
Network Working Group S. Khan
Internet-Draft Author
Document: Network Appliance, Inc.
draft-ietf-nfsv4-directory-delegation-01.txt March 2005

NFSv4.1: Directory Delegations and Notifications

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 or will be disclosed, and any of which I become aware will be
 disclosed, in accordance with RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

ABSTRACT

 This document proposes adding directory delegations and notifications
 to NFS Version 4 [RFC3530]. It is hoped that these changes will be
 part of a new minor version of NFS, such as NFSv4.1.

TABLE OF CONTENTS

1. Introduction . 2
 2. Proposed protocol extensions. 3

3. Design . 4
 4. New Operation 40: GET_DIR_DELEGATION - Get a directory
 delegation . 5

5. New Recommended Attributes 8
 6. New Callback Operation: CB_NOTIFY - Notify directory changes . 9

7. Delegation Recall . 12

Expires: September 2005 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-directory-delegation-01.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3530

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 8. New Callback Operation: CB_RECALL_ANY - Keep any N
 delegations . 13

9. Delegation Recovery . 14
10. Issues . 14
10.1. Synchronous vs. Asynchronous notifications 14
11. RPC Definition File Changes 14
12. IANA Considerations . 23
13. Acknowledgements . 23
14. Normative References 23
15. Informative References 24
16. Author's Address . 24
17. IPR Notices . 24
18. Copyright Notice . 24

1. Introduction

 This document assumes understanding of the NFSv4.0 specification. It
 also assumes that the changes proposed by [talpey] will be present in
 the same minor version or certain incremental additions to this
 proposal will be required, as discussed later in the document.

 The major addition to NFS version 4 in the area of caching is the
 ability of the server to delegate certain responsibilities to the
 client. When the server grants a delegation for a file to a client,
 the client receives certain semantics with respect to the sharing of
 that file with other clients. At OPEN, the server may provide the
 client either a read or write delegation for the file. If the client
 is granted a read delegation, it is assured that no other client has
 the ability to write to the file for the duration of the delegation.
 If the client is granted a write delegation, the client is assured
 that no other client has read or write access to the file. This
 reduces network traffic and server load by allowing the client to
 perform certain operations on local file data and can also provide
 stronger consistency for the local data.

 Directory caching for the NFS version 4 protocol is similar to
 previous versions. Clients typically cache directory information for
 a duration determined by the client. At the end of a predefined
 timeout, the client will query the server to see if the directory has
 been updated. By caching attributes, clients reduce the number of
 GETATTR calls made to the server to validate attributes. Furthermore,
 frequently accessed files and directories, such as the current
 working directory, have their attributes cached on the client so that
 some NFS operations can be performed without having to make an RPC
 call. By caching name and inode information about most recently
 looked up entries in DNLC (Directory Name Lookup Cache), clients do
 not need to send LOOKUP calls to the server every time these files
 are accessed.

Expires: September 2005 [Page 2]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 This caching approach works reasonably well at reducing network
 traffic in many environments. However, it does not address
 environments where there are numerous queries for files that do not
 exist. In these cases of "misses", the client must make RPC calls to
 the server in order to provide reasonable application semantics and
 promptly detect the creation of new directory entries. Examples of
 high miss activity are compilation in software development
 environments. The current behavior of NFS limits its potential
 scalability and wide-area sharing effectiveness in these types of
 environments. Other distributed stateful filesystem architectures
 such as AFS and DFS have proven that adding state around directory
 contents can greatly reduce network traffic in high miss
 environments.

 Delegation of directory contents is proposed as an extension for
 NFSv4. Such an extension would provide similar traffic reduction
 benefits as with file delegations. By allowing clients to cache
 directory contents (in a read-only fashion) while being notified of
 changes, the client can avoid making frequent requests to interrogate
 the contents of slowly-changing directories, reducing network traffic
 and improving client performance.

 These extensions allow improved namespace cache consistency to be
 achieved through delegations and synchronous recalls alone without
 asking for notifications. In addition, if time-based consistency is
 sufficient, asynchronous notifications can provide performance
 benefits for the client, and possibly the server, under some common
 operating conditions such as slowly-changing and/or very large
 directories.

2. Proposed protocol extensions.

 This document includes the definition of protocol extensions to
 implement directory delegations. It is believed that these extension
 fit within the minor-versioning framework presented in RFC3530.

 The NFSv4 Sessions Extensions [talpey] include a new operation
 (called SEQUENCE) in each COMPOUND procedure which carries the
 clientid associated with the session to which the procedure belongs.
 In NFSv4.0, only certain COMPOUND procedures may carry such a
 clientid. When present, this clientid provides all the necessary
 context for maintaining directory delegations, and dispatching
 appropriate callbacks.

 If the directory delegation protocol described here is not able to
 leverage any pre-existing clientid present in each COMPOUND request,
 then the equivalent clientid must be provided where necessary. This
 could be accomplished by simply including the SEQUENCE operation in

https://datatracker.ietf.org/doc/html/rfc3530

 each compound of the new minor version, regardless of the status of

Expires: September 2005 [Page 3]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 any session.

 Mainly in the interests of clarity of presentation, elements within
 these extensions are assigned numeric identifiers such as operation
 numbers and attribute identifiers. It should be understood that when
 these extensions are included in a minor version of NFSv4, the actual
 numeric identifiers assigned may be different from the ones chosen
 here.

