
Workgroup: NFSv4

Internet-Draft:

draft-ietf-nfsv4-delstid-01.txt

Published: 2 June 2022

Intended Status: Standards Track

Expires: 4 December 2022

Authors: T. Haynes

Hammerspace

T. Myklebust

Hammerspace

Extending the Opening of Files in NFSv4.2

Abstract

The Network File System v4 (NFSv4) allows a client to both open a

file and be granted a delegation of that file. This provides the

client the right to cache metadata on the file locally. This

document presents several refinements to both the opening and

delegating of the file to the client.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Definitions

1.2. Requirements Language

2. Offline Files

3. Determining the Arguments to OPEN

3.1. XDR Modifications to OPEN

4. Proxying of Times

4.1. Use case

4.2. XDR for Proxying of Times

5. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

5.4. Allowed Errors

5.5. Flex Files Layout Type

6. Extraction of XDR

6.1. Code Components Licensing Notice

7. Security Considerations

8. IANA Considerations

9. Normative References

Appendix A. Acknowledgments

Appendix B. RFC Editor Notes

Authors' Addresses

1. Introduction

In the Network File System version4 (NFSv4) a client may be granted

a delegation for a file. This allows the client to act as the

authority of the file's metadata and data. In this document, we

introduce some new semantics to both the open and the delegation

process which allows the client to:

detect an offline file, which may be located off premise.

determine the extension of OPEN (see Section 18.16 of [RFC5661])

flags.

during the OPEN procedure, get either the open or delegation

stateids, but not both.

cache both the access and modify times, reducing the number of

times the client needs to go to the server to get that

information.

for clients using Parallel NFS (pNFS) (see Section 12 of

[RFC5661]), periodically report the attributes of the data files

to the metadata server.

Using the process detailed in [RFC8178], the revisions in this

document become an extension of NFSv4.2 [RFC7862]. They are built on

¶

* ¶

*

¶

*

¶

*

¶

*

¶

delegation:

stateid:

weak cache consistency (WCC):

top of the external data representation (XDR) [RFC4506] generated

from [RFC7863].

1.1. Definitions

A file delegation, which is a recall-able lock that

assures the holder that inconsistent opens and file changes

cannot occur so long as the delegation is held.

A stateid is a 128-bit quantity returned by a server that

uniquely defines state held by the server for the client. (See

Section 8 of [RFC5661])

In NFSv3, operations are not sent in

a compound, hence the client would have to perform two round

trips to the server in order to determine the result of

modification to the state of a file or directory. With WCC, the

server can return post-operation attributes on such operations.

As these do not provide a strict consistency between the server

and client, the client is free to ignore the data. (See Section

2.6 of [RFC1813])

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Offline Files

If a file is offline, then the server locally has the file's

attributes, but not the file's content. It has to be able to present

to the client enough information to describe the file, but the

content is not readily available. The cost of retrieving the data

content is expensive, to the extent that the content should only be

retrieved if it is going to be used. A graphical file manager (such

as OSX's Finder) may want to access the beginning of the file to

preview it for an user who is hovering his pointer over the file

name. If the file is retrieved, it will most likely either be

immediately thrown away or returned.

A compound with a GETATTR or READDIR can report the file's

attributes without bringing the file online. However, either an OPEN

or a LAYOUTGET might cause the file server to retrieve the archived

data contents, bringing the file online. For non-pNFS systems, the

OPEN operation requires a filehandle to the data content. For pNFS

systems, the filehandle retrieved from an OPEN need not cause the

data content to be retrieved. But when the LAYOUTGET operation is

processed, a layout type specific mapping will cause the data

content to be retrieved from offline storage.

¶

¶

¶

¶

¶

¶

¶

If an operating system is not aware that the file is offline, it

might inadvertently open the file to determine what type of file it

is accessing. By adding the new attribute FATTR4_OFFLINE, a client

can predetermine the availability of the file, avoiding the need to

open it at all. Being offline might also mean that the file is

archived in the cloud, i.e., there can be an expense in both

retrieving the file to bring online and in sending the file back to

offline status.

