
 from the initiator to the firewall, and a second secure channel
 from the firewall to the target, but not from the initiator to
 the target. So, if the firewall is compromised by an attacker
 in the middle, the use of CCM to avoid per message
 authentication is useless. Furthermore, without channel
 bindings mandated by CCM-KEY, it is not possible for the
 initiator and target to enforce end to end channel security. Of
 course, if the initiator's node created a IP-layer tunnel
 between it and the target, end to end channel security would be
 achieved, but without the use of CCM-KEY, the initiator and
 target applications would have no way of knowing that.

 * It has been stated that it is not uncommon to find IPsec
 deployments where multiple nodes share common private keys
 [Black]. The use of CCM is discouraged in such environments,
 since the compromise of one node compromises all the other nodes
 sharing the same private key.

 * Applications using CCM MUST ensure that the binding between the

Expires: November 2003 [Page 23]

INTERNET-DRAFT CCM May 2003

 CCM context and the secure channel is legitimate for each
 message that references the CCM context. In other words, the
 referenced CCM context in a message MUST be established in the
 same secure channel as the message. The use of CCM-KEY enforces
 this binding.

 * When the same secure channel is multiplexing traffic for
 multiple users, the initiator has to ensure the CCM context is
 only accessible to the initiator principal that has established
 it in the first place. One possible way to ensure that is by
 placing CCM contexts in the privileged address space offering
 only controlled indexed access.

 * CCM does not unnecessarily inflate the scope of the trust
 domain, as does for example AUTH_SYS [RFC1831] over IPSec. By
 requiring the authentication in the CCM context initialization
 (using a previously established context), the trust domain does
 not extend to the client.

 * Both the traditional mechanisms and CCM rely on the security of
 the client to protect locally logged on users. Compromise of
 the client impacts all users on the same client. CCM does not
 make the problem worse.

 * The CCM context MUST be established over the same secure channel
 that the subsequent message traffic will be using. This way,
 the binding between the initial authentication and the
 subsequent traffic is ensured. Again, the use of CCM-KEY is one
 way to assert this binding.

 * The section entitled "CCM-KEY and Anonymous IPsec", suggests a
 method for simulating anonymous IPsec via self-signed
 certificates. If one is careless, this is will neuter all IPsec
 authentication, a real problem for those applications not using
 CCM-KEY. The use of the self-signed certificates in IPsec
 should be restricted by port in the IPsec Security Policy
 Database (SPD) only to those application using CCM-KEY. Note
 however, that port selector support is OPTIONAL in IPsec.

 * If an application is using IPsec and is not using CCM-KEY, then
 then the site where the application is deployed should configure
 the IPsec SPD to carefully limit the ports and nodes that are
 allowed create security associations to application targets.

 * CCM-KEY's IPsec bindings use public SA information, and CCM-
 ADDR's bindings are simply public network addresses. If the
 secure channel is IPsec, and non-anonymous certificates are used
 with IKE, then a MITM cannot spoof the target's and initiator's

https://datatracker.ietf.org/doc/html/rfc1831

 IP addresses, because the attacker will presumably be unable to

Expires: November 2003 [Page 24]

INTERNET-DRAFT CCM May 2003

 spoof the Certificate Authority that signed the certificates.
 Thus, when IPsec is used as the secure channel, and non-
 anonymous certificates are used with IKE, CCM-ADDR is as secure
 as CCM-KEY.

 * CCM contexts should not be used forever without re-
 authenticating periodically via the underlying mechanism. One
 rational approach is for the CCM context to persist no longer
 than the underlying mechanism context. Implementing this via
 the GSS-API is simple. Applications can periodically invoke
 gss_context_time() to find out how long the context will be
 valid. Moreover, CCM can enforce this by invoking
 gss_context_time() and the system time of day API to get an
 expiration date when the CCM mechanism is established. Each
 subsequent call can check the time of day against the
 expiration, and if expired, return GSS_S_CONTEXT_EXPIRED.