3. Design

 A new operation GET_DIR_DELEGATION is used by the client to ask for a
 directory delegation. The delegation covers directory attributes and
 all entries in the directory. If either of these change the
 delegation will be recalled synchronously. The operation causing the
 recall will have to wait before the recall is complete. Any changes
 to directory entry attributes will not cause the delegation to be
 recalled.

 In addition to asking for delegations, a client can also ask for
 notifications for certain events. These events include changes to
 directory attributes and/or its contents. If a client asks for
 notification for a certain event, the server will notify the client
 when that event occurs. This will not result in the delegation being
 recalled for that client. The notifications are asynchronous and
 provide a way of avoiding recalls in situations where a directory is
 changing enough that the pure recall model may not be effective while
 trying to allow the client to get substantial benefit. In the absence
 of notifications, once the delegation is recalled the client has to
 refresh its directory cache which might not be very efficient for
 very large directories.

 The delegation is read only and the client may not make changes to
 the directory other than by performing NFSv4 operations that modify
 the directory or the associated file attributes so that the server
 has knowledge of these changes. In order to keep the client namespace
 in sync with the server, the server will notify the client holding
 the delegation of the changes made as a result. This is to avoid any
 subsequent GETATTR or READDIR calls to the server. If a client
 holding the delegation makes any changes to the directory, the
 delegation will not be recalled.

 Delegations can be recalled by the server at any time. Normally, the
 server will recall the delegation when the directory changes in a way
 that is not covered by the notification, or when the directory
 changes and notifications have not been requested.

 Also if the server notices that handing out a delegation for a

 directory is causing too many notifications to be sent out, it may

Expires: September 2005 [Page 4]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 decide not to hand out a delegation for that directory or recall
 existing delegations. If another client removes the directory for
 which a delegation has been granted, the server will recall the
 delegation.

 Both the notification and recall operations need a callback path to
 exist between the client and server. If the callback path does not
 exist, then delegation can not be granted. Note that with the session
 extensions [talpey] that should not be an issue. In the absense of
 sessions, the server will have to establish a callback path to the
 client to send callbacks.

4. New Operation 40: GET_DIR_DELEGATION - Get a directory delegation

 SYNOPSIS
 (cfh), requested notification -> (cfh), cookieverf, stateid,
 supported notification

 ARGUMENT
 struct GET_DIR_DELEGATION4args {
 dir_notification_type4 notification_type;
 attr_notice4 child_attr_delay;
 attr_notice4 dir_attr_delay;
 };

 /*
 * Notification types.
 */
 const DIR_NOTIFICATION_NONE = 0x00000000;
 const DIR_NOTIFICATION_CHANGE_CHILD_ATTRIBUTES = 0x00000001;
 const DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES = 0x00000002;
 const DIR_NOTIFICATION_REMOVE_ENTRY = 0x00000004;
 const DIR_NOTIFICATION_ADD_ENTRY = 0x00000008;
 const DIR_NOTIFICATION_RENAME_ENTRY = 0x00000010;
 const DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER = 0x00000020;

 typedef uint32_t dir_notification_type4;

 typedef nfstime4 attr_notice4;

 RESULT
 struct GET_DIR_DELEGATION4resok {
 verifier4 cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 stateid;
 /* Which notifications can the server support */
 dir_notification_type4 supp_notification;

Expires: September 2005 [Page 5]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 bitmap4 child_attributes;
 bitmap4 dir_attributes;
 };

 union GET_DIR_DELEGATION4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENT_FH: delegated dir */
 GET_DIR_DELEGATION4resok resok4;
 default:
 void;
 };

 DESCRIPTION:
 The GET_DIR_DELEGATION operation is used by a client to request
 a directory delegation. The directory is represented by the
 current filehandle. The client also specifies whether it wants
 the server to notify it when the directory changes in certain
 ways by setting one or more bits in a bitmap. The server may
 also choose not to grant the delegation. In that case the server
 will return NFS4ERR_DIRDELEG_UNAVAIL. If the server decides to
 hand out the delegation, it will return a cookie verifier for
 that directory. If the cookie verifier changes when the client
 is holding the delegation, the delegation will be recalled
 unless the client has asked for notification for this event. In
 that case a notification will be sent to the client.

 The server will also return a directory delegation stateid in
 addition to the cookie verifier as a result of the
 GET_DIR_DELEGATION operation. This stateid will appear in
 callback messages related to the delegation, such as
 notifications and delegation recalls. The client will use this
 stateid to return the delegation voluntarily or upon recall. A
 delegation is returned by calling the DELEGRETURN operation.

 The server may not be able to support notifications of certain
 events. If the client asks for such notifications, the server
 must inform the client of its inability to do so as part of the
 GET_DIR_DELEGATION reply by not setting the appropriate bits in
 the supported notifications bitmask contained in the reply.

 The GET_DIR_DELEGATION operation can be used for both normal and
 named attribute directories. It covers all the entries in the
 directory except the ".." entry. That means if a directory and
 its parent both hold directory delegations, any changes to the
 parent will not cause a notification to be sent for the child
 even though the child's ".." entry points to the parent.

 IMPLEMENTATION:

Expires: September 2005 [Page 6]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 Directory delegation provides the benefit of improving cache
 consistency of namespace information. This is done through
 synchronous callbacks. A server must support synchronous
 callbacks in order to support directory delegations. In addition
 to that, asynchronous notifications provide a way to reduce
 network traffic as well as improve client performance in certain
 conditions. Notifications would not be requested when the goal
 is just cache consitency.