<CODE BEGINS>

<CODE ENDS>

3. Determining the Arguments to OPEN

The OPEN (See Section 18.16 of [RFC5661]) procedure returns an open

stateid to the client to reference the state of the file. The client

could also request a delegation stateid in the OPEN arguements. The

file is said to be "open" to the client as long as the count of open

and delegated stateids is greater than 0. Either type of stateid is

suffucient to keep the file open, which allows READ (See Section

18.22 of [RFC5661]), WRITE (See Section 18.2 of [RFC5661]), LOCK

(See Section 18.10 of [RFC5661]), and LAYOUTGET (see Section 18.43

of [RFC5661]) operations to proceed. If the client gets both a open

and a delegation stateid as part of the OPEN, then it has to return

them both. And during each operation, the client can send a costly

GETATTR (See Section 18.7 of [RFC5661]).

If the client knows that the server supports the

OPEN4_SHARE_ACCESS_WANT_OPEN_XOR_DELEGATION flag (as determined by

an earlier GETATTR operation which queried for the

FATTR4_OPEN_ARGUMENTS attribute), then the client can supply that

flag during the OPEN and only get either an open or delegation

stateid.

The client is already prepared to not get a delegation stateid even

if requested. In order to not send an open stateid, the server can

indicate that fact with the result flag of

OPEN4_RESULT_NO_OPEN_STATEID. The open stateid field,

OPEN4resok.stateid (see Section 18.16.2 of [RFC5661]), should also

be set to the special all zero stateid.

¶

¶

///

/// typedef bool fattr4_offline;

///

¶

///

/// const FATTR4_OFFLINE = 83;

///

¶

¶

¶

¶

¶

3.1. XDR Modifications to OPEN

[RFC8178] (see Section 4.4.2) allows for extending the microversion

of the NFSv4.x protocol without increasing the microversion. The

client can probe the capabilities of the server and based on that

result, determine if both it and the server support features not

specified in the main microversion docuument.

The XDR extensions presented in this section allow for the OPEN

procedure to be extended in such a fashion. It models all of the

parameters via bitmap4 data structures, which allows for the

addition of a new flag to any of the OPEN arguments (see Section

18.16.1 of [RFC5661]). Two new flags are provided:

OPEN4_SHARE_ACCESS_WANT_OPEN_XOR_DELEGATION (see Section 4)

OPEN4_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS

Subsequent documents can use this framework to introduce new

functionality to OPEN.

<CODE BEGINS>

¶

¶

* ¶

* ¶

¶

¶

///

/// struct open_arguments4 {

/// bitmap4 oa_share_access;

/// bitmap4 oa_share_deny;

/// bitmap4 oa_share_access_want;

/// bitmap4 oa_open_claim;

/// bitmap4 oa_create_mode;

/// };

///

¶

///

/// enum open_args_share_access4 {

/// OPEN_ARGS_SHARE_ACCESS_READ = 1,

/// OPEN_ARGS_SHARE_ACCESS_WRITE = 2,

/// OPEN_ARGS_SHARE_ACCESS_BOTH = 3

/// };

///

¶

///

/// enum open_args_share_deny4 {

/// OPEN_ARGS_SHARE_DENY_NONE = 0,

/// OPEN_ARGS_SHARE_DENY_READ = 1,

/// OPEN_ARGS_SHARE_DENY_WRITE = 2,

/// OPEN_ARGS_SHARE_DENY_BOTH = 3

/// };

///

¶

///

/// enum open_args_share_access_want4 {

/// OPEN_ARGS_SHARE_ACCESS_WANT_ANY_DELEG = 3,

/// OPEN_ARGS_SHARE_ACCESS_WANT_NO_DELEG = 4,

/// OPEN_ARGS_SHARE_ACCESS_WANT_CANCEL = 5,

/// OPEN_ARGS_SHARE_ACCESS_WANT_SIGNAL_DELEG_WHEN_RESRC_AVAIL

/// = 17,

/// OPEN_ARGS_SHARE_ACCESS_WANT_PUSH_DELEG_WHEN_UNCONTENDED

/// = 18,

/// OPEN_ARGS_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS = 20,

/// OPEN_ARGS_SHARE_ACCESS_WANT_OPEN_XOR_DELEGATION = 21

/// };