13. IANA Considerations

 XXX Note 1 to IANA: The CCM-BIND mechanism OID prefixes and the CCM-
 MIC mechanism OID must be assigned and registered by IANA. Please
 look for TBD1 in this document and notify the RFC Editor what value
 you have assigned.

 XXX Note 1 to RFC Editor: When IANA has made the OID assignments,
 please do the following:

 * Delete the "XXX Note 1 to RFC Editor: ..." paragraph.

 * Replace occurrences of TBD1 with the value assigned by IANA.

 * Replace the "XXX Note 1 to IANA: ..." paragraph with:
 OIDs for the CCM-BIND mechanism prefix, and for the CCM-MIC
 mechanism have been assigned by, and registered with IANA,
 with this document as the reference.

 XXX Note 2 to IANA: Please assign RPC flavor numbers for values
 currently place held in this document as TBD2 through TBD10. Also
 please establish the registry that RFC2623 mandates.

 XXX Note 2 to RFC Editor: When IANA has made the RPC flavor number
 assignments, please do the following:

 * Delete the "XXX Note 2 to RFC Editor: ..." paragraph.

 * Replace occurrences of TBD2 through and including TBD10 withe
 flavor number assignments from IANA.

https://datatracker.ietf.org/doc/html/rfc2623

Expires: November 2003 [Page 25]

INTERNET-DRAFT CCM May 2003

Section 6, "IANA Considerations" of [RFC2623] established a registry
 for mapping GSS mechanism OIDs to RPC pseudo flavor numbers. This
 registry was augmented in the NFSv4 specification [RFC3530] with
 several more entries. This document adds the following entries to
 the registry:

 1 == number of pseudo flavor
 2 == name of pseudo flavor
 3 == mechanism's OID
 4 == quality of protection
 5 == RPCSEC_GSS service

 1 2 3 4 5
 --
 TBD2 ccm-mic 1.3.6.1.5.5.TBD1.2 0 rpc_gss_svc_none

 TBD3 ccm-null-krb5 1.3.6.1.5.5.TBD1.1.1. 0 rpc_gss_svc_none
 1.2.840.113554.1.2.2

 TBD4 ccm-addr-krb5 1.3.6.1.5.5.TBD1.1.2. 0 rpc_gss_svc_none
 1.2.840.113554.1.2.2

 TBD5 ccm-key-krb5 1.3.6.1.5.5.TBD1.1.3. 0 rpc_gss_svc_none
 1.2.840.113554.1.2.2

 TBD6 ccm-null-spkm3 1.3.6.1.5.5.TBD1.1.1. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

 TBD6 ccm-addr-spkm3 1.3.6.1.5.5.TBD1.1.2. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

 TBD7 ccm-key-spkm3 1.3.6.1.5.5.TBD1.1.3. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

 TBD8 ccm-null-lipkey 1.3.6.1.5.5.TBD1.1.1. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

 TBD9 ccm-addr-lipkey 1.3.6.1.5.5.TBD1.1.2. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

 TBD10 ccm-addr-lipkey 1.3.6.1.5.5.TBD1.1.3. 0 rpc_gss_svc_none
 1.3.6.1.5.5.1.3

14. Acknowledgements

 Dave Noveck, for the observation that NFS version 4 servers could
 downgrade from integrity service to plain authentication service if
 IPsec was enabled. David Black, Peng Dai, Sam Hartman, and Julian

https://datatracker.ietf.org/doc/html/rfc2623
https://datatracker.ietf.org/doc/html/rfc3530

Expires: November 2003 [Page 26]

INTERNET-DRAFT CCM May 2003

 Satran, for their critical comments. Much of the text for the
 "Security Considerations" section comes directly from David and Peng.

15. Normative References

 [RFC1832]
 R. Srinivasan, RFC1832, "XDR: External Data Representation
 Standard", August, 1995.

 [RFC2025]
 C. Adams, RFC2025: "The Simple Public-Key GSS-API Mechanism
 (SPKM)," October 1996, Status: Standards Track.