 Notifications are specified in terms of potential changes to the
 directory. A client can ask to be notified whenever an entry is
 added to a directory by setting notification_type to
 DIR_NOTIFICATION_ADD_ENTRY. It can also ask for notifications on
 entry removal, renames, directory attribute changes and cookie
 verifier changes by setting notification_type flag
 appropriately. In addition to that, the client can also ask for
 notifications upon attribute changes to children in the
 directory to keep its attribute cache up to date. However any
 changes made to child attributes do not cause the delegation to
 be recalled. If a client is interested in directory entry
 caching, or negative name caching, it can set the
 notification_type appropriately and the server will notify it of
 all changes that would otherwise invalidate its name cache. The
 kind of notification a client asks for may depend on the
 directory size, its rate of change and the applications being
 used to access that directory. However, the conditions under
 which a client might ask for a notification, is out of the scope
 of this specification.

 The client will set one or more bits in a bitmap
 (notification_type) to let the server know what kind of
 notification(s) it is interested in. For attribute notifications
 it will set bits in another bitmap to indicate which attributes
 it wants to be notified of. If the server does not support
 notifications for changes to a certain attribute, it should not
 set that attribute in the supported attribute bitmap
 (supp_notification) specified in the reply.

 In addition to that, the client will also let the server know if
 it wants to get the notification as soon as the attribute change
 occurs or after a certain delay by setting a delay factor,
 child_attr_delay for attribute changes to children and
 dir_attr_delay for attribute changes to the directory. If this
 delay factor is set to zero, that indicates to the server that
 the client wants to be notified of any attribute changes as soon
 as they occur. If the delay factor is set to N, the server will
 make a best effort guarantee that attribute updates are not out
 of sync by more than that. One value covers all attribute

 changes for the directory and another value covers all attribute

Expires: September 2005 [Page 7]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 changes for all children in the directory. If the client asks
 for a delay factor that the server does not support or that may
 cause significant resource consumption on the server by causing
 the server to send a lot of notifications, the server should not
 commit to sending out notifications for that attribute and
 therefore must not set the approprite bit in the
 child_attributes and dir_attributes bitmaps in the response.

 The server will let the client know about which notifications it
 can support by setting appropriate bits in a bitmap. If it
 agrees to send attribute notifications, it will also set two
 attribute masks indicating which attributes it will send change
 notifications for. One of the masks covers changes in directory
 attributes and the other covers atttribute changes to any files
 in the directory.

 The client should use a security flavor that the filesystem is
 exported with. If it uses a different flavor, the server should
 return NFS4ERR_WRONGSEC.

 ERRORS
 NFS4ERR_ACCESS
 NFS4ERR_BADHANDLE
 NFS4ERR_BADXDR
 NFS4ERR_FHEXPIRED
 NFS4ERR_INVAL
 NFS4ERR_MOVED
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_NOTDIR
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT
 NFS4ERR_STALE
 NFS4ERR_DIRDELEG_UNAVAIL
 NFS4ERR_WRONGSEC
 NFS4ERR_EIO
 NFS4ERR_NOTSUPP

5. New Recommended Attributes

 #56 - supp_dir_attr_notice - notification delays on directory
 attributes
 #57 - supp_child_attr_notice - notification delays on child
 attributes

 DESCRIPTION:
 These attributes allow the client and server to negotiate the
 frequency of notifications sent due to changes in attributes.

 These attributes are returned as part of a GETATTR call on the

Expires: September 2005 [Page 8]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 directory. The supp_dir_attr_notice value covers all attribute
 changes to the directory and the supp_child_attr_notice covers
 all attribute changes to any child in the directory.

 These attributes are per directory. The client needs to get
 these values by doing a GETATTR on the directory for which it
 wants notifications. However these attributes are only required
 when the client is interested in getting attribute
 notifications. For all other types of notifications and
 delegation requests without notifications, these attributes are
 not required.

 When the client calls the GET_DIR_DELEGATION operation and asks
 for attribute change notifications, it will request a
 notification delay that is within the server's supported range.
 If the client violates what supp_attr_file_notice or
 supp_attr_dir_notice values are, the server should not commit to
 sending notifications for that change event.

 A value of zero for these attributes means the server will send
 the notification as soon as the change occurs. It is not
 recommended to set this value to zero since that can put a lot
 of burden on the server. A value of N means that the server
 will make a best effort guarentee that attribute notification
 are not delayed by more than that. nfstime4 values that compute
 to negative values are illegal.

6. New Callback Operation: CB_NOTIFY - Notify directory changes

 SYNOPSIS
 stateid, notification -> {}

 ARGUMENT
 struct CB_NOTIFY4args {
 stateid4 stateid;
 dir_notification4 changes<>;
 };

 /*
 * Notification information sent to the client.
 */
 union dir_notification4
 switch (dir_notification_type4 notification_type) {
 case DIR_NOTIFICATION_CHANGE_CHILD_ATTRIBUTES:
 dir_notification_attribute4 change_child_attributes;
 case DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES:
 fattr4 change_dir_attributes;
 case DIR_NOTIFICATION_REMOVE_ENTRY:

Expires: September 2005 [Page 9]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 dir_notification_remove4 remove_notification;
 case DIR_NOTIFICATION_ADD_ENTRY:
 dir_notification_add4 add_notification;
 case DIR_NOTIFICATION_RENAME_ENTRY:
 dir_notification_rename4 rename_notification;
 case DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER:
 dir_notification_verifier4 verf_notification;
 };