///

¶

///

/// enum open_args_open_claim4 {

/// OPEN_ARGS_OPEN_CLAIM_NULL = 0,

/// OPEN_ARGS_OPEN_CLAIM_PREVIOUS = 1,

/// OPEN_ARGS_OPEN_CLAIM_DELEGATE_CUR = 2,

/// OPEN_ARGS_OPEN_CLAIM_DELEGATE_PREV = 3,

/// OPEN_ARGS_OPEN_CLAIM_FH = 4,

/// OPEN_ARGS_OPEN_CLAIM_DELEG_CUR_FH = 5,

/// OPEN_ARGS_OPEN_CLAIM_DELEG_PREV_FH = 6

/// };

///

¶

///

/// enum open_args_createmode4 {

/// OPEN_ARGS_CREATEMODE_UNCHECKED4 = 0,

/// OPEN_ARGS_CREATE_MODE_GUARDED = 1,

/// OPEN_ARGS_CREATEMODE_EXCLUSIVE4 = 2,

/// OPEN_ARGS_CREATE_MODE_EXCLUSIVE4_1 = 3

/// };

///

¶

///

/// typedef open_arguments4 fattr4_open_arguments;

///

¶

///

/// %/*

/// % * Determine what OPEN4 supports.

/// % */

/// const FATTR4_OPEN_ARGUMENTS = 86;

///

¶

///

/// const OPEN4_SHARE_ACCESS_WANT_OPEN_XOR_DELEGATION = 0x200000;

///

¶

<CODE ENDS>

4. Proxying of Times

When a client is granted a write delegation on a file, it is the

authority for the file. If the server queries the client as to the

state of the file via a CB_GETATTR (see Section 20.1 of [RFC5661]),

then it can only determine the size of the file. Likewise, if the

client holding the delegation wants to know either of the access,

modify, or change times, it has to send a GETATTR to the server.

While it is the authority for these values, it has no way to

guarantee these values after the delegation has been returned. And

as such, it can not pass these times up to an application expecting

posix compliance.

With the addition of the new flag:

OPEN4_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS, the client and server can

negiotiate that the client will be the authority for these values

and upon return of the delegation stateid via a DELEGRETURN (see

section 18.6 of [RFC5661]), the times will be passed back to the

server. If the server is queried by another client for either the

size or the times, it will need to use a CB_GETATTR to query the

client which holds the delegation (see Section 20.1 of [RFC5661]).

If a server informs the client via the FATTR4_OPEN_ARGUMENTS

attribute that it supports

OPEN_ARGS_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS and it returns a valid

delegation stateid for an OPEN operation which sets the

OPEN4_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS flag, then it MUST be able

to query the client via a CB_GETATTR for the

FATTR4_TIME_DELEG_ACCESS attribute and FATTR4_TIME_DELEG_MODIFY

attribute. (The change time can be derived from the modify time.)

Further, when it gets a SETATTR (see Section 18.30 of [RFC5661]) in

the same compound as the DELEGRETURN, then it MUST accept those

FATTR4_TIME_DELEG_ACCESS attribute and FATTR4_TIME_DELEG_MODIFY

attribute changes and derive the change time or reject the changes

with NFS4ERR_DELAY.

A key prerequisite of this approach is that the server and client

are in time synchronization with each other. Note that while the

base NFSv4.2 does not require such synchronization, the use of

RPCSEC_GSS typically makes such a requirement. When the client

presents either FATTR4_TIME_DELEG_ACCESS or FATTR4_TIME_DELEG_MODIFY

attributes to the server, the server MUST decide whether the times

presented are before the old times or past the current time. If the

///

/// const OPEN4_RESULT_NO_OPEN_STATEID = 0x00000010;

///

¶

¶

¶

¶

¶

time presented is before the original time, then the update is

ignored. If the time presented is in the future, the server can

either clamp the new time to the current time, or it may return

NFS4ERR_DELAY to the client, allowing it to retry. Note that if the

clock skew is large, this policy will result in access to the file

being denied until such time that the clock skew is exceeded.