 [RFC2119]
 S. Bradner, RFC2119, "Key words for use in RFCs to Indicate
 Requirement Levels," March 1997.

 [RFC2401]
 S. Kent, R. Atkinson, RFC2401, "Security Architecture for the
 Internet Protocol ", November, 1998.

 [RFC2409]
 D. Harkins and D. Carrel, RFC2119: "The Internet Key Exchange
 (IKE)," November 1998.

 [RFC2743]
 J. Linn, RFC2743, "Generic Security Service Application Program
 Interface Version 2, Update 1", January, 2000.

 [RFC2744]
 J. Wray, RFC2744, "Generic Security Service API Version 2 : C-
 bindings", January, 2000.

 [RFC2847]
 M. Eisler, RFC2847: "LIPKEY - A Low Infrastructure Public Key
 Mechanism Using SPKM," June 2000, Status: Standards Track.

 [FIPS]U.S. Department of Commerce / National Institute of Standards
 and Technology, FIPS PUB 180-1, "Secure Hash Standard", May 11,
 1993.

 [IKEv2]
 C. Kaufman, draft-ietf-ipsec-ikev2-07.txt: "Internet Key
 Exchange (IKEv2) Protocol," A work in progress, April 2003.

 XXX - Note 3 to RFC Editor: In the event this work in progress
 is not approved for publication when the CCM document is, then
 the sections of the CCM document that refer to IKEv2 in a

https://datatracker.ietf.org/doc/html/rfc1832
https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2847
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-07.txt

Expires: November 2003 [Page 27]

INTERNET-DRAFT CCM May 2003

 normative manner are to be removed for submission as a separate
 document.

 [SSHv2]
 T. Ylonen et. al., draft-ietf-secsh-transport-15.txt: "SSH
 Transport Layer Protocol," A work in progress, September 2002.

 XXX - Note 4 to RFC Editor: In the event this work in progress
 is not approved for publication when the CCM document is, then
 the sections of the CCM document that refer to SSHv2 in a
 normative manner are to be removed for submission as a separate
 document.

16. Informative References

 [RFC1831]
 R. Srinivasan, RFC1831, "RPC: Remote Procedure Call Protocol
 Specification Version 2", August, 1995.

 [RFC1964]
 J. Linn, RFC1964, "The Kerberos Version 5 GSS-API Mechanism",
 June 1996.

 [RFC2203]
 M. Eisler, A. Chiu, L. Ling, RFC2203, "RPCSEC_GSS Protocol
 Specification", September, 1997.

 [RFC2623]
 M. Eisler, RFC2623, "NFS Version 2 and Version 3 Security Issues
 and the NFS Protocol's Use of RPCSEC_GSS and Kerberos V5", June
 1999.

 [RFC3530]
 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
 Eisler, D. Noveck, RFC3530, "Network File System (NFS) version 4
 Protocol", April 2003.

 [Black]
 D. Black, EMail message on the NFSv4 working group alias,
 February 28, 2003.

 [DAFS]
 Mark Wittle (Editor), "DAFS Direct Access File System Protocol,
 Version: 1.00", September 1, 2001.

17. Authors' Addresses

 Mike Eisler

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-transport-15.txt
https://datatracker.ietf.org/doc/html/rfc1831
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc2623
https://datatracker.ietf.org/doc/html/rfc3530

Expires: November 2003 [Page 28]

INTERNET-DRAFT CCM May 2003

 5765 Chase Point Circle
 Colorado Springs, CO 80919
 USA

 Phone: 719-599-9026
 EMail: mike@eisler.com

 Nicolas Williams
 Sun Microsystems, Inc.
 5300 Riata Trace CT
 Austin, TX 78727
 USA

 EMail: nicolas.williams@sun.com

18. IPR Notices

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

19. Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this

https://datatracker.ietf.org/doc/html/bcp11

Expires: November 2003 [Page 29]

INTERNET-DRAFT CCM May 2003

 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Expires: November 2003 [Page 30]