 /*
 * Changed entry information.
 */
 struct dir_entry {
 component4 file;
 fattr4 attrs;
 };

 struct dir_notification_attribute4 {
 dir_entry changed_entry;
 };

 struct dir_notification_remove4 {
 dir_entry old_entry;
 nfs_cookie4 old_entry_cookie;
 };

 struct dir_notification_rename4 {
 dir_entry old_entry;
 dir_notification_add4 new_entry;
 };

 struct dir_notification_verifier4 {
 verifier4 old_cookieverf;
 verifier4 new_cookieverf;
 };

 struct dir_notification_add4 {
 dir_entry new_entry;
 /* what READDIR would have returned for this entry */
 nfs_cookie4 new_entry_cookie;
 bool last_entry;
 prev_entry_info4 prev_info;
 };

 union prev_entry_info4 switch (bool isprev) {
 case TRUE: /* A previous entry exists */
 prev_entry4 prev_entry_info;
 case FALSE: /* we are adding to an empty

 directory */

Expires: September 2005 [Page 10]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 void;
 };

 /*
 * Previous entry information
 */
 struct prev_entry4 {
 dir_entry prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 prev_entry_cookie;
 };

 RESULT
 struct CB_NOTIFY4res {
 nfsstat4 status;
 };

 DESCRIPTION:
 The CB_NOTIFY operation is used by the server to send
 notifications to clients about changes in a delegated directory.
 These notifications are sent over the callback path. The
 notification is sent once the original request has been
 processed on the server. The server will send an array of
 notifications for all changes that might have occurred in the
 directory. The dir_notification_type4 can only have one bit set
 for each notification in the array. If the client holding the
 delegation makes any changes in the directory that cause files
 or sub directories to be added or removed, the server will
 notify that client of the resulting change(s). If the client
 holding the delegation is making attribute or cookie verifier
 changes only, the server does not need to send notifications to
 that client. The server will send the following information for
 each operation:

 o ADDING A FILE: The server will send information about the
 new entry being created along with the cookie for that entry.
 The entry information contains the nfs name of the entry and
 attributes. If this entry is added to the end of the
 directory, the server will set a last_entry flag to true. If
 the file is added such that there is atleast one entry before
 it, the server will also return the previous entry
 information along with its cookie. This is to help clients
 find the right location in their DNLC or directory caches
 where this entry should be cached.

 o REMOVING A FILE: The server will send information about the
 directory entry being deleted. The server will also send the

 cookie value for the deleted entry so that clients can get to

Expires: September 2005 [Page 11]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 the cached information for this entry.

 o RENAMING A FILE: The server will send information about both
 the old entry and the new entry. This includes name and
 attributes for each entry. This notification is only sent if
 both entries are in the same directory. If the rename is
 across directories, the server will send a remove
 notification to one directory and an add notification to the
 other directory, assuming both have a directory delegation.

 o FILE/DIR ATTRIBUTE CHANGE: The client will use the attribute
 mask to inform the server of attributes for which it wants to
 receive notifications. This change notification can be
 requested for both changes to the attributes of the directory
 as well as changes to any file attributes in the directory by
 using two separate attribute masks. The client can not ask
 for change attribute notification per file. One attribute
 mask covers all the files in the directory. Upon any
 attribute change, the server will send back the values of
 changed attributes. Notifications might not make sense for
 some filesystem wide attributes and it is up to the server to
 decide which subset it wants to support. The client can
 negotiate the frequency of attribute notifications by letting
 the server know how often it wants to be notified of an
 attribute change. The server will return supported
 notification frequencies or an indication that no
 notification is permitted for directory or child attributes
 by setting the supp_dir_attr_notice and
 supp_child_attr_notice attributes respectively.

 o COOKIE VERIFIER CHANGE: If the cookie verifier changes while
 a client is holding a delegation, the server will notify the
 client so that it can invalidate its cookies and reissue a
 READDIR to get the new set of cookies.

 ERRORS
 NFS4ERR_BAD_STATEID
 NFS4ERR_INVAL
 NFS4ERR_BADXDR
 NFS4ERR_SERVERFAULT

7. Delegation Recall

 The server will recall the directory delegation by sending a callback
 to the client. It will use the same callback procedure as used for
 recalling file delegations. The server will recall the delegation

Expires: September 2005 [Page 12]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 when the directory changes in a way that is not covered by the
 notification. However the server will not recall the delegation if
 attributes of an entry within the directory change. Also if the
 server notices that handing out a delegation for a directory is
 causing too many notifications to be sent out, it may decide not to
 hand out a delegation for that directory. If another client tries to
 remove the directory for which a delegation has been granted, the
 server will recall the delegation.

 The server will recall the delegation by sending a CB_RECALL callback
 to the client. If the recall is done because of a directory changing
 event, the request making that change will need to wait while the
 client returns the delegation.