A change in the access time MUST not advance the change time, also

known as the time_metadata attribute (see Section 5.8.2.42 of

[RFC5661]), but a change in the modify time might advance the change

time (and in turn the change attribute (See Section 5.8.1.4 of

[RFC5661]). If the modify time is greater than the change time and

before the current time, then the change time is adjusted to the

modify time and not the current time (as is most likely done on most

SETATTR calls that change the metadata). If the modify time is in

the future, it will be clamped to the current time.

Note that each of the possible times, access, modify, and change,

are compared to the current time. They should all be compared

against the same time value for the current time. I.e., do not

retrieve a different value of the current time for each calculation.

If the client sets the OPEN4_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS flag

in an OPEN operation, then it MUST support the

FATTR4_TIME_DELEG_ACCESS and FATTR4_TIME_DELEG_MODIFY attributes

both in the CB_GETATTR and SETATTR operations.

4.1. Use case

When a server is a proxy for a NFSv4 server, it is a client to the

NFSv4 server and during file I/O, it may get a delegation on a file.

The client of the proxy would be querying the proxy for attributes

and not the NFSv4 server. Each GETATTR from that client would result

in at least one additional GETATTR being sent across the wire.

4.2. XDR for Proxying of Times

<CODE BEGINS>

¶

¶

¶

¶

¶

¶

///

/// /*

/// * attributes for the delegation times being

/// * cached and served by the "client"

/// */

/// typedef nfstime4 fattr4_time_deleg_access;

/// typedef nfstime4 fattr4_time_deleg_modify;

///

¶

<CODE ENDS>

5. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

5.1. ARGUMENT

<CODE BEGINS>

/// struct LAYOUT_WCC4args {

/// stateid4 lowa_stateid;

/// layouttype4 lowa_type;

/// opaque lowa_body<>;

/// };

<CODE ENDS>

5.2. RESULT

<CODE BEGINS>

/// struct LAYOUT_WCC4res {

/// nfsstat4 lowr_status;

/// };

<CODE ENDS>

5.3. DESCRIPTION

When using pNFS (See Section 12 of [RFC5661]), the client is most

likely to be performing file operations to the storage device and

not the metadata server. With some layout types (most notably the

flexible files layout type in [RFC8435]) there is no control

protocol between the metadata server and the storage device. In

order to update the metadata state of the file, the metadata server

will need to track the metadata state of the data file - once the

///

/// %/*

/// % * New RECOMMENDED Attribute for

/// % * delegation caching of times

/// % */

/// const FATTR4_TIME_DELEG_ACCESS = 84;

/// const FATTR4_TIME_DELEG_MODIFY = 85;

///

¶

///

/// const OPEN4_SHARE_ACCESS_WANT_DELEG_TIMESTAMPS = 0x100000;

///

¶

¶

¶

¶

layout is issued, it is not able to see the NFSv3 file operations

from the client to the storage device. Thus the metadata server will

be required to query the storage device for the data file

attributes.

For example, with a flexible files layout type, the metadata server

would issue a NFSv3 GETATTR to the storage device. These queries are

most likely triggered in response to a NFSv4 GETATTR to the metadata

server. Not only are these GETATTRs to the storage device

individually expensive, the storage device can become inundated by a

storm of such requests. NFSv3 solved a similar issue by having the

READ and WRITE operations employ a post-operation attribute to

report the weak cache consistency (WCC) data (See Section 2.6 of

[RFC1813]).

Each NFSv3 operation corresponds to one round trip between the

client and server. So a WRITE followed by a GETATTR would require

two round trips. In that scenario, the attribute information

retrieved is considered to be strict server-client consistency for a

cache consistency protocol. For NFSv4, the WRITE and GETATTR can be

issued together inside a compound, which only requires one round

trip between the client and server. And this is also considered to

be a strict server-client consistency. In essence, the NFSv4 READ

and WRITE operations drop the post-operation attributes, allowing

the client to decide if it needs that information.

With the flexible files layout type, the client can leverage the

NFSv3 WCC to service the proxying of times (See Section 4). But the

granularity of this data is limited. With client side mirroring (See

Section 8 of [RFC8435]), the client has to aggregate the N mirrored

files in order to send one piece of information instead of N pieces

of information. Also, the client is limited to sending that

information only when it returns the delegation.