8. New Callback Operation: CB_RECALL_ANY - Keep any N delegations

 SYNOPSIS
 N -> {}

 ARGUMENT
 struct CB_RECALLANYY4args {
 uint4 dlgs_to_keep;
 }

 RESULT
 struct CB_RECALLANY4res {
 nfsstat4 status;
 };

 DESCRIPTION:
 The server may decide that it can not hold all the delegation
 state without running out of resources. Since the server has no
 knowledge of which delegations are being used more than others,
 it can not implement an effective reclaim scheme that avoids
 reclaiming frequently used delegations. In that case the server
 may issue a CB_RECALL_ANY callback to the client asking it to
 keep N delegations and return the rest. The reason why
 CB_RECALL_ANY specifies a count of delegations the client may
 keep as opposed to a count of delegations the client must yield
 is as follows. Were it otherwise, there is a potential for a
 race between a CB_RECALL_ANY that had a count of delegations to
 free with a set of client originated operations to return
 delegations. As a result of the race the client and server would
 have differing ideas as to how many delegations to return. Hence
 the client could mistakenly free too many delegations. This
 operation applies to delegations for a regular file (read or
 write) as well as for a directory.

Expires: September 2005 [Page 13]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 The client can choose to return any type of delegation as a
 result of this callback i.e. read, write or directory
 delegation. The client can also choose to keep more delegations
 than what the server asked for and it is up to the server to
 handle this situation. The server must give the client enough
 time to return the delegations. This time should not be less
 than the lease period.

 ERRORS
 NFS4ERR_RESOURCE

9. Delegation Recovery

 Crash recovery has two main goals, avoiding the necessity of breaking
 application guarantees with respect to locked files and delivery of
 updates cached at the client. Neither of these applies to
 directories protected by read delegations and notifications. Thus,
 the client is required to establish a new delegation on a server or
 client reboot.

10. Issues

10.1. Synchronous vs. Asynchronous notifications

 Asynchronous notifications are defined as a way of updating namespace
 information for directories. For example, for directories that are
 very large or changing very slowly, the recall and subsequent
 reacquiring of state may be too expensive. In that case if used
 properly notifications can reduce the overhead of recalling
 delegations and re-fetching directory contents with a reduction in
 network traffic.

 For achieving namespace cache consistency with lower network traffic,
 delegations along with synchronous callbacks are sufficient. Adding
 synchronous notifications on top of that does not provide much
 additional benefits.

11. RPC Definition File Changes

 /*
 * Copyright (C) The Internet Society (2003)
 * All Rights Reserved.
 */

 /*
 * nfs41_prot.x
 */

Expires: September 2005 [Page 14]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 %/* $Id: nfs41_prot.x,v 1.1 2004/02/01 05:10:53 saadia Exp $ */

 /* new operation, GET_DIR_DELEGATION */

 /*
 * Notification mask for letting the server know which notifications
 * the client is interested in.
 */
 typedef uint32_t dir_notification_type4;

 /*
 * The bitmask constants used for notification_type field
 */
 const DIR_NOTIFICATION_NONE = 0x00000000;
 const DIR_NOTIFICATION_CHANGE_CHILD_ATTRIBUTES = 0x00000001;
 const DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES = 0x00000002;
 const DIR_NOTIFICATION_REMOVE_ENTRY = 0x00000004;
 const DIR_NOTIFICATION_ADD_ENTRY = 0x00000008;
 const DIR_NOTIFICATION_RENAME_ENTRY = 0x00000010;
 const DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER = 0x00000020;

 typedef nfstime4 attr_notice4;

 /*
 * Input arguments passed to the GET_DIR_DELEGATION operation.
 */
 struct GET_DIR_DELEGATION4args {
 /* CURRENT_FH: directory */
 dir_notification_type4 notification_type;
 attr_notice4 child_attr_delay;
 attr_notice4 dir_attr_delay;
 };

 /*
 * Result flags
 */

 struct GET_DIR_DELEGATION4resok {
 verifier4 cookieverf;
 /* Stateid for get_dir_delegation */
 stateid4 stateid;
 /* Which notifications can the server support */
 dir_notification_type4 supp_notification;
 /* Which attribute notifications can the server support */
 bitmap4 child_attributes;
 bitmap4 dir_attributes;
 };

Expires: September 2005 [Page 15]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 union GET_DIR_DELEGATION4res switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENT_FH: delegated dir */
 GET_DIR_DELEGATION4resok resok4;
 default:
 void;
 };

 /*
 * Operation arrays
 */

 enum nfs_opnum4 {
 OP_ACCESS = 3,
 OP_CLOSE = 4,
 OP_COMMIT = 5,
 OP_CREATE = 6,
 OP_DELEGPURGE = 7,
 OP_DELEGRETURN = 8,
 OP_GETATTR = 9,
 OP_GETFH = 10,
 OP_LINK = 11,
 OP_LOCK = 12,
 OP_LOCKT = 13,
 OP_LOCKU = 14,
 OP_LOOKUP = 15,
 OP_LOOKUPP = 16,
 OP_NVERIFY = 17,
 OP_OPEN = 18,
 OP_OPENATTR = 19,
 OP_OPEN_CONFIRM = 20,
 OP_OPEN_DOWNGRADE = 21,
 OP_PUTFH = 22,
 OP_PUTPUBFH = 23,
 OP_PUTROOTFH = 24,
 OP_READ = 25,
 OP_READDIR = 26,
 OP_READLINK = 27,
 OP_REMOVE = 28,
 OP_RENAME = 29,
 OP_RENEW = 30,
 OP_RESTOREFH = 31,
 OP_SAVEFH = 32,
 OP_SECINFO = 33,
 OP_SETATTR = 34,
 OP_SETCLIENTID = 35,
 OP_SETCLIENTID_CONFIRM = 36,

 OP_VERIFY = 37,

Expires: September 2005 [Page 16]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 OP_WRITE = 38,
 OP_RELEASE_LOCKOWNER = 39,
 OP_OPENDIR = 40,
 OP_ILLEGAL = 10044
 };

 union nfs_argop4 switch (nfs_opnum4 argop) {
 case OP_ACCESS: ACCESS4args opaccess;
 case OP_CLOSE: CLOSE4args opclose;
 case OP_COMMIT: COMMIT4args opcommit;
 case OP_CREATE: CREATE4args opcreate;
 case OP_DELEGPURGE: DELEGPURGE4args opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4args opdelegreturn;
 case OP_GETATTR: GETATTR4args opgetattr;
 case OP_GETFH: void;
 case OP_LINK: LINK4args oplink;
 case OP_LOCK: LOCK4args oplock;
 case OP_LOCKT: LOCKT4args oplockt;
 case OP_LOCKU: LOCKU4args oplocku;
 case OP_LOOKUP: LOOKUP4args oplookup;
 case OP_LOOKUPP: void;
 case OP_NVERIFY: NVERIFY4args opnverify;
 case OP_OPEN: OPEN4args opopen;
 case OP_OPENATTR: OPENATTR4args opopenattr;
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4args opopen_confirm;
 case OP_OPEN_DOWNGRADE: OPEN_DOWNGRADE4args opopen_downgrade;
 case OP_PUTFH: PUTFH4args opputfh;
 case OP_PUTPUBFH: void;
 case OP_PUTROOTFH: void;
 case OP_READ: READ4args opread;
 case OP_READDIR: READDIR4args opreaddir;
 case OP_READLINK: void;
 case OP_REMOVE: REMOVE4args opremove;
 case OP_RENAME: RENAME4args oprename;
 case OP_RENEW: RENEW4args oprenew;
 case OP_RESTOREFH: void;
 case OP_SAVEFH: void;
 case OP_SECINFO: SECINFO4args opsecinfo;
 case OP_SETATTR: SETATTR4args opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4args opsetclientid;
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4args
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4args opverify;
 case OP_WRITE: WRITE4args opwrite;
 case OP_RELEASE_LOCKOWNER: RELEASE_LOCKOWNER4args
 oprelease_lockowner;
 case OP_OPENDIR: OPENDIR4args opopendir;
 case OP_ILLEGAL: void;

 };

Expires: September 2005 [Page 17]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 union nfs_resop4 switch (nfs_opnum4 resop){
 case OP_ACCESS: ACCESS4res opaccess;
 case OP_CLOSE: CLOSE4res opclose;
 case OP_COMMIT: COMMIT4res opcommit;
 case OP_CREATE: CREATE4res opcreate;
 case OP_DELEGPURGE: DELEGPURGE4res opdelegpurge;
 case OP_DELEGRETURN: DELEGRETURN4res opdelegreturn;
 case OP_GETATTR: GETATTR4res opgetattr;
 case OP_GETFH: GETFH4res opgetfh;
 case OP_LINK: LINK4res oplink;
 case OP_LOCK: LOCK4res oplock;
 case OP_LOCKT: LOCKT4res oplockt;
 case OP_LOCKU: LOCKU4res oplocku;
 case OP_LOOKUP: LOOKUP4res oplookup;
 case OP_LOOKUPP: LOOKUPP4res oplookupp;
 case OP_NVERIFY: NVERIFY4res opnverify;
 case OP_OPEN: OPEN4res opopen;
 case OP_OPENATTR: OPENATTR4res opopenattr;
 case OP_OPEN_CONFIRM: OPEN_CONFIRM4res opopen_confirm;
 case OP_OPEN_DOWNGRADE: OPEN_DOWNGRADE4res opopen_downgrade;
 case OP_PUTFH: PUTFH4res opputfh;
 case OP_PUTPUBFH: PUTPUBFH4res opputpubfh;
 case OP_PUTROOTFH: PUTROOTFH4res opputrootfh;
 case OP_READ: READ4res opread;
 case OP_READDIR: READDIR4res opreaddir;
 case OP_READLINK: READLINK4res opreadlink;
 case OP_REMOVE: REMOVE4res opremove;
 case OP_RENAME: RENAME4res oprename;
 case OP_RENEW: RENEW4res oprenew;
 case OP_RESTOREFH: RESTOREFH4res oprestorefh;
 case OP_SAVEFH: SAVEFH4res opsavefh;
 case OP_SECINFO: SECINFO4res opsecinfo;
 case OP_SETATTR: SETATTR4res opsetattr;
 case OP_SETCLIENTID: SETCLIENTID4res opsetclientid;
 case OP_SETCLIENTID_CONFIRM: SETCLIENTID_CONFIRM4res
 opsetclientid_confirm;
 case OP_VERIFY: VERIFY4res opverify;
 case OP_WRITE: WRITE4res opwrite;
 case OP_RELEASE_LOCKOWNER: RELEASE_LOCKOWNER4res
 oprelease_lockowner;
 case OP_OPENDIR: OPENDIR4res opopendir;
 case OP_ILLEGAL: ILLEGAL4res opillegal;
 };

 struct COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion; /* == 1 !!! */
 nfs_argop4 argarray<>;

 };

Expires: September 2005 [Page 18]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 struct COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_resop4 resarray<>;
 };