The current filehandle and the lowa_stateid identifies the

particular layout for the LAYOUT_WCC operation. The lowa_type

indicates how to unpack the layout type specific payload inside the

lowa_body field. The lowa_type is defined to be a value from the

IANA registry for "pNFS Layout Types Registry".

The lowa_body will contain the data file attributes. The client will

be responsible for mapping the NFSv3 post-operation attributes to

those in a fattr4. Just as the post-operation attributes may be

ignored by the client, the server may ignore the attributes inside

the LAYOUT_WCC. But the server can also use those attributes to

avoid querying the storage device for the data file attributes. Note

that as these attributes are optional and there is nothing the

client can do if the server ignores one, there is no need to return

¶

¶

¶

¶

¶

a bitmap4 of which attributes were accepted in the result of the

LAYOUT_WCC.

5.4. Allowed Errors

The LAYOUT_WCC operation can raise the errors in Table 1. When an

error is encountered, the metadata server can decide to ignore the

entire operation or depending on the layout type specific payload,

it could decide to apply a portion of the payload.

Valid Error Returns for LAYOUT_WCC

Errors

NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,

NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,

NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,

NFS4ERR_ISDIR, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,

NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,

NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,

NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,

NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,

NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE

Table 1

5.5. Flex Files Layout Type

<CODE BEGINS>

/// struct ff_data_server_wcc4 {

/// deviceid4 ffdsw_deviceid;

/// stateid4 ffdsw_stateid;

/// nfs_fh4 ffdsw_fh_vers<>;

/// fattr4 ffdsw_attributes;

/// };

///

/// struct ff_mirror_wcc4 {

/// ff_data_server_wcc4 ffmw_data_servers<>;

/// };

///

/// struct ff_layout_wcc4 {

/// ff_mirror_wcc4 fflw_mirrors<>;

/// };

<CODE ENDS>

¶

¶

¶

¶

The flex file layout type specific results SHOULD correspond to the

ff_layout4 data structure as defined in Section 5.1 of [RFC8435].

There SHOULD be a one-to-one correspondence between:

ff_data_server4 -> ff_data_server_wcc4

ff_mirror4 -> ff_mirror_wcc4

ff_layout4 -> ff_layout_wcc4

Each ff_layout4 has an array of ff_mirror4, which have an array of

ff_data_server4. Based on the current filehandle and the

lowa_stateid, the server can match the reported attributes.

But the positional correspondence between the elements is not

sufficient to determine the attributes to update. Consider the case

where a layout had three mirrors and two of them had updated

attributes, but the third did not. A client could decide to present

all three mirrors, with one mirror having an attribute mask with no

attributes present. Or it could decide to present only the two

mirrors which had been changed.

In either case, the combination of ffdsw_deviceid, ffdsw_stateid,

and ffdsw_fh_vers will uniquely identify the attributes to be

updated. All three arguments are required. A layout might have

multiple data files on the same storage device, in which case the

ffdsw_deviceid and ffdsw_stateid would match, but the ffdsw_fh_vers

would not.

The ffdsw_attributes are processed similar to the obj_attributes in

the SETATTR arguments (See Section 18.30 of [RFC5661]).

6. Extraction of XDR

This document contains the external data representation (XDR)

[RFC4506] description of the new open flags for delegating the file

to the client. The XDR description is embedded in this document in a

way that makes it simple for the reader to extract into a ready-to-

compile form. The reader can feed this document into the following

shell script to produce the machine readable XDR description of the

new flags:

<CODE BEGINS>

<CODE ENDS>

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

#!/bin/sh

grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

¶

¶

[LEGAL]

[RFC1813]

[RFC2119]

[RFC4506]

That is, if the above script is stored in a file called

"extract.sh", and this document is in a file called "spec.txt", then

the reader can do:

The effect of the script is to remove leading white space from each

line, plus a sentinel sequence of "///". XDR descriptions with the

sentinel sequence are embedded throughout the document.

Note that the XDR code contained in this document depends on types

from the NFSv4.2 nfs4_prot.x file (generated from [RFC7863]). This

includes both nfs types that end with a 4, such as offset4, length4,

etc., as well as more generic types such as uint32_t and uint64_t.