 /*
 * New error codes
 */

 enum nfsstat4 {
 NFS4_OK = 0, /* everything is okay */
 NFS4ERR_PERM = 1, /* caller not privileged */
 NFS4ERR_NOENT = 2, /* no such file/directory */
 NFS4ERR_IO = 5, /* hard I/O error */
 NFS4ERR_NXIO = 6, /* no such device */
 NFS4ERR_ACCESS = 13, /* access denied */
 NFS4ERR_EXIST = 17, /* file already exists */
 NFS4ERR_XDEV = 18, /* different filesystems */
 /* Unused/reserved 19 */
 NFS4ERR_NOTDIR = 20, /* should be a directory */
 NFS4ERR_ISDIR = 21, /* should not be directory */
 NFS4ERR_INVAL = 22, /* invalid argument */
 NFS4ERR_FBIG = 27, /* file exceeds server max */
 NFS4ERR_NOSPC = 28, /* no space on filesystem */
 NFS4ERR_ROFS = 30, /* read-only filesystem */
 NFS4ERR_MLINK = 31, /* too many hard links */
 NFS4ERR_NAMETOOLONG = 63, /* name exceeds server max */
 NFS4ERR_NOTEMPTY = 66, /* directory not empty */
 NFS4ERR_DQUOT = 69, /* hard quota limit reached*/
 NFS4ERR_STALE = 70, /* file no longer exists */
 NFS4ERR_BADHANDLE = 10001,/* Illegal filehandle */
 NFS4ERR_BAD_COOKIE = 10003,/* READDIR cookie is stale */
 NFS4ERR_NOTSUPP = 10004,/* operation not supported */
 NFS4ERR_TOOSMALL = 10005,/* response limit exceeded */
 NFS4ERR_SERVERFAULT = 10006,/* undefined server error */
 NFS4ERR_BADTYPE = 10007,/* type invalid for CREATE */
 NFS4ERR_DELAY = 10008,/* file "busy" - retry */
 NFS4ERR_SAME = 10009,/* nverify says attrs same */
 NFS4ERR_DENIED = 10010,/* lock unavailable */
 NFS4ERR_EXPIRED = 10011,/* lock lease expired */
 NFS4ERR_LOCKED = 10012,/* I/O failed due to lock */
 NFS4ERR_GRACE = 10013,/* in grace period */
 NFS4ERR_FHEXPIRED = 10014,/* filehandle expired */
 NFS4ERR_SHARE_DENIED = 10015,/* share reserve denied */
 NFS4ERR_WRONGSEC = 10016,/* wrong security flavor */
 NFS4ERR_CLID_INUSE = 10017,/* clientid in use */

 NFS4ERR_RESOURCE = 10018,/* resource exhaustion */

Expires: September 2005 [Page 19]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 NFS4ERR_MOVED = 10019,/* filesystem relocated */
 NFS4ERR_NOFILEHANDLE = 10020,/* current FH is not set */
 NFS4ERR_MINOR_VERS_MISMATCH = 10021,/* minor vers not supp */
 NFS4ERR_STALE_CLIENTID = 10022,/* server has rebooted */
 NFS4ERR_STALE_STATEID = 10023,/* server has rebooted */
 NFS4ERR_OLD_STATEID = 10024,/* state is out of sync */
 NFS4ERR_BAD_STATEID = 10025,/* incorrect stateid */
 NFS4ERR_BAD_SEQID = 10026,/* request is out of seq. */
 NFS4ERR_NOT_SAME = 10027,/* verify - attrs not same */
 NFS4ERR_LOCK_RANGE = 10028,/* lock range not supported*/
 NFS4ERR_SYMLINK = 10029,/* should be file/directory*/
 NFS4ERR_RESTOREFH = 10030,/* no saved filehandle */
 NFS4ERR_LEASE_MOVED = 10031,/* some filesystem moved */
 NFS4ERR_ATTRNOTSUPP = 10032,/* recommended attr not sup*/
 NFS4ERR_NO_GRACE = 10033,/* reclaim outside of grace*/
 NFS4ERR_RECLAIM_BAD = 10034,/* reclaim error at server */
 NFS4ERR_RECLAIM_CONFLICT = 10035,/* conflict on reclaim */
 NFS4ERR_BADXDR = 10036,/* XDR decode failed */
 NFS4ERR_LOCKS_HELD = 10037,/* file locks held at CLOSE*/
 NFS4ERR_OPENMODE = 10038,/* conflict in OPEN and I/O*/
 NFS4ERR_BADOWNER = 10039,/* owner translation bad */
 NFS4ERR_BADCHAR = 10040,/* utf-8 char not supported*/
 NFS4ERR_BADNAME = 10041,/* name not supported */
 NFS4ERR_BAD_RANGE = 10042,/* lock range not supported*/
 NFS4ERR_LOCK_NOTSUPP = 10043,/* no atomic up/downgrade */
 NFS4ERR_OP_ILLEGAL = 10044,/* undefined operation */
 NFS4ERR_DEADLOCK = 10045,/* file locking deadlock */
 NFS4ERR_FILE_OPEN = 10046,/* open file blocks op. */
 NFS4ERR_ADMIN_REVOKED = 10047,/* lockowner state revoked */
 NFS4ERR_CB_PATH_DOWN = 10048,/* callback path down */
 NFS4ERR_DIRDELEG_UNAVAIL= 10049,/* dir dlg. not returned */
 };

 /*
 * New Callback operation CB_NOTIFY
 */

 struct CB_NOTIFY4args {
 stateid4 stateid;
 dir_notification4 changes<>;
 };

 /*
 * Changed entry information.
 */
 struct dir_entry {
 component4 file;

 fattr4 attrs;

Expires: September 2005 [Page 20]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 };

 struct dir_notification_attribute4 {
 dir_entry changed_entry;
 };

 struct dir_notification_remove4 {
 dir_entry old_entry;
 nfs_cookie4 old_entry_cookie;
 };

 struct dir_notification_rename4 {
 dir_entry old_entry;
 dir_notification_add4 new_entry;
 };

 struct dir_notification_verifier4 {
 verifier4 old_cookieverf;
 verifier4 new_cookieverf;
 };

 struct dir_notification_add4 {
 dir_entry new_entry;
 nfs_cookie4 new_entry_cookie; /* what READDIR would
 have returned
 for this entry */
 bool last_entry;
 prev_entry_info4 prev_info;
 };

 union prev_entry_info4 switch (bool isprev) {
 case TRUE:
 prev_entry4 prev_entry_info;
 case FALSE: /* we are adding to an empty directory */
 void;
 };

 /*
 * Previous entry information
 */
 struct prev_entry4 {
 dir_entry prev_entry;
 /* what READDIR returned for this entry */
 nfs_cookie4 prev_entry_cookie;
 };

 /*
 * Notification information sent to the client.
 */

Expires: September 2005 [Page 21]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 union dir_notification4
 switch (dir_notification_type4 notification_type) {
 case DIR_NOTIFICATION_CHANGE_CHILD_ATTRIBUTES:
 dir_notification_attribute4 change_child_attributes;
 case DIR_NOTIFICATION_CHANGE_DIR_ATTRIBUTES:
 fattr4 change_dir_attributes;
 case DIR_NOTIFICATION_REMOVE_ENTRY:
 dir_notification_remove4 remove_notification;
 case DIR_NOTIFICATION_ADD_ENTRY:
 dir_notification_add4 add_notification;
 case DIR_NOTIFICATION_RENAME_ENTRY:
 dir_notification_rename4 rename_notification;
 case DIR_NOTIFICATION_CHANGE_COOKIE_VERIFIER:
 dir_notification_verifier4 verf_notification;
 };

 struct CB_NOTIFY4res {
 nfsstat4 status;
 };

 /*
 * New Callback operation CB_RECALL_ANY
 *

 struct CB_RECALLANYY4args {
 uint4 dlgs_to_keep;
 }

 struct CB_RECALLANY4res {
 nfsstat4 status;
 };

 /*
 * Various definitions for CB_COMPOUND
 */
 enum nfs_cb_opnum4 {
 OP_CB_GETATTR = 3,
 OP_CB_RECALL = 4,
 OP_CB_NOTIFY = 5,
 OP_CB_RECALL_ANY = 6,
 OP_CB_ILLEGAL = 10044
 };

 union nfs_cb_argop4 switch (unsigned argop) {
 case OP_CB_GETATTR: CB_GETATTR4args opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4args opcbrecall;
 case OP_CB_NOTIFY: CB_NOTIFY4args opcbnotify;
 case OP_CB_RECALLANY: CB_RECALLANY4args opcbrecallany;

 case OP_CB_ILLEGAL: CB_ILLEGAL4args opcbillegal;

Expires: September 2005 [Page 22]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

 };

 union nfs_cb_resop4 switch (unsigned resop) {
 case OP_CB_GETATTR: CB_GETATTR4res opcbgetattr;
 case OP_CB_RECALL: CB_RECALL4res opcbrecall;
 case OP_CB_NOTIFY: CB_NOTIFY4res opcbnotify;
 case OP_CB_RECALLANY: CB_RECALLANY4res opcbrecallany;
 case OP_CB_ILLEGAL: CB_ILLEGAL4res opcbillegal;
 };

 struct CB_COMPOUND4args {
 utf8str_cs tag;
 uint32_t minorversion;
 uint32_t callback_ident;
 nfs_cb_argop4 argarray<>;
 };

 struct CB_COMPOUND4res {
 nfsstat4 status;
 utf8str_cs tag;
 nfs_cb_resop4 resarray<>;
 };

12. IANA Considerations

 The IANA considerations of NFSv4.0 apply to NFSv4.1.

13. Acknowledgements

 David Noveck, Michael Eisler, Carl Burnett, Ted Anderson and Thomas
 Talpey for their constructive feedback and critical comments.

14. Normative References

 [RFC3530]
 S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
 Eisler, D. Noveck, "NFS version 4 Protocol", RFC 3530, April,
 2003.

 [talpey]
 T. Talpey, S. Shepler, J. Bauman "NFSv4 Session Extensions",
 Internet-Draft, July, 2004. A URL for this Internet-Draft is
 available at http://www.ietf.org/internet-drafts/draft-ietf-

nfsv4-sess-00.txt

https://datatracker.ietf.org/doc/html/rfc3530
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-sess-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-sess-00.txt

Expires: September 2005 [Page 23]

INTERNET-DRAFT NFSv4.1: Directory Delegations" March 2005

15. Informative References

 None.

16. Author's Address

 Saadia Khan
 2324 Dubois Street
 Milpitas, CA 95035
 USA

 Phone: 408-957-9626
 EMail: saadiak@yahoo.com

17. IPR Notices

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

18. Copyright Notice

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/bcp78

Expires: September 2005 [Page 24]