While the XDR can be appeneded to that from [RFC7863], the various

code snippets belong in their respective areas of the that XDR.

6.1. Code Components Licensing Notice

Both the XDR description and the scripts used for extracting the XDR

description are Code Components as described in Section 4 of "Legal

Provisions Relating to IETF Documents" [LEGAL]. These Code

Components are licensed according to the terms of that document.

7. Security Considerations

There are no new security considerations beyond those in [RFC7862].

8. IANA Considerations

There are no IANA considerations.

9. Normative References

IETF Trust, "Legal Provisions Relating to IETF

Documents", November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

IETF, "NFS Version 3 Protocol Specification", RFC 1813,

June 1995, <https://www.rfc-editor.org/rfc/rfc1813>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997,

<https://www.rfc-editor.org/rfc/rfc2119>.

Eisler, M., "XDR: External Data Representation Standard",

STD 67, RFC 4506, May 2006, <https://www.rfc-editor.org/

rfc/rfc4506>.

¶

sh extract.sh < spec.txt > delstid_prot.x¶

¶

¶

¶

¶

¶

¶

http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
https://www.rfc-editor.org/rfc/rfc1813
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4506
https://www.rfc-editor.org/rfc/rfc4506

[RFC5661]

[RFC7862]

[RFC7863]

[RFC8178]

[RFC8435]

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

"Network File System (NFS) Version 4 Minor Version 1

Protocol", RFC 5661, January 2010, <https://www.rfc-

editor.org/rfc/rfc5661>.

Haynes, T., "NFS Version 4 Minor Version 2", RFC 7862,

November 2016, <ftp://ftp.isi.edu/in-notes/rfc7862.txt>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 External Data Representation Standard (XDR)

Description", RFC 7863, November 2016, <https://www.rfc-

editor.org/rfc/rfc7863>.

Noveck, D., "Rules for NFSv4 Extensions and Minor

Versions", RFC 8178, July 2017, <https://www.rfc-

editor.org/rfc/rfc8178>.

Halevy, B. and T. Haynes, "Parallel NFS (pNFS) Flexible

File Layout", RFC 8435, August 2018, <https://www.rfc-

editor.org/rfc/rfc8435>.

Appendix A. Acknowledgments

Trond Myklebust and David Flynn all worked on the prototype at

Hammerspace.

Appendix B. RFC Editor Notes

[RFC Editor: please remove this section prior to publishing this

document as an RFC]

[RFC Editor: prior to publishing this document as an RFC, please

replace all occurrences of RFCTBD10 with RFCxxxx where xxxx is the

RFC number of this document]

Authors' Addresses

Thomas Haynes

Hammerspace

Email: loghyr@hammerspace.com

Trond Myklebust

Hammerspace

Email: trondmy@hammerspace.com

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5661
https://www.rfc-editor.org/rfc/rfc5661
ftp://ftp.isi.edu/in-notes/rfc7862.txt
https://www.rfc-editor.org/rfc/rfc7863
https://www.rfc-editor.org/rfc/rfc7863
https://www.rfc-editor.org/rfc/rfc8178
https://www.rfc-editor.org/rfc/rfc8178
https://www.rfc-editor.org/rfc/rfc8435
https://www.rfc-editor.org/rfc/rfc8435
mailto:loghyr@hammerspace.com
mailto:trondmy@hammerspace.com

	Extending the Opening of Files in NFSv4.2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Definitions
	1.2. Requirements Language

	2. Offline Files
	3. Determining the Arguments to OPEN
	3.1. XDR Modifications to OPEN

	4. Proxying of Times
	4.1. Use case
	4.2. XDR for Proxying of Times

	5. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency
	5.1. ARGUMENT
	5.2. RESULT
	5.3. DESCRIPTION
	5.4. Allowed Errors
	5.5. Flex Files Layout Type

	6. Extraction of XDR
	6.1. Code Components Licensing Notice

	7. Security Considerations
	8. IANA Considerations
	9. Normative References
	Appendix A. Acknowledgments
	Appendix B. RFC Editor Notes
	Authors' Addresses

